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Summary. Chi-square analysis is a popular means of analyzing data from

inheritance studies. Such an analysis, though, can be inappropriate when the

phenotypic characteristic under study is a continuous variable. We argue that

arbitrary categorization of continuous variables can either seriously invalidate

or make powerless a chi-square goodness-of-fit test. We propose an alternative

test based on kernel density estimates. The test makes no assumption about

the underlying distribution of the phenotypic variables. Furthermore, kernel

density estimates provide an appealing means of describing the distribution of

continuous variables.
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1 Introduction

Data from inheritance studies are often analyzed using a chi-square analysis. How-

ever, a categorical analysis is not always appropriate for the phenotype being eval-

uated. Qualitative traits are considered to be less influenced by environment than

quantitative ones, but environment can still influence the phenotypic expression of

qualitative traits, resulting in misclassification in genetic studies. In addition, traits

that are continuously expressed are frequently artificially categorized so that a chi-

square analysis can be used. For example, in numerous studies on the inheritance

of resistance to iron deficiency chlorosis in dry bean (Phaseolus vulgaris), there was

a continuous distribution in symptoms ranging from highly resistant to susceptible.

In order to analyze these data, a subjective rating was given to each, and they were

artificially grouped into categories for analysis (Coyne, et al. 1982 and Zaiter, Coyne

and Clark 1988). In a study on the inheritance of stem color and dwarf growth habit

in alfalfa (Medicago polymorpha), there were difficult-to-classify intermediate plants;

however, a chi-square analysis was used to analyze the data (De Haan and Barnes

1998).

The incorrect specification of a plant’s genotype will be referred to as a classi-

fication error. Such an error can occur when one attempts to determine genotype

by observing phenotypic expression of characteristics that are continuous and hence

not definitive. Classification errors can have a serious adverse effect on the results

of a chi-square analysis. An incorrect categorization of a trait displaying continuous

variation can make results fit a genetic theory too well or indicate a deviation from

a theory when none exists.

We propose two methods for overcoming the shortcomings inherent in arbitrary

choice of categories. Both methods are applicable as long as sufficient information

is available concerning plant genotype and phenotypic variation. In the first, a
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chi-square analysis is used with an objective choice of categories. Such a choice

ensures that the probability of a type I error in testing the fit of a genetic model is

equal to the nominal level. A second approach is based on kernel density estimates;

see Parzen (1962) and Silverman (1986). We prefer this latter approach for at

least two reasons. First, it provides an elegant means of describing the distribution

of a phenotypic characteristic in a set of observed data. Secondly, it requires no

categorization of continuous variables, which makes for a more convenient method

and leads, in certain situations, to a test more powerful than the chi-square test. An

inheritance study on the genetics of resistance to iron deficiency chlorosis in cowpea

provides a good example of how a genetic theory can be tested by comparing kernel

density estimates. This example will be used subsequently to illustrate the proposed

methodology.

2 A motivating problem

Plant material iron deficiency chlorosis is a problem in cowpea (Vigna unguiculata)

because it affects the ability of the plant to produce chlorophyll. Pinkeye Purple

Hull (PEPH) a susceptible cultivar, and Texas Pinkeye Purple Hull (TXPE), a re-

sistant cultivar, were crossed and allowed to self for one generation. The F1’s and

reciprocals were backcrossed to the parents, and all populations were planted in the

field in a randomized block design. SPAD readings were taken on each population.

SPAD measures the transmission of light through the leaves at a wavelength where

chlorophyll absorbs and a wavelength where it does not. The SPAD value is cal-

culated based on a ratio of these two numbers. Thus, the SPAD value is unitless

and is an indication of the relative amount of chlorophyll present in the leaf. High

SPAD readings correspond to dark green leaves, and low SPAD readings correspond

to yellow leaves. Since the cultivars (pure lines) used are completely inbred, there
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should be no genetic variation within the parental and the F1 populations. Thus,

the parental means can be used as an estimate of the two alternative homozygous

conditions, and the F1 means can be used as an estimate of the heterozygous con-

dition. A weighted average of the variation in these three populations can be used

to estimate environmental variation. If iron deficiency chlorosis is conditioned by

a single gene, the F2 population should segregate in a 1:2:1 ratio of homozygous

susceptible to heterozygous to homozygous resistant. The single gene theory can

thus be tested by evaluating the F2 plants for the expected segregation ratios. Un-

fortunately, because of environmental variation, none of the plants was purely green,

yellow-green or yellow, which made it difficult to differentiate between plants that

were heterozygotes and those that were homozygous for the proposed resistance

allele or for the proposed susceptible allele.

Let XP1 be the statistical designation for the SPAD reading of a randomly se-

lected plant of susceptible Pinkeye Purple Hull (P1), and use a similar notation for

the other three populations. Due to the aforementioned environmental variation,

values of XP1 will vary about some average SPAD reading. We shall model this

variation by assuming that XP1 has probability density function gP1; likewise, resis-

tant Texas Pinkeye Purple Hull (P2), F1, and F2 have densities gP2, gF1 and gF2,

respectively. If the single gene theory is true, then

gF2 = .5gF1 + .25(gP1 + gP2). (1)

3 Chi-square methodology

When environmental variation is sufficiently small relative to genetic variation, a chi-

square analysis seems to be a reasonable means of testing the single gene theory. To

illustrate this idea, suppose that XP1, XP2, and XF1 are each normally distributed

with the same variance σ2 but different means.

4



spad

de
ns

ity

15 20 25 30 35 40 45

0.
0

0.
10

0.
20

Figure 1: Hypothetical SPAD distributions. From left to right are hypothetical SPAD

distributions for P1, F1, and P2 populations, respectively. Here, the environmen-

tal variation is small enough that cowpea genotype can be effectively determined by

observing a SPAD reading.

If σ2 is sufficiently small relative to the differences between means, then for all

practical purposes, genotype can be determined by observing a SPAD reading. This

situation is illustrated in Figure 1, where the respective means are 20, 32 and 41.

Suppose the single gene theory is true in the case just described. Then in the F2

generation we expect 25% of SPAD readings to be less than 26, about 50% between

26 and 36.5 and 25% greater than 36.5. A valid test of the single gene theory is one

based on the chi-square statistic

χ2 =
(O1 − .25n)2

.25n
+

(O2 − .50n)2

.50n
+

(O3 − .25n)2

.25n
, (2)
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where O1, O2 and O3 are the observed numbers of F2 plants in the three categories

and n (= O1 + O2 + O3) is the total number of F2 plants observed.

In many cases, one encounters a much more ambiguous situation than that de-

picted in Figure 1. In experiments conducted at Texas A&M University, data were

collected on 36 susceptible Pinkeye Purple Hull plants (P1), 35 resistant Texas Pink-

eye Purple Hull plants (P2), and 68 F1 plants. The respective SPAD means for the

P1, F1, and P2 plants were 19.5, 32.0 and 41.0 and the standard deviations were

8.3, 8.3 and 6.1. Thus there was a great deal of overlap between the three sets of

readings. Attempting to determine genotype by SPAD readings alone would lead to

numerous classification errors, regardless of the classification scheme used.

As mentioned above, it is not an uncommon practice to test the single gene

theory using a chi-square statistic of the form (2) based on category cutoff points

that are more or less arbitrarily chosen. When the phenotypic expression of the

trait under study is sufficiently variable, this practice can seriously invalidate the

usual chi-square test. To see why, first suppose that the single gene theory is true,

the phenotypic trait is continuous, and there is overlap among the P1, P2, and F2

distributions. Then there is one and only one choice of cutoff points, call them c1 and

c2, such that the large sample probability distribution of χ2 will be χ2 with 2 degrees

of freedom. Any other choice of cutoff points will induce the type I error probability

of the usual chi-square test to approach 1 as the F2 sample size becomes larger

and larger. In other words, a seemingly small error in choosing category cutoffs

can virtually guarantee significance of a chi-square test even though the single gene

theory is true.

What are the “correct” cutoff points for a chi-square test? These are the values

c1 and c2 such that 1/4 of the mixture distribution (as defined in (1)) is less than c1

and 1/4 is larger than c2 (meaning that 1/2 of the distribution is between c1 and c2).

These values ensure that the large sample type I error probability is equal to the
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stated nominal level. When phenotypic data are available for P1, P2 and F1, these

cutoff points may be estimated from the observed data. This leads to an objective

χ2 test that is approximately valid even in settings with large phenotypic variation.

This objective method will be illustrated in Section 5 using our cowpea data.

Suppose the single gene theory is not true, in which case one wishes to have a test

with high power. We will assume that c1 and c2 are chosen so that the type I error

probability of a chi-square test is some desired value, say 0.05. The problem here is

that the proportion of the F2 distribution lying below c1 and the proportion above

c2 do not uniquely determine that distribution. The F2 distribution could deviate

dramatically from the mixture (1) and yet the proportion of F2 SPAD readings in

(0, c1], (c1, c2] and (c2,∞) could be 1/4, 1/2 and 1/4, respectively. If such were the

case the power of the chi-square test would be only 0.05 even though the single gene

theory is decidedly false. Figure 2 provides an example of such a troublesome case.

We have argued that arbitrarily chosen categories can lead to seriously invalid

tests of a single gene theory. An objective method of choosing categories is proposed

that avoids this problem. However, even when this objective method is used, a chi-

square test can suffer from extremely low power in certain cases where the single gene

theory is not true. The testing procedure described in the next section overcomes

this problem by using essentially all the information available in the data concerning

the F2 distribution.

4 Kernel methodology

A classical means of testing hypothesis (1) is to assume a parametric model for

each of the four distributions and then perform a likelihood ratio test. There are at

least two problems with this approach: (i) using an incorrect parametric model can

invalidate the test, and (ii) it is not always clear how to parametrize the model to
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Figure 2: SPAD distributions for which a χ2 test has poor power. The trimodal

density is a 1/4, 1/2, 1/4 mixture of the densities in Figure 1 and represents a

hypothetical F2 distribution matching the single gene theory. The other density is

a normal distribution with the same quartiles as the mixture. Were the typical 0.05

level chi-square test used to compare these two distributions, they would be judged

insignificantly different with probability 0.95.
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reflect deviations from the null hypothesis. The second problem has an impact on

power of the test.

A traditional nonparametric method for comparing distributions is to use a

Kolmogorov-Smirnov, a Cramér-von Mises or some other related test based on em-

pirical distribution functions. Such tests often suffer from poor power, as discussed

in Eubank, Hart and LaRiccia (1993).

The testing approach proposed here is to construct kernel-type estimates of the

four component densities, and to then compare the appropriate mixture of the P1,

P2, and F1 estimates with the estimated F2 density. One advantage of this approach

is that it often has better power than tests based on empirical distribution functions.

Another attractive feature of the test is that it supplements an informative graphical

description of the data. Histograms and/or kernel estimates are arguably better

means of describing “central” features of data distributions than are cumulative

distributions. For example, multimodality shows up much more readily in density

estimates. The last point is particularly important in the genetics problem addressed

herein, since trimodality of the F2 distribution is a natural consequence of the single

gene theory.

The null hypothesis does not restrict the P1, P2 and F1 distributions. One

expects the three populations of cowpeas to have different mean SPAD readings,

whereas large differences in distribution shapes are not expected. A simple model

would be to assume that each population is normally distributed, with all three

having the same variance but possibly different means. This would leave four pa-

rameters to be estimated on the assumption that hypothesis (1) is true.

The nonparametric testing method to be proposed here can accommodate a

variety of assumptions on the distributions of interest. However, to illustrate the

method by example, we will use its most general form in which all four distributions

are allowed to be arbitrary. Given a set of observations X1, . . . , Xn, a kernel density
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estimate, ĝh, is defined as

ĝh(x) =
1

nh

n∑

i=1

K
(

x−Xi

h

)
for each x,

where K is usually a probability density symmetric about 0, and h is a positive

number called the bandwidth. A popular choice for K is the standard normal density.

The bandwidth controls the smoothness of the density estimate; small values of h

produce rough estimates and large values of h very smooth estimates. A kernel

estimate may be regarded as a “moving” histogram that centers a bin at each x and

counts the number of data lying within this bin. The bandwidth plays the same

role as does the bin width for a histogram.

Kernel density estimates for the four sets of cowpea SPAD readings are shown in

Figure 3. A standard normal kernel and a bandwidth of 3.5 were used to obtain each

estimate. (Bandwidth selection will be discussed later.) The four kernel estimates

will be denoted ĝF1, ĝP1, ĝP2 and ĝF2. When the null hypothesis (1) is true, we

would expect ĝF2 to be relatively close to ĝmix, where

ĝmix(x) = .5ĝF1(x) + .25 (ĝP1(x) + ĝP2(x)) .

We can measure the overall discrepancy between ĝF2 and ĝmix by using the following

Kullback-Leibler type discrepancy:

T =
∫ ∞

−∞
log

(
ĝmix(x)

ĝF2(x)

)
dĜmix(x),

where Ĝmix is the appropriate mixture of the empirical distribution functions for

the F1, P1 and P2 data. The quantity T will be our test statistic for testing the null

hypothesis (1). An advantage of T is that it has a particularly simple computational

form that involves no integration. We have

T =
1

2nF1

nF1∑

i=1

log [ĝmix(XF1,i)/ĝF2(XF1,i)] +
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Figure 3: Density estimates for cowpea data. The F2 estimate is the solid line, F1

is the dotted line, and P1 and P2 are the two dashed lines.
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1

4nP1

nP1∑

i=1

log [ĝmix(XP1,i)/ĝF2(XP1,i)] +

1

4nP2

nP2∑

i=1

log [ĝmix(XP2,i)/ĝF2(XP2,i)] ,

where nF1, nP1 and nP2 are the respective sample sizes for the F1, P1 and P2 data

sets. When hypothesis (1) is true, T should be relatively close to 0, and when false

T will be a relatively large positive number.

Two problems remain if we are to use the statistic T to test (1). First we must

have a rule for selecting the bandwidths of the density estimates, and second we

need to find critical values for the test and/or be able to approximate the P -value

corresponding to an observed T . To deal with the first problem, we simplify matters

by using the same bandwidth for each of the four kernel estimates on which T relies.

Using a common bandwidth implies that the expected value of ĝF2(x) is the same

as that of ĝmix(x) for each x under null hypothesis (1). The principle of using

a common bandwidth when comparing curves has been advocated by Young and

Bowman (1995).

We are still faced with the problem of choosing the common bandwidth of the

four estimates. To do so, we will use a weighted form of cross-validation. For a

kernel density estimate ĝh based on data X1, . . . , Xn and bandwidth h, define the

cross-validation function CV (ĝh) by

CV (ĝh) =
∫ ∞

−∞
(ĝh(x))2 dx− 2

n

n∑

i=1

ĝi
h(Xi), (3)

where ĝi
h is exactly the same density estimate as ĝh but calculated leaving out the

data value Xi. Rudemo (1982) and Bowman (1984) have shown that CV (ĝh) is an

unbiased estimator of a squared error risk criterion. The cross-validation bandwidth

is the one that minimizes CV (ĝh). In our problem we have four sets of data and

hence will use the following weighted cross-validation:

WCV (h) = wP1CV (ĝP1,h) + wP2CV (ĝP2,h) + wF1CV (ĝF1,h) + wF2CV (ĝF2,h), (4)
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where the weights (for example wP1) are the ratios of sample size to total sample size.

The bandwidth we shall use in comparing the density curves will be the minimizer

of WCV (h).

The second problem that must be dealt with is determining the sampling dis-

tribution of the test statistic T . Finding this distribution exactly and/or asymp-

totically (as sample sizes tend to ∞) is beyond the scope of this article. In any

event, the distribution depends on the unknown densities gF1, gP1 and gP2, neces-

sitating some form of empirical approximation to the sampling distribution. Here

we shall use the bootstrap (Hall 1992) to approximate the distribution of T . We

resample from the observed data in such a way that the null hypothesis (1) is true

for the simulated experiment. In a single bootstrap replication, we thus resample

from the original P1, P2, and F1 data sets to obtain bootstrap versions of those

data, and then obtain bootstrap F2 data by resampling from the appropriate mix-

ture of the original P1, P2, and F1 data. The statistic T is calculated for a set of

bootstrap data in exactly the same way it was for the original data. This process is

replicated a large number of times, usually at least 1000, and the resulting values

of the test statistic allow an approximation of its sampling distribution. One de-

tail worth mentioning here is that some version of the “smoothed” bootstrap (Hall

1992, pp. 157-58) is required, due to the fact that cross-validation is used to choose

a bandwidth on each bootstrap sample. The repeat values obtained when using the

ordinary, unsmoothed, bootstrap make it much too likely that cross-validation will

choose the smallest bandwidth under consideration. Further details concerning our

bootstrap method are given in Section 5.

As mentioned previously, the kernel method can accommodate various assump-

tions about the data distributions. In the approach just described, the P1, P2, and

F1 distributions were allowed to be arbitrarily different. In some cases it might be

reasonable to assume that the three distributions are identical except for having
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different means. In this scenario, the distributions of XP1 − µP1, XP2 − µP2, and

XF1 − µF1 are the same, where µ denotes population mean. The common distribu-

tion of the three populations can be estimated by a single kernel estimate using the

pooled data XP1,i − X̄P1, i = 1, . . . , nP1, XP2,i − X̄P2, i = 1, . . . , nP2, XF1,i − X̄F1,

i = 1, . . . , nF1, where X̄ denotes sample mean. An individual density estimate is

then obtained by simply translating this estimate so that its mean is equal to the

appropriate sample mean. The main advantage of this approach is that, when the

equality-of-distributions assumption is true, the common distribution is estimated

more efficiently by pooling the data than by computing three separate kernel esti-

mates. The pooling technique was applied to the P1, P2, and F1 cowpea data using

a standard normal kernel and a bandwidth of 3.5; the resulting estimates are shown

in Figure 4. The Figure 4 estimate of, for example, the P1 density has the following

weighted average form:

wP1ĝP1,h(x) + wP2ĝP2,h(x + X̄P2 − X̄P1) + wF1ĝF1,h(x + X̄F1 − X̄P1),

where the weights and the kernel estimates are as in (4).

5 Data analysis

We now illustrate the methodology described in Sections 3 and 4 using data from

plant breeding experiments at Texas A&M University. Figure 5 provides a visual

test of the single gene theory. The dashed line is ĝmix, the 1/4, 1/2, 1/4 mixture

of the P1, F1 and P2 density estimates in Figure 3, and the solid curve is ĝF2.

The same bandwidth was used for all four density estimates and was chosen by the

weighted cross-validation method described in Section 4. Figure 5 casts considerable

doubt on the truth of the single gene theory for these data. However, there is still

the question of statistical significance. How likely is it that such a large difference in
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Figure 4: Density estimates for cowpea data assuming equal shapes. From left to

right the estimates correspond to P1, F1 and P2, respectively.
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Figure 5: Comparison of F2 and mixture densities. Solid line: F2 Dashed line:

mixture of P1, P2 and F1

density estimates would occur if in fact the single gene theory is correct? We may

answer this question by computing the test statistic T and comparing it with the

sampling distribution of T on the assumption that hypothesis (1) is true.

The value of T for the observed data is 0.0994, which is not particularly meaning-

ful without knowledge of the sampling distribution of T . Two methods of simulating

bootstrap data were used to approximate this distribution. In one method, it was

assumed that the F1, P1, and P2 populations were normally distributed with means

and variances equal to the sample means and variances of the three data sets. The

second bootstrap method used was nonparametric in that data were resampled from

the nonparametric density estimates ĝP1, ĝP2, and ĝF1. This process is facilitated

using the fact that a kernel estimate is a convolution of an empirical distribution and

16



the kernel used to compute the estimate. In other words, to randomly select a value

from, say, ĝP1, one randomly selects a value from the P1 data set and adds it to

a randomly selected value from a normal distribution having mean 0 and standard

deviation equal to the bandwidth of the kernel estimate.

The two bootstrap methods led to very similar distributions of bootstrapped

test statistics, as shown in Figure 6. The first, or parametric, bootstrap method

yielded an estimated P -value of .012, i.e., in only 12 of the 1000 bootstrap samples

generated was the simulated value of T larger than 0.0994. So, the result pictured

in Figure 5 is very unlikely on the assumption that the single gene theory is true, at

least when the P1, P2, and F1 populations are assumed to be normally distributed.

The nonparametric bootstrap yielded similar results. Only 11 of 1000 bootstrap

samples produced a value of T larger than 0.0994, meaning that the estimated P -

value is .011. Again, there is clear evidence that Figure 5 is inconsistent with the

single gene theory.

When categories are chosen as described in Section 3, the chi-square test is

in agreement with the kernel-based test. Two probability models were used to

choose the cutoff points. In the first, the P1, F1, and P2 populations were assumed

to be normally distributed with the same variance. The common variance was

estimated by a weighted average of the three sample variances. The 25th and 75th

percentiles of the 1/4, 1/2, 1/4 mixture of these three densities were 23.553 and

38.889, respectively. The number of F2 data values less than 23.553, between 23.553

and 38.889 and greater than 38.889 were 119, 260 and 53, respectively, which leads to

a chi-square statistic of 37.5671 and corresponding P -value of (6.96)10−9. Another

means of determining cutoff points is to simply use the 25th and 75th percentiles of

the mixture of the three sets of data, without resort to any parametric model. This

method yields cutoffs of 24.29 and 38.72, corresponding chi-square statistic 45.61472,

and P -value (1.244)10−10, and hence the conclusion is the same with either method
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Figure 6: Kernel density estimates for bootstrap test statistics. The solid and dashed

lines correspond to the parametric and nonparametric bootstrap algorithms, respec-

tively.
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of choosing cutoffs. The biggest discrepancy from what is expected is in the largest

category, where the observed number of F2 responses is much less than predicted

by the single gene theory. This can also be seen in Figure 5.

It is interesting to investigate how sensitive the χ2 statistic is to choice of cutoffs.

Suppose we use as cutoffs 24 and c, where the categories are [0, 24], (24, c] and (c,∞).

The resulting P -values as a function of c are shown in Figure 7 for the F2 data.

Note that if c were taken to be between 34 and 35.5, then the single gene theory

would not be rejected at the .05 level of significance. It is not inconceivable that 24

and 35 would be chosen as cutoffs were the choice made subjectively, in which case

a chi-square analysis would lead to an arguably incorrect conclusion for these data.

6 Concluding remarks

We have proposed the use of kernel density estimates in the specific context of testing

whether a single gene is responsible for an inherited trait. Our method has none of

the subjectivity inherent in a traditional χ2 analysis, and is usually more reliable

than such an analysis in terms of both validity and power. The methodology can

be generalized to more complicated traits, such as those controlled by two or more

genes. Even more generally, our testing methodology, or slight variations thereof,

could be used in a number of different contexts where densities are to be compared.

Finally, we wish to dedicate this paper to Distinguished Professor Emanuel

Parzen. His example as an intellectual and a scholar is inspiring, and his pio-

neering work in kernel density estimation, time series analysis, goodness-of-fit tests

and quantile-based modeling has enlightened generations of scientists. Manny, con-

gratulations on a fabulous career, and enjoy retirement!
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Figure 7: P -value as a function of category cutoff. The χ2 statistic for the F2

data was computed for cutoff points 24 and c, and the P -value computed for various

values of c. The dashed line indicates 0.05.
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