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Review: Main message from the risk bound for posterior fractional posterior: show the prior gives ”enough”
mass to an appropriate KL-neighborhood of the truth,

I1,[B(0", €n, 00)] > e~ Cnen.

Next we check the prior mass condition.

10.1 Prior mass condition in the sparse context

Consider the true parameter 6y € £y[s; p] (nearly black vector). Let fo[s,p] = {0 € RP : #(1 < i <p:0; #
0) < s}. Suppose 0 ~ II,, on RP, we are interested in the lower bound of P[||6 — 6y < €.

For the Gaussian regression model we have B, (6, €,,60) D {||0 — 0o|| < €, }. If Oy € lo[s, p], we want to show
P[[|6 — 6o]| < €] > e®18Pc,
where ¢, denotes some term involving log(1/e).

Remark: For the sparse mean model, consider Y ~ N(6,I,). The minimax rate for {y[s, p] in Euclidean
norm is 2slog(p/s).

Example. Consider 6, Lhgh N(0,1). We can show that P[||f]| < ¢] < e=CPlog(t/e),
By Anderson inequality,

Pl = 0ll <€) < P(l0]] <€) <™.

The inequality holds since ||0]] ~ X%. When p is large, the whole distribution shifts to the right side of real
line. As p increases, the CI can not contain the origin anymore.

Variable selection prior:

1. Pick subset K ~ IIx on {0,1,2,...,p}, Ik can be uniform
2. Pick a subset S uniformly out of the ( 112) subsets of size K,
3. Set 0; =0 for any j € S¢ and 0; ~ g for j € 5,
where g is a density on R such as N (0, 1), Laplace, Cauchy.
Exercise: Suppose 6; | w ~ (1 —w)dp + wg(-) and w ~ U(0,1). Find the marginal prior on 6 and write it

as a subset prior.
Now we state the sketch of prior concentration for subset priors.
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Proof. Fix 6y € {y[s; p]. Let Sy denote the subset consisting of the non-zero parameters satisfying |Sp| < s.

P[0 —6oll < € > P[l|0 — bol| < e | K = 5,8 = So] P(K = s) P(S = Sp | K = s)

s b L st —slos(e/s) 5 (—Cslos(v/s).
p+1(Y)

The second line above holds since
PlI0 0]l < €| K = 5,5 = So] = P(x2 < ) e 1%0lI*/2,

which does not depend on p. If s < [p/2], then (p/s)® < (?) < (pe/s)*. See [CV12] for more details.

Remark: Heavy tail g prior is needed to bound arbitrarily large 6.

10.1.1 Global-local continuous shrinkage priors

Consider the global-local continuous shrinkage prior,

9]' ‘ )\j,T ~ N(O, /\?7’2)

iid.
Aj~f

T~g
Remark:

1. If A\; ~ exp (1/2) it corresponds to Bayesian lasso prior, where the marginal density p(6,) ~ exp{—|0;|/(27)}.

2. The prior concentration of the Bayesian lasso is slightly better than the iid N(0, 1) priors (Bayesian
shrinkage). For Dirichlet-Laplace prior and horseshoe prior the contraction rate holds.

Sketch: Suppose 0y € £y[s; p|, let Sy denote the sunset of non-zeros.

P19 — 6o < = l/ P10 — 00| < elr] g(r)dr
0

AP
0 JE€So
/ €la/p,b/p] |:j€SO

Since [|0 — 6o]|> = > ies, (05 —00;)* + Zjesg 03

> (05— 00;)* < /2] T] P{ D07 <e/2] e} g()dr

jesg

(0, — 00;) < €/2] T] P{ > 07 <e/2] 9} g(T)dr

jess

10.1.2 Extension of the theory to variational Bayes

Recall
G = argmin D(q || TT,, o (-[=))
qgel
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where I' denotes the variational family. Consider the mean field: ¢ = ¢ X g2 X - -+ X qq.
Question: Does ¢ have the first order optimality (minimax rates)? (More details see [YPBI17]).
How is it related to fractional?

D(q || 0) = */q(@) log H’;*(Oéga) do

= /a'yn(ﬂ,ﬂo)q(e)dﬂJrD(qHH) + log mg.

Minimizing D(q || I,,o) is equivalent to minimizing [ av,(6,6y) ¢(0)d0 + D(q||IT). Since ¢(0) < I1()15, (),
the problem is that ¢(#) may not be in I'. It cannot be written as the product of factors.

Main idea: For 6 = (01, 65), Find the rectangular subset of B,, such that B, 2 N7 x Nj.

Theorem (for VB): Under certain conditions, fD&")(O,GO)(j(Q)dG is of the order of the minimax rate,
variational point estimate is minimax optimal.
References

[CV12] 1. CASTILLO and A. VAN DER VAART, ”Needles and straw in a haystack: Posterior concentration
for possibly sparse sequences,” The Annals of Statistics, 2012, pp. 2069-2101.

[YPB17] Y. YANG, D. PATI and A. BHATTACHARYA, ”a-Variational Inference with Statistical Guaran-
tees,” arXiv preprint arXiv:1710.03266, 2017.



