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2.1 Recap: Hypothesis testing and error rates (Lecam-Birge)

Let y1, . . . , yn
iid∼ p where p is a probability density function. If we consider the following simple null vs.

simple alternative testing problem

H0 : p = p0 vs. H1 : p = p1, (2.1)

then Theorem 1.1 shows that there exists a test function Φn such that it has exponentially decaying upper
bounds to the Type-I and Type-II error probabilities; that is,

Ep0Φn ≤ e−Cnh
2(p0,p1) (2.2)

Ep1 [1−Φn] ≤ e−Cnh
2(p0,p1). (2.3)

2.2 Extension to testing: Simple null vs. composite alternative

Assume the same setup as above. Now consider the following testing
problem:

H0 : p = p0 vs. H1 : p ∈ B, (2.4)

where B = {p | ‖p− p1‖TV
≤ ‖p− p1‖TV

/2} (there is nothing special
about the ‘2’ in the denominator; can be any positive number greater
than 1). It can be shown that B is a convex set.
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Theorem 2.1. Under the described setup in 2.2, there exists a test function Φn such that

Ep0Φn ≤ e−n‖p−p1‖
2
TV/8 (2.5)

sup
p∈B

Ep[1−Φn] ≤ e−n‖p−p1‖
2
TV/8. (2.6)

Proof. Let

φ(y) =

{
1 if p1(y) > p0(y)

0 o.w.

Define

α = Ep0 φ(y1) , and γ = inf
p∈B

Epφ(y1). (2.7)

α and γ are the Type-I error probability and the minimum power based on one observation. Note that, α
and γ can also be rewritten as follows:

α =

∫
p1>p0

p0 dλ (2.8)

γ = inf
p∈B

∫
p1>p0

p dλ (2.9)

where λ denotes the dominating measure.

Claim: γ > α. That is, the test φ is unbiased.

Proof of claim: Fix p ∈ B. Then,∫
p1>p0

p dλ =

∫
p1>p0

p1 dλ −
∫
p1>p0

(p1 − p) dλ (2.10)

≥
∫
p1>p0

p1 dλ − ‖p1 − p‖TV
(2.11)

≥
∫
p1>p0

p1 dλ −
‖p1 − p0‖TV

2
(2.12)

which does not depend on p. Therefore,

γ − α = inf
p∈B

[∫
p1>p0

p dλ −
∫
p1>p0

p0 dλ

]
(2.13)

= inf
p∈B

[∫
p1>p0

p1 dλ −
‖p1 − p0‖TV

2
−
∫
p1>p0

p0 dλ

]
(2.14)

= ‖p1 − p0‖TV
/2 > 0 (2.15)

Hence the proof of the claim. �
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Back to main proof:

Define,

Φn =

1 if
1

n

∑n
i=1 φ(yi) >

α+γ
2

0 o.w.

Theorem 2.2. Hoeffding’s inequality. Suppose X1, · · · , Xn are independent random variable such that
Xi ∈ [0, 1]. Then, for any t > 0

Pr

[
1

n

n∑
i=1

(Xi − EXi) > t

]
≤ e−2nt2 . (2.16)

Note: This can be thought of as a finite sample version the CLT.

Using this theorem,

E0Φn = P0

[
1

n

n∑
i=1

φ(yi) >
α+ γ

2

]
(2.17)

= P0

[
1

n

n∑
i=1

(φ(yi)− E0 φ(yi)) >
γ − α

2

]
(2.18)

≤ e−2n(γ−α)2/2 = e−n‖p1−p0‖
2
TV/8 (2.19)

For proving (2.6), fix p ∈ B. Then

Ep(1−Φn) = Pp

[
1

n

n∑
i=1

φ(yi) <
α+ γ

2

]
(2.20)

= Pp

[
1

n

n∑
i=1

(φ(yi)− Ep φ(yi)) >
α+ γ

2
− Ep φ(y1)

]
(2.21)

≤ Pp

[
1

n

n∑
i=1

(φ(yi)− Ep φ(yi)) >
α− γ

2

]
(2.22)

≤ e−n‖p1−p0‖
2
TV/8, (2.23)

which does not depend on p. This completes the proof of the theorem.
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2.3 Posterior consistency

Let X1, . . . , Xn
iid∼ P where P is a probability measure (or model) and suppose Xi’s are defined on (Ω,A ,P).

X(n) := (X1, . . . , Xn) are defined on (Ωn,A n,Pn) as Xi’s are independent. Let P denotes the class of all
probability measures.

Quantity of interest: P . We further assume that P admits a density p.

True density: p0, distribution P0 (the true data generating density).

Let d denotes a distance metric on P, and Π a prior on P. Define

B(p0, ε) := {p | d(p0, p) < ε}, (2.24)

a ball around p0 of radius ε.

For any subset of densities B (that is, B ⊆P), define the posterior as

Πn(B |X(n)) =

∫
B

∏n
i=1 p(xi) Π(dp)∫

P

∏n
i=1 p(xi) Π(dp)

. (2.25)

Definition: Posterior consistency. Πn is said to be consistent at p0 if for every ε > 0

Πn

[
B(p0, ε) |X(n)

]
→ 1 in ? (2.26)

There are two notions of convergence; namely,

(i) “Weak consistency” if the above convergence happens ‘in probability (i.p.)’ under p0.

(ii) “Strong consistency” if the above convergence happens ‘almost surely (a.s.)’ under p0.

Remark: (i) and (ii) implies Πn(· |X(n))
d→ δ{p0} a.s. or i.p. under p0.

Posterior consistency for parameterized densities. Suppose the density p considered in the above
setup is parameterized by θ ∈ Θ; that is, p ≡ pθ.

Example 1. X1, . . . , Xn
iid∼ N(0,Σ). In this case θ = Σ.

Example 2. X1, . . . , Xn
iid∼ N(µ, I). In this case θ = µ.



Lecture 2: February 21 2-5

Now the d should be considered as a distance metric on Θ and Π is a
prior on Θ. We can similarly define a ball of radius ε around θ0 as

B(θ0, ε) := {θ ∈ Θ | d(θ0, θ) < ε}. (2.27)

Then Πn is said to be consistent at θ0 if

Πn

[
B(θ0, ε) |X(n)

]
→ 1 a.s. or i.p. under pθ0 . (2.28)

Properties of point estimators. Suppose X1, . . . , Xn
iid∼ pθ (true value of θ is θ0).

Goal: To come up with “point estimators” θ̂n depending on the posterior such that d(θ̂n, θ)→ 0 a.s. or i.p.
under pθ0 . If

θ̂n =

∫
θ Πn(dθ |X(n)), (2.29)

then under additional assumptions apart from posterior consistency, d(θ̂n, θ)→ 0.

Theorem 2.3. Alternative point estimate. Suppose Πn(· |X(n)) is consistent at θ0 (with respect to (wrt)

d on Θ). Let θ̂n be the center of the smallest ball in d that contains posterior mass at least 1/2. That is,

θ̂n = arg min
θ∈Θ

r̂n(θ) (2.30)

where r̂n(θ) = inf{r |Πn(B(θ, r) |X(n)) ≥ 1/2}. Then d(θ̂n, θ)→ 0 as n ↑ ∞ a.s. (or i.p.) wrt pθ0 .

Proof. Fix ε > 0. Then consistency of Πn(· |X(n)) is at θ0 implies that there exists n0 ≡ n0(ε) ∈ N such
that

Πn(B(θ0, ε) |X(n)) ≥ 1/2 ∀ n ≥ n0 (2.31)

a.s. wrt pθ0 . So by definition of r̂n(θ), we get r̂n(θ0) < ε for all n ≥ n0 a.s. wrt pθ0 . Further, by definition

of θ̂n we also get

r̂n(θ̂n) ≤ r̂n(θ0) < ε. (2.32)
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Now let us focus on the two balls B(θ̂n, r̂n(θ̂n)) and B(θ0, r̂n(θ0)) centered around θ̂n and θ0, respectively.
Because of the consistency condition of Πn(· |X(n)) at θ0, the two balls should overlap. Therefore, using
(2.33) this implies that

d(θ̂n, θ) ≤ r̂n(θ̂n) + r̂n(θ0) < 2ε ∀ n ≥ n0 (2.33)

a.s. wrt pθ0 . Since ε is arbitrary this completes the proof.


