Lecture 10: April 2

Lecturer: Anirban Bhattacharya ${ }^{\mathcal{J}}$ Debdeep Pati
Scribes: scribe-names

Note: LaTeX template courtesy of UC Berkeley EECS dept \& CMU's convex optimization course taught by Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Review: Main message from the risk bound for posterior fractional posterior: show the prior gives "enough" mass to an appropriate KL-neighborhood of the truth,

$$
\Pi_{n}\left[B\left(\theta^{*}, \epsilon_{n}, \theta_{0}\right)\right] \geq e^{-C_{n} \epsilon_{n}^{2}}
$$

Next we check the prior mass condition.

10.1 Prior mass condition in the sparse context

Consider the true parameter $\theta_{0} \in \ell_{0}[s ; p]$ (nearly black vector). Let $\ell_{0}[s, p]=\left\{\theta \in \mathbb{R}^{p}: \#\left(1 \leq i \leq p: \theta_{i} \neq\right.\right.$ $0) \leq s\}$. Suppose $\theta \sim \Pi_{n}$ on \mathbb{R}^{p}, we are interested in the lower bound of $P\left[\left\|\theta-\theta_{0}\right\|<\epsilon\right]$.

For the Gaussian regression model we have $B_{n}\left(\theta, \epsilon_{n}, \theta_{0}\right) \supset\left\{\left\|\theta-\theta_{0}\right\|<\epsilon_{n}\right\}$. If $\theta_{0} \in \ell_{0}[s, p]$, we want to show

$$
P\left[\left\|\theta-\theta_{0}\right\|<\epsilon\right] \geq e^{-s \log p} c_{\epsilon}
$$

where c_{ϵ} denotes some term involving $\log (1 / \epsilon)$.
Remark: For the sparse mean model, consider $Y \sim N\left(\theta, I_{p}\right)$. The minimax rate for $\ell_{0}[s, p]$ in Euclidean norm is $2 s \log (p / s)$.
Example. Consider $\theta_{j} \stackrel{\text { i.i.d. }}{\sim} N(0,1)$. We can show that $P[\|\theta\|<\epsilon] \leq e^{-C p \log (1 / \epsilon)}$.
By Anderson inequality,

$$
P\left(\left\|\theta-\theta_{0}\right\|<\epsilon\right) \leq P(\|\theta\|<\epsilon) \leq e^{-C p}
$$

The inequality holds since $\|\theta\| \sim \chi_{p}^{2}$. When p is large, the whole distribution shifts to the right side of real line. As p increases, the CI can not contain the origin anymore.

Variable selection prior:

1. Pick subset $K \sim \Pi_{K}$ on $\{0,1,2, \ldots, p\}, \Pi_{K}$ can be uniform
2. Pick a subset S uniformly out of the $\binom{p}{K}$ subsets of size K,
3. Set $\theta_{j}=0$ for any $j \in S^{c}$ and $\theta_{j} \sim g$ for $j \in S$,
where g is a density on \mathbb{R} such as $N(0,1)$, Laplace, Cauchy.
Exercise: Suppose $\theta_{j} \mid w \sim(1-w) \delta_{0}+w g(\cdot)$ and $w \sim U(0,1)$. Find the marginal prior on θ and write it as a subset prior.
Now we state the sketch of prior concentration for subset priors.

Proof. Fix $\theta_{0} \in \ell_{0}[s ; p]$. Let S_{0} denote the subset consisting of the non-zero parameters satisfying $\left|S_{0}\right|<s$.

$$
\begin{aligned}
P\left[\left\|\theta-\theta_{0}\right\|<\epsilon\right] & \geq P\left[\left\|\theta-\theta_{0}\right\|<\epsilon \mid K=s, S=S_{0}\right] P(K=s) P\left(S=S_{0} \mid K=s\right) \\
& \geq \frac{1}{p+1} \frac{1}{\binom{p}{s}} \geq e^{-\log (p+1)} e^{-s \log (p e / s)} \geq e^{-C s \log (p / s)}
\end{aligned}
$$

The second line above holds since

$$
P\left[\left\|\theta-\theta_{0}\right\|<\epsilon \mid K=s, S=S_{0}\right] \geq P\left(\chi_{s}^{2}<\epsilon\right) e^{-\left\|\theta_{0}\right\|^{2} / 2}
$$

which does not depend on p. If $s \leq\lceil p / 2\rceil$, then $(p / s)^{s} \leq\binom{ p}{s} \leq(p e / s)^{s}$. See [CV12] for more details.

Remark: Heavy tail g prior is needed to bound arbitrarily large θ_{0}.

10.1.1 Global-local continuous shrinkage priors

Consider the global-local continuous shrinkage prior,

$$
\begin{aligned}
\theta_{j} \mid \lambda_{j}, \tau & \sim N\left(0, \lambda_{j}^{2} \tau^{2}\right) \\
\lambda_{j} & \stackrel{\text { i.i.d. }}{\sim} f \\
\tau & \sim g
\end{aligned}
$$

Remark:

1. If $\lambda_{j} \sim \exp (1 / 2)$ it corresponds to Bayesian lasso prior, where the marginal density $p\left(\theta_{j}\right) \approx \exp \left\{-\left|\theta_{j}\right| /(2 \tau)\right\}$.
2. The prior concentration of the Bayesian lasso is slightly better than the iid $N(0,1)$ priors (Bayesian shrinkage). For Dirichlet-Laplace prior and horseshoe prior the contraction rate holds.

Sketch: Suppose $\theta_{0} \in \ell_{0}[s ; p]$, let S_{0} denote the sunset of non-zeros.

$$
\begin{aligned}
P\left[\left\|\theta-\theta_{0}\right\| \leq \epsilon\right] & =\int_{0}^{\infty} P\left[\left\|\theta-\theta_{0}\right\| \leq \epsilon \mid \tau\right] g(\tau) d \tau \\
& \geq \int_{0}^{\infty} P\left[\sum_{j \in S_{0}}\left(\theta_{j}-\theta_{0 j}\right)^{2}<\epsilon / 2 \mid \tau\right] P\left[\sum_{j \in S_{0}^{c}} \theta_{j}^{2}<\epsilon / 2 \mid \theta\right] g(\tau) d \tau \\
& \geq \int_{\tau \in[a / p, b / p]} P\left[\sum_{j \in S_{0}}\left(\theta_{j}-\theta_{0 j}\right)^{2}<\epsilon / 2 \mid \tau\right] P\left[\sum_{j \in S_{0}^{c}} \theta_{j}^{2}<\epsilon / 2 \mid \theta\right] g(\tau) d \tau
\end{aligned}
$$

Since $\left\|\theta-\theta_{0}\right\|^{2}=\sum_{j \in S_{0}}\left(\theta_{j}-\theta_{0 j}\right)^{2}+\sum_{j \in S_{0}^{c}} \theta_{j}^{2}$.

10.1.2 Extension of the theory to variational Bayes

Recall

$$
\hat{q}=\underset{q \in \Gamma}{\operatorname{argmin}} D\left(q \| \Pi_{n, \alpha}\left(\cdot \mid x^{(n)}\right)\right)
$$

where Γ denotes the variational family. Consider the mean field: $q=q_{1} \times q_{2} \times \cdots \times q_{d}$. Question: Does \hat{q} have the first order optimality (minimax rates)? (More details see [YPB17]). How is it related to fractional?

$$
\begin{aligned}
D\left(q \| \Pi_{n, \alpha}\right) & =-\int q(\theta) \log \frac{\Pi_{n, \alpha}(\theta)}{q(\theta)} d \theta \\
& =\int \alpha \gamma_{n}\left(\theta, \theta_{0}\right) q(\theta) d \theta+D(q \| \Pi)+\log m_{\alpha}
\end{aligned}
$$

Minimizing $D\left(q \| \Pi_{n, \alpha}\right)$ is equivalent to minimizing $\int \alpha \gamma_{n}\left(\theta, \theta_{0}\right) q(\theta) d \theta+D(q \| \Pi)$. Since $q(\theta) \propto \Pi(\theta) \mathbb{1}_{B_{n}}(\theta)$, the problem is that $q(\theta)$ may not be in Γ. It cannot be written as the product of factors.

Main idea: For $\theta=\left(\theta_{1}, \theta_{2}\right)$, Find the rectangular subset of B_{n} such that $B_{n} \supseteq \mathcal{N}_{1} \times \mathcal{N}_{2}$.

Theorem (for VB): Under certain conditions, $\int D_{\alpha}^{(n)}\left(\theta, \theta_{0}\right) \hat{q}(\theta) d \theta$ is of the order of the minimax rate, variational point estimate is minimax optimal.

References

[CV12] I. Castillo and A. van der Vaart, "Needles and straw in a haystack: Posterior concentration for possibly sparse sequences," The Annals of Statistics, 2012, pp. 2069-2101.
[YPB17] Y. Yang, D. Pati and A. Bhattacharya, ${ }^{\prime} \alpha$-Variational Inference with Statistical Guarantees," arXiv preprint arXiv:1710.03266, 2017.

