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An asymptotic theory for weighted least-squares with weights 
estimated by replication 

BY RAYMOND J. CARROLL AND DAREN B. H. CLINE 

Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A. 


SUMMARY 

We consider a heteroscedastic linear regression model with replication. To estimate 
the variances, one can use the sample variances or the sample average squared errors 
from a regression fit. We study the large-sample properties of these weighted least-squares 
estimates with estimated weights when the number of replicates is small. The estimates 
are generally inconsistent for asymmetrically distributed data. If sample variances are 
used based on m replicates, the weighted least-squares estimates are inconsistent for 
m =2 replicates even when the data are normally distributed. With between 3 and 5 
replicates, the rates of convergence are slower than the usual square root of N. With 
m > 6  replicates, the effect of estimating the weights is to increase variances by 
(m -5)/(m -3), relative to weighted least-squares estimates with known weights. 

Some key words: Generalized least-squares; Heteroscedasticity; Regression; Replication. 

Consider a heteroscedastic linear regression model with replication: 

y . . = x T p + ~ ~ ~ ~( i = l ,  . . . ,  N ; j = l ,  . . . ,m). (1.1)r~ 

Here j? is a vector with p-components, and the E~ are independent and identically 
distributed random variables with mean zero and variance one. The heteroscedasticity 
in the model is governed by the unknown ai .  We have taken the number of replicates at 
each xi to be the constant m primarily as a matter of convenience. In practice, it is fairly 
common that the number of design vectors N is large while the number of replicates m 
is small. Our intention is to construct an asymptotic theory in this situation for weighted 
least-squares estimates with estimated weights. 

As a benchmark, let iwLsbe the weighted least-squares estimate with weights l/a:. 
Of course, since the ai are unknown this estimate cannot be calculated from data. If m 
is fixed and 

N 


SwLs=plim N-' zxixT/ a:, 
N-oo i = l  

then 

( N ~ ) ~ ( ~ W L S  (1.2)-P )  +N(O, S&S). 

One common method for estimating weights uses the inverses of the sample variances, 

The resulting weighted least-squares estimator will be denoted by bsv. 



This method is particularly convenient because it involves sending only the estimated 
weights to a computer program with a weighting option. The obvious question is whether 
is,is any good, and whether the inferences made by the computer program have any 
reliability. In 00 3 and 4, we answer both questions in the negative, at least for normally 
distributed data with less than 10 replicates at each x. In many applied fields this is 
already folklore (Garden, Mitchell & Mills, 1980). Yates & Cochran (1938) have a nice 
discussion of the problems with using the sample variances to estimate the weights. 

More precisely, for normally distributed data we are able to describe the asymptotic 
distribution of bSVfor every m. For >:,m this is an easy moment calculation and 
we show that psv is more variable than PwLsby a factor ( m-3)/(m -5). The same 
result was obtained by Cochran (1937) for the weighted mean. Not only is fisv inefficient, 
but if one uses an ordinary weighted regression package to compute fisv, the standard 
errors from the package will be too small by a factor exceeding 20% unless m 2 10. For 
example, if one uses m =6 replicates, the efficiency with respect to weighted least-squares 
with known weights is only f, and all estimated standard errors should be multiplied by 
J3 = 1.732. For m <5, we use the theory of stable laws and Cline (1988) to describe the 
asymptotic distributions. Perhaps the most interesting result here is that, if only duplicates 
( m=2) are used, weighted least-squares with estimated weights is not even consistent. 
The results are outlined in Table 1. 

Table 1. Summary of results when weights are inverses of sample variances based on m 
replicates 

Asymptotically Rate of Relative Standard error 
m Consistent? normal? convergence efficiency factor 

No No -

Yes No log N 
Yes No ~ 1 / 3  

Yes Yes Nil log N 
Yes Yes NI 
Yes Yes ~f 

Yes Yes NI 
Yes Yes N f  
Yes Yes NI 

Relative efficiency calculated with respect to weighted least-squares with known weights. Column standard 
error factor is number by which to multiply standard errors from a weighted least-squares package to obtain 
asymptotically correct standard errors. 

A second method for estimating weights is to use the linear structure of the means. 
Write p, for the unweighted least-squares estimate and define the average squared error 
estimate by 

The resulting weighted least-squares estimate will be denoted by i,,. 
A third method is the normal theory maximum likelihood estimate b,,, which is a 

weighted least-squares estimate with weights the inverse of 

This can be thought of as an iterated vergion of i,,. 
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These methods have been discussed in the literature for normally distributed errors. 
Bement & Williams (1969) use (1.3), and construct approximations, as m -, oo, for the 
exact covariance matrix of the resulting weighted least-squares estimate. They do not 
discuss asymptotic distributions as N -, oo with m fixed. Fuller & Rao (1978) use (1.4) 
while Cochran (1937) and Neyman & Scott (1948) use (1.5). Both find limiting distribu- 
tions as N - ,  oo for fixed m 2 3 ,  although the latter two papers consider only the case 
that xTp = p. 

One striking result concerns consistency. The estimates j,,, bELand j M L  are always 
consistent for symmetrically distributed errors but ge;erally n2t otherwise: see Theorems 
1 and 3. In O 5, we compute the limit distributions of PELand PML.The relative efficiency 
of the two is contrasted in the normal case for m 23, as follows. 

Remark 1. If ordinary least-squares isjess than 3 times more variable than weighted 
least-squares with known weights, then PELis more efficient than maximum likelihood. 

Remark 2. If ordinary least-squares is more than 5 times more variable than weighted 
least-squares with known weights, then maximum likelihood is more efficient. 

Further, for normally distributed data, maximum likelihood is more variable than 
weighted least-squares with known weights by a factor m / ( m-2). This means a tripling 
of variance for m = 3 even when using maximum likelihood. 

2. ASSUMPTIONS DECOMPOSITIONAND CANONICAL 

We will assume throughout that (xi, a , )  are independent and identically distributed 
bounded random vectors, distributed independently of the {e i j ) .We define zi = xi/ui and 
di= &,/ai.  For any weighted least-squares estimator with estimated weights Gi = I/#,  

Assuming they exist, we note that the asymptotic covariance of the weighted and 
unweighted least-squares estimators are, respectively, 

3. WEIGHTINGWITH SAMPLE VARIANCES 

In this section, we describe consistency and asymptotic normality for weighted least- 
@,, squares estimates with the weights being the inverse of sample variances. We first 

describe the general case assuming that sufficient moments exist. We then look more 
closely at the case of normally distributed observations. In this set-up, 

Define qjk = E(~{ld*:~)and q k  = E( J E ~ ( J / ~ ~ ~ ) .  
The first result indicates that we obtain consistency only when 

ql l= E ( ~ ~ / h t )= 0. 

This is true for symmetrically distributed data, but generally not otherwise. 



THEOREM1. (a) If v,, <co and vol<co, then 

so that consistency holds only if E(z) =0 or (3.1) holds. 
(b) If vjk<co for j s2, k s2 and (3-1) holds, then ( ~ m ) ~ ( b , ,-P )  is asymptotically 

N{O, m(7722/77:1)SG'LS). 

ProoJ: This follows from the weak law of large numbers and the central limit theorem. 

For normally distributed observations, the assumption that vjk <00 for j, k d 2 holds 
only if there are at least 6 replicates. In this case, we have the following corollary. 

COROLLARY1. Assume that the errors .sv are normally distributed. For m a 6 ,  
( ~ m ) ~ ( / & ,-P) is asymptotically N{O, (m -3)SGLs/(m -5)). 

Comparing with (1.2), we see that the effect of using m a 6  replicates to estimate 
sample variances causes an inflation of variance by the factor (m -3)/(m -5) over 
weighted least-squares with known weights. Even with m = 10, this results in a 40% 
increase in variance. 

If one uses a standard statistical package with weights l / s f ,  then the resulting standard 
errors will also be asymptotically incorrect. Such packages estimate the asymptotic 
covariance matrix of ( ~ m ) ~ ( f i , ,-P) by &$,g;hfLs, where 

N m 

&$, = (Nm -p)-' c c (y, -~ffi,,)~/s:;
i= ,  j=, 

If m > 6  and if :he data are normally distributed, then &gv converges in prob-
ability to ~ ( l l d f )= (m - l) /(m -3), while gwLs- (m - l)(m - ~ ) - ' S ~ ~ ~ ' O .Thus, 
(&$vi$Ls-sGLS)-f 0. Asymptotically, therefore, standard errors should be multiplied by 
{(m-3)/ (m -s ) )~ :see Table 1. 

In this section, we consider normally distributed data with m d 5 replicates and the 
weights being the inverses of the sample variances. Here Theorem 1 does not apply since 
gild^; does not have finite variance. The results here are based on Cline (1988). We first 
state a general result which may be of independent interest. The results for weighted 
least-squares, assuming normal errors, are then derived as a corollary. 

First, a few definitions are required. A positive function p is regularly varying with 
exponent p, denoted by p E ~ v ( p ) ,if p (y t ) /p ( t )  +y P  as t -,co for all y >0. 

Let (zi, ui, wi) be independent and identically distributed random variables with zi E R P  
independent of (ui, w,), ui with a symmetric distribution and wi >0. Define p , ( t )  = 
E{wI(w s t)) and p2(t)= E{(UW)~I(UWS t)). Let (c,,, c2,) be constants satisfying, as 
N j o o ,  N P I ( C I N ) / C I N ~1 and NP~(c~N)/c:N+1. 

If a,<1, then S,= Sl(a , )  will denote a positive stable random variable with Laplace 
transform E{exp (-tS,)) = exp {-I'(2 -a,)t"l/a,). If a, = 1 then S, = 1 almost surely. We 
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denote by S2= S2(a2)a symmetric stable random variable with characteristic function 

E {exp (its,)) =exp [-r(3 -a,) cos ( $ ~ a , ) ( t ( ~ 2 / { a ~ ( l-a2))]. 

Of course, if a, =2 then S, is standard normal. 

THEOREM2. Assume that p1E ~ v ( 1 -a , ) ,  p, E ~ v ( 2-a,) and that 

is asymptotically distributed as (Sl(al) ,S2(a2)).Suppose that, for some 6 >0 and all i, j, 
E ((z,IY)< for y =min (2, max (2a1,a,) +6). Then there exists Y2E RP, Y1p x ppositive-
dejinite, such that 

is asymptotically distributed as Y;' Y2. Further, for any b E R P, bTY1b and bTY2 have the 
same distributions, respectively, as 

Proof: Consider first the case a,< 1. From Theorem 1 of Cline (1988) we get 

is asymptotically distributed as ( Y,, Y,). In the case that a, = 1, then S1= 1 almost surely 
by Feller (1971, p. 236). From unpublished work of D. B. H. Cline and from Gnedenko 
& Kolmogorov (1954, p. 134), for each (j, k), 

N 

plim c;A zijzikwi= E (z,zik). 
i = l  

The convergence of the remaining terms, c& X ziuiwi,again follows from Theorem 1 of 
Cline (1988). 

In either case, convergence of the ratio bN follows. The limiting joint distribution is 
difficult to describe, but the stated marginal distributions of bTy1band bTy2can be 
inferred from Proposition 3 of Breiman (1965) and Theorem 3 of Maller (1981). One 
may also conclude that Y1 and Y2are independent if a, = 1, since then Y1 is degenerate. 
Also, Y1 and Y, are independent if a, =2, since then Y, is Gaussian, and for such limits 
the non-Gaussian stable component is always independent of the Gaussian component 
(Sharpe, 1969). 

Note that, in Theorem 2, Y, and Y2 are not necessarily independent unless a, = 1 or 
a, =2. In the former case, Y1=E(zzT) almost surely, while in the latter case Y, is 
normally distributed with mean zero and covariance E(zzT). 

These are the following special cases. 
If ( t / ~ , ) ~ l p r(w > t)  + 1 for y, >0, then we have the following: 

(i) if y1< 1, then a, = yl , clN = a l  { N / ( l - al))l'nl, and S1is positive stable; 
(ii) if y l = l ,  then a l = l ,  C 1 ~ = a l N 1 0 g N , a n dS 1 = l ;  

(iii) if y l > l ,  then a l = l ,  c lN=NE(w) ,and S1=l. 



If ( t la,)  Y2 pr (1uwl > t )  + 1 for y2>0, then we have the following: 
(i) if y, <2, then a, = y,, c,, = a2{N/(2-a2))'/"2, and S, is symmetric stable; 

(ii) if y, =2, then a, =2, c,, =2$a2N t  log N, and S, is normal; 
(iii) if y2 >2, then a, =2, c,, = N t ( E[ U W ( ~ ) ~ ,and S, is normal. 

Consider the case of normally distributed errors in model (1- l ) ,where we make the 
identifications zi =xila , ,  with E(zzT)= SWLS.Further, write 

m 
U .  = E .  = rn-' 

I I 2 EV, wi = (rn- 1)-' I: (E, -&)
j = 1  j= 1 

Of course, ui and wi are independent and ~ ( u f )<a.Set 

Then ( t l a ) "  pr (w > t )+  1, {t/(ab))" pr (luwl> t) + 1 and, if a > 1, E(w)  = a / ( a  - 1). 
With the indicated choices of c,, and c,,, Theorem 1 of Cline (1988) shows that (4.1) 
holds. Thus the conditions of Theorem 2 are met. 

COROLLARY2. In the normally distributed case, with S,,S,, Y, ,Y2as defined in Theorern 
2, we have the following cases. 

1Case 1 (rn =2): a,= a, =5 ,  and (gsv-P)  is asyrnptotically distributed as 
{r2(t>l(9.rr))yr' Y2. 

Case 2 (rn =3): a, = a, = 1, and log N(&- P )  is asyrnptotically distributed as 
{ 2 / ( 3 ~ ) ) ~y;' Y,. 

Case 3 (rn =4): a,= 1, a, =i, and N"~($~,- P )  is asyrnptotically distributed as 
2-i{r2($)/(18.rr))1/3Y;' Y,. 

Case 4 (rn =5): a ,  = 1, a, =2 and Nf/log N($,,-P) is asymptotically distributed as 
5-ty;' Y,. 

Case 5 (rn >6) is covered by Corollary 1. 

ProoJ In the notation of Theorem 2, b, = ( C , , / C ~ ~ ) ( $ ~ ~ - P )is asymptotically dis-
tributed as Y;' Y,. Thus, in each case it suffices to construct the constants (c,,, c,,). 

Case 1 (rn =2). Here a =i, c,, = ( 8 1 ~ )N 2  and c,, = {8T2(a)/(9.rr2))N2. 
Case 2 (rn =3) .  Here a = 1, c lN= N log N and c,, ={2 / (3~)} fN .  
Case 3 (rn =4).  Here a =;, c,, = 3 N  and c,, =2-t{3r2($)/(2.rr))1/3~2/3. 
Case 4 (rn = 5). Here a =2, c lN=2 N  and c,, = 2 ( 5 ) - 4 ~ tlog N. 

5. ESTIMATINGVARIANCES BY SAMPLE AVERAGE SQUARED ERRORS 

One might reasonably conjecture that making use of the known linear structure for 
the means results in improvements over using only sapple variances. We show that this 
is the case, at least for normally distributed data. Let Pobe any estimate of P, and define 

We denote by $, the weighted Aestimate*. with the estimated weights l/&:(io). As defined 
in the introducti?n, EELuses Po=PL,  the ordinary unweighted least-squares estimate, 
and iMLused Po=PML.Our results here rely on the consistency of j O ,  and two 
other reasonable moment conditions for rn large enough. Here are the assumptions. First 

A 

plim Po=P. (5.1) 
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For each c, >0, there exists c2>0 such that 

and such that 

In addition, we assume the finite existence of 

77jk = E { E { / d f k ( ~ ) ) ,Vlk = E { l E i l ' / d f k ( ~ ) )<00 ( j ,  k G 2). (5.4) 

The first result describes the consistency of 6,. 
THEOREM3. Assume (5-1)-(5.4).Then 

A 

Thus PG is consistent only if v l l=0 or E ( z )=0. Further, as N +a, 

where 
N 

plim AN = 7701SWLS,bN = N-;  z l . F i / d f ( ~ ) ,plim C N  = 277,,SWLs. 
i = l  

Proof: Since the {z,)  are bounded, the assumptions make possible the usual Taylor's 
series argument leading to (5.6) and (5.5) is an immediate consequence of (5.6). 

Assuming consistency of the maximum likelihood estimator, we can compute the limit 
distributions of iELand i,,. 

THEOREM4. Make the assumptions of Theorem 3, with the { E ~ , )  being symmetrically 
distributed. 

(a) Let V ,= E ( x x T )  and V2= E ( u 2 x x T )be jinite and positive-dejinite. Let S i l  = 
V;' V2V,'. Then with 6, chosen as the unweighted least-squares estimate, ( ~ m ) ~ ( ; , ,-P )  
is asymptotically N ( 0 ,  SZ; ) ,  where 

S - 1E L  --m(7722/77il){(l+4~21)S;hi:S+47722S~~)-

(b) With Bo=iML,the maximum likelihood estimate, then ( ~ r n ) ! ( p , ,-p )  is asymptoti-
cally N ( 0 ,  & I L ) ,  where 

Proof: Parts (a) and (b) follow easily from Theorem 3, Slutsky's theorem and the fact 
that ( ~ m ) $ ( i ,-P )  is asymptotically N ( 0 ,  S,'). 

COROLLARY3. For normally distributed observations with m 2 3, ( ~ m ) ~ ( f i , ,-p ) and 
( N m ) ' ( i E L-P )  are asymptotically normally distributed with respective covariances 

{ ( m- 2 ) } ~ ~ ,( ( 1  +2m-' -8m-2)SGLs+4m-2~, ' ) .  

Proof: B y  direct calculation (Fuller & Rao, 1978), = m / ( m  -2 ) ,  7721 = l / m  and 
7722 = l l ( m  -2). 

As noted by Fuller & Rao (1978), the asymptotic covariance of kELconsists of a 
mixture of the weighted least-squares covariance SGLsand the unweighted least-squares 



covariance Sit .Comparing PIEL with the maximum likelihood estimate PIML depends on 
how much bigger S,' is than S&. Detailed calculations verify Remarks 1 and 2 of § 1. 
Thus, doing iterative weighted least-squares may actually hurt, unless the starting value 
PIL is sufficiently bad. 

Our results can be summarized as follows. 

(i) If nothing is known about the structure of the sample variances, then none of the 
common weighted estimates can be assumed to be consistent for data from an asymmetric 
distribution. 

(ii) Using sample variances as a basis for estimating weights is inefficient unless the 
number of replicates m is fairly large, e.g. m 3 10. 

(iii) Using sample average squared errors from a preliminary fit to the regression 
function as a basis for estimating weights is typically more efficient than using sample 
variances. However, even here a fair number of replicates is helpful. For example, the 
maximum likelihood estimate for normally distributed data based on 6 replicates still 
has standard errors approximately 20% larger than ordinary weighted least-squares theory 
would suggest. 

There are at least two other methods for estimating the weights. The first is to model 
the variances parametrically, for example a,= (Carroll & Ruppert,a ( x T ~ ) ~  1987; 
Davidian & Carroll, 1987). The second is to perform a nonparametric regression of (1.3) 
and (1.4) against the predictors and use this regression to estimate the weights (Carroll, 
1982). 
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