Frontiers of Statistics: Contraction theory for posterior distributions

Spring 2019

Lecture 4: February 28

Lecturer: Anirban Bhattacharya & Debdeep Pati

Scribes: Indrajit Ghosh & Xiaomeng Yan

Note: LaTeX template courtesy of UC Berkeley EECS dept & CMU's convex optimization course taught by Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Proof of (an extension of) Schwartz's Theorem

Assume p_0 is the true density and $p_0 \in \mathrm{KL}(\pi)$. There exists a test function Φ_n such that

$$\sup_{p \in \mathcal{U}^c \cap \mathcal{P}_n} \mathbb{E}_p(1 - \mathbf{\Phi}_n) \le e^{-cn}$$

for some constant c > 0, where \mathcal{P}_n is a measurable subset of \mathcal{P} such that $\pi(\mathcal{P}_n^c) < e^{-cn}$.

Figure 4.1:

The sets $\{\mathcal{P}_n\}$ are called "Sieves" and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for large n.

Lemma 4.1. (Borel-Centelli lemma) If V_n is a sequence of random variabless such that for any $\epsilon > 0$,

$$\sum_{n=1}^{\infty} P(|V_n| > \epsilon) < \infty,$$

then $V_n \to 0$ a.s.

Proof. Goal: show that $\pi_n(\mathcal{U}^c|X^{(n)}) \to 0$ a.s. $[p_0]$. For any subset of densities \mathcal{B} (that is $\mathcal{B} \subset \mathcal{P}$), the posterior is defined as

$$\pi_n(\mathcal{B}|X^{(n)}) = \frac{\int_{\mathcal{B}} \prod_{i=1}^n p(X_i) \pi(dp)}{\int_{\mathcal{P}} \prod_{i=1}^n p(X_i) \pi(dp)} = \frac{\int_{\mathcal{B}} \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} \pi(dp)}{\int_{\mathcal{P}} \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} \pi(dp)}$$

Note that

$$\begin{split} \pi_n(\mathcal{U}^c|X^{(n)}) &= \pi_n(\mathcal{U}^c \cap \mathcal{P}_n|X^{(n)}) + \pi_n(\mathcal{U}^c \cap \mathcal{P}_n^c|X^{(n)}) \\ &\leq \pi_n(\mathcal{U}^c \cap \mathcal{P}_n|X^{(n)}) + \pi_n(\mathcal{P}_n^c|X^{(n)}) \\ &= \Phi_n\pi_n(\mathcal{U}^c \cap \mathcal{P}_n|X^{(n)}) + (1 - \Phi_n)\pi_n(\mathcal{U}^c \cap \mathcal{P}_n|X^{(n)}) + \pi_n(\mathcal{P}_n^c|X^{(n)}) \\ &\leq \Phi_n + (1 - \Phi_n)\pi_n(\mathcal{U}^c \cap \mathcal{P}_n|X^{(n)}) + \pi_n(\mathcal{P}_n^c|X^{(n)}) \end{split}$$

Claim 1: $\Phi_n \to 0$ a.e $[p_0]$.

Proof. Fix $\delta > 0$,

$$\sum_{n=1}^{\infty} \mathbb{P}_0[\mathbf{\Phi}_n > \delta] \le \sum_{n=1}^{\infty} \frac{\mathbb{E}_{p_0[\mathbf{\Phi}_n]}}{\delta} \le \frac{1}{\delta} \sum_{n=1}^{\infty} e^{-cn} < \infty.$$

The first inequality is given by Markov inequality. Then according to Borel-Cantelli lemma,

$$\Phi_n \to 0$$
 a.s.

Claim 2: For any $\epsilon > 0$, define $\mathcal{P}_{\epsilon} = \{ p \in \mathcal{P}, D(p_0 || p) < \epsilon \}$. Then

$$\int_{\mathcal{P}} \prod_{i=1}^{n} \frac{p(X_i)}{p_0(X_i)} \pi(dp) \ge \pi(\mathcal{P}_{\epsilon}) e^{-n\epsilon} \text{ eventually a.e } [p_0]$$

Proof.

$$\int_{\mathcal{P}} \prod_{i=1}^{n} \frac{p(X_i)}{p_0(X_i)} \pi(dp) \ge \pi(\mathcal{P}_{\epsilon}) \int_{\mathcal{P}_{\epsilon}} \prod_{i=1}^{n} \frac{p(X_i)}{p_0(X_i)} \pi_{\epsilon}(dp)$$

where π_{ϵ} is the "truncation" of π on \mathcal{P}_{ϵ} , that is $\pi_{\epsilon}(\mathcal{B}) = \frac{\pi(\mathcal{B} \cap \mathcal{P}_{\epsilon})}{\pi(\mathcal{P}_{\epsilon})}$.

Consider

$$\log\left(\int_{\mathcal{P}_{\epsilon}} \prod_{i=1}^{n} \frac{p(X_i)}{p_0(X_i)} \pi_{\epsilon}(dp)\right) \ge n \int_{\mathcal{P}_{\epsilon}} \frac{1}{n} \sum_{i=1}^{n} \log \frac{p(X_i)}{p_0(X_i)} \pi_{\epsilon}(dp)$$

by Jensen's inequality.

Now

$$\int_{\mathcal{P}_{\epsilon}} \frac{1}{n} \sum_{i=1}^{n} \log \frac{p(X_i)}{p_0(X_i)} \pi_{\epsilon}(dp) \underline{\text{a.s.}} \int_{\mathcal{P}_{\epsilon}} D(p_0 || p) \pi_{\epsilon}(dp) \ge -\epsilon$$

by construction of \mathcal{P}_{ϵ} . This proves claim 2.

Now back to proof of (an extension of) Schwartz's Theorem.

$$(1 - \mathbf{\Phi}_n)\pi_n(\mathcal{U}^c \cap \mathcal{P}_n | X^{(n)}) \le (1 - \mathbf{\Phi}_n) \frac{e^{n\epsilon}}{\pi(\mathcal{P}_\epsilon)} \int_{\mathcal{U}^c \cap \mathcal{P}_n} \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} \pi(dp)$$
$$= ce^{n\epsilon} (1 - \mathbf{\Phi}_n) \int_{\mathcal{U}^c \cap \mathcal{P}_n} \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} \pi(dp)$$

Consider

$$\mathbb{E}_{p_0}[(1-\boldsymbol{\Phi}_n)\int_{\mathcal{U}^c\cap\mathcal{P}_n}\prod_{i=1}^n\frac{p(X_i)}{p_0(X_i)}\pi(dp)]$$

$$=\int_{\mathcal{U}^c\cap\mathcal{P}_n}[\int (1-\boldsymbol{\Phi}_n)\prod_{i=1}^n\frac{p(X_i)}{p_0(X_i)}\prod_{i=1}^np_0(X_i)dX_i]\pi(dp) \text{ Fubini's theorem}$$

$$=\int_{\mathcal{U}^c\cap\mathcal{P}_n}[\int (1-\boldsymbol{\Phi}_n)\prod_{i=1}^np(X_i)dX_i]\pi(dp)$$

$$=\int_{\mathcal{U}^c\cap\mathcal{P}_n}\mathbb{E}_p(1-\boldsymbol{\Phi}_n)\pi(dp)$$

$$< e^{-nc}$$

This implies $(1-\Phi_n)\pi_n(\mathcal{U}^c\cap\mathcal{P}_n|X^{(n)})\to 0$ [a.e.] if we take $\epsilon=\frac{c}{2}$

$$\pi_n(\mathcal{P}_n^c|X^{(n)}) \le ce^{n\epsilon} \int_{\mathcal{P}_n^c} \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} \pi_{\epsilon}(dp)$$

Consider

$$\mathbb{E}_{p_0} \left[\int_{\mathcal{P}_n^c} \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} \pi(dp) \right]$$

$$= \int_{\mathcal{P}_n^c} \left[\int \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} \prod_{i=1}^n p_0(X_i) \right] \pi(dp) \text{ Fubini's theorem}$$

$$= \int_{\mathcal{P}_n^c} \prod_{i=1}^n p(X_i) \pi(dp)$$

$$= \pi(\mathcal{P}_n^c) \le e^{-nc}$$

This implies $\pi_n(\mathcal{P}_n^c|X^{(n)}) \to 0$ [a.e.] if we take $\epsilon = \frac{c}{2}$.

Question: How to construct such test?

$$H_0: p = p_0$$

$$H_1: p \in \bigcup_{i=1}^N \mathcal{B}_{\epsilon}(p_i)$$

Figure 4.2:

where
$$\mathcal{B}_{\epsilon}(p_i) = \{p : ||p - p_i||_{\text{TV}} < \frac{||p - p_0||_{\text{TV}}}{2}\}.$$

Let Φ_i be an usual test function for p_0 against $\mathcal{B}_{\epsilon}(p_i)$. Define $\Phi = \max\{\Phi_1, ..., \Phi_N\}$ (that is taking the union of the rejection region), we need to control over N: number of balls to cover $\mathcal{U}^c \cap \mathcal{P}_n$.