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Outline

• A random effects location model

• Multiple hypothesis testing

• Brief review of estimation results for location model

• Minimum distance estimation

• Simulation results

• Location-scale model

• Microarray example
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Location model

Xij = µi + σǫij , j = 1, . . . , n, i = 1, . . . , p.

Assumptions:
• µ1, . . . , µp are i.i.d. as G.

• ǫi1, . . . , ǫin, i = 1, . . . , p, are i.i.d. as F , where F has mean 0
and standard deviation 1.

• All µi’s independent of all ǫij ’s.

• σ is an unknown constant.

Problem of interest: Obtain nonparametric estimates of F
and G.
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Connection with deconvolution

When n = 1, our location model is a classic deconvolution
model.

• In this case (n = 1), it’s clear that F and G are not both
identifiable.

• In deconvolution, the distribution of ǫ is assumed to be
known, in which case it is possible to consistently estimate
the distribution of µ from the X-data. [Carroll and Hall
(1988, JASA)]
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Multiple hypothesis testing

The location model is sometimes used in microarray
analyses, where p is number of genes and n is number of
measurements per gene.

• Test all hypotheses H0i : µi = 0, i = 1, . . . , p.

• Typically, the distribution of a test statistic (under the null)
will depend on F . Dependence on F is strong when n is
small.

• Previous point implies that it is desirable to infer F .
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Nonparametric estimation of F and G

• Is it possible to construct consistent nonparametric
estimators of F and G when p goes to infinity but n is
bounded?

• Perhaps surprisingly, the answer is “yes,” even when n is as
small as 2.

Two important early papers:

• Reiersøl (1950, Econometrica): Identifiability

• Wolfowitz (1957, Ann. Math. Statist.): Minimum distance
estimation (MDE)
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Two main types of estimators

• Explicit estimators – Based on characteristic function
inversion, in analogy to simpler deconvolution problem.

• Minimum distance estimators – Choose F and G so that the
induced distribution of (Xi1, . . . , Xin) is a good match to the
empirical distribution.
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More recent literature

• Horowitz and Markatou (1996, Review of Economic
Studies): Explicit estimators from panel data. (Error density
assumed to be symmetric.)

• Li and Vuong (1998, JMVA): Explicit estimator in the
location model.

• Hall and Yao (2003, Ann. Statist.): Explicit estimators and
MDE histograms in location model.

• Neumann (2006): Strong consistency of MDEs of F0 and G0

in the location model.
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Characteristic functions

ψ(s, t) = E [exp (isXj1 + itXj2)]

Under conditions more general than the location model, ψ(s, t)
is consistently estimated by

ψ̂(s, t) =
(n

2

)−1 ∑

1≤j<k≤n

ψ̂j,k(s, t),

where

ψ̂j,k(s, t) =
1

p

p
∑

ℓ=1

exp (isXℓj + itXℓk) .

In the location model,

ψ(s, t) = ψµ(s+ t)ψǫ(σs)ψǫ(σt).
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An MDE metric

Suppose µ̂1, . . . , µ̂k are candidates for quantiles of G at
probabilities (j − 1/2)/k, j = 1, . . . , k.

An estimate of the cf of G is

ψ̂µ(t) =
1

k

k
∑

j=1

eitµ̂j .

Given candidate quantiles for F , we may likewise compute an
estimate ψ̂ǫ of ψǫ.

Metric:
∫ ∞

−∞

∫ ∞

−∞

e−h2(s2+t2)|ψ̂(s, t) − ψ̂µ(s+ t)ψ̂ǫ(σ̂s)ψ̂ǫ(σ̂t)|
2 dsdt
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An estimation algorithm

1. Compute metric for initial estimates of F0 and G0.

2. Randomly jitter initial quantiles of F0, and recompute metric.

3. If new distance is smaller than the previous one, accept the
jittered quantiles.

4. Repeat 2 and 3 some predetermined number of times.

5. Repeat 2-4 for estimates of the G0 quantiles.

6. Iterate 2-5 until the distance changes by less than, say, 1%
from one iteration to the next.
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Simulations

Xij = µi + σǫij , i = 1, . . . , 1000, j = 1, 2

Two choices for G:
• Standard normal
• Bimodal mixture of two normals

Three choices for F :
• Standard normal
• Standard exponential shifted to have mean 0
• t3-distribution rescaled to have variance 1

Two values of σ: 1 and 3
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Simulations, continued

• Estimates of the quantile functions G−1(u) and F−1(u) were
computed at u = (j − 1/2)/30, j = 1, . . . , 30, for each data
set generated from the location model.

• σ̂2 = (2p)−1
∑p

i=1(Xi1 −Xi2)
2

• Two hundred replications were performed at each
combination of F , G and σ.

• Some of the results are summarized in the graphs to follow.
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G = Normal, F = Normal

σ = 1 σ = 3
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Red curve: F−1 Black curve: Median estimate of F−1

Dashed curves: 10th and 90th percentiles of all estimates
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G = Normal, F = Exponential

σ = 1 σ = 3
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G = Normal, F = t3

σ = 1 σ = 3
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G = Normal mixture, F = Normal

σ = 1 σ = 3
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G = Normal mixture, F = Exponential

σ = 1 σ = 3
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G = Normal mixture, F = t3

σ = 1 σ = 3
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µi-free MDE estimates of F

Suppose n ≥ 3 and define

δi1 = Xi2 −Xi1 = σ(ǫi2 − ǫi1)

and
δi2 = Xi2 −Xi3 = σ(ǫi2 − ǫi3).

(δi1, δi2), i = 1, . . . , p, are a special case of the location model.

It follows that the distribution of ǫij is estimable from the
differenced data!!

If one still wishes to estimate G, having a good estimate of F will
help in this process.
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Location-scale model

Suppose observed data are Xij , j = 1, . . . , n, i = 1, . . . , p.

Consider the following model:

• Xij = µi + σiǫij , j = 1, . . . , n, i = 1, . . . , p

• (µ1, σ1), . . . , (µp, σp) are i.i.d. as G0.

• ǫij , j = 1, . . . , n, i = 1, . . . , p, are i.i.d. as F0, and
independent of (µ1, σ1), . . . , (µp, σp).
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MDE estimation of F based on residuals

In the location-scale model, the residuals

eij =
Xij − X̄i

Si
=
ǫij − ǭi
Sǫ,i

are completely free of (µi, σi), i = 1, . . . , p.

• f : Density of ǫij .

• fn: Corresponding density of eij .

Conjecture: Unless n is very small, f is identifiable from fn.
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MDE estimation from residuals, continued

Algorithm:

• Compute a kernel density estimate f̂n of fn from the
residuals eij , j = 1, . . . , n, i = 1, . . . , p.

• Given a candidate f̃ for f , use simulation to approximate
(arbitrarily well) the corresponding f̃n.

• Compute
∫ ∞

−∞
(f̂n(x) − f̃n(x))2 dx.

• Try to find a density f̃ such that the corresponding f̃n

minimizes the distance in the previous step.

As candidate densities, use kernel smooths of candidate quan-

tiles.
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An example

Suppose ǫij + 1 has a standard exponential distribution.

• Generate 5(8038) values of ǫij .

• Compute 5(8038) standardized residuals.

• Apply algorithm from previous page to estimate f .
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Results for exponential example
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Microarray example

Microarray data collected by Texas A&M nutritionist Robert
Chapkin and coworkers.

The data here are a subset of data from a larger study.

• n = 5 rats that were all given the same treatment

• p = 8038 genes

• Xij = log(expression level for gene j of rat i)
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Model

Xij = Mj + µi + σiǫij , j = 1, . . . , 5, i = 1, . . . , 8038.

• Mj : rat effect

• (µi, σi): gene effect

• ǫij : error

Remarks:

1. The rat effects can be very efficiently estimated since p is so
large.

2. In this example our main interest is in estimating F , the
distribution of each ǫij .
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Typical scatterplot
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Sample means and standard deviations
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Residuals for two rats
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• Elliptical pattern in the left plot is to be expected.
• Right plot is reassuring about independence between

genes.
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Density estimates
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Further research

• Plenty of room to improve algorithm for approximating
MDEs.

• Identifiability issues in location-scale model.

• Efficiency of MDE relative to explicit methods: ongoing work
with Jan Johannes.
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