Frontiers of Statistics: Contraction theory for posterior distributions Spring 2019

Lecture 2: February 21
Lecturer: Anirban Bhattacharya & Debdeep Pati  Scribes: Brittany Alezander & Sandipan Pramanik

Note: LaTeX template courtesy of UC Berkeley EECS dept & CMU’s convex optimization course taught by
Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

2.1 Recap: Hypothesis testing and error rates (Lecam-Birge)

Let y1,...,Yn i p where p is a probability density function. If we consider the following simple null vs.
simple alternative testing problem

Hy:p=py vs. Hyi:p=p, (2.1)

then Theorem 1.1 shows that there exists a test function ®,, such that it has exponentially decaying upper
bounds to the Type-I and Type-II error probabilities; that is,

E,,®, < et por) (2.2)

By, [1 = ®,] < e~ (o). (2.3)

2.2 Extension to testing: Simple null vs. composite alternative

Assume the same setup as above. Now consider the following testing
problem:

—— Hy:p=py vs. Hy:p€B, (2.4)

where B = {p||lp —pillv < llp —p1llsy/2} (there is nothing special
about the ‘2’ in the denominator; can be any positive number greater
than 1). It can be shown that B is a convex set.
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Theorem 2.1. Under the described setup in 2.2, there exists a test function ®,, such that

E,,®, < e "lr-riliv/s

supE,[1 — ®,] < e nllp=p1llTy /8
pEB

Proof. Let

Define

a=E, o(y1) , and v = inf Epé(y1).
pEB

2.7)

a and vy are the Type-I error probability and the minimum power based on one observation. Note that, o

and ~ can also be rewritten as follows:

a = / Po d
P1>Po

v = inf/ pdA
peB P1>po

where A denotes the dominating measure.
Claim: v > «. That is, the test ¢ is unbiased.
Proof of claim: Fix p € B. Then,

/ pd/\=/ pld/\—/ (p1 —p)dX
P1>Ppo P1>Po P1>Ppo

> / prd — [lpr = Pl
P1>Po

Z/ pl d)\ _ ||])1 _pOHTV
P1>po 2

which does not depend on p. Therefore,

v —a = inf / pd)x—/ Ppo dA
peB P1>Ppo P1>Ppo

_ lnf / pl dA _ le _pOHTV _ / pO dA
peB P1>Po 2 P1>Po

=lpr = poll.y/2 >0

Hence the proof of the claim. W

(2.10)
(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Back to main proof:

Define,
. 1 n
B, 1 T 0 > o
0 ow.
Theorem 2.2. Hoeffding’s inequality. Suppose X1,--- , X, are independent random variable such that
X; €10,1]. Then, for anyt >0
1< >
-y (X; —-EX;) <e 2.16
e r e > <o o

Note: This can be thought of as a finite sample version the CLT.

Using this theorem,

Eo®, = Py liZmz) > 21 (2.17)
=1
=Po l}l D (@) —Eo ¢l(y:) > ! ; a] (2.18)
=1
< e*QH(V*af/? _ e*”\lﬁl*?o”%v/g (2.19)
For proving (2.6), fix p € B. Then
By (1 @) =Py | -3 olyn) < (220)
L =1
=Py | -3 (00) ~ By 6(31)) > C3 —Epas(yl)] (2:21)
L =1
<Py % > (i) —Epb(yi) > 7; 71 (2.22)
L =1
< e*”“mfpoﬂ%v/g’ (2.23)

which does not depend on p. This completes the proof of the theorem. O
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2.3 Posterior consistency

Let X1,..., X, “'P where P is a probability measure (or model) and suppose X;’s are defined on (2, o7, P).
X = (Xy,...,X,) are defined on (Q", @™, P™) as X,’s are independent. Let & denotes the class of all
probability measures.

Quantity of interest: P . We further assume that P admits a density p.

True density: pg, distribution Py (the true data generating density).

Let d denotes a distance metric on &, and II a prior on 2. Define

B(po, ) := {p|d(po,p) < e}, (2.24)

a ball around pg of radius .

For any subset of densities B (that is, B C &), define the posterior as

_ Jp TIy ples) Ti(dp)

I,(B| X™) T T oo T (2.25)

€

Definition: Posterior consistency. 11, is said to be consistent at pg if for every ¢ > 0

IL,[B(po,e) | X™] =1 in ? (2.26)
There are two notions of convergence; namely,

)

(i) “Weak consistency” if the above convergence happens ‘in probability (i.p.)” under py.

(ii) “Strong consistency” if the above convergence happens ‘almost surely (a.s.)’ under pq.
Remark: (i) and (i) implies TT,, (- | X (™) A Ofpo} @.s. or i.p. under py.

Posterior consistency for parameterized densities. Suppose the density p considered in the above
setup is parameterized by 6 € O; that is, p = py.

Example 1. X4,..., X, w N(0,X). In this case § = X.

Example 2. X1,...,X, by N(p,I). In this case 0 = p.
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Now the d should be considered as a distance metric on © and II is a
prior on ©. We can similarly define a ball of radius € around 6, as

®
.‘lgﬁ B(6o,e) := {0 € ©d(6,0) < ¢}. (2.27)

Then 1II,, is said to be consistent at 0y if

IT,, [ B(o, €) | X(")} —1 a.s. or i.p. under pg,. (2.28)

3

Properties of point estimators. Suppose X1,..., X, i py (true value of 6 is 6y).

Goal: To come up with “point estimators” 0, depending on the posterior such that d(én, 0) — 0 a.s. or i.p.
under pg,. If

0, = /9 IL,, (d0 | X ™), (2.29)

then under additional assumptions apart from posterior counsistency, d(6,,6) — 0.

Theorem 2.3. Alternative point estimate. Suppose I1,,(-| X)) is consistent at 0y (with respect to (wrt)
d on ©). Let 0, be the center of the smallest ball in d that contains posterior mass at least 1/2. That is,

6, = argmin #,(6) (2.30)
0cO

where 7, (0) = inf{r | IL,(B(0,r) | X)) > 1/2}. Then d(6,,0) — 0 as n 1 oo a.s. (or i.p.) wrt pg,.

Proof. Fix € > 0. Then consistency of IL, (| X(”)) is at 0y implies that there exists ng = ng(e) € N such
that

I, (B(6p,e) | X™)>1/2  Vn>ng (2.31)

a.8. wrt pg,. So by definition of 7,(0), we get #,(0y) < € for all n > ng a.s. wrt pg,. Further, by definition
of 6,, we also get

Pn(0n) < (o) < e. (2.32)
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d Cén) 903
/) 6(§n)§"v\C§vD>
B(6, ;3‘“(99) fn( 61«)

JAIV\ (%0)

Now let us focus on the two balls B(6,,,7,(6,)) and B(o, 7, (60)) centered around 6, and 6y, respectively.
Because of the consistency condition of IL,(- | X(™)) at 6, the two balls should overlap. Therefore, using
(2.33) this implies that

d(0,0) < 7 (0,) + 70 (60) <26 ¥ 1n>ng (2.33)

a.s. wrt pg,. Since ¢ is arbitrary this completes the proof.



