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6.1 Three sufficient conditions

Let P, C P denote the sieves and N (€, Py,d) denote the covering number for those sieves. Recall that
there were three conditions for the theorem proving posterior contraction (Jci,co > 0 constants):

log N(€n, Py, d) < cine, (6.1)
m(p: Dlpollp) < €. V(pollp) < 1) > e = (6.2)
n(PS) < em(eatinen (6.3)
If these three conditions hold, we can show that EoII[d(p,po) > Mey, | x1,...,2,] — 0 as n — oo.

6.2 Historical references

e Ghoshal, Ghosh, & van der Vaart: Convergence Rates of Posterior Distributions (2000, Annals of
Statistics). This paper has some other useful variants, including the idea of using ”shells” for quanti-
fying prior probabilities on increasingly large circles, see Figure [6.1

Figure 6.1: Breaking up the complement into shells.

e Shen & Wasserman: Rates of Convergence of Posterior Distributions (1999, Annals of Statistics)
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https://projecteuclid.org/euclid.aos/1016218228
https://projecteuclid.org/euclid.aos/1009210686
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e Ghoshal, Ghosh, & Ramamoorthi: Posterior consistency of Dirichlet mixtures in density estimation
(1999, Annals of Statistics)

e Barron, Schervish, & Wasserman: The consistency of posterior distributions in nonparametric problems
(1999, Annals of Statistics)

e Ghoshal & van der Vaart: Convergence rates of posterior distributions for noniid observations| (2007,
Annals of Statistics). This paper extends the ideas to non-iid (INID) cases such as regression. Some
of the definition extensions include
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6.3 Density Space & Parameter Space

In most practical situations, p = pg.

0 —Z
mapping: 6 — py

This map above doesn’t have to be 1-1. Typically we place a prior distribution IT on © which induces a prior
II on &.

Example 1: DP mixture model z1,...,2, | p i p.

o0

1 T —

plz) = Z T - —(b( Mh), location-scale mixtures of Gaussians
hei Oh Oh

o
7 > 0, Zﬂ'h:L a.s.
h=1
T =Yn - Wien(1 — ), stick-breaking representation

id id id .
v < Beta(l,a), pn ~ I, on ~'1,, priors

=), p=(un), o=(on), p=ps, 0=(Lpo0).
Example 2: (Regression)
vi = flzi) + e, e ~ N(0,0°).

The data is of the form (y;,z;)"_ ;. Two common constructions for the function f are:

e (Possibly high-dimensional) linear regression: f(x;) = x}0.

e Basis function regression (with bases ¢;): f(x;) = Zjil 0iv;(z;).

6.4 Sieve construction

In most practical situations, p = py (the densities are parameterized). We assume there is a measureable
map from © — P. Then a prior distribution = is placed on ©, which induces a prior 7 on P. Denote the


https://projecteuclid.org/euclid.aos/1018031105
https://projecteuclid.org/euclid.aos/1018031206
https://arxiv.org/abs/0708.0491
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distance metric on © by dy. For any subset ©, C O, define
Pn=1{ps: 0€06,}
B(pisen) = {p: d(p,pi) < en}.

We need a net on the sieves P, (i.e. we need py,--- ,pys.t. P, C Uf\[:lB(pi7 €r)). The idea is to find a d,-net
in the parameter space ©,, such that for any 6,6’ € ©,,,

d9(979/) S 677, - d(Peype’) S €n

Claim: Define p; = py,. Then {p1,---,pn} is an e,-net of P,. For the complement probability, 7(P¢) <
m(O7).

6.5 Back to the density estimation example

iid
x1,~~~,xn\p~p,

) = Y mo T,
h=1

where 7, > 0, > 7w, =1 a.s. Note that ¢ denotes the univariate normal pdf here, though the mixture model
generalizes to multivariate normals and other distributions. For a prior on the (7},), we use the common
stick-breaking prior:

Th = Up, H(l — vp), vy S Beta(1, a).
£<h

To generalize to a Pitman-Yor prior, the Beta distribution should be defined with sequences ay, 5, for the
parameters. For the means and standard deviations, any iid prior can be used (though later we’ll see the
need for the prior to have exponential tails in this example). Let II,,II, denote these priors. Define the
vectors T, 4,0 to be the sequences {(my,), (un), (on)}, respectively, and

P = pe, 0= (m po0).

Useful Inequalities: Let ¢ denote a density and 7 denote the weights for the mixture.
oo oo

> Than — Y Than
h=1 h=1

o0 o0

Z Thq1ih — Z Thq2h
h=1 h=1
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<

TV h=1

o0
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6.5.1 Sieve construction

The construction follows Dr. Pati’s paper. This construction is useful, as it generalizes much better than
other distributions.

K,
@n = {(Hvluvg) : Znh > (1 _5n) NS [_mnvmn]agh S [Un,’l)n],h = 1a-~'»Kn}~
h=1

first K,, weights make up
most of the total mass.


https://www.sciencedirect.com/science/article/pii/S0047259X13000122
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The first K,, weights make up most of the mass, and both the means and variances are bounded. (m,) —
00, (un) — 0, (v,) = oco. Let the distance metric be the total variation metric for the density space. Let
Po = P For 6,0' € ©,, by triangle inequality,

||P0 - pG/”TV < ||PH,,M - pH’,y,a”TV + ||pH’,u,0 - pl’[’,p/,a’”TV

oo oo
<> M — T+ > I - |[N (s, 07) — N, 072)lmv
h=1 h=1
< < |k — |
<N~ | 420, + I, g,
Pyt = min{oy, o}, }
K, 1
<>y - Zl+a‘hI:rll§I>§n{\uh—u2|}+36n.
h=1
If we can make
K € € €
I, — IT. - . —ul - E—
hﬂ‘ n— Il <5, " pmax un = ph| < 5 O =g

then ||pg — por||Tv < €n-

REMARKS: If a space © can be written as ©, ® O and § = (0,,0;). Assume d(0,0") < d,(6,,0,,) +
dy(0y,0;). Let {61a,...,0nq} be an €,/2-net of ©, and {01p,...,0rp} be an €,/2-net of ©p. Then
{0; = (0ia,0;5) 1 =1,...,N;j=1,...,M} is an e-net of © with covering number < MN.

Let’s look at the complement probability. By using Bonferroni inequality,

K, c K, . K .
1(es) :H<{ Yo > (1 —5n)} o U {mn € =mumal} U {on € un,val} )
};1 c h=1 . hfi . c
< H({ ZHh > (1 —5n)} ) +H< U {Mh € [—mn,mn]} > +H< U {oh € [umvn]} )
h=1 h=1 h=1
< H< Z II; > 5n> + K, - [H(ul g [—mn,mn}) + (o1 & [un,vn])}
h=K,+1
Result/Verify:
00 K
Z M, =1— Znh
h=K+1 h=1
K h—1
=1- {'Yh (1*%)}
h=1 =1
=1 -m)—70-7)-1m0-7)0-7)— . =kl =7) (1 —vK-1)
= (=m0 =72) =yl =)0 =7) = =yl =) (1= yx-1)
=1 =m) 1 -x)
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By using the result above,

H( i 11, >5> H(ilogu%) < log <§)>

h=K+1 h=1 Gamma(1l,a)

_ H(Gamma(Kv a) <log (<15>>

= exponentially small.
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