
Frontiers of Statistics: Contraction theory for posterior distributions Spring 2019

Lecture 9: March 26
Lecturer: Anirban Bhattacharya & Debdeep Pati Scribes: Eric Chuu, Zhao Tang Luo

Note: LaTeX template courtesy of UC Berkeley EECS dept & CMU’s convex optimization course taught by
Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Corollary of the Main Theorem

Corollary 9.1. For D > 1. Then with probability 1− 2/
(
(D − 1)2nε2

)
,

∫
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n
D

(n)
θ0,α

(θ, θ?)Πn,α

(
dθ |X(n)
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Dα+ 1
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ε2 − 1

n(1− α)
log Πn [Bn (θ?, ε; θ0)]

Proof. First we show that with probability 1− 1/
(
(D − 1)2nε2

)
,

∫
rn(θ, θ?)ρ(dθ) ≤ Dnε2 (9.1)

Using the definition of ρ and applying Jensen’s inequality, we obtain the following bounds

P
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rn (θ, θ?) ρ(dθ) > Dnε2

]
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]
≤
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]2
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≤
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≤ 1

(D − 1)2nε2

≤ αDε2

1− α
− 1
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with probability at least

1− e−nε
2

− 1

(D − 1)2nε2
≥ 1− 2

(D − 1)2nε2

where we make use of the theorem from last lecture with δ = e−nε
2

.
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9.2 Proof of the Main Theorem

Lemma 9.2. (Variational) Let µ be a probability measure, and let h any measurable function such that∫
ehdµ <∞. Then

log

∫
ehdµ = sup

p�µ

[∫
hdρ−D(ρ ‖ µ)

]
where the supremum is attained for

dρ

dµ
=

eh∫
ehdµ

Remark. The right hand side of the theorem is minimized for ρ ≡ Πn,α by taking h = −αrn (θ, θ?) and
µ ≡ Πn in the variational lemma. Then

log

∫
e−αrn(θ,θ?)Πn(dθ) ≤

∫
−αrn (θ, θ?) ρ(dθ)−D(ρ ‖ Πn)

for all ρ� Πn. Equality happens when ρ ≡ Πn,α.

Proof of Main Theorem. Note the following

Eθ0

[
e−αrn(θ,θ?)

]
= A

(n)
θ0,α

(θ, θ?) = e−(1−α)D
(n)
θ0,α

(θ,θ?)

⇒ Eθ0
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(n)
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(θ,θ?)−log 1
ε

]
= ε

Integrating both sides w.r.t. Πn and using Tonelli’s theorem gives

Eθ0

[∫
exp

(
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(n)
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(θ, θ?)− log
1

ε

)
Πn(dθ)

]
= ε.

By the variational lemma, we have

Eθ0

[
exp

{
sup
p�Πn

∫ (
−αrn(θ, θ?) + (1− α)D

(n)
θ0,α

(θ, θ?)− log
1

ε

)
ρ(dθ)

}
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]
= ε.

Setting ρ ≡ Πn,α, we further have
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]
≤ ε.

Hence, with P
(n)
θ0

-probability at least 1− ε,
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ε
,

by the fact that P (X ≥ 0) ≤ E
(
eX
)

for a random variable X.
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Noticing that

α

∫
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= − log

∫
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where the second equality is due to the definition of Πn,α, we now have∫
1

n
D
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= − 1
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log
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for all ρ� Πn by the remark after the variational lemma.

9.3 An Example

Consider a convex function regression yi = µ(xi) + εi, εi
iid∼ N(0, 1), where xi ∈ [0, 1]d is fixed and µ ∈ F =

{all convex functions}. Let µ0(·) be the true mean function. There are two cases: (1) µ0 ∈ F , (2) µ0 6∈ F .

Write p
(n)
θ =

∏n
i=1

1√
2π

exp
(
− 1

2 (yi − µ(xi))
2
)

. Then

D(p
(n)
θ0
‖ p(n)

θ ) =
n

2
‖µ0 − µ‖22,n =

1

2

n∑
i=1

[µ0(xi)− µ(xi)]
2
.

and
µ∗ = θ∗ = arg min

µ∈F
‖µ0 − µ‖22,n .

The misspecified Renyi divergence is given by

D
(n)
θ0,α

(θ, θ?) = D(n)
µ0,α(µ, µ∗)

=
nα

2(1− α)

[
(1− α) ‖µ0 − µ‖22,n + 2〈µ− µ∗, µ− µ0〉2,n

]
.

A sufficient condition for D
(n)
µ0,α ≥ 0 is that the set {p(n)

µ : µ ∈ F} is convex, which doesn’t hold for this

problem. However, from Figure 9.1 we know that 〈µ− µ∗, µ− µ0〉2,n ≥ 0 and thus D
(n)
µ0,α ≥ 0.

The prior for µ is specified as a uniform distribution on the maximum of hyperplanes max1≤k≤K{aTk x+ bk},
and a Poisson prior is placed on K.



9-4 Lecture 9: March 26

Figure 9.1: The angle between µ− µ∗ and µ− µ0 is less than π/2 and thus 〈µ− µ∗, µ− µ0〉2,n ≥ 0.


