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1 Evaluating the performance of estimators

Example: Suppose we observe X1, . . . , Xn iid N(θ, σ20), with σ20 known, and wish to estimate
θ.
Two possible estimators are:
θ̂ = X̄ and sample mean and θ̂ = M ≡ sample median.
Which is better? How to measure performance?
Some possibilities:

1. Compare E|X̄ − θ| with E|M − θ|.

2. Compare E(X̄ − θ)2 with E(M − θ)2

3. Compare EL(θ, X̄) with EL(θ,M)

where L(·, ·) is an appropriate “loss function”: the value L(θ, a) is some measure of the
loss incurred when the true value is θ and our estimate is a.

absolute error loss: L(θ, a) = |a− θ|
squared error loss: L(θ, a) = (a− θ)2

game show loss: L(θ, a) = I(|a− θ| > c)

Stein’s loss (for θ, a > 0) L(θ, a) =
a

θ
− 1− log

(
a

θ

)
Historically, estimators have been most frequently compared using Mean Squared Error:
MSE(θ) = Eθ(θ̂ − θ)2. This is because the MSE can often be calculated or approximated
(for large samples), and has nice mathematical properties.

1.1 Admissible and Inadmissible Estimators

Let W = W (X) be an estimator of τ = τ(θ). Define MSEW (θ) = Eθ(W − τ(θ))2.

Definition 1. An estimator W is inadmissible (w.r.t. squared error loss) if there exists
another estimator V = V (X) such that

MSEV (θ) ≤ MSEW (θ), ∀ θ ∈ Θ

with strict inequality for at least one value of θ. (An estimator is inadmissible if there
is another estimator that “beats” it.) An estimator which is not inadmissible is called
admissible.
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Note: An admissible estimator may actually be very bad. An inadmissible estimator can
sometimes be pretty good.
Note: If we are using a loss function L(τ, a), we also define inadmissible and admissible
estimators in the same way, replacing the MSE by the more general notion of a risk function
R(θ,W ) = EθL(τ(θ),W (X)).
Examples: Again, suppose we observe X1, . . . , Xn iid N(θ, σ20), with σ20 known, and wish to
estimate θ. Consider the estimator W ≡ 0 that always estimates θ by 0 regardless of the
data X. This is a very bad estimator, but it is admissible because it is great when θ = 0.
No non-degenerate estimator V can possibly beat W since it would have to satisfy

MSEV (0) ≤ MSEW (0)

=⇒ E0(V − 0)2 ≤ E0(W − 0)2

=⇒ E0V
2 ≤ 0 =⇒ P0(V = 0) = 1 =⇒ V ≡ 0.

Now consider the estimator M ≡ sample median. We show later that the sample mean X̄
has a uniformly smaller MSE than M so that M is inadmissible. (The two MSE functions
are constant, i.e., flat.) However, M is not a bad estimate of θ, and might be used if there
were doubts about the normality assumption (perhaps the true distribution has thicker
tails) or concern about outliers.

1.2 Bias, Variance, and MSE (for an estimator W of τ(θ))

BiasW (θ) = Eθ(W − τ(θ))

VarW (θ) = Eθ(W − EθW )2 ≡ Varθ(W )

Fact: MSEW (θ) = Bias2W (θ) + VarW (θ)

Proof. For any rv Y with finite second moment, we know

EY 2 = (EY )2 + Var(Y )

Taking Y = W − τ leads to

MSE = Bias2 + Var

Since Var(W − τ) = Var(W )

Definition 2. An estimator W with BiasW (θ) ≡ 0, that is,

Eθ(W ) = τ(θ), θ ∈ Θ

is said to be unbiased. If not, it is biased.
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For an unbiased estimator, MSE = Var.
Example: Coin-tossing. X1, X2, . . . , Xn iid Bernoulli(θ). θ̂MLE = T/n, T =

∑
Xi.

θ̂Bayes = (1 − p)a + p(T/n) where p = n/(α + β + n) and a is the prior mean α/(α + β).
Now observe,

MSEMLE(θ) = Bias2 + Var

= 0 +
θ(1− θ)

n

Also

MSEBayes(θ) = (θ) = Bias2 + Var

= [(1− p)a− (1− p)θ]2 + p2
θ(1− θ)

n

= (1− p)2(a− θ)2 + p2
θ(1− θ)

n

Which is better? (according to MSE). Answer: Neither dominates the other.

MSEBayes(a) = p2
a(1− a)

n
<
a(1− a)

n
MSEBayes(0) = (1− p)2a2 > 0 = MSEMLE(1)

Thus, the Bayes estimate is superior in the neighborhood of θ = a, and the MLE is superior
near θ = 0 and θ = 1.
Note: Both MSEMLE(θ) and MSEBayes(θ) are parabolas (quadratic functions of θ).

Note: Regarding (in)admissibility, the above remarks prove nothing. But it can be shown
that both the Bayes estimate and MLE are admissible here. Typically, Bayes estimates
(with proper priors) are admissible.
Example: Estimating the variance in X1, X2, . . . , Xn ∼ N(µ, σ2) where θ = (µ, σ2), τ(θ) =
σ2.
W = c

∑n
i=1(Xi − X̄)2 = cSS. c = 1/(n − 1) usual unbiased estimator, c = 1/n is MLE.

Which is better?

SS

σ2
∼ χ2

n−1

Thus

E{cSS} = cσ2(n− 1)

Var{cSS} = 2c2σ4(n− 1)
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MSEcSS(µ, σ2) = E{(cSS − σ2)2} = Bias2 + Var

= (cσ2(n− 1)− σ2)2 + 2c2σ4(n− 1)

= σ4{(c(n− 1)− 1)2 + 2c2(n− 1)}
= σ4ψ(c)

with ψ(c) = (c(n− 1)− 1)2 + 2(n− 1)c2.

ψ′(c) = 2{c(n− 1)− 1}(n− 1) + 4(n− 1)c

= 2(n− 1){c(n+ 1)− 1}.
ψ′′(c) = 2(n− 1)(n+ 1) > 0, n ≥ 2.

ψ′(c) = 0 when c = 1/(n+1). Both c = 1/(n−1) and c = 1/n give inadmissible estimators.
c = 1/(n− 1) is the best c with Stein’s loss function:

L(σ2, a) =
a

σ2
− log

a

σ2
− 1

Other plausible loss functions:

L(σ2, a) =
σ2

a
− log

σ2

a
− 1, or

=
σ2

a
− log

a

σ2
− 2, or

= (log a− log σ2)2

Comments:

1. Estimator with best c might not be admissible !

2. MSE inappropriate (or dubious, anyway) for estimation of σ2.

Theorem 1. (Rao - Blackwell Theorem) If T = T (X) is a sufficient statistic for θ,
EθS(X) = τ(θ) for all θ, and Eθ(S(X)− τ(θ))2 <∞ for all θ, then

S∗(X) = E(S(X) | T (X))

satisfies

EθS
∗(X) = τ(θ), ∀θ, and

Eθ(S
∗(X)− τ(θ))2 ≤ Eθ(S(X)− τ(θ))2, ∀θ,

Notes:

4



1. E(S(X) | T (X)) does not depend on θ necause T (X) is sufficient so that L(X | T )
(and L(S | T )) does not depend on θ.

2. Equality of MSE’s for a particular θ can occur iff Pθ(S(X) = S∗(X)) = 1.

3. S∗(X) is a function of T (X) (i.e., ∃ψ such that S∗(X) = ψ(T (X))).

Proof. Recall for any rv’s X, Y with EX2 <∞, we have

EX = E(E(X | Y ))

Var(X) = E(Var(X | Y )) + Var(E(X | Y )).

Now apply these facts:

Eθ[S
∗(X)] = Eθ[Eθ(S(X) | T (X)]

= EθS(X) = τ(θ).

Eθ(S − τ)2 = Varθ(S) = E[Var(S | T )]︸ ︷︷ ︸
≥0

+Var[E(S | T )︸ ︷︷ ︸
S∗

]

≥ Var(S∗) = Eθ(S
∗ − τ(θ))2.

Equality can occur only when EθVar(S | T ) = 0. But

EθVar(S | T ) = Eθ{E[(S − E(S | T ))2 | T ]}
= Eθ{(S − E(S | T ))2} = Eθ{(S − S∗)2}
= 0 iff Pθ(S = S∗) = 1

Arguing more loosely, EθVar(S | T ) = 0 =⇒ Var(S | T ) = 0 =⇒ S is a function of
T =⇒ S∗ ≡ E(S | T ) = S.

Example: X1, X2, . . . , Xn iid Bernoulli(p). T =
∑
Xi is a sufficient statistic for p. L(X | T )

puts equal probability of 1/
(
n
T

)
on all strings wit T 1’s and n − T 0’s. Generate from

L(X | T = t) by placing t1’s and n − t 0’s in an urn, and randomly drawing (without
replacement) until the urn is empty.

1. Estimation of p: EX1 = p for all p so that S = X1 is an unbiased estimator of p. X1

is not a function of T so it can be improved by conditioning (as in the Rao-Blackwell
Theorem).

S∗ = E(S | T ) = E(X1 | T ) = P (X1 = 1 | T ) =
T

n
.
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S∗ = T/n is the usual estimator (the sample proportion). Clearly

ES∗ = p ∀ p

Var(S∗) =
p(1− p)

n
< Var(S) = p(1− p) ∀ p

verifying the conclusion of the R-B Theorem.

2. Estimation of p2: EX1X2 = p2 for all p so that S = X1X2 is an unbiased estimator
of p. X1X2 is not a function of T so it can be improved by conditioning (as in the
Rao-Blackwell Theorem).

S∗ = E(X1X2 | T ) = P (X1X2 = 1 | T )

= P (X1 = 1, X2 = 1 | T ) =
T

n
· T − 1

n− 1
.

By R-B Thm, S∗ is an unbiased estimate of p2 with smaller variance than S. This
can be verified by straightforward calculations. For comparison, what is the MLE of
p2?
The MLE of p is T/n, so the invariance principle for MLEs says the MLE of p2 is
(T/n)2. Clearly T

n ·
T−1
n−1 and (T/n)2 are very close when n is large. Which is better?

Neither dominates. (T/n)2 is biased, but the bias is negligible for large n.

3. Estimation of p3: S = X1X2X3 is an unbiased estimator of p3.

S∗ = E(X1X2X3 | T ) = P (X1 = X2 = X3 = 1 | T )

=
T

n
· T − 1

n− 1
· T − 2

n− 2
.

is the Rao-Blackwell improvement on S. The pattern is now clear for p4, etc.

Suppose T = T (X) is a complete and sufficient statistic for θ. Then

1. For any parameter τ(θ), there is at most one unbiased estimator which is a function
of T .

2. If S = S(X) is unbiased for τ(θ) (and Var(S) <∞) for all θ, then

S∗(X) = S∗ = E(S | T )

is the UMVUE for τ(θ).

Definition 3. S = S(X) is the UMVUE (uniformly minimum variance unbiased
estimator) for τ(θ) if

EθS = τ(θ), ∀ θ, and

Varθ(S) ≤ Varθ(S
′), ∀ θ.

for any other unbiased estimator S′.
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Terminalogy: UMVUE = “best unbiased estimator”.

3. An unbiased estimator (with finite variance) which is a function of T is the UMVUE.

1. Proof of 1. Suppose S1(X) = ψ1(T (X))[S1 = ψ1(T )], S2(X) = ψ2(T (X))[S2 =
ψ2(T )] and ES1 = ES2 = τ(θ) for all θ. Then E(S1−S2) = 0 for all θ or Eθg(T ) = 0
for all θ where g(t) = ψ1(t)−ψ2(t). By completeness Pθ(g(T ) = 0) = Pθ(S1 = S2) = 1
for all θ. Thus S1 = S2 will probability 1 for all θ.

2. Proof of 2. S∗ is unbiased and a function of T . Suppose W is any unbiased estimator
for τ(θ). Then R-B Theorem says W ∗ = E(W | T ) is an unbiased estimator of τ(θ)
and Varθ(W

∗) ≤ Varθ(W ) for all θ. But W ∗ is unbiased and a function of T , so 1.
implies W ∗ = S∗. Hence VarθS

∗ ≤ VarθW for all θ, and S∗ is the UMVUE.

3. Proof of 3. Suppose EθS(X) = τ(θ) for all θ and S(X) = ψ(T (X)). Then S∗ = E(S |
T ) is the UMVUE by 2. But S is a function of T so that E(S | T ) = S. Thus S is
the UMVUE.

Example: Observe X1, . . . , Xn iid Bernoulli(p).

• Find the UMVUE of p: T =
∑

iXi is a CSS. E(T/n) = p. Since T/n is an unbiased
estimator of p which is a function of the CSS T , it is the UMVUE.

• Find the best unbiased estimator of p2. Since, from R-B Theorem,

E

(
T (T − 1)

n(n− 1)

)
= p2,

it is an unbiased estimator of p2 which is a function of the CSS T . Hence it is the
UMVUE. Once can check unbiasedness directly:

ET (T − 1) = E(T 2)− ET = Var(T ) + (ET )2 − ET
= np(1− p) + (np)2 − np = n(n− 1)p2

Comment: “Estimate a parameter by its UMVUE” is another approach to estimation,
but not a very good one. Often, no unbiased estimator exists, or the only one that
exists is bad.

Example: Observe X1, . . . , Xn iid N(µ, σ2) θ = (µ, σ2) unknown. Here T = (x̄, s2) is a
CSS. (Recall the derivation: T is a 1-1 function of the natural SS for a 2pef.)

• Estimation of τ(µ, σ2) = µ: x̄ is unbiased (Ex̄ = µ) and a function of T =⇒ x̄ is
UMVUE. MLE of θ is θ̂ = (x̄, n−1

∑
i(Xi − x̄)2). So invariance principle says MLE
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of µ is τ(θ̂) = x̄. MOM estimate is also x̄ since Ex̄ = µ.
Note: For estimating µ, the MLE, MOM, UMVUE all agree on X̄. But Bayes estimate
is different. What about the sample median M? M is an unbiased estimator of µ.
(Proof?) But it is not a function of the CSS T . Thus Rao-Blackwelizing M leads
to the UMVUE (which we know is x̄) which has a strictly smaller variance than M .
Thus: E(M | T ) = x̄ and Var(M) > Var(x̄) = σ2/n.

• Estimation of τ(µ, σ2) = σ2: Let SS =
∑

i(Xi − x̄)2. s2 = SS/(n − 1) is an
unbiased estimator σ2 and a function of the CSS T . Therefore s2 is the UMVUE. By
the invariance principle, the MLE of σ2 is SS/n. This is slightly biased.

• Estimation of τ(µ, σ2) = µ2: The MLE of µ2 is (x̄)2 by invariance of MLEs. x̄2 is
biased for µ2:

E(x̄2) = Var(x̄) + (Ex̄)2 =
σ2

n
+ µ2 > µ2.

An unbiased estimate of µ2 is W ≡ x̄2 − s2/n: since

E

(
x̄2 − s2

n

)
=

(
σ2

n
+ µ2

)
− σ2

n
= µ2.

Substracting s2/n removes (or corrects for) the bias in the MLE. W is the UMVUE
since it is unbiased and a function of T . Which is better: x̄2 or W? For n > 3, W has
slightly smaller MSE than x̄2. (Verify?). Thus x̄2 is inadmissible for n > 3 (but it is
a perfectly reasonable estimator). But W is also inadmissible because it sometimes
takes on “impossible” values. µ2 ≥ 0, but W can be negative ! P (W < 0) is positive
and will be sizeable when µ is small (≈ 1/2 when µ = 0). A better estimate is clearly
W+ = max{W, 0}. Whenever W+ 6= W , we know W+ is closer to the true value of
µ2. More formally

E(W − µ2)2 − E(W+ − µ2)2 = E[(W − µ2)2 − (W+ − µ2)2] =

= E[{(W − µ2)2 − (0− µ2)2}I(W < 0)︸ ︷︷ ︸
always ≥ 0 and sometimes > 0

] > 0

But W+ is biased ! No unbiased estimator of µ2 exists which does not take on negative
values.

Fact: There are situations where there are no unbiased estimators (and hence, no UMVUE
exists).
Example: Observe X1, X2, . . . , Xn iid Poisson(λ). There exists no unbiased estimator of
1/λ.
We know that T =

∑n
i=1Xi is a CSS. Suppose ∃S = S(X) with ES = 1/λ for all λ >
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0. Then ψ(T ) = E(S | T ) also satisfies Eψ(T ) = 1/λ for all λ > 0. This implies
E[λψ(T )− 1] = 0 so that (multiplying by n) E[nλψ(T )− n] = 0. Now apply the following
Lemma to T ∼ Poisson(nλ).

Lemma 1. If Y ∼ Poisson(λ) then E[λg(Y )] = E[Y g(Y − 1)].

Thus E[nλψ(T )− n] ≡ 0 so that P{Tψ(T − 1)− n = 0} ≡ 1 by completeness of T . Thus
Tψ(T − 1) = n =⇒ ψ(T ) = n/(T + 1). But E

(
n

T+1

)
= 1

λ(1− e−nλ) 6= 1/λ. Contradiction
! The R-B Theorem plus completeness sometimes gives easy proofs of otherwise difficult
facts.
Example: Suppose X1, . . . , Xn iid Poisson(λ). Let x̄ and s2 be the sample mean and
variance.
Note: x̄ is a 1-1 function of the CSS T =

∑
iXi and is therefore also a CSS.

Note: Ex̄ = EXi = λ and Es2 = V ar(Xi) = λ.
Since x̄ is unbiased for λ and a function of the CSS x̄, we know it is best unbiased. But
s2 is also unbiased for λ. Since x̄ is a CSS, E(s2 | x̄) must be the best unbiased estimator
which is x̄. We conclude that E(s2 | x̄) = x̄.
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