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1 Objective

Expectation propagation [3] aims to provide tractable approximations to complex proba-
bility density functions of the form

ppxq9
T
ź

i“1

ψipxq (1)

where ψipxq are called factors or compatibility functions. Note that the form in (2) is
similar to the one in Forney style factor graph [1]. Densities of the form (2) appear in the
context of Bayesian inference

πnpθq9πpθq
n
ź

i“1

fpxi | θq (2)

where πn is the posterior obtained with π as the prior and fpx | θq as the likelihood.
Similar to variational approximation, the approximating family is restricted to a class

of probability distributions and a proper divergence measure is chosen to obtain the best
approximation. Unlike variational inference, EP solves the optimization problem

q̂ :“ arg minqPΓDpp } qq, (3)

where Dpp } qq :“
ş

ppxq logtppxq{qpxqudx. In this note, we review algorithms to solve
(3) under appropriate assumptions on Γ. We also review connections of EP with Belief
propagation and Bethe free energy minimization in the context of probabilistic graphical
models.

2 EP algorithms

2.1 Γ is an exponential family

In this case, substantial simplifications can be made towards solving (3). Consider the
following parameterization of q

qpx | θq “ exp
 

xθ, tpxqy ´Apθq
(
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where θ is the natural exponential family and Ap¨q is the log-partition function. Then (3)
is equivalent to solving

θ̂ :“ arg maxθPΘ

ż

ppxq log qpx | θqdx

“ arg maxθPΘ

”

ż

xθ, tpxqyppxqdx´Apθq
ı

.

If Θ Ă Rp, a stationary equation of the above maximization problem is given by
ż

tpxqppxqdx “
BApθq

Bθ
“

ż

tpxqqpx | θqdx

which is equivalent to moment-matching. Note that in the above, we did not use the specific
form of the target function (2). In the following, we shall derive an iterative procedure
that aims to utilize this structure.

2.2 Special case: Assumed density filtering for parametric model fitting

One can iteratively refine the solution by choosing qpx, θ1q to best approximate the first
compatibility function ψ1pxq in the sense

θ1 “ arg minθDpψ1pxq } qpx; θqq.

The subsequent approximates are obtained as

θi “ arg minθDpψipxqqpx; θi´1q } qpx; θqq,

Intuitively, the algorithm first approximates ψ1pxq by qpx; θ1q and then approximates
ψ2pxqqpx; θ1q by qpx; θ2q and so on. While approximating this cascading product may
be preferable to constructing independent approximates to each term, it has the undesir-
able property of being very sensitive to the order in which the compatibility terms are
processed.

2.3 EP algorithm: Assumed density filtering for fitting a factor graph
to another factor graph

Instead of fitting parametric family, we assume

qpxq9
T
ź

i“1

t̃ipxq.

So the problem (3) is equivalent to minimizing

D
!

śT
i“1 ψipxq

Z0

›

›

›

śT
i“1 t̃ipxq

Z

)
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Starting with an initial value of t̃ipxq for i “ 1, . . . , T , we run through the following. For
fixed i, we remove the effect of the factor t̃ipxq from q forming the cavity distribution,

qzipxq “
qpxq

t̃ipxq
. (4)

and update the factor t̃ipxq by

arg minq D
!qzipxqψipxq

Z0i

›

›

›
qpxq

)

.

We rename this operation using the projection operation

q̂pxq “ projtqzipxqψipxqu. (5)

Then update t̃i by an anti-cavitating operation:

t̃new
i pxq “ Ki

q̂pxq

qzipxq
(6)

where the coefficient K is determined by multiplying both sides of (6) by qzipxq

ż

t̃new
i pxqqzipxq “ Ki

ż

q̂pxqdx “ Ki. (7)

The division operation in (4) amounts to subtracting natural parameters for exponential
family. The projection operation (5) is an M -projection operation in information geometry
[2]. The projection is equivalent to matching the sufficient statistics of t̃ipxqq

zipxq to those of
tipxqq

zipxq. In particular for Gaussian t̃ipxq, matching the sufficient statistics is equivalent
to matching the zeroth, first and the second moments. Thus

Ki “

ż

t̃new
i pxqqzipxqdx “

ż

ψipxqq
zipxqdx “ Z0i. (8)

3 Summary of the algorithm

Input: πpxq “
ś

i ψipxq.

Desired output: Approximation for Z0 “
ş
ś

i ψipxqdx.

Approximator: qpxq9
ś

i t̃ipxq.

Initialization:

1. Initialize all factors t̃ipxq
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2. Initialize the EP approximation qpxq “
ś

i t̃ipxq

Iterate until convergence of Ẑ0:

1. Choose a factor t̃ipxq to update

2. Construct cavity distribution according to (4): qzipxq “ qpxq

t̃ipxq
.

3. Construct the projection: q̂pxq “ projtqzipxqψipxqu, i.e., evaluate the new approxima-
tion q̂ by setting the sufficient statistics of q̂ equal to that of ψipxqq

zipxq and evaluate
Z0i “ Ki “

ş

ψipxqq
zipxqdx.

4. Construct updated factor according to (6): t̃new
i pxq “ Ki

q̂pxq

qzipxq

5. Compute Ẑ0 “
ş
ś

i t̃ipxqdx.

3.1 An example

Consider the clutter problem, where

ppx | θq “ p1´ πqNpx; θ, Iq ` πNpx; 0, aIq, x P Rd

where the goal is to recover the mean θ P Rd. We assume pa, πq to be known. A Bayesian in-
ference proceeds with specifying ppθq “ Npθ; 0, bIq and obtaining the posterior distribution
of θ from the Bayes theorem

ppθ | Dq9 ppθq
n
ź

i“1

ppxi | θq.

To apply EP, note that

ψ0pθq “ ppθq, ψipθq “ p1´ πqNpxi; θ, Iq ` πNpxi; 0, aIq, i “ 1, . . . , n.

We approximate the posterior distribution by qpθq “ Npθ;m, νIq, where we employ ADF
to find optimal values of the parameters m and ν. We assume that the factors take the
form

t̃ipθq “ siNpθ;mi, νiIq .

where we take si “ p2πνiq
d{2 so that t̃ipθq is unnormalized. Note that νi can be negative.

Next, note that the cavity distribution is given by

qzipθq “ Npθ;mzi, νziIq ,
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where mzi “ m`νziν´1
i pm´miq and pνziq´1 “ ν´1´ν´1

i . We also obtained an expression
for Z0i for i “ 1, . . . , n below.

Z0i “

ż

ψipθqq
zipθqdθ “

ż

Npθ;mzi, νziIqrp1´ πqNpxi; θ, Iq ` πNpxi; 0, aIqsdθ.

“ p1´ πqNpxi;m
zi, pνzi ` 1qIq ` πNpxi; 0, aIq

:“ p1´ πqZ
p1q
0i ` πZ

p2q
0i .

Now to perform the projection operation, we find the mean and variance of the density
Z´1

0i ψipθqq
zipθq.

qzipθqψipθq “ Z
p1q
0i p1´ πq

Npxi; θ, IqNpθ;m
zi, νziq

Z
p1q
0i

` πZ
p2q
0i

Npxi; 0, aIqNpθ;mzi, νziq

Z
p2q
0i

:“ Z
p1q
0i p1´ πqπ1ipθ | xiq ` πZ

p2q
0i π2ipθ | xiq.

where

π1ipθ | xiq ” N

"

θ;
νzixi `m

zi

νzi ` 1
,

νzi

νzi ` 1
I

*

, π2ipθ | xiq ” Npθ;mzi, νziq.

q̂pθq is then a Gaussian distribution with mean given by

m “ Z´1
0i Z

p1q
0i p1´ πq

”νzixi `m
zi

νzi ` 1

ı

` Z´1
0i Z

p2q
0i πNpxi; 0, aIqmzi,

“ π̂i

”νzixi `m
zi

νzi ` 1

ı

`mzip1´ π̂iq

“ mzi ` π̂i
νzi

νzi ` 1
pxi ´m

ziq,

where π̂i can be interpreted as the posterior exclusion probability of not being in the clutter,
given by

π̂i “
Z
p1q
0i p1´ πq

Z0i
.

Similarly, the variance is obtained as

ν “ νzi ´ π̂i
pνziq2

νzi ` 1
` π̂ip1´ π̂iq

pνziq2}xi ´m
zi}2

dpνzi ` 1q
.

Lemma 3.1. If p and q are the densities of Npµp, σ
2
pIq and Npµq, σ

2
qIq respectively, then

r “ p{q is proportional to Npµr, σ
2
rIq, where

pσ2
r q
´1 “ pσ2

pq
´1 ´ pσ2

q q
´1, µr “ µpσ

2
r pσ

2
pq
´1 ´ µqσ

2
r pσ

2
q q
´1

“ µpσ
2
rtpσ

2
r q
´1 ` pσ2

q q
´1u ´ µqσ

2
r pσ

2
q q
´1

“ µp ` σ
2
r pσ

2
q q
´1pµp ´ µqq.
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