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Theorem 1.1. Fix α ∈ (0, 1). Then for any ε ∈ (0, 1),∫ {
1

n
D(n)
α (θ, θ0)

}
Πn,α(dθ|X(n)) ≤ α

n(1− α)

∫
rn(θ, θ0)ρ(dθ) +

1

n(1− α)
D(ρ,Πn) +

1

n(1− α)
log(1/ε)

∀ probability measure ρ � Π, with P(n)
θ0

probability at least (1− ε).

Let T1 =
∫
rn(θ, θ0)ρ(dθ) and T2 = D(ρ‖Πn).

Comments

1. There is a trade off going on in between T1 and T2. We need ρ to place more and more mass near θ? to
make T1 small. We have to set ρ = Πn to make T2 small. Our choice of ρ [ ρ : the prior Πn restricted
to Bn(θ?, ε; θ0) ] provides an optimal trade off.

2. Let ψ(ρ) = T1+T2. ψ(ρ) is minimized (over all ρ� Πn) when ρ = Πn,α and ψ(Πn,α) = − log marginal
likelihood under the fractional posterior.

3. The eventual bound (after you choose ρ as mentioned) only depends on the “prior concentration”
(Πn[Bn(θ?, ε; θ0)]). You do not need the metric entropy and testing conditions to obtain this risk
bounds. Also unified analysis of well-specified and miss-specified models can be obtained. This in
particular allows to work with heavy-tailed priors.
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