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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

4.1 Proof of (an extension of) Schwartz’s Theorem

Assume pyg is the true density and py € KL(7). There exists a test function ®,, such that

E,),®, <e "

sup E,(1-&®,)<e™ "
peUNP,,

for some constant ¢ > 0, where P,, is a measurable subset of P such that 7(P5) < e™°".

Figure 4.1:

The sets {P,,} are called ”"Sieves” and P,, C P41 for large n.
Lemma 4.1. (Borel-Centelli lemma) If V,, is a sequence of random variabless such that for any ¢ > 0,

o
Z (IVa] >€) <

n=1

then V,, — 0 a.s.

Proof. Goal: show that m,(U¢|X(™) — 0 a.s. [po]. For any subset of densities B (that is B C P), the
posterior is defined as

. (n) fB i= 110 )W(dp) fB i= 1p0( )W(dp)
n(BXT = fP i p(Xi)m(dp) Jp ITim 1p0(X))7r(dp)
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Note that

T (U)X ™) =, (U NP X ™) 4+ 7, (U N PEIX M)
< (U NP X)) 4, (P X )
=&, 1, (U NP X ™) + (1 — &)1, (U N PR| X ™) + 7, (PE|X M)
<B, + (1 — @)1, (U NP X)) + 7, (P X M)

Claim 1: &, — 0 a.e [po].

Proof. Fix 6 > 0,

oo

i (I’ >5 Z Po[‘I’n] (lsi_o:

n=1

The first inequality is given by Markov inequality. Then according to Borel-Cantelli lemma,

®, — 0 a.s.

Claim 2: For any € > 0, define P. = {p € P, D(po||p) < €}. Then

/ H p(Xy) m(dp) > w(Pe)e™ " eventually a.e [po]
Pi=1 ’

Proof.

=1 Pe =1 pO(X’L)
where 7. is the ”truncation” of m on P, that is m.(B) = W(ﬁ;z)) )

Consider

by Jensen’s inequality.

Now

Sddpas; [ Dllptap) = -

€
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by construction of P.. This proves claim 2.
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Now back to proof of (an extension of) Schwartz’s Theorem.

Consider

T (PEX (M) < cene / :1 Zi (())((:)) me(dp)
Consider
i, 125 w00
_ /7: | / 1;[1 ;(ggi)) 1;[1 po(X:)](dp) Fubini’s theorem
- /P Ipxom(dp)

n =1

=r(P) < e

This implies 7, (Pg|X (™) — 0 [a.e.] if we take € = &.

Question: How to construct such test?

Hy:p=po
Hl ' p S U'Z\L]BE(p’L)
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Figure 4.2:

where Be(p;) = {p: lp — pillrv < W}.

Let ®; be an usual test function for py against Be(p;). Define ® = max{®;,...,n} (that is taking the
union of the rejection region), we need to control over N: number of balls to cover U N P,,.



