Frontiers of Statistics: Contraction theory for posterior distributions
 Spring 2019

 Lecture 3: February 26

 Lecturer: Anirban Bhattacharya & Debdeep Pati

 Scribes: Eric Chuu, Pallavi Ray

Note: LaTeX template courtesy of UC Berkeley EECS dept & CMU's convex optimization course taught by Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Example (Discrete Paramter Space)

Let $\Theta = \{\theta_1, \ldots, \theta_K\}, X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p_{\theta_j}$, where θ_j is the true parameter. Denote $p_{\theta_j}(x) = p(x | \theta_j)$ and let $\pi_j = \pi(\theta = \theta_j)$ be the prior, for $j = 1, \ldots, K$. Here, we also denote $X^{(n)} = (X_1, \ldots, X_n)$. We want to show that for $a \neq j, \pi(\theta_a | X^{(n)}) \stackrel{\text{a.s.}}{\to} 0$, as this would imply that $\pi(\theta_a | X^{(n)}) \stackrel{\text{a.s.}}{\to} 0$ under p_{θ_j} . First suppose $\pi_j = 0$. Then $\pi(\theta_j | X^{(n)}) \equiv 0$. For posterior consistency, we assume that $\pi_j > 0$ for all $j = 1, \ldots, K$. Then, for $a \neq j$, consider

$$\log \frac{\pi \left(\theta_a \mid X^{(n)}\right)}{\pi \left(\theta_j \mid X^{(n)}\right)} = \log \frac{\pi_a}{\pi_j} + \log \sum_{i=1}^n \frac{p\left(X_i \mid \theta_a\right)}{p\left(X_i \mid \theta_j\right)}$$
$$= n \left(\frac{1}{n} \log \frac{\pi_a}{\pi_j} + \frac{1}{n} \log \sum_{i=1}^n \frac{p\left(X_i \mid \theta_a\right)}{p\left(X_i \mid \theta_j\right)}\right)$$

Note that under p_{θ_i} ,

$$\frac{1}{n}\log\frac{\pi_a}{\pi_j}\to 0$$

By SLLN,

$$\frac{1}{n} \log \sum_{i=1}^{n} \frac{p\left(X_{i} \mid \theta_{a}\right)}{p(X_{i} \mid \theta_{j})} \stackrel{\text{a.s.}}{\to} -D(p_{\theta_{j}} \parallel p_{\theta_{a}})$$

Using these two observations, we have the following

$$\log \frac{\pi\left(\theta_{a} \mid X^{(n)}\right)}{\pi\left(\theta_{j} \mid X^{(n)}\right)} \stackrel{\text{a.s.}}{\to} -\infty \quad \left[p_{\theta_{j}}\right]$$

and we conclude $\pi\left(\theta_{j} \mid X^{(n)}\right) \stackrel{\text{a.s.}}{\to} 1, \left[p_{\theta_{j}}\right].$

Remark

- 1. It is assumed that p_{θ} does not depend on n.
- 2. If $\pi_j = 0$, then there is no posterior consistency.
- 3. Case of non-identifiability: $\theta_a \neq \theta_j$ but $D(p_{\theta_j} \parallel p_{\theta_a}) = 0$. Then there is no posterior consistency.
- 4. The complexity of the parameter space should be sufficiently small.

3.2 Some important theorems and concepts

Theorem 3.1. (Doob) Let $(\Omega, \mathcal{A}, p_{\theta}), \theta \in \Theta$. Assume $\theta \mapsto p_{\theta}$ is 1-1. Let $X_1 \dots X_n \stackrel{iid}{\sim} p_{\theta}, \theta \sim \pi$. Then $\pi_n \left(\cdot | X^{(n)} \right)$ is strongly consistent for π -almost θ . That is, for $\Theta_0 \subseteq \Theta$ such that $\pi (\Theta_0) = 1$, then $\pi_n \left(\cdot | X^{(n)} \right)$ is strongly consistent if $X_1, \dots, X_n \stackrel{iid}{\sim} p_{\theta_0}, \theta_0 \in \Theta_0$.

Remark. If $\pi(\{\theta_0\}) = 0$, or π depends on n, then the theorem says nothing. The theorem applies for a countable parameter space, provided that $\theta \mapsto p_{\theta}$ is 1-1.

Definition 3.2. (Kullback-Leibler property and Kullback-Leibler support) Let \mathcal{P} be density space and $p_0 \in \mathcal{P}$. p_0 is said to have KL property relative to a prior π if

$$\pi\{p: D(p_0 \parallel p) < \epsilon\} > 0 \text{ for every } \epsilon > 0$$

And KL support, $KL(\pi)$, is given by :

$$KL(\pi) = \{p_0 \in \mathcal{P} : p_0 \text{ has } KL \text{ property}\}$$

Theorem 3.3. (Schwartz) If $p_0 \in KL(\pi)$ and \mathcal{U} is a neighborhood around p_0 such that there exists a test function $\phi_n = \phi_n(X_1, \ldots, X_n)$, and $\mathbb{E}_{p_0}\phi_n \to 0$ and $\sup_{p \in \mathcal{U}^c} \mathbb{E}_p(1-\phi_n) \to 0$ as $n \to \infty$, then $\pi_n \left(\mathcal{U}^c \mid X^{(n)}\right) \to 0$, a.s. $[p_0]$

- A typical choice of $\mathcal{U} = \{p : d(p, p_0) < \epsilon\}$
- If \mathcal{U} is weak-neighbourhood, then ϕ_n satisfying the above, always exists.

Definition 3.4. $P_n \stackrel{w}{\Longrightarrow} P$ *iff for any bounded continuous function* ϕ , $\int \phi dP_n \to \int \phi dP \iff P_n(-\infty, x] \to P(-\infty, x]$, $\forall x \in continuity points of <math>P(-\infty, x] \iff P_n(A) \to P(A) \ \forall A \ s.t. \ P(\partial A) = 0$

Consider the metric $(\mathbb{R}, d \mid x - y \mid)$. Then $\{(-\infty, x] : x \in \mathbb{R}\}$ is called "generating set" or "building block" for open sets in $\mathcal{B}(\mathbb{R})$. The following result characterize an open set around p_0 .

Result : A generating set of a weak–neighbourhood around p_0 is given by

$$\left\{ \left\{ P: \int \phi \, dP < \int \phi \, dP_0 + C \right\}, \, \phi \text{ is bounded and continuous and } C > 0 \right\}$$

Definition 3.5. (Levy metric) Let F and G be distribution functions.

$$d(F,G) = \inf\{\epsilon > 0: F(x-\epsilon) - \epsilon \leq G(x) \leq F(x+\epsilon) + \epsilon, \forall x \in \mathbb{R}\}$$

Let us fix ϕ (bounded and continuous) and C > 0 and define

$$\mathcal{U} = \left\{ P : \int \phi \, dP < \int \phi \, dP_0 + C \right\}$$

The goal is to construct ϕ_n based on $\{X_1, \ldots, X_n\}$ such that

$$\mathbb{E}_{p_0}\phi_n \to 0 \text{ and } \sup_{p \in \mathcal{U}^c} \mathbb{E}_p(1-\phi_n) \to 0 \text{ as } n \to \infty$$
(3.1)

Let us start with X_1 and we shall construct an unbiased test based on X_1 .

Without loss of generality, assume $0 \leq \phi \leq 1.$

In \mathcal{U}^{c} : $\int \phi(X) dP(X) < \int \phi(X) dP_{0}(X) + C \implies \phi$ is an unbiased test.

Now, let us define ϕ_n based $\{X_1, \dots, X_n\}$ as: $\phi_n = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^n \phi(X_i) > \mathbb{E}_{p_0}\phi + \frac{C}{2}\right\}$

It is to be noted that ϕ_n such constructed satisfies (3.1).