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1.1 Introduction

We’ll consider the high dimensional set up here. The data set is denoted with the usual notation x and θ
denotes corresponding high (or infinite) dimensional parameter.

x | θ, λ ∼ f(x | θ)
θ | λ ∼ π(θ | λ)

λ ∼ p(λ)

Here λ is the hyper-parameter. Now the marginal posterior distribution of θ is given as π(θ|x) =
∫
π(θ, λ|x)dλ.

Posterior mean is defined as θ̂ =
∫
θπ(θ|x)dθ. For the whole course, we are going to denote the true data

generating parameter as θ0. Ideally, we want π(. | x) to “concentrate” around θ0 as sample size increases.

Comment 1 : In high dimensional set up, we make subjective assumptions on priors because objective
choice of prior is difficult in that scenario.

Comment 2 : Bernstein von Mises theorem states that the posterior distribution takes a asymptotic normal
shape in case of regularized parameter model. To prove similar kind of results, more assumptions are required
in high dimensional set up.

Question : How well does the posterior mean (θ̂) perform in “recovering” the true data generating parameter
θ0? First we need to define a loss function or distance function to answer the recovery rate of a parameter.

Notation : d(θ̂, θ0) : Measures distance between estimator & true value of the parameter.

For posterior mean, at the least we want Eθ0(θ̂, θ0)→ 0 as n→∞ where Eθ0 denotes the expectation under

true parameter θ0. We are also going to focus on the convergence rate of Eθ0(θ̂, θ0) towards 0. The notion
of fast convergence is discussed through fundamental information theoretic lower bound.

Definition : We say εn to be the minimax rate w.r.t. loss function d & parameter space Θ if

inf
θ̂

sup
θ∈Θ

Eθ(θ̂, θ) � εn

Comment : Infimum is taken over all estimators of θ and maximum risk is considered over the space Θ.
Eθ(θ̂, θ) represents the risk of the estimator θ̂. A particular estimator θ̃ is said to attain the minimax lower

bound if sup
θ∈Θ

Eθ(θ̂, θ) � εn.

Notation : an � bn ⇒ 0 < c1 < an/bn < c2 ∀ large n.
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Example : (Sparse Mean Estimation)

Suppose Y | µ∼Nn(µ, In) and µ is sparse which means µ ∈ l0[s;n] = {θ ∈ Rn : at most s coordinates are non-zero}.
Now the distance from sparse mean estimator is provide by

d(µ̂, µ) =
|| µ̂− µ ||2

n
=

1

n

n∑
i=1

[µ̂i − µi]2.

The minimax lower bound is of the order s
n log(ns ).

Comment 1 : First we are going to discuss about the log term in the minimax rate. Consider an example
where we know that first s coordinates are non zero and rest of the coordinates are zero which means
µ1 6= · · · 6= µs 6= 0 and µs+1 = · · · = µn = 0. The corresponding estimator is provided below.

µ̂j =

{
Yj , if j = 1, . . . , s

0, if j = s+ 1, . . . , n

d(µ̂, µ) =
|| µ̂− µ ||2

n
=
s

n
The logarithmic term appears because of not knowing the location of sparsity. Combinatorial price is adjusted
in logarithmic order.

Comment 2 : Minimax rate is adaptive to s. It gives us the minimax rate without knowledge of s.

Question : What will be the minimax rate in case of miss specified model ?

Ans : We usually assume that the models are correct in case of determining the minimax rate.

Next we are going to talk about distances and divergences between probability measures. Let P and Q are
the probability measures with densities p = dP/dµ and q = dQ/dµ w.r.t. dominating measure µ.

1. Hellinger Distance :

h(p, q) = h2(p, q)
1
2

h2(p, q) =
1

2

∫
(
√
p−√q)2dµ = 1−

∫
√
pqdµ = 1−A(p, q)

Hellinger Affinity = A(p, q) =
∫ √

pqdµ
Comment : 0 ≤ h(p, q) ≤ 1.

2. Total Variation Distance :

|| p− q ||TV = sup
B:Borel set

| P (B)−Q(B) |= 1

2

∫
| p− q | dµ∫

p>q

(p− q)dµ =

∫
q>p

(q − p)dµ = 1−
∫

min(p, q)dµ

Comment : 0 ≤|| p− q ||TV≤ 1.
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3. Kullback Leibler Divergence :

D(p || q) =

∫
plog

(
p

q

)
dµ

Example : p ≡ N(0, 1) and q ≡ N(0, 1)

|| p− q ||TV = 2Φ

(
µ

2

)
− 1

|| p− q ||TV =

{
1, if µ = ±∞
0, if µ = 0

D(p || q) =
µ2

2

D(p || q) =

{
0, if µ = 0

∞, if µ =∞

Inequalities

|| p− q ||2TV. h2(p, q) .|| p− q ||TV

h2(p, q) . D(p || q) . h2(p, q)

[
1 + log || p/q ||∞

]
(1.1)

Notation : a . b mean a ≤ Cb for a positive constant C.

Product Measures Now we are are going to define product measures and establish their connection to
distance measures.

p = p1

⊗
· · ·
⊗
pm & p(y1, . . . ym) =

∏m
i=1 pi(yi) similarly q = q1

⊗
· · ·
⊗
qm & q(y1, . . . ym) =

∏m
i=1 qi(yi).

D(p || q) =

m∑
i=1

D(pi || qi)

Example : p ≡ N(µ, Im) and q ≡ N(0, Im) ⇒ D(p || q) =
∑m
i=1 µ

2
i /2 =|| µ ||2 /2.

|| p− q ||TV≤
m∑
i=1

|| pi − qi ||TV

h2(p, q) = 1−A(p, q) = 1−
m∏
i=1

A(pi, qi) = 1−
m∏
i=1

[1− h2(pi, qi)] ≤
m∑
i=1

h2(pi, qi)

1.2 Hypothesis Testing and error rates

Let y1, . . . , yn
iid∼ p. We are going to set up simple null vs simple alternative test which is H0 : p = p0 vs

H1 : p = p1. Let

Φn(y1, . . . , yn) =

1, if

n∏
i=1

p1(yi)

p0(yi)
> 1

0, ow
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The cut off is arbitrarily considered as 1. Our area of interest will be of type-I and type-II error rates.

Theorem 1.1. Under previously mentioned set, we can obtain exponential rates for type-I and type-II error.

Ep0 [Φn] ≤ e−Cnh
2(p0,p1)

Ep1 [1− Φn] ≤ e−Cnh
2(p0,p1)

Proof.

Ep0 [Φn] = Pp0

[ n∏
i=1

p1(yi)

p0(yi)
> 1

]
= Pp0

[ n∏
i=1

√
p1(yi)

p0(yi)
> 1

]

≤ Ep0
( n∏
i=1

√
p1(yi)

p0(yi)

)
=

{
Ep0

( n∏
i=1

√
p1(yi)

p0(yi)

)}n
= {A(p0, p1)}n

= enlogA(p0,p1) = enlog(1−h2(p0,p1)) ≤ e−nh
2(p0,p1)


