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1 Introduction

Regression data for which the response has an exponential distribution arise in two fun-
damentally important problems: probability density estimation and spectral estimation.
A little used means of obtaining a density estimate from independent and identically dis-
tributed observations is to smooth sample spacings, which are approximately exponentially
distributed

Consider regression data (z;,Y;), i = 1,...,n, where the x;’s are known constants and Y;
has the exponential distribution with mean ro(z;), ¢ = 1, ...,n. Suppose we wish to estimate
rg, but have no parametric model for it. Our approach will be to model ry locally by a
function of the form

exp(a + bx)

where the exponential function is used to ensure positivity of our estimate.
Given a candidate r for rg, the log-likelihood function is

l(r) = =) _llogr(z;) +Yi/r(x:)], (1)
i=1
In the absence of a global parametric model, it makes sense to use local parametric models

for ro. Given a value of z, say xg, let us assume that

ro(x) ~ exp(a + bzx), x € (xg— h,z0+ h),
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for constants @ and b (which depend on xy) and some small positive number h. A local
version of the log-likelihood function takes the form

n

log(a,b) = => K (a:o ) [a + bx; + Y exp(—(a + bx;))] (2)

=1

for some density K that is symmetric about 0 and unimodal. An estimate of ry(z¢) is found
by choosing the values of a and b that maximize [, (a,b). Such an approach has been investi-
gated by various authors, including Tibshirani and Hastie(1987), Staniswalis(1989), Chaud-
huri and Dewanji(1995), Fan, Heckman and Wand(1995) and Aerts and Claeskens(1997).

An omnipresent problem with local methods is deciding how local to make the estimation.
In the method just presented this amounts to deciding on an appropriate value for h, which
we shall call the window width. The purpose of this report is to propose and analyze a
data-driven method of selecting a window width in the exponential regression model. Many
methods exist for selecting regression smoothing parameters, principal among them cross-
validation and plug-in. Another, less well-known, method is that of prequential analysis
(Dawid (1984), Modha and Masry(1998)). The prequential approach is based on the notion
of selecting a model that yields good predictions of future observations. It is similar to cross-
validation, but bases a prediction of Y; only on the previous data Y;,...Y;_; as opposed to
the data Y7, ...,Y;_1,Y,41, ..., Y. The results in this report are further support for the work
of Hart and Yi(1998) that shows the prequential approach to be not simply an alternative
to cross-validation, but rather a more efficient alternative.

Prequential analysis is applicable when the data can be ordered with respect to time or
some other variable, such as a regressor. We shall describe the prequential method in our
regression context and order the data with respect to the design variable z. Without loss of
generality we assume that z; < 25 < ... < x,. Now, let D(m,Y;) be a measure of discrepancy
between the number m and the response Y;. An overall measure of how well the curve r fits

the data is

For example,

and
D(r(x;),Y;) = —log f(Y; (),



where f(-;r) is a function that is known up to r. The former example is an all-purpose
measure and the latter is likelihood based, being appropriate in our exponential regression
model.

In this project, we investigate use of the prequential method for selecting the window
width of local estimators of a regression curve when the responses have an exponential
distribution.We shall make comparisons among several different methods: ordinary cross-

validation, and two versions of the prequential method.

2 DESCRIPTION OF METHODOLOGY

2.1 Squared error methods

The observed data (z;,Y;),i = 1,...,n are independent and such that Y; has an exponential
distribution with mean r(z;),i = 1,...,n. We will estimate r using the local linear scheme
described in Section 1. The estimate with window width h is denoted 7 (z).

The choice of window width h is crucial to the performance of estimate 7(x). A
straightforward method of window width selection is cross-validation(Stone 1974), the idea
of which is to use a part of the data to construct an estimate of the regression model and
then to predict the rest of the data with this estimate. The most often used form of cross-

validation is the “least squares leave-one-out” cross-validation criterion:
1 2
- Z — 7 ()], (3)
7’L =1

where 74 (x) denotes an estimate of r computed without the ith data point.
Another version of cross-validation is to use only the “previous” data points (z1,Y1), ..., (z@-1), Yi-1))

to construct an estimate 7% (x;) of r(x;). The corresponding criterion is

0SCV (h) = ;Z (Y; — 7 (z:)), (4)

where m is some small integer that is at least 1.
It can be shown that these two versions of cross-validation yield approximately unbiased
estimators of MASE(#,)++ Y7, Var(Y;) and MASE(7,)+

where

mi1 Var(Y;), respectively,

n—m

MASE(# { z:j Pr(as) — r(x;)) } (5)



and

i=m+1

. 1 LI
MASE(r,) =F { — > () — 7“(951))2} : (6)
As n — 00, the asymptotic minimizer, h,, of MASE for 7, is
hn - C(Kc(modeln_l/a

where C'k is a constant that depends only on the kernel K used in the local linear estima-
tor(Fan 1992). The asymptotic minimizer, b, of MASE for 7, is identical to h,, except that
it has a different constant C' in place of C'x. This implies that

hy, Ck

— K
by, )
which motivates the following definition of a window width for use in 7:

. Cr - )
hosev = ——b = Mb. 7
‘. ")

where b minimizes OSCV (h).

2.2 Likelihood methods

We now describe CVLI and OSLI, which are criteria based on a log-likelihood function.
Define

CVLI(h) = = log f (Y} (:)) (8)
i=1
where f(y;a) = Lexp(=£)[(0,00)(y) and 7 (z;) denotes an estimate of 7 computed without
the 7th data point. Define also

OSLI(h) = — 3 log f(Yii 7 (a1). )

i=m+1

where 7 (x;) is an estimate using only the “previous” data points, and m is some small
integer that is at least 1. The quantities CVLI(h) and OSLI(h) measure the discrepancy
between the data and their estimates.

In Section 2.4, we will give a proof that these two likelihood criteria yield asymptotically

unbiased estimators of MWASE(7,)+C; and MWASE(7,)+C5, respectively, where



MW ASE()) = E {1 i (Pr(z;) — 7“(%))2} | w0

n:3 r2(2;)

n—m,_ .1 T2<Ii>

MW ASE(f,) :E{ L v (fh(xi)_’”(xi)f}, (11)

Ch and (5 are constants independent of h. It will be shown that as n — oo,

h,, Ck

o 2K

b, Cr,
where h,, and b, are the asymptotic minimizers of MWASE for 7, and 7, respectively, Cx
and C'p, are constants that depend only on the kernel K.

This motivates the following definition of a window width for use in 7:

. Cx - .
= —Kh = M. 12
hoslz CL b b ( )

where b is the minimizer of OSLI (h). The constant M is the same as in Section 2.1 so long

as the same kernel is used for the least squares and likelihood methods.

2.3 Computation of estimators

The estimate 7, () has the form exp(a+bz), where @ and b maximize the local log-likelihood

function

n

lefa0) = =3 K (m ;L“”“) la + ba; + Vi exp(—(a + bz,))]. (13)

The Newton-Raphson method is used to find the maximizer, and the gradient and Hessian

matrices are given by

o | TTLE(52) - Yiesp(—(a+ b))
— Yy K (555) @il = Yiexp(—(a + bxy))]
—Yr K (”C_hx) Yiexp(—(a+bz;)) —Y0, K (x_hx) x;Y; exp(—(a + bx;))
H =
—yr K (I_h“) r;Y;exp(—(a+bx;)) —>0 K (%) 2;2Y; exp(—(a + bx;))

To obtain initial estimates of a and b, we do a log-transformation of the data. The

transformed data follow the model
log; — EZ; =logr(x;)+ Z; — EZ;, i=1,...,n,
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where Z; is the logarithm of a r.v. having exp(1) distribution and E(Z;) = —0.577216. We

compute an ordinary local linear estimate of log r(x) based on data log Y140.577216, ..., log Y,,+

0.577216, and use the resulting intercept and slope estimates as our initial estimates of a

and b, respectively.

The OSCV and OSLI methods use one-sided estimates 7, (z). The estimates are computed

in a similar way as follows:

e The estimate 7, (z) maximizes the local log-likelihood function

L(a,b)=— S K (x 71“””) la + ba; + Yi exp(—(a + ba:)), (14)

1€Sy

where S, = {i : z; < z}.
e The gradient and Hessian for Newton-Raphson are given by

— Yies, K (552) [1 = Yiexp(—(a + bz;)]

G =
~ Sies, K (552) w1 - Yiexp(—(a + bz:))

[ S K () Yiesp(—(a b))~ Yo, K (52) eYiep((a + br)
= ies, I (thx) ziYiexp(—(a+bxi)) —Yies, K (I?Lx) z?Y; exp(—(a + ba))

2.4 Connection of exponential likelihood to weighted square error

Consider the likelihood-based cross-validation criterion:

CVLI(h) = — Y log f(¥i ) ()

i=1

Expanding the summand in Taylor series about r(x;) = r;, we have

da

a=r;

log f(Y;aﬁz(xz)) =log f(Yi;mi) + (722(371) ) [(9 log f(Y3; a)]

+ ;(f,il(xi) —r)’ [aacﬁ log f(Yﬁa)]

a=r;

a:ri}
Y
a=n;

where 7; is between r; and 7 (x;). Taking expectation,

Blow £V 4()] = Elog f(isn] -+ El(m) = rolB { | o low /0 0)
b Bl - 1B { | s ton (i)

] |



where we use the fact that 7 (x;) is independent of Y;.

We now show that, in general, E{% log f(Yi;a)],—,. } = 0, since

0 : _ 1 0f(y;a) .
Blgglor fVsallu} = [ 5oy S P Sy
_ /@f(y;a)

da ‘a:ri

0
- %/f(y? a)dy‘a:ri
= 0.

The only assumption needed here is the interchange of derivative and integral, which is

certainly warranted in the exponential case. Because f(y;a) = % exp(—¥)I(0,)(y), we have

Elog f(Yi;r;) = —logr; — 1

and ,
0 1
|f9 21ng(Y;>a>’a n] = _722

Under standard conditions ensuring the consistency of 7} (z;), we thus have

[ Zlong;,rh:z:2 Zlogm—i—n—i— Z

=1

Similarly,

‘| 1 n E _Ti)2

2
— )

- i 1ogf(Y;;F§L(xi))] = En: logri+n—m+1 zn: E(f};(x,g

i=m+1 i=m41 2, L i

For n large, E(7i(x;) — ;) = E(fp(x;) — ) and E(7 (z;) — r;)° = E(Fu(a;) — r;)* which
completes the proof that the likelihood CV criteria provide asymptotically unbiased estima-

tors of criteria that are equivalent to MWASE.

3 SIMULATION RESULTS

Here we present the results of a simulation study which compares four different methods

to estimate the smoothing parameter under several regression settings. In each setting,

we calculate hyg; (OSLI method), Proscs (OSCV method), Ry (CVLI method) and B (CV

method).



We used the following function, where 0 < x <1 :
r(r) =1+ C2%*(1 — x)*,
where C' is some positive constant. Define the signal to noise ratio (SNR) by

SUPg<p<y 7(2) — infocpcr ()

SNI = [r(z)dzx

The motivation for the denominator of SNR is that r(x) is the standard deviation of an
observation made at x, and hence the denominator measures average noise level. We chose
C to yield the following SN R values: 0.3, 0.65, 1, 1.3, 1.65 and 2.

The sample sizes 50, 100, 150 are used. The design points were x; = (i — 0.5)/n,
i = 1,...,n. We used the quartic kernel in all simulations, that is K(u) = (15/16)(1 —
u?)?I(_1,1y(u), and the constant M in (9) and (14) is 0.557297. Let Ei,. .., E, be a random

sample from the exponential distribution with mean 1. The generated data are then
yi=r(z)E;, i=1,...,n.
Define the weighted average squared error(WASE) for a linear estimator 75, by

$- (e = ()

i=1 7’(%)2

WASE(h) =

SENS

The window width A, which minimizes WASE(h) was approximated for each dataset, and
WASE(h) was computed for each of the four data-driven window widths. We conducted
500 replications at each combination of function, C' and n. Some results are summarized in
Table 1. (See the Appendix for other results). Some typical data and fitted curves are given
in Figures 1-3. Our results show that compared with the other methods, OSLI provides a
smaller average WASE. A proxy for how close the WASE of an estimate is to the optimal
WASE is the quantity (iL — iLO)Q, where h and h, denote data-driven and WASE-optimal
window widths. Note in Table 1 that the average of (ﬁosli — EO)Q is smallest. The small
variance of ﬁosli indicates that the OSLI method usually produces a more stable estimate(see
Figure 4). The plots imply that the performance of the OSLI method is much better than

the other methods, especially when the sample size is small and the SNR is small.



n=50, SNR=2 n=150, SNR=2
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Figure 1: Estimates of function 1+ 10.638 x 28 x z4(1 — 2)*, SNR =2 . True curve(solid
line), ASE(dotted line), OSLI(short dashed line), CVLI(long dashed line), OSCV (long-long
dashed line), C'V(long-short dashed line).

TABLE 1: Simulation results for the function 1+ 10.638 x 28 x z%(1 — x)*,
n hasli hli hascv hcv ho

50 0.30836 0.29423 0.22616 0.23701 0.29783

Mean(h) 100 0.25388 0.22100 0.19711 0.19887 0.23774
150 0.22557 0.19479 0.18055 0.18521 0.21760

50 0.09446 0.11189 0.10426 0.12944 0.08316

Mean(WASE(iL)) 100 0.05740 0.06895 0.06084 0.08081 0.05103
SNR =2 150 0.04208 0.04985 0.04396 0.05435 0.03730

50 0.26477 1.59316 2.86368 1.11058
Mean((h — h,)?* x 10?) 100 0.11586 0.63752 0.16099 0.67821
150 0.08038 0.39501 0.09927 0.44038

50 1.33644 2.75464 1.73374 2.57903
Variance (h) x 10? 100 0.69564 1.32372 0.90085 1.50682
150 0.56636 0.97502 0.73211 1.08408




n=50, SNR=1 n=150, SNR=1

12
1

10

Figure 2: Estimates of function 1 + 1.68 x 28 x 4(1 — z2)*, SNR =1 . (See Figure 1 for
legend)

n=50, SNR=0.65 n=150, SNR=0.65

Figure 3: Estimates of function 1+ 0.883 x 28 x x4(1 — x)*, SNR = 0.65. (See Figure 1 for
legend)
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Figure 4: Scatterplots of window widths from simulation for function 14 10.638 x 28 x 2t (1—
)Y (SNR = 2), Each plot is h versus h,.
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4 STUDY OF SPECIAL CASES

4.1 Density Quantile Estimation

Suppose Fx is the cumulative distribution function of a random variable X. The quantile

function of X is the left continuous inverse of F'y:
Qx(u) :=inf{x: Fx(x) >u}, wue(0,1). (15)
If there exists a function fx : R — [0, 00) such that

FX(x):/x ft)dt, =€,

—00

then X is called absolutely continuous (with respect to Lebesgue measure), and fx is called
the probability density function. Let xp = sup{z : Fx(z) = 0} and 2" = inf{x : Fx(z) =
1}. If fx is positive on (zp,x!), then Fy is one-to-one and consequently Qy is a strictly

increasing and differentiable function on (0, 1). In this case the function
d
QX(U> = IQX(U)a u < (07 ]-)7 (16)
u
is called the quantile density function (qdf) of X. When the qdf exists,
ax(u)fx(@x(u)) =1, we(0,1). (17)

The function fQx(u) = fx(Qx(u)),u € (0,1), is called by Parzen(1979) the density —

quantile function. It is easy to see that the pdf is uniquely determined by the following

curves:
y(u) =1/qx(u), ue(0,1).
Suppose X1, X, ..., X, is a random sample from some distribution with quantile density

¢, and let Y; = n(Xy — Xu-n),i = 2,...,n. As argued in Pyke(1965), Y,...,Y, are
approximately independent with Y; approximately distributed exponential with mean q(%),
i=2,...,n.S0 we can regress Y; on u;(= ¢/n) to estimate ¢(u), and thereby estimate fQ,(u)
by using (17).

A simulation study was done with the normal, exponential and gamma density functions
as test cases. The results show that the OSLI method estimates the density quantile function

better, on average, than the other methods. We were also curious about comparing the
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methods with respect to the average squared error(ASE) criterion, where ASE of the estimate

7, is defined by

S () — ()’

i=1

ASE(h) =

S|

Some results are given in the Tables 2-4 and Tables 12-14.

In addition, we also tried the methodology on some real data, see Figures 1-4. The data
are SPAD readings taken on different sets of cowpeas. A SPAD reading is the ratio of two
measures of light transmission, and indicates the relative amount of chlorophyll present in
a cowpea leaf. High SPAD readings are produced by green leaves, and low SPAD readings
by yellow ones. The P1 and P2 data sets correspond to predominantly yellow and green
cowpeas, respectively, while the F1 peas are a cross of the P1 and P2 types. The F2 cowpeas
are a backcross of F1 peas with peas of type P1 and P2. The trimodal shape of the F2
estimate is interesting since it tends to support the hypothesis that a single gene controls

cowpea color.

TABLE 2: Density quantile estimation(exponential, weighted ASE)

n hosti hy; hosco hey ho
Mean(h)
50  0.41379 0.38483 0.29115 0.31975 0.34627
100 0.29412 0.26245 0.17165 0.21304 0.24687
Mean(WASE(h))

50 0.11287 0.12433 0.13402 0.14541 0.08459
100 0.07751 0.08070 0.09154 0.11007 0.05898
Mean((h — h,)2 x 102)
o0  1.17847 2.85427 2.67470 4.40382
100 0.79966 1.51508 1.26801 2.82103
Variance(h) x 102
50 4.16468 5.15370 4.18559 6.03267
100 2.39648 2.70432 2.46543 3.81780
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TABLE 3: Density quantile estimation(normal, weighted ASE)

n hosti Dy Roscv hey ho
Mean(h)
50  0.33804 0.33614 0.30337 0.33586 0.28240
100 0.24388 0.22079 0.19356 0.21355 0.19546
Mean(WASE(h))

50 0.08761 0.10131 0.09865 0.11718 0.06770
100 0.06690 0.07221 0.07648 0.11218 0.05405
Mean((h — h,)? % 102)
50 222351 3.59562 2.62312 4.95087
100 1.11947 1.65891 1.33570 3.10678
Variance(h) x 102
50  0.78433 2.18140 1.70714 3.98908
100 0.30694 0.96196 1.13278 2.84419

TABLE 4: Density quantile estimation(gamma, weighted ASE)

n hosti hy; hosecw hey hy
Mean(h)
50 0.36302 0.35240 0.29659 0.32626 0.29958
100 0.25832 0.23914 0.17278 0.22977 0.21087
Mean(WASE(h))

50 0.09138 0.10449 0.10356 0.12003 0.06868
100 0.06757 0.07264 0.08043 0.09763 0.05327
Mean((h — h,)? % 102)
o0  2.96983 4.54373 3.21732 5.44116
100 1.31547 1.79328 1.35909 3.22895
Variance(h) x 102
o0 1.04178 2.70393 2.32235 4.51948

100 0.41023 1.12705 1.07762 2.99921

4.2 Spectral Estimation

The covariance sequence of a second-order stationary time series can always be expressed as

1
T / e“tdF (w)

" 2r )

for the spectrum F, a finite measure on (—, 7]. Under mild conditions, this measure has a

density known as the spectral density f,

flw) = i reexp(—iwt) = ro[l + Qipt cos(wt)], w € (—m, 7.
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Figure 5: FEstimate of density quantile function for data F1.
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Figure 6: Estimate of density quantile function for F2 data.
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Figure 7: FEstimate of density quantile function for P1 data.
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Figure 8: Estimate of density quantile function for P2 data.
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The basic tool in estimating the spectral density is the periodogram. For a frequency w
we effectively compute the squared correlation between the series and sine/cosine waves of
frequency w by

2

I(w) =| ie—ithtF/n = :L l{i X sin(wt)} + {i X cos(wt)}j . (19)

t=1 t=1 t=1

Asymptotic theory shows that [(w) is approximately distributed f(w)E, where E has
a standard exponential distribution, except at w = 0 and w = 7, and that periodogram
ordinates at frequencies w; = %,i = 1,...,[3] are approximately independent. We can
thus regress I(w;) on w; of the form w; = 2mi/n, and estimate the spectral density using the
regression techniques of Section 2.

In this simulation study, we use the AR(1) model
X, = 035X, 146, t=1,....n,
where €1, ...,€, are i.i.d. N(0,0.04), and MA(1) model
Xy =6+035¢_ 1, t=1,...,n,

where €1, ..., €, are i.i.d. N(0,0.04). The results show that compared with the other meth-
ods, OSLI provides a smaller WASE. The small variance of hos; and the mean of (ﬁ — lAzo)2
indicate that OSLI method usually produces a better estimate than the other methods.

TABLE 5: Spectral density estimation (AR(1) model)

n hosti Ty hosev Py ho
Mean(h)
50  1.71765 1.55942 1.42849 1.40537 1.66478
100 1.68593 1.54837 1.41414 1.44613 1.62203
Mean(WASE(h))

50  0.06419 0.07606 0.08280 0.08435 0.05418
100 0.03306 0.03966 0.04176 0.04080 0.02813
Mean((h — ho)? x 10%)
50  0.22518 0.39160 0.56921 0.52576
100 0.24864 0.42713 0.52830 0.48976
Variance(h) x 102
250 0.08804 0.23882 0.37450 0.33786
100 0.10235 0.25156 0.35348 0.32280
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TABLE 6: Spectral density estimation (MA (1) model)

n hosti Dy Roscv hey ho
Mean(h)
50 2.57295 2.38350 1.89865 2.05340 2.33793
100 2.44585 2.24855 1.90100 2.04340 2.18360
Mean(WASE(h))

50  0.05614 0.06431 0.07294 0.06732 0.04381
100 0.03243 0.03641 0.03798 0.03628 0.02336
Mean((h — h,)? % 102)
50  1.26998 1.45133 1.97247 1.62678
100 1.47271 1.57920 1.94889 1.53943
Variance(h) x 102
50  0.46527 0.80203 1.14554 0.91287
100 0.54226 0.85709 1.09444 0.88649

5 CONCLUSION

In this project, we proposed a method, OSLI, for selecting the window width of local gen-
eralized linear estimates in an exponential regression model. We also compared the perfor-
mances of four different methods: OSLI, CVLI, OSCV and CV. The two versions of likelihood
CV(CVLI and OSLI) provide estimates of an average weighted squared error criterion.

Under the exponential distribution setting, we investigate use of the prequential method
for selecting the window width of local estimators of a regression curve. Two special cases:
density quantile function and spectral estimation are studied. The OSLI gave the best results
in all the simulations, based on MWASE.

The theoretical and simulation results in this project apply only to the case of fixed,
evenly spaced x’s. However, the method of OSLI is well defined regardless of the type of
design. We also studied the performance of OSLI in real dataset consisting of chlorophyll
measurements on cowpeas.

Generalizing OSLI to other model settings is of interest for further study.
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6 APPENDIX

TABLE 7: Simulation results for the function 1+ 4.998 x 28 x 2%(1 — )%,

SNR =1.65
n hosli hli hoscv hcv ho

50  0.34967 0.33445 0.25930 0.28437 0.334189

) 100 0.28195 0.25066 0.22472 0.22179 0.278977
150 0.25138 0.22237 0.20441 0.20292 0.240643

>

Mean(

20 0.09453 0.11422 0.10359 0.12324 0.081227
Mean(WASE(h)) 100 0.05159 0.06448 0.05590 0.07487 0.044650
150 0.03902 0.04589 0.04178 0.05117 0.034450

50  0.48228 2.02845 0.43097 1.55462

Mean((h — h,)? x 102) 100 0.18322 0.93469 0.22560 0.88203
150 0.11736  0.55782 0.17038 0.61060

20 1.87203 3.95823 2.37015 3.29513

Vf:uriance(iz)xl()2 100 1.19948 2.18121 1.50780 2.38636
150 0.80042 1.31245 0.96073 1.45096

TABLE 8: Simulation results for the function 1+2.753 x 28 x 4(1 —x)*, SNR =1.3
n hosli hli hoscv hcv ho

50 0.39237 0.36827 0.29366 0.30831 0.38349

Mean(ﬁ) 100 0.31601 0.29224 0.25340 0.25335 0.32148
150 0.28213 0.25859 0.23398 0.22594 0.28160

50 0.07729 0.09876 0.08755 0.11362 0.06678

Mean(WASE(h)) 100 0.04713 0.05848 0.05224 0.06614 0.04012
150 0.03496 0.04212 0.03660 0.04755 0.03035

50  0.69496 2.41963 0.72195 2.21447

Mean((h — hy)? x 102) 100 0.34534 1.26826 0.36343 1.16117
150 0.18902 0.87047 0.23154 0.82029

50 2.51337 5.20807 3.43360 4.96081
Variance(h) x 102 100 1.63547 2.77200 2.09585 2.89505
150 1.05538 1.90350 1.31184 2.05874

19



TABLE 9: Simulation results for the function 1+ 1.680 x 2° x z*(1 —z)*, SNR =1
n hosli hli hoscv hcv ho

50  0.44220 0.40737 0.34451 0.35773 0.42304

Mean(ﬁ) 100 0.36671 0.33205 0.29980 0.29873 0.35767
150 0.31783 0.30615 0.26588 0.27076 0.32080

50 0.07280 0.09098 0.08095 0.10689 0.06179
Mean(WASE(h)) 100 0.04461 0.05481 0.04716 0.06316 0.03794
150 0.03157 0.03761 0.03342 0.04132 0.02671

50  0.85548 2.67827 1.17753 2.98451

Mean((h — ho)2 x 102) 100 0.60396 1.72553 0.60677 1.87451
150 0.37788 1.24885 0.41905 1.19915

50 3.22652 5.55836 3.96804 6.41647

Variance(iz)x102 100 2.09171 3.72725 2.35442 4.11106
150 1.54514 2.75761 1.73862 2.80569

TABLE 10: Simulation results for the function 1 + 0.883 x 2% x z*(1 — x)%,

SNR = 0.65
n hosli hli hoscv hcv ho

50 0.48675 0.44771 0.40151 0.41141 0.48971

Mean(ﬁ) 100 0.44170 0.38281 0.37106 0.36568 0.42781
150 0.40004 0.37305 0.33842 0.35201 0.38459

50 0.06486 0.08242 0.07475 0.09730 0.05538

Mean(WASE(fL)) 100 0.03903 0.04956 0.04281 0.05556 0.03321
150 0.02726 0.03354 0.02946 0.03638 0.02286

50 0.68080 2.75850 1.58593 3.39153
Mean((h — h,)? x 102) 100 0.77584 2.16326 1.22281 2.51618
150 0.86393 1.96760 0.99595 2.15599

o0  2.99427 5.68897 4.83932 6.55072

Variance(h) x 102 100 2.60806 4.57087 3.44784 5.34095
150 2.12229 3.67340 2.30392 3.78463
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TABLE 11: Simulation results for the function 1+ 0.3416 x 28 x 2%(1 — z)*,
SNR =0.3

n hosli hli hoscv hcv ho

50  0.52303  0.79363  0.45145  0.68803  0.73635

Mean(h) 100 0.50890  0.72659  0.46056  0.68194 0.64703
150 0.49804  0.71322  0.45654  0.63353  0.60650

50  0.07172  0.08766  0.08476  0.10308 0.05395

Mean(WASE(R)) 100 0.03957  0.05116  0.04394  0.05264 0.03043
150  0.02792  0.03647 0.03161  0.03857  0.02252

50 11.86332 19.28791 17.24091 21.58073
Mean((h — h,)? x 102) 100 9.85701 21.62282 12.15919 20.01313
150 8.65789 21.58704 10.36656 18.68326

50  0.45594  9.67700  1.85099  11.73457
Variance(h) x 102 100  0.61863 11.60840 1.40051 10.94829
150  0.66172 11.08550 1.34868 11.10388

TABLE 12: Density quantile estimation(Exponential, unweighted ASE)

n hosli hli hoscv hcv ho
Mean(h)
50 0.41379 0.38483 0.29115 0.31975 0.22743
100 0.29412 0.26245 0.17165 0.21304 0.11973
Mean(ASE(h))

50  23.2234 31.1463 39.9413 43.0162 12.2444
100 48.5347 47.7488 58.3223 60.3079 22.3146
Mean((h — h,)2 % 102)
50  7.35246 7.56885 5.55739 7.57692
100 4.96960 4.84095 2.32337 4.48676
Variance(h) x 102
50  1.11167 2.45928 2.60954 3.79240

100 0.79966 1.51508 1.26801 2.82103
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TABLE 13: Density quantile estimation(Normal, unweighted ASE)

n hosli hli hoscv hcv ho
Mean(h)
50  0.33804 0.33614 0.30337  0.33586  0.24667
100 0.24388  0.22109  0.19356  0.21583  0.13046
Mean(ASE(h))
50  6.86385  7.97369  8.21008  9.63062 4.93001
100 11.91433 12.27353 15.41093 18.57002 7.94981
Mean((h — h,)? x 102)
50  3.77008  5.58878  4.15529  7.39709
100 2.24776  2.59997  2.31455  4.33252
Variance(h) x 102
50  0.78433  2.18140 1.70714  3.98908
100 0.30694  0.95839  1.13278  2.83221

TABLE 14: Density quantile estimation(Gamma, unweighted ASE)

n hosli hli hoscv hcv ho
Mean(h)
50  0.36302 0.35240 0.29659 0.32626 0.22889
100 0.25832 0.23914 0.17278 0.22972 0.13160
Mean(ASE(h))
50  39.7017 45.4843 58.4892 55.8592 22.8069
100 75.5480 77.1118 96.8821 99.1048 41.4630
Mean((h — h,)2 x 102)
50 5.55381 7.10047 5.16149 7.70358
100 3.20848 3.54081 2.14431 5.01529
Variance(h) x 102
50 1.04178 2.70393 2.32235 4.51948
100 0.41023 1.12705 1.07762 2.99921
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