Frontiers of Statistics: Contraction theory for posterior distributions
 Spring 2019

 Lecture 1: February 19

 Lecturer: Anirban Bhattacharya & Debdeep Pati

 Scribes: Satwik Acharyya

Note: LaTeX template courtesy of UC Berkeley EECS dept & CMU's convex optimization course taught by Ryan Tibshirani.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Introduction

We'll consider the high dimensional set up here. The data set is denoted with the usual notation x and θ denotes corresponding high (or infinite) dimensional parameter.

$$\begin{aligned} x \mid \theta, \lambda &\sim f(x \mid \theta) \\ \theta \mid \lambda &\sim \pi(\theta \mid \lambda) \\ \lambda &\sim p(\lambda) \end{aligned}$$

Here λ is the hyper-parameter. Now the marginal posterior distribution of θ is given as $\pi(\theta|x) = \int \pi(\theta, \lambda|x) d\lambda$. Posterior mean is defined as $\hat{\theta} = \int \theta \pi(\theta|x) d\theta$. For the whole course, we are going to denote the true data generating parameter as θ_0 . Ideally, we want $\pi(.|x)$ to "concentrate" around θ_0 as sample size increases.

Comment 1: In high dimensional set up, we make subjective assumptions on priors because objective choice of prior is difficult in that scenario.

Comment 2 : Bernstein von Mises theorem states that the posterior distribution takes a asymptotic normal shape in case of regularized parameter model. To prove similar kind of results, more assumptions are required in high dimensional set up.

Question: How well does the posterior mean $(\hat{\theta})$ perform in "recovering" the true data generating parameter θ_0 ? First we need to define a loss function or distance function to answer the recovery rate of a parameter.

Notation : $d(\hat{\theta}, \theta_0)$: Measures distance between estimator & true value of the parameter.

For posterior mean, at the least we want $E_{\theta_0}(\hat{\theta}, \theta_0) \to 0$ as $n \to \infty$ where E_{θ_0} denotes the expectation under true parameter θ_0 . We are also going to focus on the convergence rate of $E_{\theta_0}(\hat{\theta}, \theta_0)$ towards 0. The notion of fast convergence is discussed through fundamental information theoretic lower bound.

Definition: We say ϵ_n to be the minimax rate w.r.t. loss function d & parameter space Θ if

$$\inf_{\hat{\theta}} \sup_{\theta \in \Theta} E_{\theta}(\hat{\theta}, \theta) \asymp \epsilon_n$$

Comment: Infimum is taken over all estimators of θ and maximum risk is considered over the space Θ . $E_{\theta}(\hat{\theta}, \theta)$ represents the risk of the estimator $\hat{\theta}$. A particular estimator $\tilde{\theta}$ is said to attain the minimax lower bound if $\sup E_{\theta}(\hat{\theta}, \theta) \simeq \epsilon_n$.

Notation : $a_n \simeq b_n \Rightarrow 0 < c_1 < a_n/b_n < c_2 \forall$ large n.

Example : (Sparse Mean Estimation)

Suppose $Y \mid \mu \sim N_n(\mu, I_n)$ and μ is sparse which means $\mu \in l_0[s; n] = \{\theta \in \mathbb{R}^n : \text{at most s coordinates are non-zero}\}$. Now the distance from sparse mean estimator is provide by

$$d(\hat{\mu},\mu) = \frac{||\hat{\mu} - \mu||^2}{n} = \frac{1}{n} \sum_{i=1}^n [\hat{\mu}_i - \mu_i]^2.$$

The minimax lower bound is of the order $\frac{s}{n}\log(\frac{n}{s})$.

Comment 1: First we are going to discuss about the log term in the minimax rate. Consider an example where we know that first s coordinates are non zero and rest of the coordinates are zero which means $\mu_1 \neq \cdots \neq \mu_s \neq 0$ and $\mu_{s+1} = \cdots = \mu_n = 0$. The corresponding estimator is provided below.

$$\hat{\mu}_{j} = \begin{cases} Y_{j}, & \text{if } j = 1, \dots, s \\ 0, & \text{if } j = s + 1, \dots, n \end{cases}$$
$$d(\hat{\mu}, \mu) = \frac{||\hat{\mu} - \mu||^{2}}{n} = \frac{s}{n}$$

The logarithmic term appears because of not knowing the location of sparsity. Combinatorial price is adjusted in logarithmic order.

Comment 2: Minimax rate is adaptive to s. It gives us the minimax rate without knowledge of s.

Question : What will be the minimax rate in case of miss specified model ?

Ans : We usually assume that the models are correct in case of determining the minimax rate.

Next we are going to talk about distances and divergences between probability measures. Let P and Q are the probability measures with densities $p = dP/d\mu$ and $q = dQ/d\mu$ w.r.t. dominating measure μ .

1. Hellinger Distance :

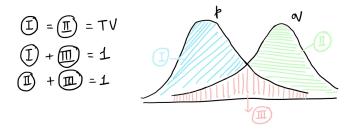
$$h(p,q) = h^2(p,q)^{\frac{1}{2}}$$

$$h^2(p,q) = \frac{1}{2} \int (\sqrt{p} - \sqrt{q})^2 d\mu = 1 - \int \sqrt{pq} d\mu = 1 - A(p,q)$$

Hellinger Affinity = $A(p,q) = \int \sqrt{pq} d\mu$ Comment : $0 \le h(p,q) \le 1$.

2. Total Variation Distance :

$$|| p - q ||_{TV} = \sup_{\text{B:Borel set}} |P(B) - Q(B)| = \frac{1}{2} \int |p - q| d\mu$$
$$\int_{p>q} (p - q) d\mu = \int_{q>p} (q - p) d\mu = 1 - \int \min(p, q) d\mu$$



Comment : $0 \leq || p - q ||_{TV} \leq 1.$

3. Kullback Leibler Divergence :

$$D(p \mid\mid q) = \int p \log\left(\frac{p}{q}\right) d\mu$$

Example : $p \equiv N(0, 1)$ and $q \equiv N(0, 1)$

$$|| p - q ||_{TV} = 2\Phi\left(\frac{\mu}{2}\right) - 1$$
$$|| p - q ||_{TV} = \begin{cases} 1, & \text{if } \mu = \pm\infty\\ 0, & \text{if } \mu = 0 \end{cases}$$
$$D(p || q) = \frac{\mu^2}{2}$$
$$D(p || q) = \begin{cases} 0, & \text{if } \mu = 0\\ \infty, & \text{if } \mu = \infty \end{cases}$$

Inequalities

$$|| p - q ||_{TV}^2 \lesssim h^2(p,q) \lesssim || p - q ||_{TV}$$

$$h^2(p,q) \lesssim D(p || q) \lesssim h^2(p,q) \left[1 + \log || p/q ||_{\infty} \right]$$
(1.1)

Notation : $a \leq b$ mean $a \leq Cb$ for a positive constant C.

Product Measures Now we are are going to define product measures and establish their connection to distance measures.

 $p = p_1 \bigotimes \cdots \bigotimes p_m \& p(y_1, \dots, y_m) = \prod_{i=1}^m p_i(y_i) \text{ similarly } q = q_1 \bigotimes \cdots \bigotimes q_m \& q(y_1, \dots, y_m) = \prod_{i=1}^m q_i(y_i).$

$$D(p || q) = \sum_{i=1}^{m} D(p_i || q_i)$$

Example : $p \equiv N(\mu, I_m)$ and $q \equiv N(0, I_m) \Rightarrow D(p \mid\mid q) = \sum_{i=1}^m \mu_i^2/2 = \mid\mid \mu \mid\mid^2 /2.$

$$|| p - q ||_{TV} \le \sum_{i=1}^{m} || p_i - q_i ||_{TV}$$
$$h^2(p,q) = 1 - A(p,q) = 1 - \prod_{i=1}^{m} A(p_i,q_i) = 1 - \prod_{i=1}^{m} [1 - h^2(p_i,q_i)] \le \sum_{i=1}^{m} h^2(p_i,q_i)$$

1.2 Hypothesis Testing and error rates

Let $y_1, \ldots, y_n \stackrel{\text{iid}}{\sim} p$. We are going to set up simple null vs simple alternative test which is $H_0: p = p_0$ vs $H_1: p = p_1$. Let

$$\Phi_n(y_1, \dots, y_n) = \begin{cases} 1, & \text{if } \prod_{i=1}^n \frac{p_1(y_i)}{p_0(y_i)} > 1\\ 0, & \text{ow} \end{cases}$$

The cut off is arbitrarily considered as 1. Our area of interest will be of type-I and type-II error rates. **Theorem 1.1.** Under previously mentioned set, we can obtain exponential rates for type-I and type-II error.

$$E_{p_0}[\Phi_n] \le e^{-Cnh^2(p_0,p_1)}$$
$$E_{p_1}[1 - \Phi_n] \le e^{-Cnh^2(p_0,p_1)}$$

Proof.

$$\begin{split} E_{p_0}[\Phi_n] &= P_{p_0}\left[\prod_{i=1}^n \frac{p_1(y_i)}{p_0(y_i)} > 1\right] = P_{p_0}\left[\prod_{i=1}^n \sqrt{\frac{p_1(y_i)}{p_0(y_i)}} > 1\right] \\ &\leq E_{p_0}\left(\prod_{i=1}^n \sqrt{\frac{p_1(y_i)}{p_0(y_i)}}\right) = \left\{E_{p_0}\left(\prod_{i=1}^n \sqrt{\frac{p_1(y_i)}{p_0(y_i)}}\right)\right\}^n = \{A(p_0, p_1)\}^n \\ &= e^{n\log A(p_0, p_1)} = e^{n\log(1-h^2(p_0, p_1))} \leq e^{-nh^2(p_0, p_1)} \end{split}$$