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Abstract

We report the results of a period change analysis of time series observations for 378
pulsating variable stars. The null hypothesis of no trend in expected periods is tested for
each of the stars. The tests are nonparametric in that potential trends are estimated by
local linear smoothers. Our testing methodology has a number of novel features. First,
the null distribution of a test statistic is defined to be the distribution that results in
repeated sampling from a population of stars. This distribution is estimated by means
of a bootstrap algorithm that resamples from the collection of 378 stars. Bootstrapping
in this way obviates the problem that the conditional sampling distribution of a statistic,
given a particular star, may depend upon unknown parameters of that star. Another
novel feature of our test statistics is that one-sided cross-validation is used to choose the
smoothing parameters of the local linear estimators on which they are based. It is shown
that doing so results in tests that are tremendously more powerful than analogous tests
based on the usual version of cross-validation.

The positive false discovery rate (pFDR) method of Storey (2002) is used to account
for the fact that we simultaneously test 378 hypotheses. We ultimately find that 56 of
the 378 stars have changes in mean pulsation period that are significant when controlling
pFDR at the 5% level.

Keywords: False discovery rate; Multiple hypotheses testing; Profile likelihood; Smooth-
ing methods; Trend detection; Variable stars.

1 Introduction

Variable stars, of which tens of thousands are known, are characterized by brightness changes
over time. Various physical mechanisms give rise to the variability. In this paper we are
concerned with a group of 378 pulsating stars classified as “Long period variables.” These
stars are distinguished by their substantial brightness changes, which are roughly sinusoidal
with typical periods between 100 and 300 days. The period of a given star is determined
by its internal structure. Period changes are therefore deemed important by astronomers, as
these reflect changing physical conditions in the stars. For general background material on
variable stars the interested reader is referred to the book by Hoffmeister, Richter and Wenzel
(1985).

Astronomers’ interest in possible variations in the periods of pulsating stars has been long
and sustained. The earliest reference of which we are aware is Birt (1831). Entering the
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phrase “period change” in the NASA “Astrophysics Data System” abstract search currently
gives 1500 hits; “period variability” gives 2571 hits, with more than 100 in each case from
the last 3 years. The reason for the interest lies primarily in the fact, mentioned above, that
period changes contain information about changing physical conditions in stars. This is a
specialized topic which is not free of controversy – see, for example, the short but instructive
review by Handler (2004). Attention here is restricted to some of the statistical issues. An
account of the physics of rapid period changes in Long Period Variables (also known as Mira
stars) is given in Whitelock (1999).

The data available to us for the 378 stars are their times of maximum and minimum
brightness, accumulated over approximately 75 years; see Campbell (1955) and Mattei, Mayall
and Waagen (1990) for details on how the data were collected. We use the series of times
between successive brightness maxima as a proxy for the time-local pulsation period. (Times
between successive minima could, in principle, also have been used, but these tend to be more
poorly observed). The sizes of the data sets range between 32 and 200 observations. Many
authors have published analyses of such data for individual stars - see Whitelock (1999) for a
review. Studies of aggregates of such stars were reported by Percy, et al. (1990) and Percy and
Colivas (1999). The methods used by the latter authors can generally detect only monotonic
trends. Koen and Lombard (2004) report the results of a frequency domain analysis of stars
from the American Association of Variable Star Observers (AAVSO) data base that overcomes
this obstacle. Our approach is also designed to detect virtually any sort of trend, but is quite
different from that of Koen and Lombard (2004). First of all, we operate in the time domain,
and for each star we smooth the series of times between successive maxima using a local linear
estimate. A test of no-trend is based on this smooth, using a generalized profile likelihood
ratio as test statistic. Our analysis also differs from that of Koen and Lombard (2004) in
that we explicitly model heteroscedasticity in the measured times of maximum brightness.
Furthermore, we take into account the fact that many hypotheses are tested simultaneously by
using the method of Storey (2002) for controlling false discovery rate. An intriguing pattern
we ultimately discover is that the stength of trend in times between maxima is an increasing
function of the mean period length.

The paper will proceed as follows. In the next section we describe the basic model used
for the series of times between maxima, discuss the history of the model and state some
assumptions. Section 3 describes how our model is fitted to each star and how we test the
no-trend hypothesis. In Section 4, results of applying the methodology of Section 3 to our
database of 378 stars are discussed. Here we also apply Storey’s method to account for testing
multiple hypotheses. Finally, concluding remarks are given in Section 5, and supplementary
material is provided in an appendix, Section 6.

2 Model Used for Each Star

The term epoch will refer to one complete cycle of a star’s periodic variation, and Y1, . . . , Yn

will denote the observed lengths of time between successive maximum brightnesses at the
chronologically ordered epochs 1, . . . , n. The expected value of Yj will be modeled as a
function of the standardized epoch xj = (j − 1/2)/n, j = 1, . . . , n. A model for the data of a
single star is as follows:

Yj = µ(xj) + Ij + εj − εj−1, j = 1, . . . , n, (1)
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Figure 1: Typical plots of pulsation periods.

where µ is a function (defined on [0, 1]) that accounts for trend, I1, . . . , In are random devia-
tions intrinsic to the star, and ε0, . . . , εn are the errors made in determining times of maximum
brightness. By “trend,” we mean not just a systematic increase or decrease in periods, but
any sort of systematic departure from constancy. If no trend is present, the mean function µ
is identical to a constant. The two processes {Ij} and {εj} are assumed to be independent of
each other.

Eddington and Plakidis (1929) appear to have been the first to have proposed the model
(1) as an explanation for random cycle-to-cycle variations in the periods of Mira stars. It
was further explored by Sterne (1934). Both sets of authors assumed homoscedasticity and
estimated σI and σε for a few example cases with µ ≡ constant. They showed that the
presence of the intrinsic noise terms Ij could give rise to patterns in CUSUM diagrams that
mimic systematic period changes. More recently, in a series of papers Koen and Lombard
have explored the consequences of assuming (1); see Koen and Lombard (2004) and references
therein.

Plots of pulsation periods for the long-period variables Omicron Ceti, R Aquilae, R Bootis
and R Camelopardalis are shown in Figure 1. An important aspect of each data set is
the negative autocorrelation between observations one lag apart, as evidenced by the high
frequency behavior in each plot. This is a result of the last two terms in equation (1).

Each star is characterized by µ, its mean function, and η, parameters of its error process
{Yj − µ(xj) : j = 1, . . . , n}. Each µ is allowed to be arbitrary and is estimated nonpara-
metrically, as discussed in Section 3. In Section 3.2, two assumptions are made about the
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distribution of (µ, η), but these still allow for certain dependencies amongst the parameters
that are dictated by the nature of the data (see Appendix). Concerning the conditional
distribution of errors, given any particular star, we make the following assumptions:

A1. I1, . . . , In, ε0, . . . , εn are mutually independent.

A2. Ij ∼ N(0, σ2
I ), j = 1, . . . , n, where σ2

I < ∞.

A3. εj ∼ N (0, exp(β0 + β1xj)), j = 0, . . . , n, where |βi| < ∞, i = 1, 2.

Under these assumptions Pokta and Hart (2007) show that model (1) is identifiable.

Some fairly extensive preliminary analysis of the data was done to determine the reason-
ableness of A1-A3. Independence of I1, . . . , In was investigated by entertaining a first order
autoregressive (AR1) model for the intrinsic errors of each star. The resulting distribution of
AR1 parameter estimates was consistent with what would be expected if each intrinsic series
was white noise. A detailed analysis of residuals gave little reason to doubt the normality
assumption, but did indicate a prevailing pattern of heteroscedasticity in which the variance
decreased over time. Since there was little evidence that the variance pattern was compli-
cated, we adhere to Occam’s razor and use the variance model in A3, which allows for both
decreases and increases over time. Attributing the heteroscedasticity to the experimental
errors seems reasonable since advances over the last half century have meant that later data
are more accurate, i.e., that Var(εj) has decreased. If one did take a nonparametric approach
to estimating Var(εj), a good way to do so in model (1) would be to use the local likelihood
approach of Yu and Jones (2004).

3 Method of Testing

Our goal is to test the null hypothesis

H0 : µ(x1) = µ(x2) = · · · = µ(xn)

against the negation of H0 for each of the 378 stars in our data base. The semiparamet-
ric model introduced in Section 2 is assumed henceforth. The nonparametric part of the
model is the function µ, and the parametric part is the error series, which has parameters
η = (σ2

I , β0, β1). An efficient way of estimating the parametric part of a semiparametric
model is to use generalized profile likelihood, as defined in Severini and Wong (1992). The
likelihood for a given star may be expressed as Ln(η, µ), where η and µ are candidates for
the true parameters η0 and the true function µ0, respectively. In our model, the generalized
profile likelihood of Severini and Wong (1992) is Ln(η) = Ln(η, µ̂), where µ̂ is any consistent
nonparametric estimator of µ0. Severini and Wong (1992) argue that the maximizer of Ln(η)
is an asymptotically efficient estimator of η0.

If we use generalized profile likelihood to estimate parameters, it seems only natural to
use a generalized profile likelihood ratio, or GPLR, to test the hypotheses of interest. Under
the null hypothesis of no trend, the (constant) function µ0 will be estimated by Ȳ , the sample
mean of Y1, . . . , Yn, and our test statistic will be

S = sup
η

log Ln(η, µ̂)− sup
η

log Ln(η, Ȳ ). (2)
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Our choice for the nonparametric smooth µ̂ is a local linear estimate (Cleveland and Devlin
1988 and Fan 1992) applied to the regression data (xj, Yj), j = 1, . . . , n. The likelihood
function has the form

Ln(η, µ̂) = (2π)−n/2|Ση|−1/2 exp

(
−1

2
(Y − µ̂)TΣ−1

η (Y − µ̂)

)
,

where Y T = (Y1, . . . , Yn), µ̂T = (µ̂(x1), . . . , µ̂(xn)), and Ση is the covariance function of Y
assuming that η is the true parameter vector. This likelihood is minimized with respect to η
using a PORT routine, as supplied by the R function nlminb.

Having specified the nature of the test statistic, we are faced with two important problems:
(i) How will the smoothing parameter of the local linear estimate be chosen, and (ii) how will
the distribution of the test statistic be determined?

3.1 Choice of smoothing parameter

Choice of smoothing parameter is always a crucial issue when applying a nonparametric
function estimator. In our analysis a version of one-sided cross-validation, or OSCV, that
takes into account the 1-dependent nature of the errors in model (1) will be used to choose
the bandwidth of a local linear smooth. (By 1-dependent, we mean that data one epoch apart
are possibly dependent and data more than one epoch apart are independent.) We shall refer
to this version of OSCV as OSCV1. In the setting of regression with independent errors,
Hart and Yi (1998) have shown that OSCV yields a more efficient estimator of an optimal
bandwidth than does ordinary cross-validation. Similar results have been established by Zhao
(2003) for 1-dependent data when comparing OSCV1 and CV1, a modification of ordinary
CV for 1-dependence. Henceforth, S denotes (2) in which µ̂ is a local linear estimate with
smoothing parameter chosen by OSCV1.

We now elaborate on the methods mentioned in the preceding paragraph. Let µ̂(x; h)
denote a local linear estimate of µ(x) having bandwidth h. A popular method of choosing h
is cross-validation, the most often used form of which selects h to minimize

CV (h) =
1

n

n∑
i=1

(Yi − µ̂i(xi; h))2, (3)

where µ̂i(·; h) is a local linear estimate computed from all the observations except Yi, i =
1, . . . , n. This version of cross-validation is appropriate for independent observations, since
in that case the predictor µ̂i(xi; h) is independent of Yi. However, data from model (1) are
negatively serially correlated, implying that the minimizer of (3) will tend to be too large (Hart
1994). To adapt cross-validation to our model, we make use of the fact that data from (1) are
1-dependent. We thus define the curve CV1(h) precisely as in (3) except that µ̂i(·; h) is a local
linear smooth computed from all the observations except Yi−1, Yi and Yi+1. In so doing the
predictor µ̂i(xi; h) is independent of Yi, and CV1(h) is an approximately unbiased estimator
of

∑n
i=1 E(µ̂(xi; h) − µ(xi))

2/n, i.e., the optimality criterion of mean average squared error,
or MASE.

Now, as mentioned before, Hart and Yi (1998) have shown that OSCV is a more efficient
bandwidth selector than ordinary cross-validation in the setting of independent observations.
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The OSCV curve is defined by

OSCV (h) =
1

n

n∑
i=5

(Yi − µ̃i(xi; h))2, (4)

where µ̃i(·; h) is a local linear estimator based on the observations Y1, . . . , Yi−1. The minimizer
of OSCV multiplied by an appropriate known constant (Hart and Yi 1998) is the OSCV
bandwidth that is used in an ordinary, i.e., two-sided, local linear smooth. It may seem
paradoxical that OSCV is more efficient than CV, since OSCV is based on predictors that use
fewer observations than do the two-sided, CV predictors. An explanation for this phenomenon
is provided by Hart and Lee (2005).

The OSCV curve for 1-dependent data is defined exactly as in (4) but with µ̃i(·; h) com-
puted from Y1, . . . , Yi−2. The minimizer of this curve is multiplied by the same constant as
in the case of independent data (Zhao 2003). We apply OSCV1 in carrying out our tests of
the no-trend hypothesis. Simulation is used to justify that tests based on OSCV1 are more
powerful than ones using CV1.

3.2 Bootstrapping the test statistic

Approximating the distribution of S assuming H0 to be true is a non-standard exercise for
at least two reasons. First of all, the limit distribution (as n → ∞) of S is nonstandard
because of the fact that OSCV1 bandwidths have complicated asymptotic distributions. A
second problem is that, at least in small samples, the null distribution of S may depend upon
unknown parameters of the error process. A common way of dealing with such problems is to
use the bootstrap. In our problem one could bootstrap on a per-star basis by drawing samples
from an error process with parameters equal to those that maximize Ln(η, µ̂) with respect to
η. We prefer to use a bootstrap method that produces just a few reference distributions to
which test statistics are compared. The advantage of this approach is that a few reference
distributions can be more efficiently estimated than can 378 distinct sampling distributions.

In order to define our reference distributions we first need to define a few objects. Write
ρ = σI/ exp(β0/2), and let η′ = (ρ, β1). The cdf Gn(·|η′0) denotes the distribution of our
test statistic S when the data are a sample of size n from (1) with µ identical to a constant,
assumptions A1-A3 in force, and η′ = η′0. We note that the distribution of S is invariant
to the value of exp(β0) (and hence β0) whenever µ is constant, and hence Gn represents the
null distribution of S given n and all three error parameters. Assuming our 378 stars to be a
random sample from a population of similar stars, D will denote the distribution of η′ in the
subpopulation of stars that do not have trends. This subpopulation and its complement are
denoted T c and T , respectively. Letting H denote the parameter space of η′, we then define
a sample size n reference distribution Fn by

Fn(t) =

∫

H

Gn(t|η′)dD(η′).

To properly interpret Fn, we introduce the following assumption:

B1. Within the subpopulation T c, η′ and sample size are independent.

Now, if B1 is true, then for a randomly selected star with no trend, Fn is the conditional
distribution of statistic S given that the selected star has sample size n. It is important to note
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that we condition on n in our definition of Fn, but we average over all η′. Averaging over η′

avoids the problem mentioned before that the conditional distribution of S might well depend
on η′. Our approach in this regard is analogous to one proposed by Bayarri and Berger (2000)
for dealing with composite hypotheses. When testing a single composite null hypothesis, they
propose a reference distribution of the same form as our Fn. The main distinction between
their formulation and ours is that their D is a prior distribution that must be specified by
the data analyst, whereas our D has objective reality and can be estimated from the data.
So, the distinction between our method and that of Bayarri and Berger (2000) is equivalent
to the distinction between empirical Bayes (Robbins 1956) and Bayes. As indicated below,
we estimate D by the empirical distribution of estimates of η′.

The formal validity of our approach for estimating Fn involves another assumption, which
we now state.

B2. The distribution of η′ is the same within the two subpopulations T and T c.

Under assumptions B1 and B2, we propose the following bootstrap algorithm for estimating
Fn:

(i) Randomly select one of the 378 stars in our database. Associated with that star is
η̂ = (σ̂2

I , β̂0, β̂1), the maximizer of the star’s generalized profile likelihood.

(ii) Generate i.i.d. standard normal variates Z1, . . . , Z2n+1, let ε∗i = exp[β̂1xi/2]Zn+i+1, i =
0, . . . , n, and define

Y ∗
i = ρ̂Zi + ε∗i − ε∗i−1, i = 1, . . . , n,

where ρ̂ = σ̂I/ exp(β̂0/2).

(iii) Compute S∗ from Y ∗
1 , . . . , Y ∗

n in exactly the same way that the statistic S is computed
from observations Y1, . . . , Yn.

(iv) Repeat steps (i)-(iii) B times, resulting in bootstrap statistics S∗1 , . . . , S
∗
B.

(v) The P -value for a star with sample size n and S observed to be s is then approximated
by

∑B
i=1 I[s,∞)(S

∗
i )/B.

A theoretical justification for this bootstrap algorithm is given in Section 6, where we also
discuss how the algorithm could be modified to avoid assumptions B1 and B2. This mod-
ification involves estimating the joint distribution of n, “size” of trend and η′. Obviously,
this distribution cannot be estimated as efficiently as can the marginal distribution of η′, and
hence, when it is justified, the above algorithm will be preferable. In Section 6.2 we provide
some evidence that assumptions B1 and B2 are at least approximately valid for the data
under consideration.

4 Data Analysis

The procedure described in the previous section was carried out for the 378 stars in our data
base. The local linear smooths employ a standard Gaussian kernel and have the form

µ̂(x; h) =
n∑

i=1

wi,n(x; h)Yi
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Figure 2: Traces of hat matrix. The dotted, dashed and solid lines correspond to n = 32, 40
and 212, respectively.

for weights wi,n(x; h) that depend only on x, the design points x1, . . . , xn and bandwidth h.
The OSCV1 curve was computed at the same set of 30 bandwidths for each star. These
bandwidths were chosen so that the effective numbers of parameters of the 30 smooths were
2, 3, . . . , 31. Define W n(h) to be the n × n matrix having element wj,n(xi; h) in the ith
row and jth column, i = 1, . . . , n, j = 1, . . . , n. This is the so-called hat matrix, i.e., the
matrix which when multiplied by the data vector (Y1, . . . , Yn)T produces the predicted val-
ues µ̂(x1; h), . . . , µ̂(xn; h). Hastie and Tibshirani (1990, pp. 52-55) argue that trace(W n(h))
provides a good proxy for the degrees of freedom of a smooth.

We chose our 30 bandwidths h1, . . . , h30 in such a way that at n = 74, the median sample
size of all stars, trace(W n(hi)) = i + 1, i = 1, . . . , 30. The quantity trace(W n(h)) does
vary with n, but for the range of sample sizes in our data base, all traces are in remarkable
agreement, as shown in Figure 2. For this reason we use the same set of bandwidths for every
star. The local linear smooth with bandwidth hi provides roughly the same fit as a least
squares polynomial of degree i. This interpretation is virtually exact in the case of h1 = 10,
since it is well known that as h → ∞ the local linear estimate tends to the least squares
straight line.

Figure 3 shows the distribution of trace(W n(ĥ)) over all 378 stars, where ĥ is the OSCV1
bandwidth. The distribution of trace(W n(ĥ)) assuming that H0 is true is also shown for the
sake of comparison. The latter distribution is a weighted average of bootstrap distributions
corresponding to different sample sizes between 32 and 212. The bootstrap scheme used was
precisely the one described in Section 3, and the weights were chosen proportional to the
frequency with which sample sizes appeared in our database. The most obvious difference
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Figure 3: OSCV1 bandwidth distributions. The solid and dashed lines are the distribution
of trace(W n(ĥ)) over all 378 stars and under the null hypothesis of no trend, respectively.

between the distributions in Figure 3 is how often the largest bandwidth (i.e., trace(W n(h)) =
2) is chosen. Under H0, this bandwidth is chosen about 71% of the time, while only about 56%
of the stars had trace(W n(ĥ)) = 2. This in itself is evidence that some nontrivial proportion
of stars have trends.

We also computed the CV1 bandwidth for each of the stars and used simulation to ap-
proximate the CV1 null distribution at the median sample size of n = 74. The two trace
distributions are shown in Figure 4. Under H0, the CV1 distribution is much less concen-
trated near 2 than is the OSCV1 null distribution. The mean and standard deviation of
the latter distribution are 2.39 and 0.75, respectively, while the same quantities for the CV1
distribution are 4.38 and 5.04. A simulation study described in the Appendix shows that
no-trend tests based on CV1 bandwidths have extremely poor power in comparison to ones
based on OSCV1 bandwidths. The long right-hand tail of the null CV1 distribution explains
this phenomenon.

Our use of a heterodscedastic model for the experimental errors was justified by the fact
that 332 of the 378 stars, or 88%, had generalized profile likelihood estimates of β1 less than
0. This is consistent with our observation that scatter in most data sets appears to decrease
over time. The median value of β1 among stars with negative estimates of β1 was -2.18, while
the median among stars with positive estimates was 0.70.
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Figure 4: CV1 bandwidth distributions. The solid and dashed lines are the distribution of
trace(W n(h̃)) over all 378 stars and under the null hypothesis of no trend, respectively, where
h̃ is the CV1 bandwidth.
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Figure 5: Bootstrap reference distributions. The different distributions correspond to sample
sizes 32, 50, 68, 86, 128, 170 and 212.

4.1 Testing the no-trend hypothesis

We turn now to the question of testing the no-trend hypothesis for each of the stars. The first
step is to obtain bootstrap reference distributions, as described in Section 3. This was done
for sample sizes of n = 32, 50, 68, 86, 128, 170 and 212. The number of bootstrap samples at
each n was 1000, and the resulting reference distributions are shown in Figure 5. The main
point of showing this figure is to indicate how similar the seven distributions are, especially at
larger quantiles, which determine a statistic’s rejection region. Roughly speaking, quantiles
decrease with sample size, as one would expect. For example, the 95th quantiles are 4.59,
4.69, 4.20, 4.49, 3.89, 3.46 and 3.71 for n = 32, 50, 68, 86, 128, 170 and 212, respectively.

Let F̂n be the bootstrap distribution of statistic S for sample size n, and let n1 < · · · < n7

be the seven sample sizes in the simulation. For a star with sample size n and S = s, let nj

be such that nj ≤ n < nj+1. Then the p-value is taken to be

p = 1− (nj+1 − n)F̂nj
(s) + (n− nj)F̂nj+1

(s)

nj+1 − nj

,

which is simply a linear interpolation. A kernel density estimate for the 378 p-values so-
computed is shown in Figure 6. The preponderance of values near 0 is evidence that there are
significant trends, since otherwise the p-values would be approximately uniformly distributed.
Indeed, 101 stars, or 27%, have p-values smaller than 0.05 and 56, or 15%, have values smaller
than 0.01.
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Figure 6: Estimated density of p-values.

4.2 Accounting for a multiplicity of tests

When testing multiple hypotheses, one should address the problem of experimentwise error
rate, i.e., the probability of making multiple type I errors. With the advent of microarrays,
large-scale testing problems, in which hundreds or thousands of tests are conducted simulta-
neously, have become commonplace. A seminal paper on dealing with such situations is that
of Benjamini and Hochberg (1995), who introduced the notion of false discovery rate. Their
method provided a great advance over classical methods that are much too conservative in
large-scale testing problems. Recently, even more powerful methods that still control appro-
priate error rates have been devised. One such method is that of Storey (2002), which we
shall apply in our analysis.

In a large-scale testing problem, let R denote the number of null hypotheses that are
rejected and V the number of false positive results. Storey (2002) defines the positive false
discovery rate, or pFDR, to be pFDR = E(V/R|R > 0). Suppose that P1, . . . , Pn are i.i.d. p-
values corresponding to independent tests such that null hypothesis H0i is rejected when
Pi ≤ γ, i = 1, . . . , n. In this situation Storey (2001) argues that

pFDR(γ) = P (H0i is true|Pi ≤ γ)

=
π0P (Pi ≤ γ|H0i is true)

P (Pi ≤ γ)
,

where π0 is the proportion of all null hypotheses that are true. Since Pi is uniformly distributed
under the null hypothesis, we may express this result as

pFDR(γ) =
π0γ

P (Pi ≤ γ)
. (5)
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If π0 and the cdf of Pi were known, (5) could be used to choose γ to achieve a desired positive
false discovery rate. The next best option would be to estimate the unknown quantities. The
cdf of Pi is easily estimated from the observed p-values, and Storey (2002) proposes a scheme
for estimating π0. We use a slightly different method for estimating π0 based on density
estimation. In so doing, we are in essence estimating a component of the local false discovery
rate, as defined by Efron, Tibshirani, Storey and Tusher (2001).

We have
F (γ) ≡ P (Pi ≤ γ) = π0γ + (1− π0)G(γ),

where G is the cdf of a p-value given that the alternative hypothesis is true. Assuming that
G has derivative g, the p-value density f is thus

f(γ) = π0 + (1− π0)g(γ).

We first note that f(γ) ≥ π0, and so for any γ, replacing π0 by min(1, f̂(γ)) in (5) would be a
conservative procedure for estimating pFDR(γ). Obviously, however, it is desirable to try to
obtain a realistic estimate of π0. Typically, the density g will be small near γ = 1, and hence
f(γ) ≈ π0 for γ near 1. Figure 6 suggests that in our case f(γ) is approximately constant for
γ ≥ 0.3. These observations lead us to estimate π0 by an average of kernel density estimates
at γ ≥ 0.6. We used a Gaussian kernel and employed data reflection (as in Cline and Hart
1991) to deal with boundary effects. The estimates so computed were not overly sensitive
to bandwidth. For bandwidths h = 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32 the estimates of π0

were 0.657, 0.660, 0.667, 0.673, 0.675, 0.682, 0.740, respectively.

Taking a conservative route, we estimate π0 in (5) by 0.75. Defining F̂ to be the empirical
cdf of our 378 p-values, our estimate of pFDR is

̂pFDR(γ) =
0.75γ

F̂ (γ)
.

A plot of this estimate for 0 ≤ γ ≤ 0.2 is shown in Figure 7. Also indicated on this plot is
the value of γ associated with a pFDR of 0.05. This value is about 0.00987, meaning that we
could reject H0 for any p-value smaller than 0.00987 with the assurance that there are only
about 5% false positives. There were 56 stars with p-values smaller than 0.00987. The more
conservative method of Benjamini and Hochberg (1995) yields only 52 significant p-values
when controlling FDR at the 5% level. When using an error rate of 1% the methods of Storey
and Benjamini-Hochberg yield 27 and 26 significant trends, respectively. The p-values for all
378 stars are available from the authors.

4.3 Nature of trends

It is of some interest to know the nature of the trends amongst the stars that had small
p-values. An inspection of the OSCV1 local linear smooths revealed that relatively few had a
substantial linear component. To quantify this behaviour, we computed, for each of the 101
stars with p-values smaller than 0.05, the statistic

R =

∑n
i=1(a + bxi − Ȳ )2

∑n
i=1(Ŷi − Ȳ )2

,

where a + bx is the least squares line and Ŷ1, . . . , Ŷn are values of the OSCV1 local linear
smooth. This statistic is the fraction of total fitted variation that is due to a linear component.
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Figure 7: Estimated positive false discovery rate as a function of critical value γ.

The 10th, 25th, 50th, and 75th percentiles of R for the 101 stars in question were 0.006, 0.054,
0.140, and 0.464, respectively. Figure 8 shows scatterplots and local linear smooths for four
of the 56 stars that were judged to have trends significant at the 5% pFDR level. The four
stars were chosen by the sizes of their p-values, which had ranks 11, 22, 34 and 45 among
all 378 stars. The trends are typical. When there is a systematic drift away from a constant
period, the process tends to return toward its previous level.

The wavelike trend behavior in Figure 8 hints at periodicity. However, in most cases we
observe at most one “period,” if indeed we are observing periodic behavior at all. Similar
wavelike behaviour in long term mean pulsation periods has been remarked on by Berdnikov,
Ignatova, Caldwell and Koen (2000) in a different context, that of three “Cepheid” pulsating
stars, with periods in the range 5.4-10.2 days. Although the data analysed by them were
more sparse than ours (due to missing values), more than 5000 pulsation cycles were covered
by the long time baseline of the measurements. The waves were clearly not strictly periodic.
Interpretation of these results is obviously in the domain of an astrophysicist dealing with
stellar pulsation theory.

4.4 Relationship between strength of trend and mean period

Also of some interest is investigating how the likelihood of a trend is related to various
characteristics of variable stars. As a first step in this direction, we plotted p-values of
trend tests versus average observed period length. A local linear smooth of this scatterplot
indicated a tendency for longer period stars to have smaller p-values. This tendency is highly
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Figure 8: Scatterplots for four variable stars and OSCV1 local linear smooths.
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statistically significant. When the order selection test (with cosine basis) of Eubank and
Hart (1992) is used to test the null hypothesis of no relationship between p-values and period
means, the resulting observed significance level is 2 · 10−6. Of course, the longer period stars
are those with the smaller sample sizes, because fewer pulsation cycles have elapsed since
initiation of the observations. It follows that the negative association between p-values and
mean periods is the opposite of what would be expected in the scientifically uninteresting case
where mean period is not related to either relative frequency or strength of trends. This is
because of the simple fact that when the same statistical test is applied to two experiments
that are identical in all respects except sample size, then the expected p-value is smaller in
the experiment with the larger sample size (assuming the alternative hypothesis is true).

The results immediately above allow for the possibility that relative frequency of trends
is dependent on mean period but strength of trend is not. To investigate the latter type of
relationship, we consider the signal-to-noise ratio statistic

SNR =
n−1

∑n
i=1(Ŷi − Ȳ )2

σ̂2
I

,

where Ŷ1, . . . , Ŷn are values of the OSCV1 local linear smooth and σ̂2
I is the maximum like-

lihood estimate of σ2
I . Figure 9 is a plot of SNR1/5 vs. mean period length. Here there is a

clear indication of the relationship between trend strength and mean period length. The line
is a least squares line fitted to all the data except for those with SNR1/5 > 1.2. Whether or
not the outliers are included, the p-value for testing that the slope of the regression line is 0
is less than 10−8.

The time period covered by our data is, in astronomical terms, but the blink of an eye. It
therefore seems unlikely that the changes in the mean pulsation periods found here are due to
systematic evolutionary changes in the stars. It appears more likely to be due to small secular
changes in the structures of the stars. The long period pulsating stars are known to suffer
mass loss, which is more pronounced in the longer period stars. This leads to fairly rapid
changes in the environment defining the outer boundaries of these stars. We speculate that
this could explain why the relatively short term trends in mean pulsation are more pronounced
in the longer period stars.

5 Concluding Remarks

This paper has undertaken an analysis of statistical properties of times between maximum
brightnesses for a database of 378 long-period variable stars. Main conclusions of our analysis
are as follows:

• We provide evidence that the observed pulsation periods of most of our long period
variables are heteroscedastic.

• Using a method that controls the positive false discovery rate to be 0.05, 56 of the 378
stars in our database have significant trends in times between maximum brightness.

• Most of the trends that are statistically significant are non-monotonic, with at most a
very weak linear component.
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Figure 9: Power transformed signal-to-noise ratios vs. period means.

• There is a clear tendency for strength of trend to be positively related to the mean
period of a star.

In the course of our analysis we have proposed and made use of a bootstrap test that
accounts for both variation between stars and variation in the observations for each individual
star. A theoretical justification has been given for this test, which would be useful in many
random effects models and repeated measures settings. Another important statistical finding
concerns smoothing-based lack-of-fit tests that employ local linear estimators. We have shown
that such tests are much more powerful when the smoothing parameter of the local linear
estimator is chosen by one-sided cross-validation rather than ordinary cross-validation.

6 Appendix

Here we provide supplementary material justifying certain claims made in the paper, and also
describe an extension of our bootstrap algorithm that avoids assumptions B1 and B2.

6.1 Bootstrap justification

Suppose that assumptions A1-A3 and B1-B2 hold, a random sample of N stars is ob-
tained, and estimates η̂1, . . . , η̂N of error parameters are computed for these stars. Let
J(y1, . . . , yn|η′) denote the joint distribution of Yj = Ij + εj − εj−1, j = 1, . . . , n, when
σI = 1 and (ρ, β1) = η′. The bootstrap employed in Section 3.2 provides a Monte Carlo



April 5, 2007 18

approximation to

F̂n(t) =

∫

H

∫

<n

I(−∞,t](s(y1, . . . , yn))dJ(y1, . . . , yn|η′)dD̂N(η′),

where s(y1, . . . , yn) is the value of the test statistic S when the observations Y1, . . . , Yn take on
values y1, . . . , yn and D̂N is the empirical distribution of η̂′1, . . . , η̂

′
N . For a star with sample

size n, the true null distribution of test statistic S is Fn, and we wish to establish conditions
under which F̂n converges in probability to Fn as N tends to infinity.

Since F̂n may be approximated arbitrarily well by generating sufficiently many samples,
we assume that it is known. Let DN denote the empirical distribution of the true parameters
η′1, . . . , η

′
N associated with the N stars in the random sample. We may write

F̂n(t) = Fn(t) + E1(t) + E2(t),

where

E1(t) =

∫

H

∫

<n

I(−∞,t](s(y1, . . . , yn))dJ(y1, . . . , yn|η′) [dDN(η′)− dD(η′)]

and

E2(t) =

∫

H

∫

<n

I(−∞,t](s(y1, . . . , yn))dJ(y1, . . . , yn|η′)
[
dD̂N(η′)− dDN(η′)

]
.

Now, E1(t) is the classical sort of bootstrap error, which will converge almost surely to 0 as
N →∞ since DN is a strongly consistent estimator of D.

The error E2(t) is completely a function of the difference between the actual error pa-
rameters η′1, . . . , η

′
N and their estimates η̂′1, . . . , η̂

′
N . Let ni, i = 1, . . . , N , be the numbers

of observations for the N stars in our sample. Using a straightforward argument available
from the authors, it can be shown that E2(t) converges to 0 in probability if the following
conditions hold:

(i) min1≤i≤N ni →∞
(ii) The distribution D has a bounded density.

(iii) For every N , E(ρ̂i − ρi)
2 + E(β̂1i − β1i)

2 ≤ C/ni, i = 1, . . . , N , where C < ∞.

(iv) Define the function

gn,t(η
′) =

∂

∂ρ

∂

∂β1

∫

<n

I(−∞,t](s(y1, . . . , yn))dJ(y1, . . . , yn|η′).

Then gn,t is absolutely integrable (with respect to η′) for each n and the integrals are
uniformly bounded in n.

6.2 Assumptions B1 and B2

Assumption B1 asserts that n and η′ are independent. To investigate this assumption we
used the estimates η̂1, . . . , η̂N from our analysis as proxies for the true parameter values.
Scatterplots of z1 = log(ρ̂) vs. n and z2 = sign(β̂1) log(|β̂1|) vs. n are shown in Figure 10.
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Figure 10: Scatterplots of various parameter estimates vs. sample size. The variables z1 and
z2 are log(ρ̂) and sign(β̂1) log(|β̂1|), respectively.
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(The same two outliers are excluded from each of the four plots in Figure 10.) At best a very
weak association appears to exist between n and either of ρ̂ and β̂1.

It is fortunate that the test statistic S is invariant to the value of σI , since, as seen from
Figure 10, there is is a nontrivial association between n and σ̂I . The negative association
between n and σI can be traced to the fact that n is intimately related to period length.
Since all stars are observed over roughly the same time period, the sample size is nearly
determined by the average period length, as seen in Figure 10. So, stars with larger values of
n have shorter mean periods, and shorter random periods tend to be less variable.

Figure 11 is provided as evidence that assumption B2 holds to a reasonable approximation.
The statistic V =

∑n
i=1(Ŷi − Ȳ )2/

∑n
i=1(Yi − Ŷi)

2 is used as a proxy for whether or not the
null hypothesis is true. Indeed, V estimates the parameter

ξ =

∑n
i=1(µ(xi)− µ̄)2

∑n
i=1 Var(Yi)

,

which is 0 if and only if the no-trend hypothesis is true. Each of the six graphs in Figure
11 have the same (x, y)-scales. The two graphs in the same row provide a comparison of the
distribution of (z1, z2) under the null hypothesis (left-hand plot) and under the alternative
(right-hand plot). Each left hand plot corresponds to all stars whose values of V are less than
the indicated amount, and the right hand plot corresponds to the complementary stars.

The scatterplots in each row are quite similar, and the plots do not depend substantially
on the value of V used as a cutoff. On this basis it appears that even if B2 is violated, the
violation is not substantial enough to materially affect our analysis.

6.3 Generalizing the bootstrap

Here we propose a bootstrap algorithm that avoids assumptions B1 and B2. Applying the
Bayarri-Berger principle, the null distribution of the test statistic S for a star with sample
size n is

P (S ≤ t|n, ξ = 0) =

∫

H

P (S ≤ t|n, ξ = 0,η′)dG(η′|n, ξ = 0),

where ξ is defined in the previous section and G( · |n, ξ = 0) is the conditional distribution
function of η′ among stars in subpopulation T c that have sample size n.

Under assumptions B1-B2, the conditional distribution of η′ given n and ξ = 0 is equal
to the unconditional distribution of η′, and hence one may simply resample from all N
stars to approximate the requisite sampling distribution. More generally it is necessary to
estimate G( · |n, ξ = 0). One may use smoothing to do so. First, the parameter ξ may be
estimated by V . Then, one may estimate G( · |n, ξ = 0) by using the empirical cdf of a subset
of {η̂′1, . . . , η̂′N} corresponding to stars with samples sizes and values of ξ̂ “near” n and 0,
respectively. Of course, the tricky problem here is deciding what “near” is. A solution to this
problem in the present context of estimating a conditional cdf is provided by Hall, Wolff and
Yao (1999). Li and Racine (2006) propose methodology for estimating conditional cdfs when
some covariates are discrete, which is relevant to our case where n is discrete.
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Figure 11: Plots addressing the validity of assumption B2. See Figure 10 for a definition of
z1 and z2.
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6.4 Relative power of OSCV and CV tests

Our generalized profile likelihood ratio test is remarkably more powerful when the smoothing
parameter of the local linear smooth is chosen by OSCV1 as opposed to CV1. We demonstrate
this fact here by means of a simulation study. To make the study relevant to our variable
star analysis, we use trend functions that are actually trend estimates from our data analysis.
One hundred and one stars had test statistics with P -values smaller than 0.05. Let (µ̂i, η̂i),
i = 1, . . . , 101, be the trend estimates and estimates of η for these 101 stars.

The following process was repeated independently 1000 times:

(1) Randomly select one of the 101 stars described immediately above.

(2) If star j was selected, generate n = 74 observations from model (1) under (A1)-(A3)
with µ ≡ µ̂j and (σI , β0, β1) = (σ̂Ij, β̂0j, β̂1j).

(3) Compute the test statistic S from the 74 observations from step (2). In addition,
compute SCV , which is identical to S except that the bandwidth of the local linear
estimate is chosen by CV1 rather than OSCV1.

The sample size 74 was used since that was the median sample size in our database.
The bootstrap method of Section 3.1 was used to estimate the 95th percentiles of the null
distributions of S and SCV at n = 74. The two estimated percentiles were 3.93 and 26.99,
respectively. The large discrepancy between these two suggests that SCV may lead to a less
powerful test. In fact, in the 1000 replications of the power study, the empirical powers of
the OSCV1- and CV1-based tests were 0.779 and 0.072, respectively.
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