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Nonparametric Estimation of Distributions in
Random Effects Models

Jeffrey D. HART and Isabel CAÑETTE

We propose using minimum distance to obtain nonparametric estimates of the dis-
tributions of components in random effects models. A main setting considered is equiv-
alent to having a large number of small datasets whose locations, and perhaps scales,
vary randomly, but which otherwise have a common distribution. Interest focuses on
estimating the distribution that is common to all datasets, knowledge of which is cru-
cial in multiple testing problems where a location/scale invariant test is applied to every
small dataset. A detailed algorithm for computing minimum distance estimates is pro-
posed, and the usefulness of our methodology is illustrated by a simulation study and
an analysis of microarray data. Supplemental materials for the article, including R-code
and a dataset, are available online.

Key Words: Characteristic function; Identifiability; Minimum distance estimation;
Quantile function.

1. INTRODUCTION

A common problem in modern statistics is to have a large number, say p, of small
datasets. In principle, the distributions of data in different datasets could differ in an ar-
bitrary manner. Often, however, it is reasonable to assume that there is some degree of
commonality among these distributions. A possible model for such commonality is the
following:

Xij = μi + σiεij , i = 1, . . . , p, j = 1, . . . , n, (1.1)

where Xij , i = 1, . . . , p, j = 1, . . . , n, are real-valued observations, and the following as-
sumptions are made:

A1. The pairs (μi, σi), i = 1, . . . , p, are independent and identically distributed un-
known parameters.
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462 J. D. HART AND I. CAÑETTE

A2. The unobserved errors εij , i = 1, . . . , p, j = 1, . . . , n, are independent and identi-
cally distributed, with cumulative distribution function (cdf) F . Each εij has mean
0 and variance 1.

A3. The parameters (μi, σi), i = 1, . . . , p, are independent of εij , i = 1, . . . , p, j =
1, . . . , n.

Model (1.1) will be referred to as the location-scale random effects, or LSRE, model. Such
a model has been used, for example, in microarray analyses, wherein the index i denotes
different genes and Xij , j = 1, . . . , n, are observations, usually expression levels, made on
the ith gene, i = 1, . . . , p. In the LSRE model the distributions for different datasets differ
only with respect to location and scale. The current article is mainly concerned with the
following question: “How well can F in model (1.1) be nonparametrically estimated when
n is quite small but p is large?” Although this article is more concerned with practical mat-
ters than theory, an asymptotic analysis appropriate for our setting would keep n bounded
as p tends to ∞.

Our interest in the question just posed is motivated by the canonical multiple hypotheses
testing problem in microarray analyses. In model (1.1), suppose that Xij is the difference
between observations obtained from gene i of subject j before and after the subject is
given a treatment. Then it is of interest to test the hypotheses

H0i :μi = 0, i = 1, . . . , p,

each of which corresponds to the hypothesis of no treatment effect for a given gene. If one
applies p standard t -tests, a common practice, then it is crucial to have knowledge of F

since each test is based on a small number (n) of observations. One might argue that a rank
or permutation test could be used that does not require knowledge of F . However, another
benefit of inferring F is that this knowledge could be used to construct a test that is more
powerful than a rank or permutation test.

A special case of the LSRE model is when the distribution of σi is degenerate at some
positive constant σ . We will refer to this as the location random effects, or LRE, model.
There exists a modest literature on estimation of F and the distribution of μi , call it G,
in the LRE model. Reiersøl (1950) proved the important result that, under quite general
conditions, both F and G are identifiable in the LRE model when n is as small as 2.
Together with results of Wolfowitz (1957), this implies that both F and G can be estimated
consistently using nonparametric methods when p → ∞ and n is fixed at a value that is at
least 2.

A large literature exists on the deconvolution problem corresponding to the LRE model
with n = 1 and a known error distribution F . Much of this literature is referenced by Car-
roll and Hall (2004). Much less work has been done on the LRE model with both F and G

unknown. A long gap in this work transpired after the early articles of Reiersøl (1950) and
Wolfowitz (1957). To our knowledge the gap was not broken until the article of Horowitz
and Markatou (1996), who considered a model for panel data that includes the location
model as a special case. Horowitz and Markatou (1996) proposed nonparametric estima-
tors of f and g (the densities of F and G in the location model) that are consistent and
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DISTRIBUTIONS IN RANDOM EFFECTS MODELS 463

attain optimal rates of convergence. These estimators are similar in construction to ones

that are popular in the deconvolution model, that is, they plug estimates of a characteris-

tic function into a Fourier inversion formula. We will call such estimators “deconvolution

estimators” to distinguish them from the minimum distance estimators to be considered in

the current article. The method of Horowitz and Markatou (1996) targets error densities f

that are symmetric about 0. Li and Vuong (1998) also investigated estimators of deconvo-

lution type but were able to avoid the assumption of a symmetric error distribution. Hall

and Yao (2003) further weakened consistency conditions and also proposed minimum dis-

tance histogram estimators of f and g. Neumann (2007) proposed minimum distance type

estimators of F and G in the LRE model and showed them to be strongly consistent, doing

so under weaker conditions on F and G than in the aforementioned articles. In the LRE

model with F unknown, Delaigle, Hall, and Meister (2008) identified conditions under

which deconvolution estimators of the μi -density achieve the same rate of convergence as

in the case of a known error density. Work related to ours but in the context of nonlinear

modeling has been done by Schennach (2004).

The contributions of the current article may be summarized as follows.

C1. We propose new algorithms for approximating minimum distance estimators in

LRE and LSRE models, and show their effectiveness via simulation studies and a

real-data analysis.

C2. We prove that in the LRE model, the error distribution F is generally identifiable

from either the joint distribution of (Xi1 − Xi2,Xi1 − Xi3) or the distribution of

Xi1 − (Xi2 + Xi3)/2. In particular, this result does not require the commonly used

assumption that the error distribution is symmetric, as in the article by Delaigle,

Hall, and Meister (2008), for example.

C3. The result described in C2 leads to location-free methods of estimating F , that is,

ones completely free of μ1, . . . ,μp . Our simulation shows that these location-free

methods can yield more efficient estimators of F than a method that simultaneously

estimates F and G.

C4. We prove that F is generally identifiable in the LSRE model for n as small as 4.

The proof of this result leads to a method of estimating F in the LSRE model.

C5. We formulate a distribution-free rank test of the null hypothesis that the LRE model

holds against the alternative of an LSRE model. This test requires only that n ≥ 4.

The rest of the article proceeds as follows. In the next section we describe the minimum

distance method in the context of the LRE model. An algorithm for approximating such

estimates is described in Section 3, and simulation results are reported in Section 4. Our

ideas are applied to the LSRE model in Section 5 and an example involving microarrays is

provided in Section 6. Finally, concluding remarks are made in Section 7.
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464 J. D. HART AND I. CAÑETTE

2. METHODOLOGY FOR THE LOCATION RANDOM
EFFECTS MODEL

As indicated previously, our main interest is in estimating F , the error distribution. In
this section we consider the LRE model, which is the model investigated by Li and Vuong
(1998), Hall and Yao (2003), and Neumann (2007). In Section 2.1 we discuss two new
ways of identifying F in the LRE model. These results are valid for n as small as 3 and are
completely independent of μ1, . . . ,μp . In Section 2.2 we describe our minimum distance
methodology for estimating F in an LRE model, and in Section 2.3 we discuss consistency
of our estimators.

2.1 LOCATION-FREE IDENTIFIABILITY OF F

The seminal result of Reiersøl (1950) shows that in the LRE model, both F and G are
identifiable from the joint distribution of (Xi1,Xi2). This result forms the basis for methods
of estimating F and G since the joint distribution is readily estimated by the empirical
distribution of (Xi1,Xi2), i = 1, . . . , p. When G is a nuisance and F the distribution of
interest, it is reasonable to ask if there are ways to estimate F that are easier and/or more
efficient than existing methods that require estimation of G. A basic question in this regard
is the following: “Can F be identified without assuming anything whatsoever about G?”
It is well known (see, e.g., Horowitz and Markatou 1996) that if F is symmetric and its
characteristic function never vanishes, then it is identifiable from the distribution, call it
DF , of εi1 −εi2. In this case F is estimable from data differences Xi1 −Xi2 = σ(εi1 −εi2),
i = 1, . . . , p. However, if the symmetry assumption is dropped, then F is not identifiable
from DF , as there exist cases where F1 is different from F2, but DF1 ≡ DF2 .

Suppose now that n ≥ 3 and define

δij l = Xij − Xil = σ(εij − εil), i = 1, . . . , p, j, l = 1, . . . , n.

A simple but important observation is that the two differences δij l and δijm with j, l,m

distinct comprise a special case of the LRE model in which G(x) = 1 − F(−x) for all
x. The common random variable εij in these two differences plays the role of μj , while
−εil and −εim are the error terms. Since εij , εil, εim are mutually independent, it follows
from the work of Reiersøl (1950) that the distribution of εij is identifiable from the joint
distribution of (δij l, δijm) as long as the characteristic function (cf) of εij does not vanish
throughout an interval. This identifiability condition is obviously much weaker than the
assumption of a real cf that never vanishes. Furthermore, the only cost in weakening the
identifiability condition is one extra observation in each small dataset.

In the next section we will describe a minimum distance method for estimating F . This
method requires a consistent estimator of the joint cf, ξ(s, t), of (δij l, δijm). Sufficient for
this purpose is the

√
p-consistent estimator

ξ̂ (s, t) = 2

n(n − 1)(n − 2)p

p∑
j=1

n∑
k=1

∑
(l,m)∈Snk

exp(isδjkl + itδjkm),

where Snk = {(l,m) : 1 ≤ l < m ≤ n, l 	= k,m 	= k}.

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r 
st

ud
en

t f
ee

s]
 a

t 0
8:

42
 0

6 
Ja

nu
ar

y 
20

12
 



DISTRIBUTIONS IN RANDOM EFFECTS MODELS 465

A second method is based on the residuals ε̂ij = Xij − X̄ij , j = 1, . . . , n, i = 1, . . . , p,
where X̄ij = ∑

k 	=j Xik/(n − 1), j = 1, . . . , n, i = 1, . . . , p. Obviously, ε̂ij = σ(εij − ε̄ij ),
j = 1, . . . , n, i = 1, . . . , p, with ε̄ij = ∑

k 	=j εik/n, j = 1, . . . , n, i = 1, . . . , p. The follow-
ing theorem in regard to these residuals is proven in our supplementary materials.

Theorem 1. Let the LRE model hold with n ≥ 3, and suppose that the cf of F does
not vanish throughout an interval. Then the distribution of εi1 is identifiable from that of
Xi1 − X̄i1.

The nonparametric estimator η̂(t) = ∑p

j=1

∑n
k=1 exp(it ε̂jk)/(np) is consistent for the

cf η of ε̂ij . This estimator is the foundation of a minimum distance method for estimat-
ing F . A computational advantage of this method over the first one described in this section
is that it involves univariate, rather than bivariate, distributions.

2.2 MINIMUM DISTANCE ESTIMATION

For ease of notation the ensuing discussion assumes that σ is known and equal to 1.
However, in practice an unbiased estimator of σ 2 is

σ̂ 2 = 1

2pn(n − 1)

p∑
j=1

n∑
k=1

∑
l 	=k

(Xjk − Xjl)
2.

This estimator is
√

p-consistent so long as εij has just more than two moments finite. The
method below can be modified in an obvious way to incorporate σ̂ .

Initially we describe a method based on the pairs of differences (δij l, δijm), as defined
in Section 2.1. The joint distribution of (δij l, δijm) (with j, l,m distinct) is

H(x,y) =
∫ ∞

−∞
[1 − F(z − x)][1 − F(z − y)]dF(z), (2.1)

and the joint cf

ξ(s, t) = ψF (s + t)ψF (−s)ψF (−t),

where ψF is the cf of F . Considering that p is assumed to be large in our problem, the cf
ξ can be well estimated by the empirical cf ξ̂ defined in Section 2.1.

Now, the basic idea of the minimum distance method is straightforward. Try to find a
distribution F̂ with cf ψ

F̂
such that

ξ
F̂
(s, t) ≡ ψ

F̂
(s + t)ψ

F̂
(−s)ψ

F̂
(−t)

is a good match to ξ̂ (s, t). More formally, we may define a metric measuring the discrep-
ancy between ξ

F̂
and ξ̂ and then choose F̂ to minimize this discrepancy.

In principle any number of metrics could be used when employing the minimum dis-
tance method. However, we have found that density-based metrics work much better than
ones based on the cdf. An example of the latter type is

D2
1(H1,H2) =

∫ ∞

−∞

∫ ∞

−∞
[H1(x, y) − H2(x, y)]2 dH2(x, y).
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466 J. D. HART AND I. CAÑETTE

Density-based metrics measure the difference between densities rather than cdf’s. In the
frequency domain, the metric we propose is as follows:

D2(ξ
F̂
, ξ̂ ) =

∫ ∞

−∞

∫ ∞

−∞
exp[−2b2(s2 + t2)]|ξ

F̂
(s, t) − ξ̂ (s, t)|2 ds dt,

where b is a small positive number. Using Parseval’s formula one can see that this is,
indeed, a density-based metric. We have

D2(ξ
F̂
, ξ̂ ) = 4π2

∫ ∞

−∞

∫ ∞

−∞
(ĥmodel(x, y;b) − ĥb(x, y))2 dx dy, (2.2)

where ĥmodel(·;b) is the joint density with cf exp[−b2(s2 + t2)/2]ξ
F̂
(s, t) and ĥb(x, y) is

a standard kernel density estimate defined by

ĥb(x, y) = 2

pn(n − 1)(n − 2)b2

p∑
j=1

n∑
k=1

∑
(l,m)∈Snk

φ

(
x − δjkl

b

)
φ

(
y − δjkm

b

)
,

in which φ is the standard normal density. So, the quantity b in (2.2) is actually the band-
width of a kernel estimate of h(x, y) = ∫ ∞

−∞ f (z − x)f (z − y)f (z) dz.

Let F̂ denote the cdf that gives equal probability to each of the N numbers Q̂1 < Q̂2 <

· · · < Q̂N . The cf of F̂ is

ψ
F̂
(t) = 1

N

N∑
j=1

exp(itQ̂j ). (2.3)

Using Fourier inversion the estimate ĥmodel(·;b) of h(x, y) corresponding to (2.3) is

ĥmodel(x, y;b) = 1

b2N3

N∑
j=1

N∑
k=1

N∑
l=1

φ

(
x − Q̂j + Q̂k

b

)
φ

(
y − Q̂j + Q̂l

b

)
.

In Section 3 we will describe a random search algorithm that seeks to find (for given N )
the quantiles Q̂j , j = 1, . . . ,N , that minimize the distance (2.2).

A minimum distance estimate of F based on the residuals ε̂ij , j = 1, . . . , n, i =
1, . . . , p, may be defined in an analogous manner. For n = 3, the cf of ε̂ij is ηF (t) =
ψF (t)ψF (−t/2)2, and we would thus seek F̂ to minimize

D̃2(η
F̂
, η̂) =

∫ ∞

−∞
exp(−2b2t2)|η

F̂
(t) − η̂(t)|2 dt

= 2π

∫ ∞

−∞
(h̃model(x;b) − h̃b(x))2 dx,

where h̃b is a Gaussian-kernel density estimate based on the np residuals. Representing F̂

in terms of quantiles as before, the density h̃model(·;b) is

h̃model(x;b) = 1

bN3

N∑
j=1

N∑
k=1

N∑
l=1

φ

(
x − Q̂j + (Q̂k + Q̂l)/2

b

)
.
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DISTRIBUTIONS IN RANDOM EFFECTS MODELS 467

2.3 CONSISTENCY OF MINIMUM DISTANCE ESTIMATORS

Neumann (2007) proved that certain minimum distance estimators in the LRE model
are consistent under general conditions on F and G. The only way in which Neumann’s
distance criterion differs from ours is that he multiplied the absolute squared difference
between characteristic functions by a fixed kernel function, that is, one that does not change
with p. Our kernel function, exp[−2b2(s2 + t2)], depends on the bandwidth b, which will
tend to 0 with p if it is chosen by cross-validation. Extending Neumann’s result to allow a
p-dependent kernel function seems to us a minor technical problem, which in any event is
beyond the scope of our article.

The only other issue involved in proving consistency of our estimators involves the
fact that our algorithm only approximates the actual quantile function that minimizes the
distance criterion. However, this is a problem that any existing method faces, since, to our
knowledge, there is no known closed form for a minimum distance estimator in the context
of LRE or LSRE models. Certainly consistency requires that the number N of quantiles
increase without bound as p tends to infinity, but, importantly, as shown by Beran and
Millar (1994), making the “right” choice of the number of quantiles is not crucial to the
good performance of the estimators. It is perfectly acceptable to err on the side of a very
large number of quantiles.

3. AN ALGORITHM TO APPROXIMATE MINIMUM
DISTANCE ESTIMATES

Our algorithm is similar to that proposed in the context of random coefficient regression
by Beran and Millar (1994) in that both are based on searching over quantiles. However,
our algorithm is somewhat more detailed, and consists of two types of iterations, that we
call global and local. A great deal of experimentation was done to arrive at the particular
algorithm described below, although we do not claim that it is optimal in any sense.

Let Q̂ denote an N -vector of quantile estimates corresponding to cdf F̂ . The goodness of
this estimate is assessed by computing D(ξ

F̂
, ξ̂ ) (or D̃(η

F̂
, η̂)), as defined in Section 2.2.

Our algorithm randomly jitters elements of Q̂ and sorts the jittered elements to produce
new quantile estimates Q̂new. The quantity D(ξ

F̂new
, ξ̂ ) is then computed, where F̂new is

the cdf corresponding to Q̂new. If D(ξ
F̂new

, ξ̂ ) < D(ξ
F̂
, ξ̂ ), then F̂new is accepted as the

currently best estimate of F . Otherwise F̂ remains the currently best estimate.
Global iterations are ones in which all elements of Q̂ are randomly jittered before re-

computing the metric D. A local iteration consists of jittering only one element of Q̂ and
then computing D. The algorithm with which we have had the most success starts from an
initial estimate (to be discussed below) and does a series of global iterations on Q̂. When
the metric fails to change by more than, say, 1% on a prespecified number kg of consecutive
iterations, then global iterations cease and local ones begin.

One cycle of local iterations consists of N steps. Let Zi1 < Zi2 < · · · < ZiN be the
quantile estimates just prior to step i, i = 1, . . . ,N . Then step i consists of randomly jitter-
ing the quantile Zii and determining if the corresponding change in the quantile function
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468 J. D. HART AND I. CAÑETTE

has made the metric smaller. When kl cycles through all N quantiles fails to change the
metric by a nonnegligible amount, local iterations end.

Our experience is that global iterations are good for getting the quantile estimates
quickly headed in the right direction, but are not by themselves sufficient. At some point
changing the whole set of quantiles is unlikely to decrease the metric, even if some individ-
ual quantiles still need to be moved. At this point switching to local iterations can lead to
further decreases in the metric and corresponding improvements in the quantile estimates.

What can be used for an initial estimate of F ? We use the uniform distribution having
mean 0 and standard deviation 1. Specifically, we take Q̂0 to consist of

√
3(2i −N −1)/N ,

i = 1, . . . ,N .
The number N of quantiles must also be specified. In a related context, Beran and Millar

(1994) noted that the value of N should be taken as large as is computationally feasible.
The important point here is that N is not a smoothing parameter that must be chosen
carefully in order for the resulting estimator to be efficient. Obviously, in order to obtain
a consistent estimator of F , N should increase without bound as p → ∞, but usually the
underlying distribution can be well represented by no more than, say, fifty quantiles. In
practice we have had success taking N to be between 30 and 100, even when p is 1000
or more. Again, however, the only reason not to take N very large is that it slows our
algorithm down considerably.

Let Z1 < · · · < ZN be the currently best set of quantiles. In one global iteration, the
jittered quantiles are Zi + ηi , i = 1, . . . ,N , where η1, . . . , ηN are independent with ηi ∼
N(0, s2

i ), i = 1, . . . ,N . The standard deviations are

s1 = Z2 − Z1, si = Zi+1 − Zi−1

2
, i = 2, . . . ,N − 1, and

sN = ZN − ZN−1.

A jittered quantile in a local iteration is defined similarly, with the noise variables at differ-
ent iterations independent of each other.

One needs also to specify a value for the bandwidth b. We propose that this be done by
applying least squares cross-validation to the density estimate ĥb (or h̃b). Since b has only
a second-order effect on the metric D (or D̃), this seems to be more than adequate.

4. LOCATION-SCALE RANDOM EFFECTS MODELS

We now turn attention to LSRE models, which allow for the possibility that both the
mean and standard deviation vary from one dataset to the next. In Section 4.1 we give
conditions under which the error distribution F is identifiable, and in Section 4.2 describe
an algorithm for estimating F . Section 4.3 proposes a rank-based test of the null hypothesis
that the data follow an LRE model against the alternative that the LSRE model holds.

4.1 IDENTIFIABILITY OF ERROR DISTRIBUTION

Here we argue that F , the distribution of εij , is generally identifiable in the LSRE model
when n ≥ 4.
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DISTRIBUTIONS IN RANDOM EFFECTS MODELS 469

Theorem 2. Let the LSRE model hold with n ≥ 4, and suppose that logσi , εi1, and
log |εi1 − εi2| are absolutely continuous random variables with characteristic functions
having countably many zeroes. Then the distribution of εi1 is identifiable from that of
(Xi1,Xi2,Xi3,Xi4).

We now sketch the proof of this theorem since it is instructive as to our method of
estimating F in the LSRE model.

• Let C = E log |εi1 − εi2|, which is assumed to exist finite. Then the density of
logσi + C is identifiable from the joint distribution of (log |Xi1 − Xi2|, log |Xi3 −
Xi4|), this following from the result of Reiersøl (1950). By a simple change of vari-
able it follows that the density of exp(C)σi is known.

• The density of exp(C)σi can be rescaled to have second moment 1, and hence the
density g of logσi is determined because E(Xi1 − Xi2)

2 = 2Eσ 2
i .

• Let a be the density of Xi1 − (Xi2 + Xi3 + Xi4)/3 and note that for any x

exa(±ex) =
∫ ∞

−∞
f̃ (±ex−s)ex−sg(s) ds,

where f̃ is the density of εi1 − (εi2 + εi3 + εi4)/3. Since a and g are identified, it
follows via classic deconvolution that f̃ is as well.

• Finally, Theorem 1 implies that f , the density of εij , is identifiable from f̃ .

In the next section we describe a two-stage estimation procedure that parallels this identi-
fiability argument.

4.2 ALGORITHM FOR ESTIMATING F

Our method requires that n ≥ 4, and for ease of notation we assume that n = 4. In the
first stage of our estimation scheme we estimate the characteristic function ψg of logσi .
Note that

log |Xij − Xik| = logσi + log |εij − εik|,
and hence (log |Xi1 −Xi2|, log |Xi3 −Xi4|), i = 1, . . . , p, comprise an LRE model. There-
fore, we may use these data and minimum distance methods to obtain quantile estimates
q̂1, . . . , q̂M for the distribution of logσi + C. Estimates of quantiles for the logσi distribu-
tion are then given by

Q̂i = q̂i + 1

2
(log m̂2 − logS2), i = 1, . . . ,M, (4.1)

where

m̂2 = 1

24p

p∑
i=1

4∑
j=1

4∑
k=1

(Xij − Xik)
2 and S2 = 1

M

M∑
i=1

exp(2q̂i ).
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470 J. D. HART AND I. CAÑETTE

Per the proof from the last section, the following two Fourier transforms need to be
estimated at the second stage of our estimation scheme:

ψ+
a (t) =

∫ ∞

−∞
eitxa(ex)ex dx =

∫ ∞

0
eit logya(y) dy

and

ψ−
a (t) =

∫ ∞

−∞
eitxa(−ex)ex dx =

∫ 0

−∞
eit log |y|a(y) dy.

Letting ejk = Xjk − ∑

	=k Xj
/3, j = 1, . . . , p, k = 1,2,3,4, define

ψ̂+
a (t) = 1

4p

p∑
j=1

4∑
k=1

exp(it log |ejk|)I (ejk > 0)

and

ψ̂−
a (t) = 1

4p

p∑
j=1

4∑
k=1

exp(it log |ejk|)I (ejk < 0),

where I is an indicator function. Obviously these estimators are unbiased and consistent
(as p → ∞) for their respective transforms.

Since exa(ex) is of convolution form, we have ψ+
a (t) = ψ+

f̃
(t)ψg(t), where ψ+

f̃
(t) =∫ ∞

−∞ eitx f̃ (ex)ex dx, and similarly ψ−
a (t) = ψ−

f̃
(t)ψg(t). The cf ψg is estimated by

ψ̂g(t) = M−1 ∑M
j=1 exp(itQ̂j ), where Q̂1, . . . , Q̂M are defined in (4.1). Now, any choice

of distribution for εij determines f̃ and hence ψ+
f̃

and ψ−
f̃

. At the second stage of our
estimation scheme, we thus choose quantiles of εij to minimize∫ ∞

−∞
|ψ̂+

a (t) − ψ̂+
f̃

(t)ψ̂g(t)|2e−2b2
1 t2

dt +
∫ ∞

−∞
|ψ̂−

a (t) − ψ̂−
f̃

(t)ψ̂g(t)|2e−2b2
2 t2

dt,

where b1 and b2 are small positive numbers (bandwidths), and ψ̂+
f̃

and ψ̂−
f̃

are the es-

timates of ψ+
f̃

and ψ−
f̃

corresponding to the chosen quantiles of εij . One may use the

iterative algorithm of Section 3 to arrrive at final estimates for quantiles of εij ’s distribu-
tion.

A practical problem with implementing the approach just described is that, unlike the
situations addressed previously, there are no explicit expressions for ψ+

f̃
and ψ−

f̃
in terms

of the cf of εij . We address this problem by using simulation.

• Draw a sample of size 4N randomly and with replacement from the proposed
(discrete) distribution for εij , where N may be arbitrarily large. Call these values
ε∗

1 , . . . , ε∗
4N .

• Define ri = ε∗
4i − (ε∗

4i−1 + ε∗
4i−2 + ε∗

4i−3)/3, i = 1, . . . ,N .

• Define, for example, ψ̂+
f̃

by ψ̂+
f̃

(t) = N−1 ∑N
j=1 exp(it log(|rj |)I (rj > 0).
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DISTRIBUTIONS IN RANDOM EFFECTS MODELS 471

4.3 A TEST OF HOMOSCEDASTICITY

Of interest is a test that can reveal whether or not there is significant variation in scale
parameters. In other words, we desire a test of the null hypothesis that the LRE model
holds against the alternative of an LSRE model. If there are at least four replications per
small dataset, then a simple rank test can be used. Consider differences δijk = Xij −Xik =
σi(εij − εik) for which j < k. Then if {j, k} and {l,m} are disjoint, δijk and δilm are
independent under the LRE model. On the other hand, if the LSRE model holds and σi has
a nondegenerate distribution, then the covariance between |δijk| and |δilm| is

Cov(|δijk|, |δilm|) = Var(σ 2
i )E2|ε11 − ε12| > 0.

We thus propose the following test:

• From each small dataset, randomly select two differences that are independent of
each other under the LRE model. Denote these data (δ∗

i1, δ
∗
i2), i = 1, . . . , p.

• Pool the 2p absolute differences, rank them from smallest to largest, and let Rij be
the rank of |δ∗

ij |, i = 1, . . . , p, j = 1,2.

• The test statistic is

ρ̂ = 2
∑p

i=1(Ri1 − R̄)(Ri2 − R̄)∑2p

i=1(i − R̄)2
,

where R̄ is the average of the ranks, or (2p + 1)/2.

The distribution of ρ̂ is invariant to that of εij under the null hypothesis of an LRE
model, and hence can be arbitrarily well approximated by means of simulation. Ideally,
one would use all differences from a small dataset in defining a test statistic, but in that
case the statistic would not be distribution-free owing to dependence among differences
having an error term in common. If n is 8 or more, then two or more independent pairs of
differences can be formed, and the statistic can be modified accordingly to account for the
extra information.

5. A SIMULATION STUDY

We restrict attention in this study to the LRE model. The main purpose of the simulation
is to compare three methods of estimating the error distribution F : the two location-free
methods (see Sections 2.1 and 2.2) and a method that simultaneously estimates G and F .
The location-free methods based on paired differences and residuals will be referred to
as PD and R, respectively, and the other method will be called S (for simultaneous). Our
algorithm for method S is identical to the one described in Section 2.3 except that it cycles
back and forth between jittering quantiles of the G and F distributions, this being true in
the case of both global and local iterations.

We simulated data from the LRE model with p = 1000 and n = 3. All eight combi-
nations of two choices for G and four choices for F were considered. The choices for G

were degenerate at 0 and standard normal, and those for F were standard normal, shifted
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472 J. D. HART AND I. CAÑETTE

Table 1. Average values of mean absolute error from simulation. Each table value is an average of 200 replica-
tions.

F

G Method Normal Exponential t Bimodal

Degenerate Simultaneous 0.0728 0.2335 0.1091 0.0902
Paired differences 0.0882 0.1010 0.1365 0.0861

Residuals 0.0828 0.0969 0.1319 0.1239

Normal Simultaneous 0.0832 0.2132 0.1978 0.1517
Paired differences 0.0902 0.0991 0.1366 0.0880

Residuals 0.0806 0.0992 0.1351 0.1236

exponential, rescaled t with three degrees of freedom, and the bimodal normal mixture
F(x) = 0.5[�(

√
5x + 2) + �(

√
5x − 2)], all four of which have mean 0 and variance 1.

Estimates of the quantile function F−1(u) were computed at u = (j − 1/2)/50, j =
1, . . . ,50, for each dataset generated from the LRE model. Two hundred replications were
performed at each combination of F and G. To save on computing time, a modified version
of the estimation algorithm described in Section 3 was used. For each dataset, three sets of
200 global iterations each were performed and the set leading to the smallest distance was
chosen. At that point sets of local iterations began and continued until the relative change
in the distance from one set to the next changed by less than 0.001.

Results are summarized in Table 1 and Figure 1. As an overall measure of the quality of
a quantile estimator Q̂, we computed the following mean absolute error:

MAE(Q̂) = 1

50

50∑
i=1

∣∣∣∣Q̂
(

i − 1/2

50

)
− Q

(
i − 1/2

50

)∣∣∣∣,
where Q is the true quantile function. Average values of MAE are given in Table 1. First
of all, differences between rows 2 and 5 and between 3 and 6 are due entirely to sam-
pling variation, since methods PD and R are completely invariant to G. The average MAE
(AMAE) for PD and R was comparable in all cases except for the bimodal error distribu-
tion, where the AMAE of R was about 50% more than that of PD. For all but one of the
four error distributions, the performance of method S is much better when G is degenerate
than when G is normal. This should not be surprising since the noise variable comprises
all the variation in the data when there is no variation in μi . The location-free methods
perform much better than S when G ≡ normal in all cases except for F normal. If one
were to choose a method on the basis of Table 1, it seems the paired differences approach
would be best.

In Figure 1 we provide a visual comparison of methods S and PD when G is normal and
F is either exponential or the bimodal normal mixture. We chose these two error distribu-
tions since they are the most non-Gaussian of the four choices for F , and hence would seem
to be more challenging cases. Method S is substantially biased for both error distributions,
whereas the pointwise median quantile estimate for method PD virtually coincides with the
true quantile function in both cases. Especially impressive is that the PD method estimates
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DISTRIBUTIONS IN RANDOM EFFECTS MODELS 473

Figure 1. Summary of quantile estimates for the case where G is normal. The dotted line in each case is the
true quantile function, and the solid line is the pointwise median of 200 simulated estimates. The dashed lines are
pointwise 25th and 75th percentiles of estimates.

the lower endpoint of the exponential so well and effectively captures bimodality of the
normal mixture. Obviously, method S can have difficulty estimating F effectively when
there is nontrivial variation in the distribution of μi . Graphs corresponding to Figure 1 for
the other three cases may be found in the supplementary materials.

6. AN ANALYSIS OF MICROARRAY DATA

Here we consider microarray data collected by Robert Chapkin and coworkers at Texas
A&M University. An analysis of these data may be found in the article by Davidson et al.

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r 
st

ud
en

t f
ee

s]
 a

t 0
8:

42
 0

6 
Ja

nu
ar

y 
20

12
 



474 J. D. HART AND I. CAÑETTE

(2004). The data we analyze are only part of a much larger dataset, but provide a good
example of our methodology. The data considered are Yjk , j = 1, . . . ,8038, k = 1, . . . ,5,
where j indexes genes, k indexes different rats, and Yjk is the logarithm of the expression
level for gene j and rat k. The five rats from which these data were collected were all
subjected to the same treatment.

We assume the following model for the data:

Yjk = Rk + μj + σj εjk, j = 1, . . . ,8038, k = 1, . . . ,5,

where Rk represents a rat effect, (μj ,σj ) a gene effect, and εjk measurement error. Our
main goal is to estimate the distribution of εjk . The first step in our analysis is to estimate
rat effects by computing the mean of all data for each rat. Defining

Xjk = Yjk − 1

8038

8038∑
i=1

Yik, j = 1, . . . ,8038, k = 1, . . . ,5,

we may say that, to a good approximation, the Xjk’s follow either an LRE or LSRE model
since each rat effect is estimated by the mean of over 8000 observations.

6.1 TESTING FOR AN LSRE MODEL

As a descriptive device we provide a scatterplot (Figure 2) of sample variances versus
sample means for the X-data from all 8038 genes. Datasets with sample variances larger
than 3 are not represented in the plot, but there were only 12 such sets, none of which had
a sample mean larger than 1.81. There appears to be evidence that σ 2

j decreases with an
increase in μj . However, this is not necessarily a sound conclusion, as we now argue. In an
LSRE model, let X̄i and S2

i be the sample mean and variance, respectively, of Xi1, . . . ,Xin.
It is then straightforward to show that

Cov(X̄i , S
2
i ) = Cov(μi, σ

2
i ) + 1

n
Eσ 3

i Eε3
ij .

Figure 2. Scatterplot of sample variances versus sample means for 8038 genes.
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DISTRIBUTIONS IN RANDOM EFFECTS MODELS 475

Figure 3. Scatterplot of logged absolute differences from the same gene.

So, negative correlation between X̄i and S2
i is not necessarily an indication that μi and

σ 2
i are negatively correlated. This could simply be an indication of left skewness in the

error distribution. Only when the third moment of εij is known to be 0 can we conclude
a relationship between μi and σ 2

i from a similar relationship between X̄i and S2
i . We will

return to this point after we have estimated the error distribution.
To formally address the question of whether an LSRE model is more appropriate than an

LRE model, we apply the test of Section 4.3. In doing so, we randomly selected, separately
for each gene, four rats, and thereby obtained 8038 pairs of differences. The resulting rank
correlation ρ̂ between differences from the same gene was 0.220. Now, let j1, . . . , j2(8038)

be a random permutation of the integers from 1 to 2(8038). The null distribution of the test
statistic is the same as that of ρ̂ with (Ri1,Ri2) = (j2i−1, j2i ), i = 1, . . . ,8038. In 100,000
independent permutations, we found no correlation larger than 0.0489 in absolute value,
leading to a p-value of less than 0.00001. There is thus strong evidence of differences in
scale from one gene to the next. A scatterplot of log-absolute differences from the same
gene is shown in Figure 3. Lack of independence between the two differences is evident.

6.2 ESTIMATION OF ERROR DISTRIBUTION IN LSRE MODEL

Since the LSRE model appears to be more tenable than the LRE, we applied the method
described in Section 4.2 to estimate the error distribution. In doing so we also obtained an
estimate of the marginal distribution of σj . One hundred quantiles for each of the error
and σj distributions were estimated. The bandwidths required at each of the two stages
of the estimation scheme were chosen by cross-validation. Two different initial estimates,
uniform and normal, for the error distribution were used, and both led to very similar
estimates at the end of iterations. The normal initial estimate yielded the smaller of the
two final discrepancy measures. Plots of the estimated quantile functions for σj and εij are
shown in Figures 4 and 5, respectively. The error quantiles are remarkably close to uniform,
which of course is a symmetric distribution. Recalling our comments in Section 6.1, it
thus seems reasonable to conclude that the negative correlation seen in Figure 2 is not an
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476 J. D. HART AND I. CAÑETTE

Figure 4. Minimum distance estimate of quantile function of σi .

artifact of the error distribution, but rather a real indication of negative correlation between

μi and σ 2
i .

It is also noteworthy that the uniform distribution is short-tailed. When applying loca-

tion tests on a per-gene basis, as discussed in Section 1, knowing that the error distribution

is short- rather than long-tailed could potentially lead to important differences in conclu-

sions. Knowledge of the error distribution, as provided by our methodology, could lead to

tests that are more powerful than, say, a t -test. For example, for the data just analyzed it

would be reasonable to use a linear signed rank test with scores designed for short-tailed

densities; see, for example, the work of Randles and Wolfe (1979, pp. 323–324).

Figure 5. Uniform quantile function and minimum distance estimate of quantile function of εij . Both the quan-
tile estimate and uniform distribution have mean 0 and variance 1.
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DISTRIBUTIONS IN RANDOM EFFECTS MODELS 477

7. DISCUSSION

A number of interesting questions have arisen during the course of our research. We end
our article with a discussion of a few of these.

7.1 RELATIVE EFFICIENCY OF MINIMUM DISTANCE AND DECONVOLUTION

Of considerable interest is a comprehensive comparison of minimum distance estima-
tors and those of deconvolution type, that is, estimators based on explicit inversion of cf’s.
One advantage of minimum distance is that it can be applied more generally than deconvo-
lution. Deconvolution requires that the cf of the target distribution is expressible in terms of
an observable cf, and this is not always the case. In cases where deconvolution can be ap-
plied, it is of interest to know how its efficiency compares with that of minimum distance.
Our simulation results, and those of Hall and Yao (2003), suggest that minimum distance
is more efficient than deconvolution, at least in the LRE model.

7.2 IDENTIFIABILITY VERSUS CURSE OF DIMENSIONALITY

As noted in Section 2.1, both distributions in the location model are identified from the
joint distribution of (Xij ,Xik) so long as the cf’s of the two distributions never vanish
throughout an interval. This assumption does not seem overly restrictive, but one wonders
whether it can be weakened. Let Hn,F,G be the joint distribution of (Xi1, . . . ,Xin) in the
LRE model when εij has cdf F and μi has cdf G. Now define the class Fn of pairs of
distributions (F,G) as follows: (F,G) ∈ Fn if and only if there exists no other pair of
distributions (F̄ , Ḡ) such that Hn,F,G ≡ Hn,F̄ ,Ḡ. Intuitively it seems plausible that these
classes have the property F2 ⊂ F3 ⊂ · · · . If this is true, then for n > 2 there may be an ad-
vantage to using an observable distribution of higher dimension than 2. From an efficiency
standpoint, one must cope with the curse of dimensionality when applying minimum dis-
tance to a higher dimensional distribution, but if substantially more distributions become
identifiable, then perhaps the trade-off is worthwhile.

7.3 CORRELATION ACROSS SMALL DATASETS

Our random effects models are such that data within the same small dataset are corre-
lated, but different small datasets are independent. The latter assumption can be relaxed
so long as the correlation among different datasets is not extremely strong. An appealing
feature of minimum distance estimates is that they depend on the data only through an em-
pirical distribution function (edf), and edf’s are robust to dependence of mixing type (see,
e.g., Gastwirth and Rubin 1975).

SUPPLEMENTARY MATERIALS

Appendix: A proof of Theorem 1 and plots illustrating simulation results are provided.
(appendix.pdf)
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478 J. D. HART AND I. CAÑETTE

R-code: R-code used to produce the simulation results and the data analysis in Section 6.
(Rcode.jcgs, text)

Rat Data: Data analyzed in Section 6. (rat.data, text)
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