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7.1 Upper bound of probability of shifted small ball: Anderson’s
theorem

In 1955, T.W Anderson established the elegant moving-set inequality, which probably the most widely sited
result in multivariate statistical analysis. It has variant versions. Here, we start from general version which
does not involve probability measure, and eventually narrows down to multivariate Gaussian measure version.
We take this top-down approach because the general version of Anderson’s theorem is much widely applicable
than the Gaussian version.

Theorem 7.1. (General version) Let f be a non-negative, symmetric unimodal, and integrable function on
Rn, i.e., f(x) ≥ 0,f(−x) = f(x), and

∫
Rn f(x)dx <∞ for all x ∈ Rn. Let K be a symmetric convex subset

of Rn, i.e., K is convex and K = −K. Define a function

h(t,y) =

∫
K+ty

f(x)dx : R× Rn → [0,∞),

where y ∈ Rn is independently chosen from x. Fix y. Then:

(a) h(t,y) is a symmetric unimodal function w.r.t. t.

(b) h(t,y) achieves its maximum value at t = 0.

Proof. We prove some mild version. Assume that f is univariate, unimodal, and continuous on R. Without
loss of generality, consider an interval K = [−a, a], where 0 < a <∞ and positive direction y = 1. Then

h(t, 1) =

∫ a+t

−a+t

f(x)dx.

For notational simplicity, let g(t) = h(t, 1). First, we prove that g is an even function.

g(−t) =

∫ a−t

−a−t
f(x)dx =

∫ −(a−t)

a+t

f(−z)− dz =

∫ a+t

−a+t

f(z)dz = g(t).

Because f is continuous, by the fundamental theorem of calculus, we know that g is differentiable on R, and
by unimodality assumption on f (think) we have

g′(t) = f(t+ a)− f(t− a) ≤ 0, for t > 0.

Therefore, g is monotonically decreasing on (0,∞). By symmetric property (even function) of g, g is
monotonically increasing on (−∞, 0). Because g is differentiable, trivially, g attains its maximum at t = 0.
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Figure 7.1: Visualization of Anderson’s theorem in student t-distribution with df = 5, i.e., f(x) = tdf=5(x).

We selected the convex set K = [−0.2, 0.2] and direction y = 1, therefore, g(t) = h(t, 1) =
∫ 0.2+t

−0.2+t
tdf=5(x)dx

is a consideration from Anderson’s theorem. Three choice of t = 0, 2, and 3, are shown in yellow, green, and
blue colors, respectively. By Anderson’s theorem, g(t) is an even function and attains its maximum at t = 0,
which corresponds to the yellow region.

The proof for multivariate version is not trivial, and hence omitted. By Theorem 7.1, for any y ∈ R, we have
h(t,y) ≤ h(0,y) =

∫
K
fxdx so y disappear in the rhs, which is useful in probability theory to obtain an upper

bound in certain situation. The Figure 7.1 shows illustration of Theorem 7.1 using t-density with degree
of freedom 5. The beauty of the theorem is its wide applicability because of its fairly lenient assumption on f .

Corollary 7.2. (Probability measure version) Given a probability space (Ω,F ,P), suppose that X : Ω→ Rn
is an Rn-valued random variable with probability density function f : Rn → [0,∞). Assume that f is
symmetric unimodal and integrable on Rn. Let K ∈ Rn be any origin-symmetric convex body. Let Y : Ω→
Rn be an random variable independent of X. Then

P[X ∈ K] ≥ P[X − tY ∈ K], for all t ∈ R.

Proof. Without loss of generality, assume that Y is continuous random variable with density h(y). Define a
function

h(t, Y ) =

∫
K+tY

f(x)dx =

∫
I[x∈K+ty]f(x)dx.

Start with

P[X − tY ∈ K] = E[I[X−tY ∈K]] = E[E[I[X−tY ∈K]|Y ]] = E[E[I[X∈K+tY ]|Y ]] =

∫ (∫
I[x∈K+ty]f(x)dx

)
h(y)dy.
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By Anderson’s theorem 7.1, we have

P[X − tY ∈ K] =

∫ (∫
I[x∈K+ty]f(x)dx

)
h(y)dy ≤

∫ (∫
I[x∈K]f(x)dx

)
h(y)dy

=

(∫
I[x∈K]f(x)dx

)
·
∫
h(y)dy =

∫
I[x∈K]f(x)dx = P[X ∈ K].

Many kind of distribution follows the assumptions stated in the Theorem 7.2. Those include Laplace dis-
tribution, Gaussian distribution, student t-distribution with some degree freedome, and double generalized
Pareto distribution with some shape parameter. However, Cauchy distribution may not applicable because it
is not integrable. Note that in the Corollary 7.2, Y is any random quantity which is independent of X. The
following version consider Y is the degenerated random quantity, saying Y = y, with of Gaussian probability
measure.

Corollary 7.3. (Gaussian measure version) Let K ⊂ Rn be a symmetric convex subset and X ∼ Nn(0,Σ)
for some covariance matrix Σ. Then for any y ∈ Rn, we have

P[X ± y ∈ K] ≤ P[X ∈ K].

Proof. Use Corollary 7.2 with X ∼ Nn(0,Σ), Y = y ∈ Rn (degenerated random variable), and t = ±1.

Denote a δ-Euclidean ball Bδ(x0) = {x ∈ Rn|‖x − x0‖2 < δ}. Suppose K = Bδ(0) and y ∈ Rn. Then
K + y = Bδ(y). By Corollary 7.3, if X ∼ Nn(0,Σ), then

P[X − y ∈ K] = P[X ∈ K + y = Bδ(y)] = P[‖X − y‖2 < δ] ≤ P[‖X‖2 < δ], for any δ > 0. (7.1)

Graphical illustration is shown in Figure 7.2. As Gaussian distribution is unimodal with symmetric, it is
very clearly that the inequality (7.1) should hold for any δ > 0 in intuitive sense. The inequality implies
that the probability P[‖X − y‖2 < δ] is upper bounded by the measure of center region P[‖X‖2 < δ] for any
δ > 0 and any y ∈ Rn. As y ∈ Rn changes, the the green ball in Figure 7.2 is moving. For this reason,
Anderson’s result is also often described as a moving set inequality.
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Figure 7.2: Gaussian distribution example for the inequality: P[‖X−y‖2 < δ] ≤ P[‖X‖2 < δ], for any δ > 0.
The panels shows level curves are of density from X ∼ Nn(0,Σ), when n = 2.

7.2 Lower bound of probability of shifted small ball

Anderson’s inequality provides an upper bound of P[‖X − y‖2 < δ]. Now, we seek to find lower bound of
P[‖X − y‖2 < δ] when X ∼ Nn(0,Σ).

Theorem 7.4. Let X ∼ Nn(0,Σ) and y ∈ Rn. Then

P[‖X − y‖2 < δ] ≥ exp

(
− y>Σ−1y

2

)
· P[‖X‖2 < δ], for any δ > 0. (7.2)

Proof. Let K = Bδ(y) = {x ∈ Rn|‖x− y‖2 < δ}. Start with

P[‖X − y‖2 < δ] =

∫
K

Nn(x|0,Σ)dx =

∫
‖x−y‖2<δ

1√
|2πΣ|

exp

(
− x>Σ−1x

2

)
dx.

Let z = x− y. Then

P[‖X − y‖2 < δ] =

∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− (z + y)>Σ−1(z + y)

2

)
dz

= exp

(
− y>Σ−1y

2

)
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

{
− 1

2
(z>Σ−1z + 2z>Σ−1y)

}
dz

= exp

(
− y>Σ−1y

2

)
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· exp

(
− z>Σ−1y

)
dz.
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Use some trick:

I =

∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· exp

(
− z>Σ−1y

)
dz

=
1

2
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· exp

(
− z>Σ−1y

)
dz

+
1

2
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· exp

(
− z>Σ−1y

)
dz.

For the second integral, let t = −z:∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· exp

(
− z>Σ−1y

)
dz

=

∫
‖−t‖2<δ

1√
|2πΣ|

exp

(
− 1

2
(−t)>Σ−1(−t)

)
· exp

(
− (−t)>Σ−1y

)
− dt

= −
∫
‖t‖2<δ

1√
|2πΣ|

exp

(
− 1

2
t>Σ−1t

)
· exp

(
t>Σ−1y

)
dt

=

∫
‖t‖2<δ

1√
|2πΣ|

exp

(
− 1

2
t>Σ−1t

)
· exp

(
t>Σ−1y

)
dt,

where in the last we used a fact that K = {t ∈ Rn|‖t‖ < δ} satisfies the symmetric convexity, i.e.,
−K = −{t ∈ Rn|‖t‖ < δ} = {−t ∈ Rn|‖t‖ < δ} = {t ∈ Rn|‖t‖ < δ} = K.
Going back to I, we have

I =
1

2
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· exp

(
− z>Σ−1y

)
dz

+
1

2
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· exp

(
z>Σ−1y

)
dz

=
1

2
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
·
{

exp

(
− z>Σ−1y

)
+ exp

(
z>Σ−1y

)}
dz

≥ 1

2
·
∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
· 2dz =

∫
‖z‖2<δ

1√
|2πΣ|

exp

(
− 1

2
z>Σ−1z

)
dz

= P[‖X‖2 < δ],

where we used a+ 1/a ≥ 2.

Actually, using Cameron-Martin formula and Holder inequality, then Theorem 7.4 can be extended to Gaus-
sian process version, extending to non-parametric statistics.
The following Corollary is summary of Theorems we have worked on so far. In conclusion, by (7.1) which is
derived by Anderson’s theorem and Theorem 7.4which is derived by using inequality a+ 1/a ≥ 2, we have

Corollary 7.5. Let X ∼ Nn(0,Σ) and y ∈ Rn. Then

exp

(
− 1

2
· y>Σ−1y

)
· P[‖X‖2 < δ] ≤ P[‖X − y‖2 < δ] ≤ P[‖X‖2 < δ], for any δ > 0.
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7.3 Toy example of Corollary 7.5 in Bayesian statistics

Suppose θ ∼ N1(0, σ2) and θ0 ∈ R is fixed (non-stochastic). We have [2]

exp

(
− θ2

0

2σ2

)
· P[|θ| < δ] ≤ P[|θ − θ0| < δ] ≤ P[|θ| < δ], for any δ > 0. (7.3)

Figure 7.3 displays the story of inequality (7.3). Two values are crucially important in probability measure
of shifted small ball under Gaussianity: σ and θ0. Having smaller σ or larger θ0 lead to the lower bound
of (7.3) to be small, and eventually, prone to produce numerically zero. In other words, the smaller σ, the
more the Gaussian measure concentrated about 0.

σ1 ≤ σ2 =⇒ Pσ1 [K] ≥ Pσ2 [K], for any symmetric convex subset K ⊂ R.

This argument can be extended to multivariate Gaussian distribution[3]: consider θ1 ∼ Np(0,Σ1) and
θ2 ∼ Np(0,Σ2), then

Σ1 ≤ Σ2 =⇒ PΣ1
[K] ≥ PΣ2

[K], for any symmetric convex subset K ⊂ R,

where A ≤ B means B −A is non-negative definite.

Figure 7.3: Gaussian distribution with N1(0, 1)(left) and N1(0, 2) (right). δ = 0.2
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Examples : [Gaussian Regression]

Consider the data as (yi, Xi)
n
i=1 where Xi ∈ [0, 1]. We can write the non-parametric regression as following.

yi = f(Xi) + εi, εi ∼ N(0, 1)

f(t) =

k∑
j=1

θjBj(t)

where Bj are some fixed basis. Let θ(k) = (θ1, . . . , θk)|k ∼ N(0, τ2Ik). Prior on k is given as πk and assume
that π(k = j) ≥ e−jlogj for large j.

Let f0 be the true function. Under restrictive assumption, we can say that there exits a k0 and θ01, . . . , θ0k0

such that f0 =
∑k0
i θ0jBj . We can also consider more relaxed assumption such as f0 ∈ Cα[0, 1] where α > 0.

Cα[0, 1] is space of α-Holder smooth function on [0, 1]. Functions of α-Holder are bαc-times continuously
differentiable and bαc-th derivative satisfies the following condition.

| f (bαc)(x)− f (bαc)(x′) |≤ C | x− x′ |α−bαc ∀x, x′ ∈ [0, 1]

Comment We can set a hierarchical prior in this non-parametric regression set up but verifying the prior
mass condition may be difficult. Under Cα[0, 1] space, we can obtain a minimax rate : εn � n−α/(2α+1).

Notations: p0i ≡ N(f0(Xi), 1) and pi ≡ N(f(Xi), 1).

1

n

n∑
i=1

D(p0i || pi) =
1

n

n∑
i=1

[f(Xi)− f0(Xi)]
2 =|| f − f0 ||22,n

Suppose the true density is given by p
(n)
0 =

∏n
i=1 p0,i. Now the prior mass condition can verified with

following steps. [
1

n

n∑
i=1

D(p0i || pi) < ε2n,
1

n

n∑
i=1

{V (p0i || pi)−D2(p0i || pi)} < ε2n

]
= {f :|| f − f0 ||2,n≤ ε2n} ⊃ {f :|| f − f0 ||∞≤ ε2n}

where || g ||∞= sup
x∈[0,1]

| g(x) |.

{f :|| f − f0 ||∞≤ ε2n} = { f and f0 are closed in sup norm and subset of || f − f0 ||2,n}.

Fact : Suppose f0 ∈ Cα[0, 1] with kn � n1/2α+1 =⇒ ∃ θ0 = (θ01, . . . , θ0kn) such that

f0,n(t) =
∑kn
j=1 θ0jBj(t) where || f0 − f0,n ||∞≤ ε/2.

Comment: There is a connection between kn and εn. If the true function is not smooth then we need large
value of kn basically we need more basis to express the function. Less no of basis is required in case of a
smooth function. Minimax rates are associated with number of basis of functions.

Remark 1: || f − f0 ||∞≤|| f − f0,n ||∞ + || f0,n − f0 ||∞≤ εn/2 + εn/2 = εn

Remark 2: | f − f0,n |=|
∑kn
j=1 θjBj(t)−

∑kn
j=1 θ0jBj(t) |≤

∑kn
j=1 | θj − θ0j | Bj(t) |

≤M
∑kn
j=1 | θj − θ0j |=|| θj − θ0j ||1
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Verification of prior mass condition in Gaussian regression :

Π(|| f − f0 ||∞< εn) ≥ Π(|| f − f0 ||∞< εn) ≥ Π(k = kn)Π(|| θ − θ0 ||1<
εn

2M
| k)

≥ e−knlogkn
kn∏
j=1

Π(| θj − θ0j |) ≥ e−knlogkn
(

εn
2Mkn

)kn
� e−ckn(logn)t � e−cknε

2
n .
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