Frontiers of Statistics: Contraction theory for posterior distributions Spring 2019 Lecture 1: March 28

Lecturer: Anirban Bhattacharya & Debdeep Pati

Scribes: Satwik Acharyya

Note: LaTeX template courtesy of UC Berkeley EECS dept & CMU's convex optimization course taught by Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Theorem 1.1. Fix $\alpha \in (0,1)$. Then for any $\epsilon \in (0,1)$,

$$\int \left\{ \frac{1}{n} D_{\alpha}^{(n)}(\theta, \theta_0) \right\} \Pi_{n,\alpha}(d\theta | X^{(n)}) \le \frac{\alpha}{n(1-\alpha)} \int r_n(\theta, \theta_0) \rho(d\theta) + \frac{1}{n(1-\alpha)} D(\rho, \Pi_n) + \frac{1}{n(1-\alpha)} \log(1/\epsilon)$$

 \forall probability measure $\rho \ll \Pi$, with $\mathbb{P}_{\theta_0}^{(n)}$ probability at least $(1-\epsilon)$.

Let $T_1 = \int r_n(\theta, \theta_0) \rho(d\theta)$ and $T_2 = D(\rho \| \Pi_n)$.

Comments

- 1. There is a trade off going on in between T_1 and T_2 . We need ρ to place more and more mass near θ^* to make T_1 small. We have to set $\rho = \prod_n$ to make T_2 small. Our choice of $\rho [\rho :$ the prior \prod_n restricted to $B_n(\theta^*, \epsilon; \theta_0)$] provides an optimal trade off.
- 2. Let $\psi(\rho) = T_1 + T_2$. $\psi(\rho)$ is minimized (over all $\rho \ll \Pi_n$) when $\rho = \Pi_{n,\alpha}$ and $\psi(\Pi_{n,\alpha}) = -\log$ marginal likelihood under the fractional posterior.
- 3. The eventual bound (after you choose ρ as mentioned) only depends on the "prior concentration" $(\prod_n [B_n(\theta^*, \epsilon; \theta_0)])$. You do not need the metric entropy and testing conditions to obtain this risk bounds. Also unified analysis of well-specified and miss-specified models can be obtained. This in particular allows to work with heavy-tailed priors.