Nonparametric Estimation of Distributions in a Large-*p*, Small-*n* Setting

Jeffrey D. Hart

Department of Statistics, Texas A&M University

Current and Future Trends in Nonparametrics Columbia, South Carolina October 11, 2007

Outline

- A random effects location model
- Multiple hypothesis testing
- Brief review of estimation results for location model
- Minimum distance estimation
- Simulation results
- Location-scale model
- Microarray example

Location model

$$X_{ij} = \mu_i + \sigma \epsilon_{ij}, \quad j = 1, \dots, n, \ i = 1, \dots, p.$$

Assumptions:

- μ_1, \ldots, μ_p are i.i.d. as G.
- $\epsilon_{i1}, \ldots, \epsilon_{in}$, $i = 1, \ldots, p$, are i.i.d. as F, where F has mean 0 and standard deviation 1.
- All μ_i 's independent of all ϵ_{ij} 's.
- σ is an unknown constant.

Problem of interest: Obtain nonparametric estimates of F and G.

Connection with deconvolution

When n = 1, our location model is a classic deconvolution model.

- In this case (n = 1), it's clear that F and G are not both identifiable.
- In deconvolution, the distribution of *ε* is assumed to be known, in which case it is possible to consistently estimate the distribution of *μ* from the *X*-data. [Carroll and Hall (1988, *JASA*)]

Multiple hypothesis testing

The **location model** is sometimes used in microarray analyses, where p is number of genes and n is number of measurements per gene.

- Test all hypotheses H_{0i} : $\mu_i = 0$, $i = 1, \ldots, p$.
- Typically, the distribution of a test statistic (under the null) will depend on *F*. Dependence on *F* is strong when *n* is small.
- Previous point implies that it is desirable to infer *F*.

Nonparametric estimation of F and G

- Is it possible to construct consistent nonparametric estimators of *F* and *G* when *p* goes to infinity but *n* is bounded?
- Perhaps surprisingly, the answer is "yes," even when *n* is as small as 2.

Two important early papers:

- Reiersøl (1950, *Econometrica*): Identifiability
- Wolfowitz (1957, *Ann. Math. Statist.*): Minimum distance estimation (MDE)

Two main types of estimators

- Explicit estimators Based on characteristic function inversion, in analogy to simpler deconvolution problem.
- Minimum distance estimators Choose F and G so that the induced distribution of (X_{i1}, \ldots, X_{in}) is a good match to the empirical distribution.

More recent literature

- Horowitz and Markatou (1996, *Review of Economic Studies*): Explicit estimators from panel data. (Error density assumed to be symmetric.)
- Li and Vuong (1998, *JMVA*): Explicit estimator in the location model.
- Hall and Yao (2003, *Ann. Statist.*): Explicit estimators and MDE histograms in location model.
- Neumann (2006): Strong consistency of MDEs of F_0 and G_0 in the location model.

$$\psi(s,t) = E\left[\exp\left(isX_{j1} + itX_{j2}\right)\right]$$

Under conditions more general than the location model, $\psi(s,t)$ is consistently estimated by

$$\hat{\psi}(s,t) = \binom{n}{2}^{-1} \sum_{1 \le j < k \le n} \hat{\psi}_{j,k}(s,t),$$

where

$$\hat{\psi}_{j,k}(s,t) = \frac{1}{p} \sum_{\ell=1}^{p} \exp\left(isX_{\ell j} + itX_{\ell k}\right).$$

In the location model,

$$\psi(s,t) = \psi_{\mu}(s+t)\psi_{\epsilon}(\sigma s)\psi_{\epsilon}(\sigma t).$$

An MDE metric

Suppose $\hat{\mu}_1, \ldots, \hat{\mu}_k$ are candidates for quantiles of *G* at probabilities (j - 1/2)/k, $j = 1, \ldots, k$.

An estimate of the cf of G is

$$\hat{\psi}_{\mu}(t) = \frac{1}{k} \sum_{j=1}^{k} e^{it\hat{\mu}_j}$$

Given candidate quantiles for *F*, we may likewise compute an estimate $\hat{\psi}_{\epsilon}$ of ψ_{ϵ} .

Metric:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-h^2(s^2+t^2)} |\hat{\psi}(s,t) - \hat{\psi}_{\mu}(s+t)\hat{\psi}_{\epsilon}(\hat{\sigma}s)\hat{\psi}_{\epsilon}(\hat{\sigma}t)|^2 \, ds dt$$

An estimation algorithm

- 1. Compute metric for initial estimates of F_0 and G_0 .
- 2. Randomly jitter initial quantiles of F_0 , and recompute metric.
- 3. If new distance is smaller than the previous one, accept the jittered quantiles.
- 4. Repeat 2 and 3 some predetermined number of times.
- 5. Repeat 2-4 for estimates of the G_0 quantiles.
- 6. Iterate 2-5 until the distance changes by less than, say, 1% from one iteration to the next.

Simulations

$$X_{ij} = \mu_i + \sigma \epsilon_{ij}, \quad i = 1, \dots, 1000, \ j = 1, 2$$

Two choices for G:

- Standard normal
- Bimodal mixture of two normals

Three choices for *F*:

- Standard normal
- Standard exponential shifted to have mean 0
- t_3 -distribution rescaled to have variance 1

Two values of σ : 1 and 3

Simulations, continued

- Estimates of the quantile functions $G^{-1}(u)$ and $F^{-1}(u)$ were computed at u = (j 1/2)/30, j = 1, ..., 30, for each data set generated from the location model.
- $\hat{\sigma}^2 = (2p)^{-1} \sum_{i=1}^p (X_{i1} X_{i2})^2$
- Two hundred replications were performed at each combination of F, G and σ .
- Some of the results are summarized in the graphs to follow.

G =Normal, F =Normal

 $\sigma = 1$

 $\sigma = 3$

G =Normal, F =Exponential

 $\sigma = 1$ $\sigma = 3$

$$G = \text{Normal}, F = t_3$$

$$\sigma = 1$$

$$\sigma = 3$$

$$\sigma = 3$$

G =Normal mixture, F =Normal

$$\sigma = 1$$
 $\sigma = 3$

G =Normal mixture, F =Exponential

$$\sigma = 1$$
 $\sigma = 3$

 μ_i -free MDE estimates of F

Suppose $n \geq 3$ and define

$$\delta_{i1} = X_{i2} - X_{i1} = \sigma(\epsilon_{i2} - \epsilon_{i1})$$

and

$$\delta_{i2} = X_{i2} - X_{i3} = \sigma(\epsilon_{i2} - \epsilon_{i3}).$$

 $(\delta_{i1}, \delta_{i2})$, $i = 1, \ldots, p$, are a special case of the location model.

It follows that the distribution of ϵ_{ij} is estimable from the differenced data!!

If one still wishes to estimate G, having a good estimate of F will help in this process.

Location-scale model

Suppose observed data are X_{ij} , j = 1, ..., n, i = 1, ..., p. Consider the following model:

•
$$X_{ij} = \mu_i + \sigma_i \epsilon_{ij}, j = 1, ..., n, i = 1, ..., p$$

• $(\mu_1, \sigma_1), \ldots, (\mu_p, \sigma_p)$ are i.i.d. as G_0 .

• ϵ_{ij} , j = 1, ..., n, i = 1, ..., p, are i.i.d. as F_0 , and independent of $(\mu_1, \sigma_1), ..., (\mu_p, \sigma_p)$.

MDE estimation of F based on residuals

In the location-scale model, the residuals

$$e_{ij} = \frac{X_{ij} - \bar{X}_i}{S_i} = \frac{\epsilon_{ij} - \bar{\epsilon}_i}{S_{\epsilon,i}}$$

are completely free of (μ_i, σ_i) , $i = 1, \ldots, p$.

- f: Density of ϵ_{ij} .
- f_n : Corresponding density of e_{ij} .

Conjecture: Unless *n* is very small, *f* is identifiable from f_n .

MDE estimation from residuals, continued

Algorithm:

- Compute a kernel density estimate \hat{f}_n of f_n from the residuals e_{ij} , j = 1, ..., n, i = 1, ..., p.
- Given a candidate \tilde{f} for f, use simulation to approximate (arbitrarily well) the corresponding \tilde{f}_n .
- Compute $\int_{-\infty}^{\infty} (\hat{f}_n(x) \tilde{f}_n(x))^2 dx$.
- Try to find a density \tilde{f} such that the corresponding \tilde{f}_n minimizes the distance in the previous step.

As candidate densities, use kernel smooths of candidate quan-

tiles.

An example

Suppose $\epsilon_{ij} + 1$ has a standard exponential distribution.

- Generate 5(8038) values of ϵ_{ij} .
- Compute 5(8038) standardized residuals.
- Apply algorithm from previous page to estimate *f*.

Results for exponential example

Exponential cdf and estimate

Residual densities

Microarray example

Microarray data collected by Texas A&M nutritionist Robert Chapkin and coworkers.

The data here are a subset of data from a larger study.

- n = 5 rats that were all given the same treatment
- p = 8038 genes
- $X_{ij} = \log(\text{expression level for gene } j \text{ of rat } i)$

Model

$$X_{ij} = M_j + \mu_i + \sigma_i \epsilon_{ij}, \quad j = 1, \dots, 5, \ i = 1, \dots, 8038.$$

- M_j : rat effect
- (μ_i, σ_i) : gene effect
- ϵ_{ij} : error

Remarks:

- 1. The rat effects can be very efficiently estimated since p is so large.
- 2. In this example our main interest is in estimating F, the distribution of each ϵ_{ij} .

Typical scatterplot

Rat 1 vs. Rat 2

Sample means and standard deviations

Residuals for two rats

- Elliptical pattern in the left plot is to be expected.
- Right plot is reassuring about independence between genes.

Density estimates

Right hand graph – Red: Kernel estimate of f_n Black: \tilde{f}_n

Further research

- Plenty of room to improve algorithm for approximating MDEs.
- Identifiability issues in location-scale model.
- Efficiency of MDE relative to explicit methods: ongoing work with Jan Johannes.