
Unit 10: Random Walks

Instructor: Quan Zhou

10.1 Random walks on R
In this subsection, we let Z1, Z2, . . . be arbitrary i.i.d. random variables, and
define X0 = 0 and Xn = Z1 + · · · + Zn for each n ≥ 1. Let the filtration be
given by Fn = σ(Z1, . . . , Zn). The sequence (Xn)n≥0 is called a random walk
on R . We first prove a result about the limiting behavior of (Xn) and then
give applications of the optional sampling theorem.

Theorem 10.1. One of the following four events happens with probability
one:

(i) Xn = 0 for all n.

(ii) Xn →∞.

(iii) Xn → −∞.

(iv) lim inf Xn = −∞ and lim supXn =∞.

Proof. If Z1 = 0 a.s., then event (i) happens a.s. If P(Z1 > 0) > 0, by the
continuity of measures, there exist some δ, ε > 0 such that P(Z1 > δ) > ε.
Hence, it follows from Borel-Cantelli lemma that event (ii) happens a.s. if
Z1 ≥ 0 and P(Z1 > 0) > 0. Similarly, if Z1 ≤ 0 and P(Z1 < 0) > 0, event
(iii) happens a.s.

Now assume P(Z1 > 0) > 0 and P(Z1 < 0) > 0, which implies that there
exist some δ, ε > 0 such that P(Z1 > δ) > ε and P(Z1 < −δ) > ε. Let
X̄ = lim supXn, and define An = {Xn > X̄ − δ/2} and Bn = An−1 ∩ {Xn >
X̄ + δ/2}. Since An−1 ∩ {Zn > δ} ⊂ Bn, we have P(Bn | Fn−1) ≥ ε1An−1 .
By Levy’s zero-one law, whenever An happens infinitely often, so does Bn.
An argument by contradiction yields that P(lim supXn ∈ (−∞,∞)) = 0.
Similarly, P(lim inf Xn ∈ (−∞,∞)) = 0, and thus event (ii), (iii) or (iv)
must happen a.s.

Remark 10.1. When Z1 is integrable and E[Z1] = 0, (Xn) is a martingale.
Theorem 10.1 shows that, except the trivial case where Xn = 0 for all 0, al-
most surely (Xn) does not converge to a finite limit. Theorem 5.1 (martingale
convergence theorem) thus implies that supE|Xn| → ∞.



Fall 2023 Quan Zhou

Theorem 10.2. Suppose E[Z1] = 0 and E[Z2
1 ] = σ2 < ∞. Let T be a

stopping time such that E[T ] <∞. Then, E[X2
T ] = σ2E[T ].

Proof. It follows from the optional sampling theorem.

Theorem 10.3. Suppose E[Z1] = 0 and E[Z2
1 ] = 1. Let

T (c) = inf{n ≥ 1: |Xn| > c
√
n}.

If c < 1, we have E[T (c)] <∞; if c ≥ 1, we have E[T (c)] =∞.

Proof. Write T = T (c) and consider c ≥ 1 first. If E[T ] < ∞, by Theo-
rem 10.2, we have E[X2

T ] = E[T ]. But by the definition of Tc, X
2
T > c2T ≥ T ,

and thus E[X2
T ] > E[T ]. This yields the contradiction. The proof for the case

c < 1 is more involved and omitted here; see [1].

Remark 10.2. It is interesting to compare Theorem 10.3 with the law of
iterated logarithm. The latter tells us that lim sup |Xn|/

√
2n log(log n) = 1,

a.s., which implies that for any c <∞, |Xn| > c
√
n infinitely many times.

Exercise 10.1. Let ϕ(θ) = EeθZ1 . Assume Z1 is not a constant, which can
be shown to imply that θ 7→ logϕ(θ) is strictly convex whenever ϕ(θ) <∞.
Fix some θ 6= 0 and assume ϕ(θ) <∞. Define

Yn = exp (θXn − n logϕ(θ)) .

Show that (i) (Yn) is a martingale, (ii) limn→0 E
√
Yn = 0, and (iii) Yn

a.s.→ 0.

Exercise 10.2. Suppose EeθZ1 = 1 for some θ < 0, and Z1 is not a constant.
Let a, b be such that a < 0 < b, and define

T = min{n ≥ 1: Xn ≤ a or Xn ≥ b}.

Show that (i) E[T ] <∞, and (ii) P(XT ≤ a) ≤ e−θa.

10.2 Simple random walks

In this subsection, we let Z1, Z2, . . . be i.i.d. such that P(Z1 = 1) = 1 −
P(Z1 = −1) = p. Define (Xn) as in the last subsection. We say (Xn) is a
simple random walk, or a random walk on Z. When p = 1/2, we say the
random walk is symmetric; when p 6= 1/2, we say it is asymmetric.
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Theorem 10.4. Let (Xn)n≥0 be a symmetric simple random walk. Then

E|Xn| =
b(n−1)/2c∑

j=0

(
2j

j

)
4−j.

Proof. We proved this in Example 7.1 using Doob’s decomposition.

Theorem 10.5. Let (Xn)n≥0 be a symmetric simple random walk. Let a, b
be integers such that a < 0 < b, and define

T = min{n ≥ 1: Xn ≤ a or Xn ≥ b}.

Then P(XT = a) = b/(b− a), and E[T ] = −ab.

Proof. It is easy to show that there exists some constant ε > 0 such that
E[T ≤ n + b − a | Fn] ≥ ε, from which we get ET < ∞. The optional
sampling theorem then yields E[XT ] = 0, from which the first result follows.

To find E[T ], consider the martingale Yn = X2
n−n. The optional sampling

theorem yields that

0 = E[YT ] = E[X2
T ]− E[T ] =

a2b

b− a
− b2a

b− a
− E[T ] = −ab− E[T ].

The proof is complete.

Theorem 10.6. Let (Xn)n≥0 be a symmetric simple random walk. For any
b > 0, P(Tb <∞) = 1 and E[Tb] =∞ where Tb = min{n ≥ 1: Xn = b}.

Proof. For any a < 0, Theorem 10.5 implies that min(Ta, Tb) < 1 a.s. and
P(Tb < Ta) = −a/(b− a). It follows that

lim
n→∞

P(Tb < T−n) = lim
n→∞

−n/(b+ n) = 1.

Define En = {Tb < T−n}. Clearly, En ⊂ En+1, and thus the continuity of
probability measures yields that limn→∞ P(Tb < T−n) = P(

⋃
n→∞En). Since⋃

n→∞En = {Tb <∞}, we get P(Tb <∞) = 1.
To prove ETb =∞, note that if ETb <∞, the optional sampling theorem

would yield EXTb = 0, which gives the contradiction.

Remark 10.3. Actually it can be shown that, for a symmetric simple ran-
dom walk, P(T1 > t) ∼ Ct−1/2 for some constant C > 0, though we do not
prove the result here.
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Theorem 10.7. Let (Xn)n≥0 be an asymmetric simple random walk with
P(Z1 = 1) = p ∈ (1/2, 1). Define Tx = min{n ≥ 1: Xn = x}, and ψ(x) =
(1− p)x/px. Then, for integers a, b such that a < 0 < b,

(i) P(Ta < Tb) = ψ(b)−1
ψ(b)−ψ(a) .

(ii) P(Ta <∞) = ψ(−a).

(iii) P(Tb <∞) = 1 and E[Tb] = b/(2p− 1).

Proof. Define Yn = ψ(Xn). It is easy to show that (Yn)n≥0 is a martingale.
Mimicking the proof of Theorem 10.5, we find that E[Ta ∧ Tb] <∞ and

1 = E[YTa∧Tb ] = P(Ta < Tb)ψ(a) + (1− P(Ta < Tb))ψ(b).

A straightforward calculation proves part (i).
As in the proof of Theorem 10.7, we find that

P(Ta <∞) = lim
b↑∞

ψ(b)− 1

ψ(b)− ψ(a)
= ψ(a)−1 = ψ(−a),

P(Tb <∞) = lim
a↓−∞

1− ψ(a)

ψ(b)− ψ(a)
= 1.

Finally, to find E[Tb], we use the martingale (Yn) with

Yn = Xn − n(2p− 1).

Optional sampling theorem shows that E[Yn∧Tb ] = 0 for each n, which yields
E[Xn∧Tb ] = (2p − 1)E[n ∧ Tb]. By monotone convergence theorem, we have
limn→∞ E[n∧Tb] = E[Tb]. Hence, it only remains to justify limn→∞ E[Xn∧Tb ] =
E[XTb ] = b. To show this, observe that for any a < 0,

P(Ta <∞) = P

(
inf
n≥0

Xn ≤ a

)
=

(
1− p
p

)−a
.

Since p > 1/2 implies
∑∞

n=1((1 − p)/p)n < ∞, we get E| infn≥0Xn| < ∞.
Since |Xn∧Tb| ≤ b∨| infn≥0Xn|, we can apply dominated convergence theorem
to conclude the proof.

Exercise 10.3. Let (Xn) be an asymmetric random walk with p ∈ (1/2, 1),
and Tb = min{n ≥ 1: Xn = b}. Show that

Var(Tb) =
4bp(1− p)
(2p− 1)3

.
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