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3.1 Example (Discrete Paramter Space)

Let Θ = {θ1, . . . , θK}, X1, . . . , Xn
iid∼ pθj , where θj is the true parameter. Denote pθj (x) = p(x | θj) and let

πj = π(θ = θj) be the prior, for j = 1, . . .K. Here, we also denote X(n) = (X1, . . . , Xn). We want to

show that for a 6= j, π
(
θa |X(n)

) a.s.→ 0, as this would imply that π
(
θa |X(n)

) a.s.→ 0 under pθj . First suppose

πj = 0. Then π
(
θj |X(n)

)
≡ 0. For posterior consistency, we assume that πj > 0 for all j = 1, . . . ,K. Then,

for a 6= j, consider

log
π
(
θa |X(n)

)
π
(
θj |X(n)

) = log
πa
πj

+ log

n∑
i=1

p (Xi | θa)

p (Xi | θj)

= n

(
1

n
log

πa
πj

+
1

n
log

n∑
i=1

p (Xi | θa)

p(Xi | θj)

)

Note that under pθj ,
1

n
log

πa
πj
→ 0

By SLLN,

1

n
log

n∑
i=1

p (Xi | θa)

p(Xi | θj)
a.s.→ −D(pθj ‖ pθa)

Using these two observations, we have the following

log
π
(
θa |X(n)

)
π
(
θj |X(n)

) a.s.→ −∞
[
pθj
]

and we conclude π
(
θj |X(n)

) a.s.→ 1,
[
pθj
]
.

Remark

1. It is assumed that pθ does not depend on n.

2. If πj = 0, then there is no posterior consistency.

3. Case of non-identifiability: θa 6= θj but D(pθj ‖ pθa) = 0. THen there is no posterior consistency.

4. The complexity of the parameter space should be sufficiently small.
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3.2 Some important theorems and concepts

Theorem 3.1. (Doob) Let (Ω,A, pθ) , θ ∈ Θ. Assume θ 7→ pθ is 1-1. Let X1 . . . Xn
iid∼ pθ, θ ∼ π. Then

πn
(
· |X(n)

)
is strongly consistent for π-almost θ. That is, for Θ0 ⊆ Θ such that π (Θ0) = 1, then πn

(
· |X(n)

)
is strongly consistent if X1, . . . , Xn

iid∼ pθ0 , θ0 ∈ Θ0.

Remark. If π ({θ0}) = 0, or π depends on n, then the theorem says nothing. The theorem applies for a
countable parameter space, provided that θ 7→ pθ is 1-1.

Definition 3.2. (Kullback–Leibler property and Kullback–Leibler support)
Let P be density space and p0 ∈ P. p0 is said to have KL property relative to a prior π if

π{p : D(p0 ‖ p) < ε} > 0 for every ε > 0

And KL support, KL(π) , is given by :

KL(π) = {p0 ∈ P : p0 has KL property}

Theorem 3.3. (Schwartz) If p0 ∈ KL(π) and U is a neighborhood around p0 such that there exists a test
function φn = φn(X1, . . . , Xn), and Ep0φn → 0 and supp∈Uc Ep(1− φn)→ 0 as n→∞, then

πn
(
Uc |X(n)

)
→ 0, a.s. [p0]

• A typical choice of U = {p : d(p, p0) < ε}

• If U is weak–neighbourhood, then φn satisfying the above, always exists.

Definition 3.4. Pn
w

=⇒ P iff for any bounded continuous function φ,
∫
φdPn →

∫
φdP

⇐⇒ Pn(−∞, x]→ P (−∞, x] , ∀ x ∈ continuity points of P (−∞, x]
⇐⇒ Pn(A)→ P (A) ∀ A s.t. P (∂A) = 0

Consider the metric (R, d | x− y |). Then {(−∞, x] : x ∈ R} is called “generating set” or “ building block”
for open sets in B(R). The following result characterize an open set around p0.

Result : A generating set of a weak–neighbourhood around p0 is given by{{
P :

∫
φdP <

∫
φdP0 + C

}
, φ is bounded and continuous andC > 0

}
Definition 3.5. (Levy metric) Let F and G be distribution functions.

d(F,G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε,∀x ∈ R}

Let us fix φ (bounded and continuous) and C > 0 and define

U =
{
P :

∫
φdP <

∫
φdP0 + C

}
The goal is to construct φn based on {X1, . . . , Xn} such that

Ep0φn → 0 and sup
p∈Uc

Ep(1− φn)→ 0 as n→∞ (3.1)

Let us start with X1 and we shall construct an unbiased test based on X1.
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Without loss of generality, assume 0 ≤ φ ≤ 1.

In Uc :
∫
φ(X) dP (X) <

∫
φ(X) dP0(X) + C =⇒ φ is an unbiased test.

Now, let us define φn based {X1, . . . , Xn} as: φn = 1

{
1
n

∑n
i=1 φ(Xi) > Ep0φ+ C

2

}
It is to be noted that φn such constructed satisfies (3.1).


