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SUMMARY

The problem of testing equality of a large number of densities is considered. The classical
k-sample problem compares a small, fixed number of distributions and allows the sample size 10

from each distribution to increase without bound. In our asymptotic analysis the number of dis-
tributions tends to infinity but the size of individual samples remains fixed. The proposed test
statistic is motivated by the simple idea of comparing kernel density estimators from the various
samples to the average of all density estimators. However, a novel interpretation of this familiar
type of statistic arises upon centering it. The asymptotic distribution of the statistic under the null 15

hypothesis of equal densities is derived, and power against local alternatives is considered. It is
shown that a consistent test is attainable in many situations where all but a vanishingly small pro-
portion of densities are equal to each other. The test is studied via simulations, and an illustration
involving microarray data is provided.

Some key words: Kernel density estimation; k-sample problem; Local alternatives; Omnibus test; U -statistics. 20

1. INTRODUCTION

A recurring theme in modern statistics is dealing with a large number of rather small data sets.
For example, microarrays produce data that can be framed in this way. The use of clustering in
such problems is common. To wit, one assumes that all data sets come from a relatively small
number of distributions, and the goal is to cluster the data sets so that those in a given cluster 25

have a common distribution. In such problems it is advisable to verify that clustering is indeed
necessary. A formal test of the null hypothesis that all data sets come from a single distribution
could prevent a spurious clustering. Such a test is the subject of this paper. We propose a test
that has good power when the number of small data sets tends to infinity, but the sample sizes of
individual data sets are fixed. 30

The k-sample problem, i.e., testing whether k data sets come from the same population, is
a classical one in statistics. In this setting k is assumed to be fixed, and asymptotic analysis
proceeds by letting each of the k sample sizes tend to infinity. In contrast, we consider a setting
where the number of data sets tends to infinity, but all sample sizes are bounded by a common
value. To distinguish our situation from the classical one, we use the notation p for the number of 35

data sets. This is also in keeping with the modern terminology of large p, small n problems. We
are mainly interested in cases where n is quite small, small enough that a nonparametric test of
the equality of distributions would have essentially no power if p were small, as in the classical
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setting. Our test is based on the idea of comparing kernel density estimates computed from all the
small data sets. When the null hypothesis is true, the differences between these density estimates40

will be relatively small, whereas if the alternative is true, the differences will be larger.
For the sake of simplicity, the main treatment of our proposed test assumes that all data sets

are of the same, fixed size n. However, we also propose a test for the setting where sample sizes
are different, and provide conditions on the sample sizes that ensure asymptotic normality of the
test statistic. A proof of this result is given in our Supplementary Material.45

In settings with n small, the power of a test derives from having a sufficiently large number
of data sets whose distributions differ from the norm. We investigate the power of our test by
assuming that the distributions for the various data sets are independently drawn from a count-
able collection of distributions. It is shown that, as p→∞, our test is consistent against such
alternatives. We also consider local alternatives for which the proportion of data sets having the50

same distribution, call it g, tends to 1 as p→∞. Here, if the number of distributions different
from g is just larger than p1/2, then our test is still consistent.

The two-sample Kolmogorov–Smirnov test (Stephens, 1974) is a useful and popular nonpara-
metric method for testing whether two samples are from the same distribution. Other traditional
two-sample goodness-of-fit tests based on empirical distribution functions include the Cramér–55

von Mises and Anderson–Darling tests (Anderson & Darling, 1954; Anderson, 1962; Stephens,
1974, 1986). Recently, Jimenez-Gamero et al. (2009) proposed a test based on empirical charac-
teristic functions. Anderson, Hall and Titterington (1994), Louani (2000), and Cao and Van Kei-
legom (2006) considered tests for the two-sample problem based on kernel density estimates.

As for testing equality of more than two distributions, Kiefer (1959) proposed extensions of60

the Kolmogorov–Smirnov and Cramér–von Mises tests to the k-sample setting, while Scholz and
Stephens (1987) extended the Anderson–Darling test to that case. Martı́nez-Camblor, de Uña
Álvarez and Corral (2008) proposed a test for comparing k samples that is based on kernel
density estimators. The authors suggest that density-based tests may be more powerful than
ones based on the empirical distribution function. The simulations of Martı́nez-Camblor and65

de Uña Álvarez (2009) provide evidence that tests based on L1 distances between kernel density
estimators are generally more powerful than either tests based on empirical distribution functions
or the test of Martı́nez-Camblor, de Uña Álvarez and Corral (2008).

Aside from the large literature on microarray analysis (for example, Efron, 2004), we are aware
of only a few articles that deal with inference for a large number of small data sets. Cox and70

Solomon (1986) investigated methods for checking the fit of a model that assumes many small
samples are normally distributed with a common variance. Cox and Solomon (1988) proposed a
test for detecting within-samples serial correlation when the data consist of many small samples.
Park and Park (2012) consider the classical analysis of variance problem when the number of
data sets is large.75

2. THE DATA AND PROPOSED TEST

The observed data are Xij (j = 1, . . . , n; i = 1, . . . , p). It is assumed that Xi1, . . . , Xin is a
random sample from density fi (i = 1, . . . , p), and the samples are taken independently of each
other. Our interest is in testing the null hypothesisH0 : f1 = · · · = fp against the alternative that
not all the densities are the same. We let N(a, b) denote a normal distribution with mean a and80

variance b.
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Our test ofH0 is based on comparing kernel density estimates from each of the p samples with
a single kernel estimate using all the data pooled together. Define

f̂i(x) =
1
nh

n∑

j=1

φ

(
x−Xij

h

)
, i = 1, . . . , p,

where φ is the standard normal density and h > 0 is the bandwidth of the kernel estimate. The
pooled estimator is

f̂(x) =
1
p

p∑

i=1

f̂i(x),

which is equivalent to a kernel estimator based on all np data values pooled together. We have
chosen the bandwidths of these p+ 1 kernel estimates to be the same, in order to ensure that,
when H0 is true, all estimates are estimating the same function, in the sense that E{f̂i(x)−
f̂(x)} = 0. The same principle has been used in related settings, such as that in Young and 85

Bowman (1995).
Thoughout this paper we use a normal kernel. It would be interesting to consider the effect of

using a different kernel, although doing so is beyond the scope of the current paper. Our intuition
is that other symmetric, unimodal kernels will not yield substantially different results than those
obtained with a normal kernel. As in the setting of density estimation, the bandwidth h probably 90

has a larger effect than kernel choice, and we will give some results on the effect of h.
Our ultimate test statistic is derived by starting from a statistic analogous to that of Young and

Bowman (1995) in the regression setting. Define

Tp =
1
p

p∑

i=1

∫ ∞

−∞

{
f̂i(x)− f̂(x)

}2
dx

=
∫ ∞

−∞

1
p

p∑

i=1

{
f̂i(x)− f̂(x)

}2
dx

=
1
p

p∑

i=1

∫ ∞

−∞
f̂2

i (x) dx−
∫ ∞

−∞
f̂2(x) dx. (1)

The statistic Tp is an obvious one to use for testing equality of the densities. It is simply a kernel
estimate analog of an analysis of variance sum of squares statistic. However, centering Tp so that 95

its limiting distribution under H0 has mean zero is a nontrivial operation. It turns out that one
must subtract from Tp an estimator of E(Tp) whose variance is of the same order in p as that of
Tp. Rather than taking this approach, evaluation of the integrals in (1) reveals an effortless way
of doing the centering, and leads to a test statistic with an alternative motivation.

The following well-known property is used a number of times subsequently. 100

Property 1. The convolution of N(0, σ2
1) and N(0, σ2

2) densities is N(0, σ2
1 + σ2

2).
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Using Property 1 we have
∫ ∞

−∞
f̂2

i (x) dx =
1

n221/2h

n∑

j=1

n∑

l=1

φ

(
Xij −Xil

21/2h

)
,

∫ ∞

−∞
f̂2(x)dx =

1
p2n221/2h

p∑

i=1

p∑

k=1

n∑

j=1

n∑

l=1

φ

(
Xij −Xkl

21/2h

)
.

We may therefore write

Tp =
(p− 1)
p

1
n21/2h

φ(0) +
p− 1
p2

1
n221/2h

p∑

i=1

n∑

j=1

n∑

l=1,l 6=j

φ

(
Xij −Xil

21/2h

)

− 1
p2n221/2h

p∑

i=1

p∑

k=1,k 6=i

n∑

j=1

n∑

l=1

φ

(
Xij −Xkl

21/2h

)
.

Suppose that H0 is true and let the common density of each observation be f . Then, again using
Property 1, for j 6= l, i 6= k and arbitrary 1 ≤ r, s ≤ n,105

E

{
1

21/2h
φ

(
Xij −Xil

21/2h

)}
= E

{
1

21/2h
φ

(
Xir −Xks

21/2h

)}

=
∫ ∞

−∞

∫ ∞

−∞

1
21/2h

φ

(
x− y

21/2h

)
f(x)f(y) dxdy

=
∫ ∞

−∞
f2

h(x) dx,

where

fh(x) = E{f̂(x)} =
∫ ∞

−∞

1
h
φ

(
x− y

h

)
f(y) dy.

To center the statistic under H0, we first drop the term depending on φ(0), since it contains no
information about the underlying densities. Secondly, up to known multipliers, the two sums in
Tp have the same expectations under H0. Therefore, defining

SW =
1

pn(n− 1)21/2h

p∑

i=1

n∑

j=1

n∑

l=1,l 6=j

φ

(
Xij −Xil

21/2h

)
,

SB =
1

p(p− 1)n221/2h

p∑

i=1

p∑

k=1,k 6=i

n∑

j=1

n∑

l=1

φ

(
Xij −Xkl

21/2h

)
,

the unstudentized version of our test statistic is S = SW − SB , which has mean zero under H0.
As we will subsequently show, E(S) is larger than zero when the alternative hypothesis is true.110

The subscripts W and B stand for within and between, respectively. The statistic SW is an intra-
samples parameter estimate, since Xij and Xil come from the same small data set, whereas
SB is an inter-samples estimate, since Xij and Xkl come from different data sets. These two
statistics estimate the same parameter,

∫∞
−∞ f2

h(x)dx, under H0, but different parameters under
the alternative.115

Using U -statistic technology, we will show in Section 3 that S/var(S)1/2 converges in dis-
tribution to a standard normal random variable as p→∞ with n and h fixed. Not surprisingly,
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var(S) depends upon the unknown density f under H0. It is therefore necessary to construct
a consistent estimator of var(S) in order to obtain the final version of our test statistic that is
asymptotically normal under H0. We will propose such an estimator in Section 3. 120

3. ASYMPTOTIC NULL DISTRIBUTION OF TEST STATISTIC

Theorem 1 establishes the asymptotic normality of the statistic S. Its proof is given in the
Appendix and uses the theory of U -statistics. The following notation is useful in the proof and
in defining a consistent estimator of the variance of S. Let x = (x1, . . . , xn), y = (y1, . . . , yn)
and define 125

h1(x) =
1

n(n− 1)21/2h

n∑

j=1

n∑

l=1,j 6=l

φ

(
xj − xl

21/2h

)
, (2)

h2(x, y) =
1

n221/2h

n∑

j=1

n∑

l=1

φ

(
xj − yl

21/2h

)
. (3)

THEOREM 1. Let n and h be fixed for all p, and suppose thatXij (j = 1, . . . , n; i = 1, . . . , p)
are independent and identically distributed with common density f . Then S/var(S)1/2 converges
in distribution to a random variable having the standard normal distribution as p tends to ∞.

Remark 1. An implicit assumption in Theorem 1 is that the limiting variance of p1/2S is larger
than zero. In order for this variance to be zero, h1 would have to be a linear function of h3, as 130

defined by (A2). If this is possible at all, it would be a pathological case, as one can see upon
comparing definitions (2) and (A2).

To make Theorem 1 practically useful, we need a consistent estimator of the null value of
pvar(S). Using U -statistic technology, it suffices to replace var(S) by the variance of the fol-
lowing projection of SW − SB:

1
p

p∑

i=1

h1(Xi)− 2
p

p∑

i=1

h3(Xi) + E(SB).

If h3 were known, we could simply use the sample variance of h1(X1)−
2h3(X1), . . . , h1(Xp)− 2h3(Xp) to estimate σ2 = var{h1(X1)− 2h3(X1)}. However,
unlike h1, h3 depends upon the unknown null density f . We may deal with this problem by 135

estimating h3, as in Sen (1960) and Schucany and Bankson (1989). Define

ĥ3(x; i) =
1

(p− 1)

p∑

k=1,k 6=i

h2(Xk, x), i = 1, . . . , p.

The quantity σ2 is estimated by the sample variance, call it σ̂2, of h1(Xi)− 2ĥ3(Xi; i) (i =
1, . . . , p). The statistic σ̂2 is essentially a jackknife variance estimator, as studied by Arvesen
(1969) in the case of U -statistics for univariate random variables. We now have the following
corollary to Theorem 1. 140

COROLLARY 1. Let the conditions of Theorem 1 be satisfied, and suppose that σ̂2 is the esti-
mator defined immediately above. Then p1/2S/σ̂ converges in distribution to a random variable
having the standard normal distribution as p tends to ∞.
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Corollary 1 is proven using Theorem 1, the consistency of σ̂2, as shown in the Supplementary
Material, and Slutsky’s theorem. Formally, our test of the null hypothesis that all data have a145

common distribution is rejected at nominal level αwhen Sp = p1/2S/σ̂ is larger than the (1− α)
quantile of the standard normal distribution. The test is one-sided since, as shown in the next
section, E(S) > 0 under the alternative hypothesis.

4. ASYMPTOTIC POWER PROPERTIES

4·1. Fixed alternatives150

It is not reasonable to expect that our test can consistently detect every fixed alternative to
H0 : f1 = f2 = · · · = fp as p→∞ with n fixed, as the following argument illustrates. Suppose
we have p data sets each of size n, where the np observations are mutually independent. We
know that the first m data sets come from N(µ1, 1) and the other p−m come from N(µ2, 1).
If we want to detect a difference in the two distributions we cannot expect better power than that155

of the standard two-sample test of H0 : µ1 = µ2. The limiting power of this test as p→∞ with
m and n fixed is equal to the probability that the random variable (nm)1/2|X̄ − µ2| exceeds a
standard normal critical value, where X̄ is the sample mean of the nm observations in the firstm
data sets. Since n andm are fixed this probability is less than 1, and hence the test is inconsistent.

This leads to the question of what constitutes a reasonable fixed alternative in our setting.160

In Condition 1 below, we define alternatives in which densities are randomly selected from a
countable collection of densities. This is tantamount to a clustering model in which it is assumed
that all data within a cluster have a common distribution and there are countably many clusters.

Condition 1. For each p, densities f1, . . . , fp are drawn independently from a countable col-
lection {g1, g2, . . .} of densities. For each i, fi is identical to gr with probability ρr (r = 1, 2, . . .).165

Once a density is selected, a random sample of size n is drawn from that density. We assume that
each ρr < 1, which ensures that the alternative hypothesis is true, almost surely, for all p suffi-
ciently large.

Condition 1 constitutes a fixed alternative in the sense that f1, . . . , fp are drawn from the same
collection of densities for every p.170

Let zα be the 1− α quantile of the standard normal distribution, and let µ = E(S). Then the
power of our nominal size α test is

pr

(
p1/2S

σ̂
> zα

)
= pr

{
p1/2(S − µ)

σ̂
> zα − p1/2µ

σ̂

}
. (4)

The key to obtaining good power is that, except in a trivial case, the parameter µ is larger than
0 under Condition 1, as established in the following lemma. All lemmas and theorems in this
section are proven in the Appendix, unless otherwise specified.175

LEMMA 1. Let gr( · ;h) be the convolution of gr with the N(0, h2) density. Under Condition
1,

E(S) = µ =
∞∑

r=1

∑
s>r

ρrρs

∫
{gr(x;h)− gs(x;h)}2 dx. (5)

If in addition there are two distinct integers r and s such that ρr > 0, ρs > 0 and gr and gs are
different in the sense that their characteristic functions are different, then µ > 0.
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Under the model entailed by Condition 1, the unconditional density of each observation Xij is 180

the same, and equal to the mixture
∑∞

r=1 ρrgr. For this reason it may seem odd that µ > 0. The
reason that µ is larger than 0 under our alternative model is that in this case observations in the
same data set are correlated. One may regard the model entailed by Condition 1 as a random
effects model. Even though observations within a small data set of size n are conditionally in-
dependent, they are dependent with respect to their unconditional joint distribution. This, along 185

with the fact that observations in different small data sets are unconditionally independent, leads
to µ > 0.

We may now state a main result about the power of our test.

THEOREM 2. Assume that Condition 1 holds. Then with n and h fixed for all p, p1/2(S −
µ)/σ̂ converges in distribution to a random variable with the standard normal distribution as 190

p→∞. Under the further condition that µ > 0, the test that rejects H0 for large values of
p1/2S/σ̂ is consistent, i.e., its power tends to 1 as p→∞.

Remark 2. In order for a kernel density estimator to be consistent for the underlying density,
it is necessary, in general, for its bandwidth to tend to 0 as sample size tends to infinity. In the
current setting it is not required that h→ 0 for test consistency. This is because consistency 195

results from gr(·;h) being different from gs(·;h) for some r and s, which only requires that gr

and gs be different.

4·2. Local alternatives
We continue to assume that the alternative model of the previous section holds, but now we

assume that ρr → 0 for r = 2, 3, . . ., which implies that ρ1 → 1. Therefore, the alternative be- 200

comes very close to the null in that the proportion of densities equal to g1 is very close to 1. The
question is, how quickly may the proportions tend to 0 and still allow our test to have substantial
power?

Our local alternative is defined by the following condition

Condition 2. When the number of data sets is p, the probability of selecting density gr is 205

ρrp = arεp, r = 2, 3, . . ., where {a2, a3, . . .} is a positive summable sequence, {εp} is a positive
sequence that tends to 0 as p→∞, and εp

∑∞
r=2 ar < 1 for p = 1, 2, . . .. Note that ρ1p = 1−

εp
∑∞

r=2 ar.

The power of our test against local alternatives is provided by the following theorem.

THEOREM 3. Under Condition 2, the limiting power of the test based on p1/2S/σ̂ is 210

1− Φ

[
zα − p1/2εp

σ

∞∑

s=2

as

∫
{g1(x;h)− gs(x;h)}2 dx

]
, (6)

where σ2 is the limiting variance of p1/2S when all data have density g1, and Φ is the cumulative
distribution function of a N(0, 1) distribution.

If at least one of g2, g3, . . . is different from g1, and p1/2εp →∞ as p→∞, then Theorem 3
entails that the power of our test tends to 1 as p→∞. Furthermore, our test can detect p1/2

alternatives in that, if εp = p−1/2, the limiting power is greater than α, and given explicitly by 215

(6). It may seem that expression (6) does not depend on n, but indeed it does. The parameter σ
depends on n, and as n increases, σ decreases, which increases power.
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5. BANDWIDTH SELECTION

To this point we have assumed that the bandwidth is fixed as p→∞. Expression (6) shows
that, in general, the power of the test will depend on which fixed bandwidth one chooses. Further-220

more, the choice of h that optimizes power depends on information that is difficult to estimate.
Therefore, the first method we discuss for choosing h sidesteps the question of power, and simply
provides a bandwidth whose scale is commensurate with the scale of the observations.

Our method is motivated by the maximal smoothing principle of Terrell and Scott (1985) and
Terrell (1990). For a Gaussian kernel their bandwidth is hOS = 1.144σpopn

−1/5, which is an225

upper bound on an asymptotically optimal bandwidth when the population standard deviation is
σpop. A data-driven bandwidth is obtained by substituting either the sample standard deviation
or a more robust estimate of scale for σpop in hOS .

In our setting, we have a different estimate of scale for each data set. We thus suggest using
spool, where s2pool is the average of all p sample variances. Our choice of h is thus230

ĥ = 1.144spooln
−1/5. (7)

Another possibility is to use a more robust scale estimate, such as the median of all p standard
deviations. In general the choice (7) does not produce the best power. However, it has the virtue
of simplicity and stability, inasmuch as spool is based on a large number, np, of observations.

Define, for each h > 0,

Sp(h) =
SW − SB

σ̂/p1/2
, (8)

where the quantities on the right hand side of (8) are defined in Section 3. It is important to point235

out that, so long as the variance of the null distribution is finite, the limiting distribution of Sp(ĥ)
as p→∞ is the same as that of Sp(hOS), where hOS = 1.144{var(Xij)}1/2n−1/5. This is so
because, as shown in the Supplementary Material, ĥ differs from hOS by O(p−1/2), and as a
result Sp(ĥ) = Sp(hOS) +O(p−1/2).

There are certainly other possibilities for choosing h, the most obvious of which is estimating240

an h that maximizes power. This approach has been taken in other testing problems based on
smoothing methods; see, for example, Kulasekera and Wang (1997), Doksum and Schafer (2006)
and Martı́nez-Camblor and de Uña Álvarez (2013). Expression (4) suggests that a value of h
maximizing Sp(h), i.e., one producing the smallest P -value, would be close to the a priori h
that maximizes power. Of course, if one rejected H0 when the smallest P -value, call it P̂ , was245

less than α, then the size of the test would be larger than α. If the actual null distribution of
P̂ were determined, then one could perform a valid test based on P̂ . It should be clear though,
that this test will have smaller power than a test based on Sp(h) with a power-optimal fixed h.
Nonetheless, the P̂ -based test might be a reasonable compromise between an optimal statistic
and one based on bandwidth (7). The requisite adjustment to the critical value of P̂ could be made250

using the bootstrap. To do so, one may draw samples of size np randomly and with replacement
from Xij (j = 1, . . . , n; i = 1, . . . , p). For each sample drawn, p small data sets each of size
n are constructed, and P̂ ∗ is computed from these p data sets in exactly the same way P̂ was
computed from the original data. The null hypothesis would be rejected if P̂ is smaller than the
α quantile of all the values of P̂ ∗.255
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6. NUMERICAL RESULTS

6·1. Simulations using Sp(ĥ)
The simulations in this section employ the test statistic Sp(ĥ) with ĥ defined as in (7). For

each case in which the the null hypothesis is true the number of replications is 2000 and other-
wise it is 1000. Initially we consider the level properties of our large sample test. Four different 260

possibilities were considered for the common distribution under the null hypothesis. These are
a standard normal distribution, a t distribution with 3 degrees of freedom, a bimodal mixture of
two normal distributions with means −2 and 2 and common standard deviation 1, and a gamma
density with shape parameter 3 and scale 1. Since our test statistic is invariant to location and
scale under the null hypothesis, the results reported are not affected by the particular location 265

and scale chosen for a density.
Table 6·1 gives results for the gamma density. Results for the other three densities are not

shown here as they are similar to the gamma case. The estimated level of our large sample
test was consistently close to the nominal level. On the basis of a binomial test with level of
significance 0.05, none of the empirical rejection rates in Table 1 is significantly larger than 270

the corresponding nominal level. Considering all four densities, only three of 192 cases had
an empirical rate significantly larger than the nominal level, and all three of these occurred at
nominal level 0.10. If anything, the rates tended to be slightly too small.

We now consider three types of alternatives to the null hypothesis. One type, Case 1, is such
that there are only two densities, standard normal andN(1, 1), with ρ100%, ρ = 0.1, 0.2, of the p 275

data sets being drawn from the latter. Another type, Case 2, also has only two densities, standard
normal and N(0, 4), with ρ100%, ρ = 0.1, 0.2, of the p data sets being drawn from N(0, 4). In
Case 3 densities are drawn from a continuous scale mixture: fi|βi ∼ gamma with shape 3 and
scale βi, and βi ∼ gamma with shape 50 and scale 1/50.

For each of the three settings we considered a sort of oracle test to see how well our nonpara- 280

metric test fares in comparison to a good parametric test. The oracle was a likelihood ratio test.
For Case 1 this was the classical F -test from analysis of variance, for Case 2 a Gaussian-based
likelihood ratio test of the null hypothesis of equal variances, and for Case 3 a likelihood ratio
test of equal scale parameters assuming the data are gamma distributed with shape parameter
known to be 3. 285

All results are for a nominal α of 0.05 and are given in Table 6·1. An interesting aspect of
the results is the substantial increase in power resulting from a small increase in n. This knowl-
edge could be quite useful in deciding how many experimental units would be needed to ensure
detection of differences among distributions. With the possible exception of Case 2, our nonpara-
metric test performed reasonably well in comparison to the parametric tests. In all three cases 290

the nonparametric test had empirical power that was at least 69% that of the likelihood ratio test
when n > 3 and p ≥ 500.

6·2. Simulation investigating bandwidth effect
We also did a small study to investigate the effect of bandwidth on the power of the test. We

considered the Case 2 scale alternative with ρ = 0.1, n = 3 and p = 500. Let Pow(h) denote 295

the power of a size 0.05 test based on test statistic Sp(h). For each h in a grid of 100 values
between 0.25 and 5, Pow(h) was estimated by generating 2000 data sets from the alternative
and determining the proportion of cases in which Sp(h) exceeded 1.645. A local linear estimate
P̂ow(h) of Pow(h) based on these results was unimodal, with P̂ow(0.25) = 0.14 and P̂ow(5) =



10 D. ZHAN AND J. D. HART

Table 1. Empirical rejection rates (%) of large sample test when the null hypothesis is true
and the common density is gamma with shape 3 and scale 1. Each value is the percentage of
rejections in 2000 replications.

Nominal α (%)

n p 1 5 10

2 100 0.95 4.35 9.20
500 0.40 3.85 9.30

1000 0.95 4.85 9.35
5000 1.30 4.75 9.95

3 100 0.40 3.35 7.55
500 0.75 4.05 9.05

1000 0.90 4.85 8.95
5000 0.95 5.15 10.10

5 100 0.40 3.65 8.25
500 0.70 3.35 8.05

1000 0.45 4.20 9.05
5000 0.80 4.65 9.35

10 100 0.30 2.85 7.90
500 0.60 4.15 9.60

1000 0.45 4.50 9.65
5000 0.75 4.35 9.20

0.06. The maximum estimated power was 0.33, which occurred at h = 1.1. An estimate of the300

standard error of each estimated power is no more than 0.01.
We note that the Table 6·1 entry for the normal scale case with n = 3, p = 500 and ρ = 0.1

is 32, and therefore our data-driven bandwidth produced power that differs insubstantially from
what is possible using the best fixed bandwidth. Although this result is in just a single setting, it
is nonetheless encouraging.305

Finally, we investigated an idea equivalent to that mentioned in the last paragraph of Section 5.
The test statistic was Mp = max0.25≤h≤5 Sp(h). The null distribution of Mp was approximated
in the case n = 3 and p = 500 by generating data from the the standard normal distribution.
On the basis of 2000 replications the 95th percentile of Mp was estimated to be 1.915. We then
generated 2000 replications from the alternative (10%N(0, 4) and 90%N(0, 1)), and found that310

the proportion of cases in which Mp exceeded 1.915 was 0.31. Again this is encouraging in that
the power is quite close to the best empirical power obtained with a fixed bandwidth test.

6·3. Microarray data
Here we present an analysis of data collected by Professor Robert Chapkin and coworkers at

Texas A&M University; see Davidson et al. (2004). The data analyzed are part of a much larger315

data set, but provide a good example of our methodology. The data are from five rats, all of which
were subjected to the same treatment. There are 8038 logged gene expression levels from each
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Table 2. Empirical power (%) of nonparametric (Sp(ĥ)) and parametric (LR) tests. The nominal
α is 5% and each table value is the percentage of rejections in 1000 replications. In the normal
location case, (1− ρ)100% of the data sets are drawn from N(0, 1) and ρ100% are drawn
from N(1, 1). In the normal scale case, (1− ρ)100% of the data sets are drawn from N(0, 1)
and ρ100% are drawn from N(0, 4). In the gamma case, data set i is gamma with shape 3 and
scale βi, i = 1, . . . , p, where β1, . . . , βp are independent and identically distributed gamma with
shape 50 and scale 1/50.

Normal location Normal scale Gamma

ρ = 0.1 ρ = 0.2 ρ = 0.1 ρ = 0.2

n p Sp(ĥ) LR Sp(ĥ) LR Sp(ĥ) LR Sp(ĥ) LR Sp(ĥ) LR

2 100 13 20 29 39 9 19 13 31 11 19
500 43 57 84 93 17 57 35 76 26 53

1000 66 81 98 100 26 81 52 96 43 78
5000 100 100 100 100 76 100 98 100 95 100

3 100 22 39 55 73 10 43 20 65 17 32
500 76 93 99 100 32 91 71 100 48 83

1000 96 100 100 100 56 99 92 100 76 98
5000 100 100 100 100 99 100 100 100 100 100

5 100 45 77 89 99 22 82 47 98 33 58
500 99 100 100 100 69 100 99 100 88 99

1000 100 100 100 100 94 100 100 100 99 100
5000 100 100 100 100 100 100 100 100 100 100

10 100 86 100 100 100 51 100 94 100 72 94
500 100 100 100 100 100 100 100 100 100 100

1000 100 100 100 100 100 100 100 100 100 100
5000 100 100 100 100 100 100 100 100 100 100

rat, and so n = 5 and p = 8038. Denoting the original data Yij (i = 1, . . . , 8038; j = 1, . . . , 5),
the data analyzed were Xij = Yij − Ȳj , where Ȳj =

∑8038
i=1 Yij/8038. This transformation was

done to effectively eliminate additive rat effects. 320

Before conducting the main analysis, we investigated the possibility of correlation between
log(expression levels) of different genes on the same rat. A common form of correlation in mi-
croarray data is autocorrelation with respect to gene proximity (Koren, Tirosh and Barkai, 2007).
Treating the data of each rat as a time series of length 8038, we computed the sample autocor-
relation function for each rat at lags 1 to 1000. The first lag autocorrelation for each rat was 325

between 0.09 and 0.10, and no other autocorrelation for any rat exceeded 0.09. On this basis, the
assumption of independence across genes seems like a reasonable working hypothesis.
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Fig. 1. Plots arising from the gene expression data. On the
left, the dashed lines are kernel estimates for 50 randomly
selected genes, and the solid line is a kernel estimate using
all 5(8038) data values. On the right is the value of test
statistic Sp as a function of bandwidth for the differenced
rat data. The vertical line indicates the bandwidth selected

by the rule (7).

For a given gene, the log(expression level) varies from rat to rat, and potentially this distri-
bution could differ from gene to gene. Initially we test for equality of these 8038 distributions.
Figure 1 gives an impression of how kernel density estimates differ from gene to gene. The most330

obvious differences are in terms of location, which seem substantial enough that any reasonable
test should reject equality of distributions. Indeed our test does find significance, with the value
of Sp equal to 280.07, leading to a P -value of essentially zero.

What is not so clear from Figure 1 is whether there are differences between distributions other
than ones due to location. For example, it would be of interest to know if there are differences335

in scale. Hart and Cañette (2011) devised a rank-based test specifically for detecting scale dif-
ferences in the current setting, applied it to the rat data, and found strong evidence in favor of
scale differences. So, there are significant non-location differences among distributions, and it is
of interest to see if some version of our kernel-based test can detect them.

We have Xij = µi + εij , where µi is some convenient location parameter of fi, and fi is the
density from which Xi1, . . . , Xin are drawn. For the sake of concreteness we take µi to be the
mean of fi. So, E(εij |fi) = 0, and we wish to test the null hypothesis that the distribution of
εij is the same for all i. We can eliminate the effect of location by computing differences. For
example,

δi12 = Xi1 −Xi2 = εi1 − εi2.

When n ≥ 4, there are at least two independent differences in each small data set. We may thus340

apply our method to test the null hypothesis that the distribution of δijk is the same for all i.
Unfortunately, this hypothesis is not equivalent to the null hypothesis that the distribution of εij
is the same for all i. However, if the distribution of, say, δ1jk is different from that of δ2jk, then
it must be true that the distributions of ε1j and ε2j are different. The only deficit of the procedure
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is that there exist some exceptional cases where the distributions of ε1j and ε2j are different, but 345

those of δ1jk and δ2jk are the same. In those cases the power of the test would equal its level.
For each of the 8038 small data sets, we randomly selected one of the 15 ways in which two

independent differences can be formed, and applied our test to the resulting set of differences.
In this case n = 2, and the test statistic Sp was 9.967, yielding a P -value of essentially zero. We
have thus found differences in distributions other than ones of location type. 350

Both tests in this section used the bandwidth (7), which in the case of the differences-based
test was 0.378. The effect of h on the test was considered by computing the test statistic Sp for
a grid of bandwidths between 0.05 and 0.5; the results are seen in Figure 1. This plot is similar
to the significance trace proposed by Young and Bowman (1995). They suggested that a P -value
be computed as a function of h. This function, termed the significance trace, is definitive if it 355

lies completely above or below the nominal α. We have plotted the test statistic rather than P -
value since the latter quantity is less than machine precision for each h. There is overwhelming
evidence to reject H0 regardless of which bandwidth is used.

7. DEALING WITH UNEQUAL SAMPLE SIZES

In practice sample sizes will often differ. The form of our test statistic is readily modified to 360

account for this situation. Let the sample sizes for the p data sets be n1, . . . , np, each of which is
assumed to be at least 2, and define

S̃W =
1

(M −N)21/2h

p∑

i=1

ni∑

j=1

ni∑

l=1,l 6=j

φ

(
Xij −Xil

21/2h

)
,

S̃B =
1

(N2 −M)21/2h

p∑

i=1

p∑

k=1,k 6=i

ni∑

j=1

nk∑

l=1

φ

(
Xij −Xkl

21/2h

)
,

where N =
∑p

i=1 ni and M =
∑p

i=1 n
2
i . It is still true that E(S̃W − S̃B) = 0 under the null

hypothesis. We may thus use as test statistic p1/2(S̃W − S̃B)/σ̃, where, as described in our Sup-
plementary Material, σ̃ is a suitably modified version of σ̂. 365

In accordance with the notion that individual sample sizes are small, we assume that the nis
are bounded for all i and p. This means that there exist distinct sample sizes m1 < · · · < mJ

that comprise all the sample sizes that will occur as p→∞. The following condition is used in
establishing an asymptotic normality result for our statistic when sample sizes are unequal.

Condition 3. The only possible samples sizes are m1 < · · · < mJ . Let pi be the number of 370

data sets having sample size mi (i = 1, . . . , J). Then, for i = 1, . . . , J , pi/p tends to πi as p→
∞, where each πi > 0.

The following theorem is proven in the Supplementary Material.

THEOREM 4. Let h be fixed for all p, suppose that the sample sizes satisfy Condition 3, and
let Xij (j = 1, . . . , ni; i = 1, . . . , p) be independent and identically distributed with common 375

density f . Then p1/2(S̃W − S̃B)/σ̃ converges in distribution to a random variable having the
standard normal distribution as p tends to ∞.
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8. CONCLUDING REMARKS

A number of different avenues for building on our methodology have presented themselves
during the course of our study. One that should be reasonably straightforward is to multivariate380

data. We have also thought of alternative definitions of the test statistic. One possibility is to use
a Kullback–Leibler discrepancy, or log-likelihood ratio:

p∑

i=1

n∑

j=1

{
log f̂i(Xij)− log f̂(Xij)

}
. (9)

The main reason we have not pursued such a statistic is that it is less amenable to asymptotic
analysis than the one we considered. Nonetheless, it would be interesting to investigate how (9)
compares with Sp in terms of power.385

Further study on the effect of bandwidth is also of interest. Simulations have shown that in
some cases fairly substantial gains in power can be obtained by using the right fixed bandwidth
instead of (7). The simulation of Section 6.2 indicates promise for the maximizer of Sp(h) with
respect to h, and so this test also deserves further study.

Finally, it is of interest to develop a procedure that indicates the main reason for significance390

of our test. In our microarray example, it seemed plausible from an examination of the data that
location differences were the main reason for significance. Ideally, though, one would like to
be able to quantify this notion. A way in which this has been done previously for an omnibus
statistic is to write it as a sum of components; see, for example, Durbin and Knott (1972) and Parr
and Schucany (1982). Since our statistic is of L2 form, it is possible, using Parseval’s formula,395

to write it as a sum of components corresponding to different orthogonal functions. The most
important part of such an approach is finding a basis for which the components have meaningful
interpretations.
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APPENDIX405

Proof of Theorem 1
With Xi = (Xi1, . . . , Xin) for i = 1, . . . , p, we may write SW =

∑p
i=1 h1(Xi)/p, which is just a

mean of independent and identically distributed random variables. We may also write

SB =
1

p(p− 1)

p∑

i=1

∑

k 6=i

h2(Xi, Xk),

which is a multivariate U -statistic. When the bandwidth h is fixed, SW and SB have all moments finite
since each is a bounded random variable.410
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From Serfling (1980), Section 5.3.1, the projection of SB is defined as

ŜB =
p∑

r=1

E(SB |Xr)− (p− 1)E(SB), (A1)

where E(SB) = E[h2(Xi, Xk)] = θ. An important fact (Serfling, 1980) is that p1/2(ŜB − SB) = op(1),
which implies that SW − SB and SW − ŜB have the same asymptotic distribution. So it suffices to find
var(SW − ŜB), which is easier to find than var(SW − SB), since ŜB is a sum of independent and iden-
tically distributed random variables. 415

Define, for i 6= k and each x,

h3(x) = E {h2(Xi, Xk)|Xk = x} = E{h2(Xi, x)}. (A2)

Using equation (2), p. 188 of Serfling (1980),

ŜB =
2
p

p∑

i=1

h3(Xi)− θ, (A3)

which, as promised, is a sum of independent and identically distributed random variables.
Defining Ŝ = SW − ŜB , we have

var(Ŝ) =
1
p
var {h1(Xi)− 2h3(Xi)} ≡ 1

p
σ2. (A4)

From the central limit theorem it follows that p1/2Ŝ/σ converges in distribution to a standard normal 420

random variable.

Proof of Lemma 1
For l 6= j and i 6= k, we have

µ =
1

21/2h

{
Eφ

(
Xij −Xil

21/2h

)
− Eφ

(
Xij −Xkl

21/2h

)}

=
1

21/2h

{ ∞∑
r=1

ρr

∫ ∫
φ

(
x− y

21/2h

)
gr(x)gr(y) dxdy −

∫ ∫
φ

(
x− y

21/2h

)
m(x)m(y) dxdy

}

=
1

21/2h

∫ ∫
φ

(
x− y

21/2h

) { ∞∑
r=1

ρrgr(x)gr(y)
∞∑

s=1

ρs −
∞∑

r=1

∞∑
s=1

ρrρsgr(x)gs(y)

}
dxdy

=
1

21/2h

∫ ∫
φ

(
x− y

21/2h

) ∞∑
r=1

∞∑
s=1

ρrρsgr(x) {gr(y)− gs(y)} dxdy

=
1

21/2h

∫ ∫
φ

(
x− y

21/2h

) ∞∑
r=1

∑
s>r

ρrρs{gr(x)− gs(x)}{gr(y)− gs(y)} dxdy. (A5)

It is straightforward to show that

1
21/2h

∫ ∫
φ

(
x− y

21/2h

)
{gr(x)− gs(x)}{gr(y)− gs(y)} dxdy =

∫
{gr(x;h)− gs(x;h)}2 dx,

thus establishing the first part of Lemma 1. To establish that µ > 0, it is enough to show that one of the
summands in µ is positive. By assumption, there exist r and s such that ρrρs > 0 and gr and gs have
different characteristic functions, call them ψr and ψs. Plancherel’s formula entails that

∫
{gr(x;h)− gs(x;h)}2 dx =

1
2π

∫
e−h2t2/2|ψr(t)− ψs(t)|2 dt.

By the continuity of characteristic functions, there exists an interval throughout which |ψr(t)− ψs(t)| >
0, and so the last integral is positive. 425
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Proof of Theorem 2
The vectors X1, . . . , Xp are independent and identically distributed with common density

m(x1, . . . , xn) =
∑∞

r=1 ρr

∏n
j=1 gr(xj). Therefore, the same proof as that for Theorem 1 implies that

p1/2(S − µ)/σ converges in distribution to a standard normal random variable, where σ2 > 0 is the vari-
ance of h1(X1)− 2h3(X1). In the Supplementary Material it is shown that σ̂ converges in probability to430

σ. Using (4) and the assumption µ > 0, consistency of the test follows.

Proof of Theorem 3
Because the alternative hypothesis is no longer fixed, one must use a central limit theorem that allows

a triangular array structure. For this reason we denote the observed n-vectors by Xp1, . . . , Xpp. These
vectors are independent and identically distributed for any given p, but their common distribution changes435

with p.
The quantity SW − SB may still be approximated by its U -statistic projection, since our local alter-

natives do not affect the property that the difference between SW − SB and its projection is op(p−1/2).
For each p, define δp = h1(Xp1)− 2h3(Xp1). Using Liapounov’s central limit theorem (Chung 1974,
pp. 196-200), our asymptotic normality result is established by verifying that440

lim
p→∞

E{|δp − E(δp)|3}
p1/2var(δp)3/2

= 0. (A6)

Using the fact that each of h1 and h3 is bounded by φ(0)/(21/2h), it follows that E{|δp − E(δp)|3} is
bounded by some constantC for all p. In the Supplementary Material it is shown that var(δp) converges to
σ2 = var{h1(X)− 2h̃3(X)} as p→∞, where the n components of X are independent and identically
distributed as g1, and, for each x, h̃3(x) = E{h2(X,x)}. It is assumed that σ2 > 0, and hence
(A6) is verified.445

For the rest of the proof, first use (5) to obtain

µ =
∞∑

r=1

∑
s>r

ρrpρsp

∫
{gr(x;h)− gs(x;h)}2 dx

= ρ1p

∞∑
s=2

ρsp

∫
{g1(x;h)− gs(x;h)}2 dx+

∞∑
r=2

∑
s>r

ρrpρsp

∫
{gr(x;h)− gs(x;h)}2 dx

= εp

∞∑
s=2

as

∫
{g1(x;h)− gs(x;h)}2 dx+Op(ε2p). (A7)

Expression (6) now follows from (4), the asymptotic normality of S, (A7), and the fact, as shown in the
Supplementary Material, that σ̂ converges in probability to σ.
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MARTÍNEZ-CAMBLOR, P., DE UÑA ÁLVAREZ, J. & CORRAL, N. (2008). k-Sample test based on the common area

of kernel density estimator. J. Statist. Plan. Infer. 138, 4006–4020. 485
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