
Frontiers of Statistics: Contraction theory for posterior distributions Spring 2019

Lecture 5: March 5
Lecturer: Anirban Bhattacharya & Debdeep Pati Scribes: Huiya Zhou & Biraj Subhra Guha

Note: LaTeX template courtesy of UC Berkeley EECS dept & CMU’s convex optimization course taught by
Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

5.1 Posterior Convergence Rate

Let x1, . . . , xn
iid∼ p where p is a probability density function. The true density for observations is p0.

Definition 5.1. The posterior Πn(· | x1, . . . , xn) is said to converge at a
rate εn for sequence of positive numbers εn ↓ 0, if

Πn(B(p0;Mnεn) | x1, . . . , xn)→ 1 in probability

for any sequence Mn →∞, as n→∞, where

B(p0; εn) = {p ∈ P : d(p, p0) < εn}.

Remarks:

1. Why do we need Mn?

In non-parametric problems, Mn is assumed to be a large M > 0.

In parametric problems, Mn = O(log n)

2. If εn is a convergence rate, δn ≥ εn, where δn ↓ 0 is also a convergence rate. Typically we are interested
in the ”smallest/fastest” possible εn.

3. Typically convergence rate is obtained when the convergence happens ”in probability”.

5.2 Testing Problems

Let p0 denote the true density and P is the subset of all possible
density p.

Firstly, we consider the following testing problem. If the hy-
pothesis problem is

H0 : p = p0

H1 :
{
p ∈ P, ‖p− p1‖TV ≤

‖p− p0‖TV

2

}
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According to Theorem 2.1 of Lecture 2, we can construct φn
such that

En[φn] ≤ e−
n‖p−p0‖

2
TV

8

sup
p∈B

En[1− φn] ≤ e−
n‖p−p0‖

2
TV

8

Now consider the alternative hypothesis is a region instead of a single ball.

H0 : p = p0

H1 : p ∈ Pn

where Pn ⊆ P and Pn is ”totally bounded”.

Result: For a sequence of positive numbers εn ↓ 0, we want to use several balls to cover the region
B(p0,Mεn)c ∩ Pn. Since P ∩ B(p0, εn)c is totally bounded. Then exists φn such that

E0[φn] ≤ e−
nMε2n

8 N (εn,Pn, ‖ · ‖TV)

sup
p∈Pn∩B(p0,εn)

En[1− φn] ≤ e−
nMε2n

8 .

where N (εn,Pn, ‖ · ‖TV) is the number of covering balls. Next, we will introduce the covering number in
detail.

5.3 Covering Number

Let (X, d) denote the metric space, where d is a metric on X.

• A δ–covering / δ–net of X relative to d is any set {θ1, . . . , θN} ⊆ X, ∃ i ∈ {1, . . . , N} such that
d(θ, θi) < δ.

• The δ–covering number of (X, d) denoted by N (δ,X, d) is the cardinality of the smallest δ–covering.

• Covering number is unique but there can be multiple δ–coverings that have the same covering number.

Examples:

If X = [−1, 1], d(x, y) = |x− y|, then N (δ, [−1, 1], d) ≈ c/δ.

If X = [−1, 1]p, d(x, y) = ‖x− y‖, then N (δ, [−1, 1]p, d) ≈ (c/δ)p.

Next, consider the δ–covering number N (εn,Pn, ‖ · ‖TV) in our testing problem.

B(p0;Mεn)c ∩ Pn = {p : ‖p− p0‖TV < Mεn}
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5.4 Main Theorem on Posterior Contraction for i.i.d setup:

Let X1.X2, . . . Xn ∼
i.i.d

p with p0 denoting the true density and p, p0 ∈ P. We shall denote by P (n) the

probability distribution of (X1, X2 . . . Xn) under p.

Let a single dominating measure µ satisfy p << µ ∀p ∈ P. Denote D (p0||p) :=
∫
p0 log

(
p0
p

)
dµ, V (p0||p) :=∫

p0

(
log p0

p

)2

dµ with the assumption that D (p0||p) <∞, V (p0||p) <∞.

Suppose there exist sieves Pn ⊂ P equipped with distance d satisfying d . h, with h denoting the Hellinger
metric and also a sequence {εn}∞n=1 with εn → 0, nε2n →∞ and constants C1, C2 > 0 such that the following
three conditions hold:

A1) Parameter Space Complexity:

logN (εn,Pn, d) ≤ C1nε
2
n

A2) Prior Thickness/Concentration:

Π
{
p : D (p0||p) ≤ ε2n, V (p0||p) ≤ ε2n

}
≥ exp

(
−C2nε

2
n

)
A3) Negligibility of sieve complement in terms of prior mass:

Π (P − Pn) ≤ exp
(
− (C2 + 4)nε2n

)
Theorem: Under conditions A1-A3, for a sufficiently large constant M > 0, we have:

Π
{
p : d (p0, p) > Mεn

∣∣∣ X1.X2, . . . Xn

}
−−−−−−−−−→
in probability

0

w.r.t the distribution of X1.X2, . . . Xn under the truth p0. This shows, εn is the contraction rate of the
posterior Πn(p) corresponding to (P, d).

Remarks: The following three remarks detail how the conditions help arriving at the conclusion of the
theorem.

1) Condition A1 enforces that the sieve Pn is not ’too big’.

2) Condition A2 enforces that ’KL neighborhood’ of the truth receives sufficient prior mass.

3) Condition A3 enforces that the sieve Pn is the ’effective parameter space’, prior mass outside it being
negligible.

We record an important Lemma now that shall help us proving the above theorem:

Denominator Lemma: For every ε > 0 and probability measure QB on the set

B :=
{
p : D (p0||p) ≤ ε2, V (p0||p) ≤ ε2

}
the set

Ωn :=

(
(X1, X2 . . . Xn) :

∫ n∏
i=1

p (Xi)

p0 (Xi)
QB(dp) > exp

(
−(C + 1)nε2

))
satisfies for every C > 0 :

P
(n)
0 (Ωn) ≥ 1− 1

C2nε2
(5.1)
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Proof: All expectations and probabilities here are w.r.t P0. By Jensen’s Inequality applied to logarithm, it
suffices to show:

P
(n)
0

(
n∑
i=1

∫
log

p (Xi)

p0 (Xi)
QB(dp) ≤ −(C + 1)nε2

)
≤ 1

C2nε2
(5.2)

Define Zi :=
∫

log p(Xi)
p0(Xi)

(dp), i = 1, 2 . . . n i.i.d so that EZ1 = −D (p0||p) , EZ2
1 = V (p0||p) so that we can

rewrite the event in the LHS of (5.2) using the fact that Q is defined on B:{
1√
n

n∑
i=1

(Zi − EZi) ≤ −(C + 1)
√
nε2 +

√
nD (p0||p)

}
⊂

{
1√
n

n∑
i=1

(Zi − EZi) ≤ −C
√
nε2

}
(5.3)

Now, we simply apply Chebyshev’s inequality and again use that Q is defined on B:

P
(n)
0

(
n∑
i=1

∫
log

p (Xi)

p0 (Xi)
QB(dp) ≤ −(C + 1)nε2

)
≤ V ar (Z1)

C2nε4
≤ 1

C2nε2
(5.4)

The lemma is proved.

There exists several ways to build a ’point vs ball-complement’ test, as mentioned in class. We shall look
at just one of them without proof details, and the interested reader should look up Convergence Rates of
Posterior Distributions, AoS 2000.

Testing Lemma: For d . h as mentioned before, A1 forces the existence of tests φn with the following
error bounds:

Ep0φn ≤ exp
(
C1nε

2
n

)
.

exp
(
−KnM2ε2n

)
1− exp (−KnM2ε2n)

sup
p∈Pn: d(p,p0)>Mεn

Ep (1− φn) ≤ exp
(
−KnM2ε2n

) (5.5)

Here M is a large constant that can be chosen suitably later, and K is a universal testing constant. Ep0 , Ep
here denote the corresponding expectations.

Proof of Theorem:

Start by choosing ε = εn and call Bn := B in the Denominator lemma.

Denote Tn := Π
{
p : d (p0, p) > Mεn

∣∣∣ X1.X2, . . . Xn

}
=
∫
p∈P: d(p,p0)>Mεn

Πn(dp) ≤ 1 and consider the

following decomposition and inequality:

Ep0Tn ≤ Ep0 [φn] + Ep0 (Tn1Ωn) (1− φn) + Ep0
[
1Ωcn

]
(5.6)

Our proof of the theorem will be done if we can show that the three terms in (5.6) go to zero.

The first term goes to zero by (5.5), as we can choose M large enough to make 1 − exp
(
−KnM2ε2n

)
> 1

2

and KM2 > C1 + 1, so that Ep0 [φn] ≤ 2 exp
(
−nε2n

)
.

For the other terms, in the Denominator lemma, use C = 1, Bn := B with ε = εn, QB = ΠBn(the restriction

of Π to Bn) and define S′n :=
∫ ∏n

i=1
p(Xi)
p0(Xi)

ΠBn(dp) so that:

Ωn :=
(
(X1, X2 . . . Xn) : S′n > exp

(
−2nε2

))
(5.7)
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Now, write Tn = Un
Sn

. For the denominator Sn, we have the following:

Sn =

∫ n∏
i=1

p (Xi)

p0 (Xi)
Π(dp) ≥

∫
Bn

n∏
i=1

p (Xi)

p0 (Xi)
Π(dp) = Π (Bn)

∫ n∏
i=1

p (Xi)

p0 (Xi)
ΠBn(dp) =: Π (Bn)S′n (5.8)

From (5.7), (5.8) and A2, we have:

Tn1Ωn ≤
exp

(
2nε2

)
Π (Bn)

Un ≤ exp
(
(2 + C2)nε2n

)
(5.9)

We decompose the numerator Un :=
∫
p∈P: d(p,p0)>Mεn

∏n
i=1

p(Xi)
p0(Xi)

Π(dp) as follows:

Un =

∫
p∈Pn: d(p,p0)>Mεn

n∏
i=1

p (Xi)

p0 (Xi)
Π(dp) +

∫
p∈(P−Pn): d(p,p0)>Mεn

n∏
i=1

p (Xi)

p0 (Xi)
Π(dp) =: Un,1 + Un,2 (5.10)

Now, (5.5), (5.10), A3 and the observations Ep0

[
p
p0

]
= 1 and Ep0

[
(1− φn) p

p0

]
= Ep (1− φn) together

imply:

Ep0Un1Ωn (1− φn) ≤ Ep0Un,1 (1− φn) + Ep0Un,2

≤
∫
p∈Pn: d(p,p0)>Mεn

Ep (1− φn) Π(dp) + Π (P − Pn)

≤ exp
(
−KnM2ε2n

)
+ exp

(
− (C2 + 4)nε2n

)
≤ 2 exp

(
− (C2 + 4)nε2n

)
(5.11)

where in the last step, M >
√

C2+4
K was chosen. Now (5.9) and (5.11) together imply:

Ep0 (Tn1Ωn) (1− φn) ≤ exp
(
(2 + C2)nε2n

)
. exp

(
−(4 + C2)nε2n

)
≤ exp

(
−(2 + C2)nε2n

)
(5.12)

Hence, by (5.12), the second term in (5.6) goes to zero.

Also, the third term of (5.6) goes to zero directly by (5.1), where Ωn is defined by (5.7).

This completes the proof of posterior contraction rate theorem for i.i.d data case.


