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Abstract

The null hypothesis that all of a function’s Fourier coefficients are 0 is

tested in frequentist fashion using as test statistic a Laplace approximation

to the posterior probability of the null hypothesis. Testing whether or not a

regression function has a prescribed linear form is one application of such a

test. In contrast to BIC, the Laplace approximation depends on prior proba-

bilities, and hence allows the investigator to tailor the test to particular kinds

of alternative regression functions. On the other hand, using diffuse priors

produces new omnibus lack-of-fit statistics.

The new omnibus test statistics are weighted sums of exponentiated squared

(and normalized) Fourier coefficients, where the weights depend on prior prob-

abilities. Exponentiation of the Fourier components leads to tests that can be

exceptionally powerful against high frequency alternatives. Evidence to this

effect is provided by a comprehensive simulation study, in which one new test

that had good power at high frequencies also performed comparably to some

other well-known omnibus tests at low frequency alternatives.

Keywords: Asymptotic distribution, BIC, Laplace approximation, Local alter-
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natives, Microarrays, Nonparametric lack of-fit-tests, Score tests, Orthogonal
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1 Introduction

Statistics that are weighted sums of squared Fourier coefficients have played a promi-

nent role in the literature on nonparametric lack-of-fit tests. Such statistics arise

naturally from the use of Gaussian likelihood ratio or score tests or from basing a

test on squared error discrepancy. For example, the regression analog of the clas-

sic Neyman (1937) smooth test can be derived as a score test in a regression model

with Gaussian errors. The reader is referred to Hart (1997) and Claeskens and Hjort

(2004) for discussion of and some key references on the subjects of lack-of-fit and

goodness-of-fit, respectively.

In this paper, we derive, from Bayesian principles, a lack-of-fit statistic that

is a weighted sum of exponentiated squared Fourier coefficients. This statistic is

subsequently used in frequentist fashion to test the fit of a linear regression model.

It will be argued that one of our new tests has power properties that are highly

competitive with those of a popular class of nonparametric, or omnibus, lack-of-

fit tests. A fascinating aspect of this point becomes apparent from considering

properties of the latter tests, which fall into two distinct categories: weighted sums

of squared Fourier coefficients with nonrandom and random weights, respectively.

Omnibus tests with nonrandom weights have largely been dismissed in favor of ones

with (the right type of) random weights because the former tend to have good power

only against certain types of alternatives; see, e.g., Eubank and Hart (1993), Eubank
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(2000), and Inglot and Ledwina (2006) for a discussion of these points. The prime

example of a statistic with nonrandom weights, and a favorite whipping boy, is the

cusum statistic, which is a regression analog of the Cramér-von Mises goodness-of-fit

statistic. To a good approximation, this statistic is

Cn =
1

σ̂2

n∑

j=1

nφ̂2
j

j2
,

where φ̂1, . . . , φ̂n are sample Fourier coefficients arranged in order of increasing fre-

quency and σ̂ is a scale estimate. The popular explanation for the power deficiencies

of Cn is that the higher frequency coefficients are unduly downweighted, meaning

that Cn only has good power against low frequency alternatives. Our results offer

an alternative explanation: Cn uses a relatively ineffective function of each Fourier

coefficient. Our Bayesian point of view yields statistics of the form

Bn =
n∑

j=1

ρj exp


nφ̂2

j

2σ̂2


 ,

where the weights ρ1, ρ2, . . . are related to prior probabilities. Remarkably, the

special case of Bn with ρj = j−2, j = 1, . . . , n, has better overall power in a compre-

hensive simulation study than either Cn or a popular data-driven score test. Stated

another way, our new test appears to have power comparable to that of a certain

adaptive test even though it is not itself adaptive.

Recently there has been considerable interest in what some have termed “hybrid

Bayes-frequentist” methods, i.e., methods that combine Bayesian and frequentist

thinking; see, e.g., Bayarri and Berger (2004), Conrad, Botner, Hallgren and Pérez

de los Heros (2003), Aerts, Claeskens and Hart (2004) and Chang and Chow (2005).

Our proposed tests are examples of such hybrids, as they are derived from Bayesian

principles but used in frequentist fashion. We shall refer to such tests as frequentist-

Bayes. Good (1957) proposed a frequentist-Bayes test based on a Bayes factor.
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The article of Aerts, Claeskens, and Hart (2004) appears to be the first to propose

frequentist-Bayes lack-of-fit tests based on posterior probabilities, which is precisely

the subject of the current paper. Our approach differs from that of Aerts, Claeskens,

and Hart (2004) in two respects. First, we use the method of Laplace to approximate

posterior probabilities whereas Aerts, Claeskens, and Hart (2004) use BIC. This

difference turns out to have important implications in terms of power. The BIC

analog of Bn takes the form Bn,BIC =
∑n

j=1 exp
[
nφ̂2

j/(2σ̂
2)

]
. Aerts, Claeskens and

Hart (2004) conclude that, in an overall sense, the power of this statistic is “rather

poor.” In contrast, the conclusion of our simulation study is that the overall power

of Bn with ρj = j−2 is quite good. This result shows that well-known deficiencies

(Kass and Wasserman 1995) of BIC in the Bayesian world are mirrored by ones

in the frequentist world. The second difference between our approach and that of

Aerts, Claeskens and Hart (2004) is that we show explicitly how Bn arises naturally

from a general Bayesian model for a function. In contrast, the derivation of Bn,BIC

in Aerts, Claeskens and Hart (2004) is based on so-called singleton models, i.e., ones

in which one and only one Fourier coefficient is nonzero. Such models would rarely

be used in function estimation, and hence provide a less appealing motivation for

either Bn,BIC or Bn than does our approach.

Our frequentist-Bayes tests are demonstrated to have good overall power proper-

ties. However, it is not the intent of this paper to argue that our tests are uniformly

superior to any that have been previously proposed. Indeed, Janssen (2000) shows

that, generally speaking, any nonparametric test has power that is flat on balls of

alternatives except for those coming from a particular finite dimensional subspace.

For this reason, no one omnibus test will ever be superior (in terms of power) to

every other omnibus test. New omnibus tests should thus be judged in terms of their

“overall” power properties and other factors, such as simplicity and how widely they
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can be applied. We make the case that the tests proposed in this paper fare well on

both these counts.

The literature on lack-of-fit has burgeoned in the last ten years. Many of the im-

portant references on the subject prior to 1997 may be found in the monograph Hart

(1997). In addition to aforementioned articles, important work post-1995 includes,

but is not limited to, that of Spokoiny (1996), Stute (1997), Dette and Munk (1998),

Aerts, Claeskens and Hart (1999), Dette (1999), Aerts, Claeskens and Hart (2000),

Dümbgen and Spokoiny (2001), Fan and Huang (2001), Fan, Zhang and Zhang

(2001), Horowitz and Spokoiny (2001), Baraud, Huet and Laurent (2003), Guerre

and Lavergne (2005), and Bickel, Ritov and Stoker (2006). All the approaches in

these articles are frequentist in nature. Verdinelli and Wasserman (1998) proposed a

purely Bayesian nonparametric goodness-of-fit test. Finally, worth special mention

due to their fundamental nature are adaptive versions of the Neyman smooth test,

which were introduced by Ledwina (1994) in the goodness-of-fit context. In this

work Ledwina proposed that the Schwarz criterion, i.e., BIC, be used to choose the

number of components in a Neyman smooth statistic. Inglot and Ledwina (2006)

studied the analog of such tests in a regression setting. Kuchibhatla and Hart (1996)

also investigated adaptive Neyman smooth tests in a regression context, but using

Mallows’ criterion (Mallows 1973) instead of BIC.

The next section introduces the model on which our results are based, and Sec-

tion 3 derives a class of test statistics based on posterior probabilities. Cusum and

score tests are contrasted with our approach in Section 4. Asymptotic distribution

theory for the new tests is presented in Section 5, where it is shown that they can

detect alternatives converging to H0 at the rate 1/
√

n. Section 6 addresses the

problem of choosing a prior distribution over the alternatives to H0. A simulation

study is the subject of Section 7, and an example involving data from a microarray
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analysis is provided in Section 8. The paper ends with some concluding remarks in

Section 9.

2 A canonical model and the inference problem

We consider problems where it is of interest to test the null hypothesis that a function

r is identical to 0. It is assumed that r is characterized by Fourier coefficients

φ1, φ2, . . . and that the null hypothesis is equivalent to

H0 : φ1 = φ2 = · · · = 0. (1)

The observed data are sample Fourier coefficients φ̂1, . . . , φ̂n that estimate φ1, . . . , φn,

respectively. These data satisfy

A1. φ̂1, . . . , φ̂n are independent,

A2. φ̂j ∼ N(φjn, σ
2/n), j = 1, . . . , n, and

A3. φjn = 0, j = 1, . . . , n, under the null hypothesis.

The scale parameter σ is allowed to be unknown. We will focus on nonparametric

tests of H0, i.e., tests that are consistent against virtually any alternative to (1) as

n →∞.

To a good approximation, A1-A3 hold in a variety of problems, and are exact in

the following canonical regression setting. Suppose we observe Y1, . . . , Yn+p+1 from

the model

Yj = µ(xj) + εj, j = 1, . . . , n + p + 1, (2)

where x1, . . . , xn+p+1 are fixed, d-dimensional design points, and the unobserved

errors ε1, . . . , εn+p+1 are independent and identically distributed as N(0, σ2). It is of
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interest to test the null hypothesis

µ(x) = θ0 +
p∑

j=1

θjµj(x) ≡ µθ(x), (3)

where θ0, . . . , θp are unknown parameters and µ1, . . . , µp are known functions. In

this case, r ≡ µ − µθ0
, where µθ0

is the best null approximation of µ. Starting

from an arbitrary set of basis functions, one may use the Gram-Schmidt procedure

to define u1n, . . . , unn and

φ̂j =
1

n

n∑

i=1

Yiujn(xi), j = 1, . . . , n, (4)

such that φ̂1, . . . , φ̂n satisfy A1-A3. Examples of basis functions that may be used

are trigonometric functions, polynomials and wavelets.

Now suppose that model (2) holds but the errors ε1, . . . , εn+p+1 are merely as-

sumed to be i.i.d. with mean 0 and finite variance σ2. Then defining sample Fourier

coefficients as in (4) preserves A3, and A1 and A2 continue to hold in an approx-

imate sense as n → ∞. It is also worth noting that these Fourier coefficients are

uncorrelated, albeit not necessarily independent.

3 Derivation of test statistics

Let φ̂n denote the vector (φ̂1, . . . , φ̂n) of sample Fourier coefficients. To test the

null hypothesis (1), we shall first propose a prior distribution for σ and the Fourier

coefficients φ1, . . . , φn, and then compute the posterior probability, π0(φ̂n), of H0.

One would be inclined to reject H0 when the statistic π0(φ̂n) is sufficiently small. A

frequentist would determine the cutoff point for rejection by deriving the frequency

distribution of π0(φ̂n) under H0 and then choosing an appropriate Type I error

probability. Apparently, it is necessary to specify a prior probability, π0, for H0, but
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it is easily checked that using π0(φ̂n) in frequentist fashion is equivalent to a test

that is invariant to the value of π0.

A computable closed form for π0(φ̂n) is possible only for selected prior distribu-

tions. We will thus approximate π0(φ̂n) in a way that yields a closed form. Aerts,

Claeskens and Hart (2004) used BIC to approximate π0(φ̂n), but we will use a more

refined approximation, namely the method of Laplace. To the author’s knowledge,

the only article to apply Laplace’s approximation to goodness- or lack-of-fit testing

is Bogdan (2001), who used the method to select the number of components in a

Neyman smooth test. For details on using Laplace’s method in a general Bayesian

context, the reader is referred to de Bruijn (1970) and Tierney and Kadane (1986).

It will be assumed that φ1, . . . , φn are a priori independent with

P (φj = 0) = 1− πj, j = 1, . . . , n,

where πj < 1 for all j and, given that φj 6= 0, φj has density g, j = 1, . . . , n. The

scale parameter σ has prior π and is assumed to be a priori independent of the

Fourier coefficients.

Before continuing we need to define some notation. For m = 1, . . . , n, define

nm =
(

n
m

)
and let Sm1, . . . , Smnm be the nm subsets of {1, . . . , n} of size m. For

each m and i, let S̄mi be the elements of {1, . . . , n} that are not in Smi, and let φmi

and φ̂mi denote the vectors (φj1 , . . . , φjm) and (φ̂j1 , . . . , φ̂jm), respectively, where

j1 < · · · < jm are the elements of Smi. Finally, for i = 0, . . . , nm and m = 1, . . . , n,

define the integrals

Imi =
∫ ∞

0

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp


− n

2σ2


 ∑

j∈Smi

(φ̂j − φj)
2 +

∑

j∈S̄mi

φ̂2
j







×

 ∏

j∈Smi

g(φj) dφj


 σ−nπ(σ) dσ.
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The posterior probability of H0 may be expressed as

π0(φ̂n) =
p0(φ̂n)

pmarg(φ̂n)
,

where

p0(φ̂n) = I01

n∏

j=1

(1− πj)

and

pmarg(φ̂n) = p0(φ̂n) +
n∑

m=1

nm∑

i=1

∏

j∈Smi

πj

∏

j∈S̄mi

(1− πj)Imi.

We now use Laplace’s method to approximate each integral Imi:

Imi ≈ 1√
2

(
2π

n

)(m+1)/2

σ̂m+1−n
mi e−n/2

∏

j∈Smi

g(φ̂j)π(σ̂mi), (5)

where

σ̂2
mi =

∑

j∈S̄mi

φ̂2
j .

Here, we have used a common variant of the “pure” Laplace approximation in which

the prior is evaluated at the maximum likelihood estimate of φmi rather than at the

posterior mode; see Kass and Raftery (1995).

Substituting (5) into π0(φ̂n) yields our approximation, π̂0, of the posterior prob-

ability of H0:

π̂0 =
1

1 + Rn

,

where

Rn =
n∑

m=1

nm∑

i=1

∏

j∈Smi

πj

(1− πj)

(
2π

n

)m/2

σ̂n−1
0 σ̂m+1−n

mi

∏

j∈Smi

g(φ̂j)
π(σ̂mi)

π(σ̂0)

and σ̂0 ≡ σ̂01. The frequentist test that rejects H0 for small values of π̂0 is equivalent

to one that rejects for large values of

B̃n + En,

9



where

B̃n = σ̂0

n∑

i=1

πi

(1− πi)
g(φ̂i)

π(σ̂1i)

π(σ̂0)

(
σ̂2

0

σ̂2
1i

)(n−2)/2

, (6)

En =
∑n

m=2 Unm and, for m = 2, . . . , n,

Unm = σ̂m
0

(
2π

n

)(m−1)/2 nm∑

i=1

∏

j∈Smi

[
πj

(1− πj)
g(φ̂j)

]
π(σ̂mi)

π(σ̂0)

(
σ̂2

0

σ̂2
mi

)(n−m−1)/2

.

It seems doubtful that the test statistic B̃n + En would ever be markedly more

powerful than B̃n. One way to see this is to consider what happens under 1/
√

n

local alternatives to H0. Theorem 1 shows that, under such alternatives and when

πj = O(j−α) for some α > 1, B̃n converges in probability to a nongenerate random

variable. Under the the same conditions it is straightforward to show that for each

fixed m ≥ 2, Unm = Op(n
−(m−1)/2) under 1/

√
n alternatives. With this result and the

relative simplicity of B̃n as motivation, we shall consider only B̃n and modifications

thereof in in the sequel. We also note that the multiplier σ̂0 seems of dubious benefit,

and hence will subsequently be dropped.

From the standpoint of test power, the most important components in (6) are

γi =

(
σ̂2

0

σ̂2
1i

)(n−2)/2

=

(
1 +

φ̂2
i

σ̂2
1i

)(n−2)/2

, i = 1, . . . , n.

The following remarks relevant to these components are in order:

R1. Under the null hypothesis each of γi is equal in distribution to (1+F/n)(n−2)/2,

where F has the F distribution with 1 and n− 1 degrees of freedom.

R2. Under the null hypothesis, γ1, . . . , γn are asymptotically independent and iden-

tically distributed as exp(χ2/2), where χ2 has the χ2 distribution with one

degree of freedom.

R3. For any positive constant a, exp(ax) ≥ (1 + x)a for all x ≥ 0.

10



Remarks R2 and R3 imply that the following statistic is, asymptotically, both null-

equivalent to and more powerful than B̃n/σ̂0:

Bn =
n∑

i=1

πi

(1− πi)
g(φ̂i)

π(σ̂1i)

π(σ̂0)
exp

(
nφ̂2

i

2σ̂2
1i

)
. (7)

The exponential terms in Bn are a common feature of tests based on the posterior

probability of the null. When applying Laplace approximations to more general

models, the statistic analogous to Rn will be a weighted sum of likelihood ratios

L̂j/L̂0, where L̂0 and L̂j, j = 1, . . . , K, are maximized likelihoods of the null and K

alternative models, respectively. Writing ξj = 2 log(L̂j/L̂0), we have

L̂j

L̂0

= exp

(
ξj

2

)
,

and if the null is nested within each alternative, then under standard regularity

conditions each ξj will have an asymptotic χ2 distribution under the null hypothesis.

In short, the “sum of exponentials” phenomenon can be attributed to two factors: (i)

the use of a posterior probability to test H0, and (ii) entertainment of more than two

models. When the null is compared to just one other model, our frequentist-Bayes

test is essentially the same as a likelihood ratio test.

The regression model in Section 2 that is isomorphic to our canonical, Fourier

coefficients model is homoscedastic. If the errors in such a regression model have

an unknown heteroscedastic structure, then the sample Fourier coefficients are no

longer sufficient statistics. Given a parametric model for the error variances, one

may nonetheless derive a frequentist-Bayes test statistic based on Laplace approxi-

mations. In this case the derivation would start from a likelihood written in terms

of the observations Y1, . . . , Yn+p+1.
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4 Weighted sums and score statistics

Two types of test statistics have played a prominent role in the lack-of-fit literature:

weighted sums of independent components and Gaussian-likelihood score tests. By

a weighted sum, we mean a statistic of the form

Sn =
n∑

j=1

wj(nφ̂2
j/σ̂

2),

where w1, w2, . . . are known positive constants with
∑∞

j=1 wj < ∞. A regression

analog of a Neyman smooth statistic is

Sn(m) =
m∑

j=1

(nφ̂2
j/σ̂

2).

If σ̂2 is computed on the assumption that the null hypothesis is true, then Sn(m)

is a score statistic for testing (3) in the regression model (2). On the other hand, if

σ̂2 is an estimate based on assuming that the alternative is true, then Sn(m) arises

from use of the reduction method in linear models; see, for example, Hart (1997,

pp. 124-125). Here it is assumed that m is a priori fixed.

As an omnibus test, Sn is attractive since it is consistent against any alterna-

tive for which at least one φj is nonzero. Unfortunately, such tests are notorious

for having poor power in “moderate-sized” samples for all but very low frequency

alternatives. This is true even for the cusum test, which has weights wj = 1/j2,

j = 1, 2, . . . , that decrease to 0 at a fairly slow, algebraic rate (Hart 1997).

Suppose that the difference between the null and true functions has the form

r(x) =
∑m

j=1 φjuj(x). Then by a classic result of Lehmann (1959) a test based on

Sn(m) is uniformly most powerful among tests whose power functions depend only

on
∑m

j=1 φ2
j/σ

2. However, due to its dependence on the smoothing parameter m, a

score test cannot be regarded as an omnibus test. This “defect” can be repaired

asymptotically by using a so-called data-driven score test, i.e., a test based on Sn(m̂),
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where m̂ is selected from the data (Ledwina 1994, Kuchibhatla and Hart 1996, Lee

and Hart 2000, Bogdan 2001 and Inglot and Ledwina 2006). The version of Sn(m̂)

that has received the most attention is Sn(m̂BIC), where m̂BIC optimizes BIC.

The most interesting and potentially important result of the current paper may

be stated as follows. In our comprehensive simulation study (Section 7), a particular

weighted sum of exponentiated squared Fourier coefficients has substantially better

power at higher frequency alternatives than a test based on Sn(m̂BIC), and power

comparable to that of Sn(m̂BIC) at lower frequency alternatives. The good power

properties of Bn are somewhat surprising because Bn is not adaptive, i.e., it has

nonrandom weights. The version of Bn used in our simulation study has πj =

1/(1 + j2), meaning that it uses the same weights as the cusum test. In spite of the

fact that each component exp[nφ̂2
j/(2σ

2)] has infinite mean, it will be shown that,

as n →∞, the statistic

n∑

j=1

j−2 exp


nφ̂2

j

2σ̂2


 (8)

converges in distribution to a random variable that is finite with probability 1. This

relative stability under the null and the fact that exponentiation “explodes” the

effect of nonzero Fourier coefficients explains the good power properties of (8).

The exponentiation in Bn seems to be of fundamental importance since it is not

ad hoc, but rather a consequence of using a posterior probability to construct the test

statistic. This is evidenced by the discussion at the very end of Section 3.

5 Asymptotic distribution theory

We now consider the limiting distribution of Bn under both the null hypothesis and

local alternatives that converge to the null at rate 1/
√

n. Our local alternatives are
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of the form

φj =
1√
n

βj, n = 1, 2, . . . , j = 1, . . . , n. (9)

A proof of the following theorem is sketched in the Appendix.

THEOREM 5.1. Let Z1, Z2, . . . be i.i.d. standard normal random variables. Suppose

that φ̂1, . . . , φ̂n are independent with φ̂j ∼ N(βj/
√

n, σ2/n), j = 1, . . . , n, where it is

assumed that limj→∞ βj = 0. Let π1, π2, . . . be defined as in Section 3 and suppose

there exists δ < 1 such that

∞∑

j=1

πδ
j < ∞. (10)

Assume also that the prior π(x) is continuous at each positive x, and that g is

bounded, and Lipschitz continuous in a neighborhood of 0. Then the statistic Bn

defined by (7) converges in distribution to

B = g(0)
∞∑

j=1

πj

(1− πj)
exp

[
(Zj + βj/σ)2/2

]
,

which is an almost surely convergent series.

Some remarks are in order concerning Theorem 5.1.

1. Consider the class Nn = {M1, . . . ,Mn} of nested models. Here, model Mj is

such that only the first j Fourier coefficients φ1, . . . , φj are possibly nonzero,

j = 1, 2, . . . . Now, let π̂(Nn) be the posterior probability of H0 when the

class of alternative models is Nn. Then, as argued by Aerts, Claeskens and

Hart (2004), the limiting power of tests based on π̂(Nn) against the local

alternatives (9) is completely determined by β1. In particular, if β1 = 0, then

the asymptotic power is nil, i.e., it equals the test level. In contrast, Theorem

5.1 demonstrates that Bn can detect 1/
√

n alternatives whenever any Fourier

coefficient βj is nonzero.
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2. A second remarkable aspect of Theorem 5.1 is its demonstration that proper

prior probabilities πj have a profound stabilizing effect on Bn. The BIC analog

of Bn (studied in Aerts, Claeskens and Hart (2004)) is

Bn,BIC =
n∑

j=1

exp


nφ̂2

j

2σ2


 .

In essence, Bn,BIC is a special case of Bn with πj = 1/n, j = 1, . . . , n. The

fact that the uniform prior is (asymptotically) improper entails that Bn,BIC

has to be carefully standardized to have a proper limiting distribution; see

Aerts, Claeskens and Hart (2004) for the details. Furthermore, Bn,BIC cannot

detect 1/
√

n local alternatives, and against local alternatives it can detect, its

power is completely determined by the largest Fourier coefficient.

Sufficient conditions for consistency of Bn against any fixed alternative with at

least one φj 6= 0 are (i) πj > 0, j = 1, 2, . . ., and (ii) g is strictly positive.

6 Choice of prior probabilities

The statistic Bn depends on the prior distribution via the prior density g, the proba-

bilities πj and the prior π for σ. A popular noninformative prior for a scale parameter

σ is the improper prior π(σ) = σ−1. If this prior is used in (6), then B̃n becomes

B̃n = σ̂0

n∑

i=1

πi

(1− πi)
g(φ̂i)

(
σ̂2

0

σ̂2
1i

)(n−1)/2

, (11)

which, in light of remarks R2 and R3, suggests that we use as a test statistic

Bn =
n∑

i=1

πi

(1− πi)
g(φ̂i) exp

(
nφ̂2

i

2σ̂2
1i

)
. (12)

Theorem 5.1 suggests that g does not play a very important role, since for local

alternatives it only produces the multiplicative constant g(0). On the other hand,
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π1, π2, . . . are crucial. In situations where one suspects that the underlying function

r is highly correlated with certain orthogonal functions, it would be judicious to

place larger prior probabilities on the corresponding Fourier coefficients. Doing so

will tend to increase the power of the resulting test if one’s suspicions are justified.

In a nonparametric setting, very little is known about the underlying function.

In such a case it would make sense to use vague probabilities. One possibility in

this regard is to take πj = 1/2 for each j. However, this yields the statistic Bn,BIC ,

which, as noted in the previous section, has no asymptotic power against 1/
√

n local

alternatives. The problem with πj = 1/2 is that it fails to reflect our knowledge

that relatively few of a function’s Fourier coefficients will be substantially different

from 0. In what follows we will propose vague choices for prior probabilities in three

different settings.

Functions of one variable: polynomial and trigonometric bases. Suppose that r

is a function of a single variable, and that we represent it by linear combinations

of polynomials or trigonometric functions. Furthermore, assume that φ1, φ2, . . .

correspond to the basis functions arranged in order of increasing frequency. It seems

natural that vague probabilities on the φjs should decrease to 0 monotonically in

frequency. Vagueness also suggests that the decrease to 0 should be quite slow.

To ensure the desirable properties of Theorem 5.1, we need slightly more than

summability of the πjs. Taking πj = 1/jα for any α > 1 satisfies condition (10),

and taking α fairly close to 1 will ensure vagueness of the prior probabilities.

In Section 7 we will consider a version of Bn in which g is a constant (i.e.,

the improper uniform prior) and πj = (1 + j2)−1. In addition to being reasonably

noninformative, these probabilities lead to the same weights, j−2, as those used

by the cusum test. Hence, differences in power between this version of Bn and

the cusum test can be attributed solely to exponentiation of the squared Fourier
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coefficients.

Functions of one variable: wavelet bases. In a wavelet analysis, there are J = log2 n

levels of frequency resolution, with each level consisting of a number of basis func-

tions that are shifted versions of each other. This yields the well-known frequency

and time localization that makes wavelets so attractive (Ogden 1997). Let φj,k,

k = 0, 1, . . . , 2j − 1 denote the true wavelet coefficients at resolution level j, j =

0, 1, . . . , J − 1. Here it seems reasonable to assign each of φj,0, . . . , φj,2j−1 the same

prior probability of, say,

πj =
1

(1 + 2jα)
, j = 0, 1, . . . , J − 1, (13)

with α > 1, in which case Bn takes the form

J−1∑

j=0

2−jα
2j−1∑

k=0

exp


nφ̂2

jk

2σ2


 .

The series
∑J−1

j=0 2−j(α−1) satisfies condition (10) since α > 1, and hence the result

of Theorem 5.1 is true for wavelet series when the πjs are defined as in (13).

Functions of several variables. For the sake of illustration, suppose that r is a

function of two variables. The regression model of Section 2 with d = 2 is an

example of this case. If one uses, say, a trigonometric basis, the sample Fourier

coefficients will be a function of two frequency indices, say j and k, and may be

written φ̂jk, j = 1, . . . ,
√

n, k = 1, . . . ,
√

n, where for convenience we assume that

√
n is an integer. The statistic Bn now has the form

Bn =

√
n∑

j=1

√
n∑

k=1

πjk

(1− πjk)
exp


nφ̂2

jk

2σ2


 ,

and we are faced with choosing the πjks. Assuming that each of the indices j and k

is proportional to frequency, it seems reasonable to take as vague probabilities

πjk =
1

1 + (jk)α
, j = 1, . . . ,

√
n, k = 1, . . . ,

√
n,
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for some α > 1. If we take 1/α < δ < 1, then the series
∑√

n
j=1

∑√
n

k=1(jk)−δα converges

as n →∞, and hence Theorem 5.1 is applicable to this setting. It is worth noting,

however, that a manifestation of the curse of dimensionality can be seen here. The

maximum frequency that can be resolved in this case is
√

n, as opposed to n in

the single variable case. The curse gets worse quickly with increasing dimension d,

wherein the maximum observable frequency is n1/d. When n = 125, for example,

the upper bound on frequency is practically unlimited in the univariate case, but is

a fairly limiting 5 when d is just 3.

7 A simulation study

Our simulations are limited to univariate regression, but are arguably fairly com-

prehensive in that setting. All statistics considered depend on an estimate of the

scale parameter σ. Statistics relying on the score principle use an estimate of σ that

assumes the null hypothesis to be true, whereas our frequentist-Bayes statistic uses

estimates that are appropriate when some alternative is true. We would like our

power comparisons to reveal differences in methods that are not due to differences

in variance estimates. Hence, we will use the same scale estimator for all statistics,

and this will be the one motivated by score tests. In terms of Fourier coefficients,

this estimator has the form σ̂2 =
∑n

j=1 φ̂2
j , which is unbiased for σ2 under the null.

7.1 Testing for no effect

We first consider the model (2) in which ε1, . . . , εn+1 are i.i.d. N(0, 1) and xj =

(j − 1/2)/(n + 1), j = 1, . . . , n + 1. The null hypothesis is the so-called no-effect
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hypothesis, i.e., µ is identical to a constant. The sample Fourier coefficients are

φ̂j =

√
2

(n + 1)

n+1∑

i=1

Yi cos(πjxi), j = 1, . . . , n.

Two different types of studies were performed. In the first, a “traditional” sort

of study was done in which a large number (100,000) of data sets is generated from

each of several models. In the second study, a single data set was generated from

each of 100,000 randomly generated functions, and we consider how power is related

to two crucial characteristics of the functions.

Four tests based on orthogonal series were considered in both studies. One test

uses a special case of Bn having the form

Bn =
n∑

j=1

j−2 exp


nφ̂2

j

2σ̂2


 .

A test based on this statistic will be referred to as a Bayes sum test. A second test, to

be called a BIC score test, uses an adaptive score statistic of the form
∑m̂

j=1 nφ̂2
j/σ̂

2,

where m̂ maximizes BIC(m) =
∑m

j=1 nφ̂2
j/σ̂

2 −m log n over m = 1, . . . , n. Finally,

we also consider the cusum statistic

Cn =
n∑

j=1

1

σ̂2

nφ̂2
j

j2
,

which has been investigated in the regression context by Buckley (1991) and Eubank

and Hart (1993).

Both studies used sample size n = 100, and our first step was to obtain good

approximations to critical values of each statistic. This was accomplished by gener-

ating one million random samples of size 100 from the standard normal distribution

and computing all four statistics for each of the samples. Approximations to critical

values for size 0.05 tests were 6.801, 5.471 and 4.583 for the Bayes sum, BIC score

and cusum tests, respectively.
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In the first study, the underlying function has the form

r(x) =
√

2φ cos(πm0x). (14)

Here, the idea is to use a single cosine wave to investigate the effect of the frequency,

m0, on the power of each test. The frequencies considered were m0 = 1, 2, 3, 4 and

7, and at each m0 power was approximated for six values of λ = nφ2. One hundred

thousand replications were performed at each combination of m0 and λ. The results

are given in Table 1. The only frequency at which the cusum test is not clearly

inferior to the other three tests is the lowest one, m0 = 1. A comparison of the

Bayes sum and BIC score tests is conveyed graphically in Figure 1. Here, power

as a function of m0 is plotted for λ = 1, 4, and 16. At the lowest frequency, the

Bayes sum test has, overall, a slight power advantage over BIC score. At the highest

frequency, the Bayes sum test is never worse than and usually substantially better

than the BIC score test. Only at some intermediate frequencies does BIC score have

higher power than Bayes sum, and in these cases the difference in power is fairly

small.

In our second study, each of 100,000 data sets of size n = 100 was generated as

follows.

• A random sample, φ̃1, . . . , φ̃100, was generated from N(0, (0.2)2).

• Fourier coefficients φ1, . . . , φ100 were obtained by multiplying the quantities

in the previous step by a random damping factor. Define, for each m =

1, 2, . . . , 100,

dj(m) = exp
[
− 1

32
(j −m)2

]
, j = 1, . . . , 100. (15)

Define also the probability distribution

pj =
j−1.75

∑100
k=1 k−1.75

, j = 1, . . . , 100.
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m0

λ 1 2 3 4 7

0.09465 0.06678 0.05781 0.05468 0.05052

0.5 0.08024 0.08777 0.05977 0.05151 0.04950

0.10687 0.05469 0.04964 0.04959 0.04941

0.14439 0.08585 0.07053 0.06197 0.05371

1 0.11736 0.13036 0.07253 0.05577 0.04786

0.16513 0.05898 0.05173 0.05046 0.04852

0.24602 0.13973 0.10249 0.08494 0.06123

2 0.19837 0.22430 0.10935 0.06580 0.04674

0.28366 0.07186 0.05431 0.05062 0.04613

0.45119 0.27411 0.19713 0.15755 0.10030

4 0.37752 0.41484 0.21041 0.10440 0.04559

0.50065 0.10468 0.05933 0.05123 0.04696

0.75328 0.56685 0.45151 0.37470 0.25338

8 0.68300 0.72343 0.46737 0.25229 0.04877

0.79423 0.21180 0.07364 0.05437 0.04428

0.96663 0.90040 0.83843 0.78130 0.65587

16 0.94684 0.95676 0.84476 0.64070 0.12307

0.97568 0.518873 0.10811 0.05697 0.03910

Table 1: Empirical Power of Size 0.05 Bayes Sum, BIC score and Cusum Tests.

The underlying function is r(x) =
√

2φ cos(πm0x) and λ = nφ2/σ2. For given λ and

m0, the upper row is the power of the Bayes sum test, and the second, third and

fourth rows are powers of the Bayes nested, BIC score and cusum tests, respectively.

Results are based on n = 100 and 100,000 replications. See the text for further

details.
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Figure 1: Power Plots for Size 0.05 Bayes Sum and BIC score Tests. Solid and

dashed lines correspond to Bayes sum and BIC score, respectively. At any given

m0 and test, the powers from smallest to largest correspond to λ = 1, 4 and 16,

respectively.

A value m was selected from this distribution, and Fourier coefficients were

obtained by computing

φj = dj(m)φ̃j, j = 1, . . . , 100.

• Defining r(x) =
√

2
∑100

j=1 φj cos(πjx), the data were

Yi = r(xi) + εi, i = 1, . . . , 101,

where ε1, . . . , ε101 were i.i.d. N(0, 1).

Size 0.05 versions of the four tests were conducted for each of the 100,000 data

sets, and the results are summarized in Figures 2-4. In each figure, estimated power

is displayed as a function of the “size” and “frequency” of r, which are defined as

follows:

size =
∫ 1

0
r2(x) dx =

∞∑

j=1

φ2
j
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and

frequency× size =
∫ 1

0
[r′(x)]2dx = π2

∞∑

j=1

j2φ2
j .

The transformed size and frequency referred to in each plot are

size/1.12 and log(frequency)/11.5,

respectively. A log transform of frequency was used since the distribution of fre-

quencies was highly right-skewed. For a given test, the 100,000 simulated data sets

yield data (si, fi, ai), i = 1, . . . , 100, 000, where si and fi are the transformed size

and frequency, respectively, of the ith generated function, and

ai =





1, if H0 is rejected for data set i,

0, otherwise.

A kernel smoother is used to estimate the regression of ai on (si, fi), and it is these

smooths that are shown in Figures 2-4.

The results of this second part of our simulation study reinforce the conclusions

of the first part. Interestingly, the red regions, i.e., those in which power is highest,

appear to have a nested structure. The red region for the Bayes sum test contains

that of the BIC score test, which contains that of the cusum test. The proportions

of rejections out of all 100,000 tests conducted were 0.56108, 0.52500 and 0.37970

for the Bayes sum, BIC score and cusum tests, respectively. It should be noted that

the manner in which our random functions were generated produced a much higher

proportion of low than high frequency functions. The 75th and 90th percentiles of

all transformed frequencies were 0.490 and 0.611. It follows that a simple average

of power downweights the cases where the Bayes sum test has its biggest advantage

over the others.
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Figure 2: Empirical Power Plot for Size 0.05 Bayes Sum Test.
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Figure 3: Empirical Power Plot for Size 0.05 Data-driven Score Test.
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Figure 4: Empirical Power Plot for Size 0.05 Cusum Test.

7.2 Testing the fit of polynomials

We again use the model of Section 7.1 but now consider testing the null hypothesis

that µ is a polynomial of specified degree. We consider two null hypotheses: µ is

a straight line, and µ is quadratic. The basis functions are taken to be orthogonal

polynomials, which guarantees that A1-A3 are true. We first do simulations under

the null hypothesis (based on one million replications) to determine 0.05 level critical

values for each of the tests considered in Section 7.1. This was done at each of the

sample sizes n = 50, 100, 200 and 500. The critical values so-determined are given

in Table 2.

Our power study parallels the second study of Section 7.1. Random functions

were generated exactly as they were there. (This is appropriate since a function

generated in this way is almost surely different from a polynomial.) One hundred
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Table 2: Approximate 0.05 level critical values for testing a straight line or quadratic

null hypothesis. The results are based on one million replications from the respective

null models.

Null n Bayes sum BIC score Cusum

50 6.901 6.155 4.634

Linear 100 6.927 5.530 4.593

200 6.991 4.963 4.585

500 6.901 4.342 4.533

50 7.289 6.363 4.720

Quadratic 100 7.141 5.641 4.642

200 7.054 4.988 4.586

500 6.934 4.353 4.549

thousand replications were performed at each of the four sample sizes mentioned

in the last paragraph. Rather than giving heat plots as we did previously, we

simply report (in Table 3) the proportions of rejections at each sample size. The

results parallel the analogous ones reported in the last paragraph of Section 7.1. The

decrease in power with polynomial degree is to be expected since the L2-discrepancy

between a function and its best polynomial approximation decreases with polynomial

degree.

7.3 Testing the fit of a tides model

The classic harmonic model (Cole 1997, p. 14) for a series of tidal heights Y1, . . . , Yn

observed at evenly spaced time points t = 1, . . . , n has the form

Yt = θ0 +
K∑

j=1

βj cos(ajt + pj) + εt, t = 1, . . . , n, (16)

where a1, . . . , aK are known speeds, β1, . . . , βK are unknown amplitudes, p1, . . . , pK

are unknown phases, and ε1, . . . , εn are unobserved, i.i.d., mean 0 random variables.

Each cosine term is referred to as a constituent, and it is sometimes of interest to
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Table 3: Proportions of rejections in 0.05 level tests of straight line and quadratic

null hypotheses. For each n and type of null hypothesis, 100,000 random functions

were generated as described in Section 7.1. The tests were applied to each resulting

data set and the proportions of rejections recorded.

Null n Bayes sum BIC score Cusum

50 0.25527 0.27375 0.21021

Linear 100 0.47137 0.46007 0.36222

200 0.71594 0.66020 0.55255

500 0.90939 0.84441 0.76883

50 0.22073 0.22954 0.19346

Quadratic 100 0.40879 0.39968 0.32664

200 0.64166 0.59546 0.50591

500 0.86871 0.80200 0.72983

test the null hypothesis that a model containing a specified set of constituents is

appropriate. The alternatives of interest might be that the tidal heights are subject

to a slow drift or that some constituent is missing from the model.

The deterministic part of model (16) may be written

θ0 +
K∑

j=1

βj cos(ajt + pj) = θ0 +
K∑

j=1

[βj cos(ajt) cos(pj)− βj sin(ajt) sin(pj)]

= θ0 +
K∑

j=1

[θj1 cos(ajt) + θj2 sin(ajt)] .

Since a1, . . . , aK are known, this makes it clear that model (16) is linear in (θ1j, θ2j),

j = 1, . . . , K, and hence the methods of the current paper can be used to test its

adequacy.

A simulation was performed in which the null model was as follows:

Yj = θ0 + θ11 cos(2πω1 · 720xj) + θ12 sin(2πω1 · 720xj) + θ21 cos(2πω2 · 720xj) +

θ22 sin(2πω2 · 720xj) + εj, j = 1, . . . , 720, (17)

where xj = (j − 1/2)/720, j = 1, . . . , 720, ε1, . . . , ε720 are i.i.d. standard normals,
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ω1 = 1/25.81933 and ω2 = 1/12.65835. This model amounts to observing hourly

tidal heights for a period of 30 days. The frequencies ω1 and ω2 correspond to two of

the principal tidal constituents (Cole 1997, p. 10). Starting from the cosine functions

cos(πjx), j = 1, 2, . . ., the Gram-Schmidt process was used to define basis functions

that are both orthornormal with respect to the design points and orthogonal to the

functions of the null model. This ensures that the sample Fourier coefficients satisfy

A1-A3.

Included in the simulations of this section is a test proposed in Section 3.4 of

Inglot and Ledwina (2006). It is a variation of the BIC score test with improved

power against high frequency alternatives. This is achieved by using a selection

criterion that is a hybrid of BIC and AIC, which makes the criterion less likely to

choose a very low dimensional model when the true model is high frequency. The

modified criterion depends on a constant c that we take to be 2.4. We call this

fourth test a “modified BIC score test.”

An initial simulation with one million replications was performed under model

(17) to determine 0.05 level critical values for the four tests of interest. The values

obtained for the Bayes sum, BIC score, cusum and modified BIC score were 6.791,

4.216, 4.522 and 4.310, respectively. The first three of these are quite similar to

those in Table 2 at n = 500, as would be expected.

Our power study considers alternatives of the form

µ(x) = µ0(x) + a sin(2πω3 · 720x), (18)

where µ0 is the null function and ω3 = 1/23.93477. This is a very high frequency

alternative, but is in no way artificial in the context of the tides problem since it

corresponds to a commonly occurring constituent (Cole 1997, p. 10). Estimated

power (based on 100,000 replications) was determined for each of the four tests at

each of the amplitudes a = 0.2, 0.4, 0.6, 0.8, 1.0. Results are given in Table 4.
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Modified

a Bayes sum BIC score BIC score Cusum

0.2 0.09170 0.06180 0.04164 0.04219

0.4 0.89534 0.12501 0.02441 0.02465

0.6 0.99997 0.29839 0.01025 0.01051

0.8 1 0.96817 0.00385 0.00383

1.0 1 0.99999 0.00090 0.00087

Table 4: Empirical power of four 0.05 level tests for tides model. Results are based

on 100,000 replications from the alternative defined by (18).

The power of the Bayes sum test is exceptionally good in comparison to the

other tests. The powers of the BIC score and cusum tests are extremely poor. The

fact that these powers are actually lower than the test level is due to the fact that

the null variance estimate is inflated by true Fourier coefficients that are nonzero.

The power of the modified BIC score test is quite good at amplitiudes a = 0.8 and

1.0, but is poor relative to the Bayes sum test at a = 0.4 and 0.6. It is remarkable

that the Bayes sum test is so much more powerful than the others in spite of the

fact that it is not adaptive. This is testament to just how much exponentiation

magnifies even small deviations from the null hypothesis.

8 An example involving microarrays

Here we apply a frequentist-Bayes test to data collected by the authors of Snijders, et

al. (2001). The data are from a microarray experiment that measured genome-wide

DNA copy number. The variable considered here is the ratio of dye intensities for

test and reference samples at a given marker along a chromosome of interest. Each

intensity is proportional to the number of marker copies. The reference samples are

diploid, and hence each reference marker has only two copies. It is of interest to

detect regions on a chromosome where the test samples may have more or fewer
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copy numbers than the corresponding reference samples. Such variations in copy

number are known to be correlated with cancer incidence; see, for example, Lucito,

et al. (2000).

Data sets for four different chromosomes (gotten from cell line GM03563) are

shown in Figure 5. In each graph, the horizontal axis is marker location and the

vertical axis is the normalized average of three readings of log2(ρ), where ρ is the

aforementioned ratio of intensities (test over reference). The sample sizes are 135,

85, 171 and 109 for chromosomes 1, 3, 4 and 9, respectively. The Bayes sum test

(as in Section 7) and the BIC score test were applied to each data set to test

for constancy of expected log2(ρ). In fact, the hypothesis of interest is that this

expectation is identically 0. Neither of the tests used has any power against a simple

shift alternative, and hence if the null hypothesis of constancy is not rejected, then

one would still want to investigate the (perhaps unlikely) possibility that the true

function is identical to a nonzero constant.

The variance σ2 for a given data set Y1, . . . , Yn was estimated by

σ̂2 =
1

n− 2

n−1∑

i=2

(0.809Yi−1 − 0.5Yi − 0.309Yi+1)
2,

which is an asymptotically optimal estimator based on second differences (Hall,

Kay and Titterington 1990). The same cosine basis as in Section 7 was used in

constructing the two test statistics, which have the form

Bn =
n−1∑

j=1

j−2 exp


nφ̂2

j

2σ̂2




and

Sn(m̂) =
m̂∑

j=1

nφ̂2
j

σ̂2
,

where m̂ is the maximizer of

BIC(m) =
m∑

j=1

nφ̂2
j

σ̂2
−m log n, m = 1, . . . , n− 1.
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Figure 5: Microarray data comparing DNA copy number in test and reference sam-

ples.
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Table 5: P -values for Bayes sum and BIC score tests. For a given data set and

statistic, the first P -value is obtained assuming the data are normally distributed

and the second by using the bootstrap, as explained in the text.

Data set Bayes sum BIC score

Chromosome 1 0.0003, 0.0006 0.0004, 0.0006

Chromosome 3 0, 0 0, 0

Chromosome 4 0.0155, 0.0146 0, 0

Chromosome 9 0, 0 0, 0.0002

Chromosome 9∗ 0, 0 0.0004, 0.0006

∗ The chromosome 9 data set with two outliers omitted.

Approximations to P -values were determined in two different ways: assuming nor-

mality and by use of the bootstrap. For the former approximation, a random sample

of size n was generated from the standard normal distribution, where n is the sample

size of the chromosome data in question. The Bayes sum and BIC score statistics

were calculated from the data so-generated. This process was repeated indepen-

dently 10,000 times, and P -values for Bn and Sn(m̂) were approximated by compar-

ison of each statistic with the appropriate empirical distribution of 10,000 values.

The bootstrap approximation was carried out in exactly the same way, except that

samples were drawn from the empirical distribution of the residuals

ε̂i = Yi − Ȳ , i = 1, . . . , n,

rather than from the normal distribution.

The P -values obtained from the process just described are given in Table 5. The

two tests give very similar results for three of the four data sets. The P -values for

the Bayes sum test were somewhat larger than those of the BIC score test in the

case of chromosome 4, but the former test is still significant at level 0.016. The

results obtained using the normality assumption were in basic agreement with those

obtained using the bootstrap. It is worth noting that when the two obvious outliers
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for chromosome 9 are deleted from the analysis, the estimated P -values for the BIC

score test increase, while those of the Bayes sum test do not.

9 Conclusions

Frequentist-Bayes tests of the null hypothesis that all of a function’s Fourier coef-

ficients are 0 have been proposed. These methods use as test statistic a Laplace

approximation to the posterior probability of the null hypothesis. This statis-

tic is used in frequentist fashion, à la the proposal of Aerts, Claeskens and Hart

(2004). The posterior probability is derived assuming a very general, nonparamet-

ric class of alternative models. Test statistics that are weighted sums of exponen-

tiated squared Fourier coefficients arise naturally from asymptotic approximations

of posterior probabilities. A version of such a sum with weights the same as those

of a cusum test has excellent power properties in a simulation study. These results

suggest that it is not necessary to use adaptive statistics depending on data-driven

smoothing parameters in order to obtain an omnibus lack-of-fit test with good over-

all power properties. A simple weighted sum of independent Fourier components,

as suggested by our Bayesian formulation, does the trick.

Additional work, both theoretical and numerical, should be done to investigate

properties of the frequentist-Bayes tests. The limiting power results in this paper

were based on 1/
√

n local alternatives. Results of Inglot and Ledwina (1996), Eu-

bank (2000) and Kallenberg (2002) show that 1/
√

n local alternatives do not tell

the whole story about asymptotic power of lack-of-fit tests. These articles use the

device of Kallenberg (1983) known as intermediate efficiency. With this device,

the level of a test tends to 0 as does the distance of an alternative from H0. The

relative efficiency of two tests is the limiting ratio of sample sizes at which the two

tests have the same power. Eubank (2000) shows that, in testing for no effect of a
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single regressor, the BIC score test has asymptotic intermediate efficiency equal to

that of an optimal test. In the goodness-of-fit setting, Inglot and Ledwina (1996)

and Kallenberg (2002) show that BIC score and AIC score tests, respectively, are

asymptotically optimal with respect to intermediate efficiency. It is of interest to

apply intermediate efficiency ideas to the tests proposed in this paper.

10 Appendix

Here we provide a partial proof of Theorem 5.1. A complete proof may be found at

the author’s website. We have the following decomposition:

Bn = An + ∆n1 + ∆n2 + ∆n3,

where

An = g(0)
n∑

i=1

πi

(1− πi)
exp

(
nφ̂2

i

2σ2

)
,

∆n1 =
n∑

i=1

πi

(1− πi)

[
g(φ̂i)− g(0)

] π(σ̂1i)

π(σ̂0)
exp

(
nφ̂2

i

2σ̂2
1i

)
,

∆n2 = g(0)
n∑

i=1

πi

(1− πi)

[
π(σ̂1i)

π(σ̂0)
− 1

]
exp

(
nφ̂2

i

2σ̂2
1i

)

and

∆n3 = g(0)
n∑

i=1

πi

(1− πi)

[
exp

(
nφ̂2

i

2σ̂2
1i

)
− exp

(
nφ̂2

i

2σ2

)]
.

By assumption, An is equal in distribution to

Ãn = g(0)
n∑

j=1

πj

(1− πj)
exp

[
(Zj + βj/σ)2/2

]
.

Using the conditions imposed on πj and βj, j = 1, 2, . . ., the fact that the distribution

of exp(Z2
j /2) has a regularly varying tail, and Theorem 2.1 of Cline (1983), it is

straightforward to verify that An converges almost surely as n → ∞. Theorem 2.1

of Cline(1983) relies heavily on Kolmogorov’s three-series theorem.
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Theorem 5.1 is now proven once it is shown that each of ∆ni tends to 0 in

probability as n → ∞. The keys in doing so are (i) the fact that max1≤j≤n |Zj| =

Op(
√

log n), and (ii) An = Op(1).
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