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Review: Main message from the risk bound for posterior fractional posterior: show the prior gives ”enough”
mass to an appropriate KL-neighborhood of the truth,

Πn[B(θ∗, εn, θ0)] ≥ e−Cnε
2
n .

Next we check the prior mass condition.

10.1 Prior mass condition in the sparse context

Consider the true parameter θ0 ∈ `0[s; p] (nearly black vector). Let `0[s, p] = {θ ∈ Rp : #(1 ≤ i ≤ p : θi 6=
0) ≤ s}. Suppose θ ∼ Πn on Rp, we are interested in the lower bound of P [‖θ − θ0‖ < ε].

For the Gaussian regression model we have Bn(θ, εn, θ0) ⊃ {‖θ− θ0‖ < εn}. If θ0 ∈ `0[s, p], we want to show

P [‖θ − θ0‖ < ε] ≥ e−s log pcε,

where cε denotes some term involving log(1/ε).

Remark: For the sparse mean model, consider Y ∼ N(θ, Ip). The minimax rate for `0[s, p] in Euclidean
norm is 2s log(p/s).

Example. Consider θj
i.i.d.∼ N(0, 1). We can show that P [‖θ‖ < ε] ≤ e−Cp log(1/ε).

By Anderson inequality,

P (‖θ − θ0‖ < ε) ≤ P (‖θ‖ < ε) ≤ e−Cp.

The inequality holds since ‖θ‖ ∼ χ2
p. When p is large, the whole distribution shifts to the right side of real

line. As p increases, the CI can not contain the origin anymore.

Variable selection prior:

1. Pick subset K ∼ ΠK on {0, 1, 2, . . . , p}, ΠK can be uniform

2. Pick a subset S uniformly out of the
(
p
K

)
subsets of size K,

3. Set θj = 0 for any j ∈ Sc and θj ∼ g for j ∈ S,

where g is a density on R such as N(0, 1), Laplace, Cauchy.
Exercise: Suppose θj | w ∼ (1− w)δ0 + wg(·) and w ∼ U(0, 1). Find the marginal prior on θ and write it
as a subset prior.
Now we state the sketch of prior concentration for subset priors.
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Proof. Fix θ0 ∈ `0[s; p]. Let S0 denote the subset consisting of the non-zero parameters satisfying |S0| < s.

P [‖θ − θ0‖ < ε] ≥ P [‖θ − θ0‖ < ε | K = s, S = S0]P (K = s)P (S = S0 | K = s)

≥ 1

p+ 1

1(
p
s

) ≥ e− log(p+1) e−s log(pe/s) ≥ e−Cs log(p/s).

The second line above holds since

P [‖θ − θ0‖ < ε | K = s, S = S0] ≥ P (χ2
s < ε) e−‖θ0‖

2/2,

which does not depend on p. If s ≤ dp/2e, then (p/s)s ≤
(
p
s

)
≤ (pe/s)s. See [CV12] for more details.

Remark: Heavy tail g prior is needed to bound arbitrarily large θ0.

10.1.1 Global-local continuous shrinkage priors

Consider the global-local continuous shrinkage prior,

θj | λj , τ ∼ N(0, λ2
jτ

2)

λj
i.i.d.∼ f

τ ∼ g

Remark:

1. If λj ∼ exp (1/2) it corresponds to Bayesian lasso prior, where the marginal density p(θj) ≈ exp{−|θj |/(2τ)}.

2. The prior concentration of the Bayesian lasso is slightly better than the iid N(0, 1) priors (Bayesian
shrinkage). For Dirichlet-Laplace prior and horseshoe prior the contraction rate holds.

Sketch: Suppose θ0 ∈ `0[s; p], let S0 denote the sunset of non-zeros.

P [‖θ − θ0‖ ≤ ε] =

∫ ∞
0

P [‖θ − θ0‖ ≤ ε|τ ] g(τ)dτ

≥
∫ ∞

0

P

[ ∑
j∈S0

(θj − θ0j)
2 < ε/2 | τ

]
P

[ ∑
j∈Sc

0

θ2
j < ε/2 | θ

]
g(τ)dτ

≥
∫
τ∈[a/p,b/p]

P

[ ∑
j∈S0

(θj − θ0j)
2 < ε/2 | τ

]
P

[ ∑
j∈Sc

0

θ2
j < ε/2 | θ

]
g(τ)dτ,

Since ‖θ − θ0‖2 =
∑
j∈S0

(θj − θ0j)
2 +

∑
j∈Sc

0
θ2
j .

10.1.2 Extension of the theory to variational Bayes

Recall

q̂ = argmin
q∈Γ

D(q ||Πn,α(·|x(n)))
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where Γ denotes the variational family. Consider the mean field: q = q1 × q2 × · · · × qd.
Question: Does q̂ have the first order optimality (minimax rates)? (More details see [YPB17]).
How is it related to fractional?

D(q ||Πn,α) = −
∫
q(θ) log

Πn,α(θ)

q(θ)
dθ

=

∫
αγn(θ, θ0) q(θ)dθ +D(q||Π) + logmα.

Minimizing D(q ||Πn,α) is equivalent to minimizing
∫
αγn(θ, θ0) q(θ)dθ+D(q||Π). Since q(θ) ∝ Π(θ)1Bn(θ),

the problem is that q(θ) may not be in Γ. It cannot be written as the product of factors.

Main idea: For θ = (θ1, θ2), Find the rectangular subset of Bn such that Bn ⊇ N1 ×N2.

Theorem (for VB): Under certain conditions,
∫
D

(n)
α (θ, θ0)q̂(θ)dθ is of the order of the minimax rate,

variational point estimate is minimax optimal.
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