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Abstract 

When considering the stability of a nonlinear time series, verifying aperiodicity, irreducibility and smoothness of the 
transitions for the corresponding Markov chain is often the first step. Here, we provide reasonably general conditions 
applicable to nonlinear autoregressive time series, including many with nonadditive errors. (~) 1998 Elsevier Science B.V. 
All rights reserved 
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1. Introduction 

Suppose V C ~m and {~t} is a V-valued nonlinear autoregressive time series o f  order p,  defined by 

~, = ~(et;¢,-1 . . . .  ,¢ , -p ) ,  t>~l, (1.1) 

where ~ is Borel measurable and { e t }  is an i.i.d, sequence of  random variables in some space I:, with 
distribution F and independent of  the initial state X0 = (¢0 . . . . .  ~ l -p) .  Thus {¢/} is embedded in a Markov 
chain { X t }  on X = Y P with 

X t  = (~t . . . .  , ~ t - p + l ) ,  t>~O. (1.2) 

Having embedded the time series into a Markov chain, we are interested in whether the chain is irreducible, 
or aperiodic or has smooth transitions (as does a Feller chain). Knowing these properties hold may make it 
possible or easier to establish other properties, such as the stability o f  the time series. For example, papers 
on the stability o f  a nonlinear time series typically start by assuming aperiodicity and irreducibility. 

For time series with additive errors, establishing aperiodicity and irreducibility is often as simple as looking 
at the error distribution. Having a continuous density, positive on ~m, for example, suffices and the chain 
will also be strong Feller in that case. However, in a nonlinear time series the error often is not additive. Its 
variance could depend on the current state as in conditionally heteroscedastic (ARCH) models and bilinear 
models, or it could be involved in a very nonlinear way as in the mixture transition distribution (MTD) 
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models of  Le et al. (1996). With the increasing popularity of nonlinear time series modeling, there is also 
increased interest in fitting general, even nonparametric, models and in moving away from such simplifying 
assumptions as additivity. 

In the present paper, we avoid assuming the model has additive errors. Specifically, we provide relatively 
general, but simple to check, conditions for aperiodicity, ~k-irreducibility and T-continuity (the last of which 
we define precisely below). Results and examples are in Section 2 and proofs are in Section 3. 

We follow standard notation and terminology for a time homogeneous Markov chain {Xt} on a topological 
space X and with transition kernel P(x,A) = Px(A). The Borel class of sets for X is denoted ~ ( X )  and a 
kernel T is any function on X × ~ ( X )  such that T(.,A) is measurable for all A E ~ ( X )  and T(x,.) is a 
measure for all x E X. When conditioning on the initial state we will indicate expectations so: 

Ex( . )  = E( . IX0 = x) .  

We assume the reader is familiar with the definitions of small sets, aperiodicity and ~,-irreducibility. If not, 
the topics are thoroughly covered by Meyn and Tweedie (1993) whose notation and definitions we adopt. 
The notions of T-continuity and petite sets are perhaps less well known so we provide their definitions here. 

Definition 1.1. Assume {Xt} is a Markov chain on a locally compact, separable and metrizable space X. The 
chain is a T-chain (or is T-continuous) if there exists a kernel T and a probability distribution {a,} on the 
nonnegative integers such that 

(i) T(x,X) > 0 for all x E X, 
(ii) T(.,A) is lower semicontinuous for all A E ~ ( X )  and 

(iii) ~-~.~=oanPn(x,A)>~T(x,A) for all x E X, A E ~(X) .  

Note that, like irreducibility and aperiodicity, T-continuity may be determined by a sufficiently smooth 
component of the transition kernel rather than of the kernel itself. Thus, T-continuity generalizes the notion 
of a strong Feller chain but is more useful than the weak Feller property. In particular, it relates the topology 
of X to the behavior of the chain. T-continuity also appears to be just the right assumption for studying 
stability results (cf. Meyn and Tweedie, 1993). 

A key concept for T-chains is that of the so-called petite sets, defined next. 

Definition 1.2. A set A E ~ ( X )  is petite if there exists a nontrivial measure v on ~ ( X )  and a probability 
distribution {an} on the nonnegative integers such that 

oo 

Z anPn(x,B)~v(B) for all x E A,B E M(X). 
n = 0  

If each compact set in X is petite then {X~} is a T-chain and if (Xt} is a if-irreducible T-chain then all 
relatively compact sets are petite (Meyn and Tweedie, 1993, Theorem 6.2.5). Showing T-continuity typically 
involves, in essence, showing that all compact sets are petite. However, some important and possibly non- 
compact sets are also petite, as we will show. For ~-irreducible aperiodic chains, petite sets are the same as 
small sets (cf. Meyn and Tweedie, 1993, Theorem 5.5.7). Identifying particular petite sets or small sets is a 
critical step in establishing stability (e.g., ergodicity) of the Markov chain. 

2. Results and examples 

Our own stability results (Cline and Pu, 1997a,b, 1998) assume that {Xt} is an aperiodic, ~-irreducible 
T-chain. Chan (1993) discusses this assumption for models with additive errors. We will provide simple 
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ways for determining this without assuming the model has additive errors. Meyn and Tweedie (1993, Ch. 7) 
present a general control model approach, but their conditions require a high degree of smoothness and are 
therefore somewhat more stringent and difficult to check than are ours. Included with the proofs in Section 3 
are lemmas for proving ~b-irreducibility and T-continuity for general Markov chains. 

First, we require some notation and assumptions, essentially to ensure the transition kernel has a Lebesgue 
component. 

Assumption 2.1. (i) Y and ~_ are open subsets of  R m, and ~ = YP. Let I~E and kt× be Lebesgue measure 
on ~_ and ~, respectively. 

(ii) F has a nontrivial Lebesgue component Fa with density f .  
(iii) For fixed x E YP, ~(.;x) : ~: ~ Y is I-1, onto and continuous. Its inverse, denoted by ( - ( . ;x ) ,  is 

differentiable and has Jacobian denoted by J(.; x). 

Remark. For consistency, the "current" state x comes first in kernels such as P(x,A) or T(x,A), but in other 
functions we have placed it second, behind a semicolon as in ~(.;x) and J( . ;x) .  

Given the situation in Assumption 2.1, there are two simple but separate conditions each of which will give 
the result we want. The first assumes more about ~ (continuity in x) while the second assumes more about 
f .  We state these in Theorem 2.2. A more general version of the second condition is given in Theorem 2.3 
after the examples. 

Theorem 2.2. Assume {Xt} is defined by (1.1) and (1.2) and Assumption 2.1 holds. Each of  the followin9 
conditions implies {At} is aperiodic, ~k-irreducible and T-continuous. 
(i) ((u; .) is continuous on ~ a.e.Ot~), f is positive a.e.(#~) and J is locally bounded on Y × ~. 

(ii) f o ~-  and J are each bounded away from 0 on compact sets of  Y x ~. 

The second part of Theorem 2.2 probably gives the most useful, easily stated assumption for nonparamet- 
ricaUy defined models, since it requires little of (. Chan (1993) proves a special case of this for models with 
additive noise. On the other hand, the first case in Theorem 2.2 will apply for some parametric models such 
as the amplitude dependent exponential autoregressive models (EXPAR) (Jones, 1976; Ozaki and Oda, 1978; 
cf. also Tong, 1990) and the Gaussian mixture transition distribution models of  Le et al. (1996). 

Also, note that since all three properties (aperiodicity, ~O-irreducibility and T-continuity) may be determined 
from a component of  the transition kernel one does not necessarily have to know the density f precisely in 
order to check the conditions of the theorems. An appropriate lower bound on that density will suffice. 

Example 2.1. Let Y : ~ = ~".  Consider the nonlinear autoregressive model 

~, = a(~,_ l . . . . .  ~,_ p) + b(~,_ 1 . . . . .  ~,- p)et. 

Both conditionally heteroscedastic (ARCH) model (Engle, 1982; Gu6gan and Diebolt, 1994) and bilinear 
models (Granger and Andersen, 1978) are of this form. (See also Tong, 1990.) Assume a : ~pm ~ ~m is 
locally bounded, b(x) is an invertible m x m matrix for each x E ~pm such that both b(x) and b-J(x) are locally 
bounded and et has density f which is positive everywhere on Era. Note that ( - ( . ; x )  --- b- l (x ) (  • - a ( x ) )  and 
J ( . ;x )  = det(b-J(x)). If  a and b are continuous then {(~t . . . . .  ~t--p+l)} is an aperiodic 0-irreducible T-chain 
by Theorem 2.2(i). The same conclusion holds, by Theorem 2.2(ii), if  f is locally bounded away from 0. 

Example 2.2. In Example 2.1, only the variance of the noise term depends on the current state. In a self- 
exciting threshold (SETAR) model, however, the distribution of the noise term may depend on which of  several 
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regions the current state is in. A model which incorporates this is 

~t = a ( i t - I  . . . . .  i t - p )  + b ( i t - I  . . . . .  i t -p)Ff-(et)  if ¢t-I  E Rj, (2.1) 

where a and b are as in Example 2.1, et has uniform (0,1) distribution, { R I  . . . .  ,Rk} partitions •m, and 
Fl . . . . .  Fk are probability distributions with positive densities f l  . . . . .  fk.  Clearly, if the conditions referred to 
in Example 2.1 hold with f = f j  for each j then the Markov process associated with (2.1) is aperiodic, 
~k-irreducible and T-continuous. 

Example 2.3. A mixture version of (1.1) would be 

it = (i(et; i t - l  . . . . .  i t -p )  w.p. Pi, 

where pi > 0, i = 1 . . . . .  k and Pl + " "  + Pk = 1. This is a general, and possibly nonparametric, version of 
the MTD models (cf. Le et al., 1996). If  F and some ~i, 1 <,<i<~k, satisfy the conditions of either Theorem 
2.2(i) or 2.2(ii) then the conclusion of that theorem will hold. This is so since only a component of the 
transition distribution needs to be sufficiently smooth. Such (i could be as in Example 2.1 or 2.2 above. 

The next theorem is a generalization of the second part of Theorem 2.2. 

Theorem 2.3. Assume {Xt} /s defined by (1.1)-(1.2) and Assumption 2.1 holds. For x = (xl . . . . .  Xp) and 
x* = (Xp+l . . . . .  X2p), define 

P 

g(x;X*)  = H J ( X k ; X k + l , . . . , X k + p ) f ( ( ~ ( X k ; X k + l , . . . , X k + p ) ) .  
k = l  

(2.2) 

I f  there exists a nonempty open set G C X and for each y E ~ there exists an open By C ~( such that 
y E By and 

inf g(x;x*) > 0 for almost all x E G 
x* EBy 

then {Xt} is aperiodic, ~-irreducible and T-continuous. 

The function # in (2.2) is essentially the transition density (or a component of it) for Xp, given X0 = x*. 
The behavior of 9 is critical since the dimension of the error space n: is typically less than that of the state 
space X and studying only the one-step transition P(x,.)  usually does not suffice. 

To show only that {Xt} is a T-chain, one may weaken the conditions slightly. For part (i) of Theorem 
2.2, the condition that f is positive a.e. is not needed for T-continuity. For Theorem 2.3 (which includes 
Theorem 2.2(ii)), the open set G may depend on y. 

If f is not positive almost everywhere (e.g., has compact support), it may still be possible to verify 
~k-irreducibility. Let T be the kernel defined by 

T(x*,A) = f a(x;x*)dx, 

define K ---- ~ i~t  2-iTi and let k(x;x*) be the corresponding kernel density. To prove ~k-irreducibility (as well 
as T-continuity), the assumption f is positive almost everywhere in Theorem 2.2(i) may be replaced with 
k(.; x) is positive almost everywhere for each x. Likewise, if k replaces 9 in Theorem 2.3, both ~,-irreducibility 
and T-continuity are assured. 
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In case m = p = 1 and the process is real-valued with additive noise, specific conditions for T-continuity 
may be formulated depending on the discontinuities of the autoregression function. The next result illustrates 
how these conditions can range from one extreme to another. 

Corollary 2.4. Assume X = ~_ = ~ and 

~t = a( ~t-~ ) + e~ 

where et has density f .  Define 

co(x) = lim sup ]a(xl) - a(x2)[. 
/~0 qx~ -xl <,~ 

Any one of  the following is sufficient for {it} to be a T-chain. 
(i) a is continuous on ~. 

(ii) For each x E ~, co(x) < go and there exists an interval Ix of  length greater than co(x) on which f is 
bounded away from O. 

(iii) For each x E ~, the set of  limit points of  a at x is finite, co(x) < c~ and there exists an open interval 
Ix o f  length greater than co(x) such that every open interval in lx contains a nonempty subinterval on 
which f is bounded away from zero. 

(iv) The set of  discontinuities of  a is locally finite, the set of  limit points of  a at each x E ~ is finite and 
f is positive everywhere. 

(v) a is locally bounded and f is locally bounded away from O. 

With the additional condition, of course, that f is positive almost everywhere the model in Corollary 2.4 
is aperiodic and ~b-irreducible. 

We observed earlier that for ~O-irreducible T-chains, compact sets are petite. Petiteness of a set, however, 
is a characteristic of the continuity properties of the chain and as such is defined by the chain. In particular, 
certain noncompact sets associated with the chain can be petite. This is described in our final result. 

Theorem 2.5. Suppose {At} is a ~k-irreducible T-chain on X, a closed subset of  ~pm. Suppose also 

At = a(At_, ) + fl(e,;At-1 ), 

where u(x) is locally bounded and, for some r > O, 

sup Ex(lifl(et;x)l[ r) < go for all M < cxD. 
I Ix(x)ll ~<M 

Then {x : II~(x)[I <M} is petite for every finite M. 

(2.3) 

The observation that {x : II~(x)ll ~<M} is petite makes it possible to construct better criteria for ergodicity 
or recurrence of the process (Cline and Pu, 1997a). 

3. Proofs 

Recall from Definition 1.1 that showing T-continuity requires finding a nontrivial kernel T for which 
T(.,A) is lower semicontinuous for all A E ~ (X) .  The lemma given next is useful for identifying a lower 
semicontinuous kernel. 
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Lennna 3.1. Assume X is a locally compact, separable metrizable space, T : X x ~ ( X )  ---, [0, 1] is a kernel 
and It is a measure on X which is bounded on compact sets. I f  
(i) for each e > 0 and compact Kz,K2 there is 6 > 0 such that i f  A C K2 and It(A) < 6 then SUpycr ~ T(y,A) 

< e, and 
(ii) T(., O) is lower semicontinuous for all (relatively compact) open sets O, then T(.,A) is lower semicon- 

tinuous for all A E ~ (X) .  

Proof. Note that ;K is also topologically complete (cf. Ash, 1972, Theorem A.9.12). Let C be a compact 
subset of ~.  For some open et and compact K2, we have C C A C K 2 .  Fix x E X and choose KI to be a 
compact set containing a neighborhood of x. Given e > 0, let 6 be as in (i). Also there exists an open set O 
such that C c O c A  and It(OC c) < 6. Hence, 

lim inf T(y, C) >>. lira inf T(y, O) - e 
y-'~x y--~x 

t> r ( x ,  o )  - e 

>>. T(x, C) - e. 

It follows that T(., C) is lower semicontinuous for every compact C. 
By standard arguments (cf. Ash, 1972, Corollary 4.3.7 and Theorem 4.3.8), T(.,A) is lower semicontinuous 

for all A E ~ (X) .  [] 

Remark. The conditions in Lemma 3.1 are not any stronger than we need them to be. They are obviously 
satisfied when T(x,A) = s(x)it(A), where s is a positive continuous function on X and It is a nontrivial 
measure defined on ~ (X) .  But in fact if {Xt} is a ~k-irreducible T-chain then it is always possible to choose 
such a kernel T and to have it also satisfy Definition 1.1(iii) (Meyn and Tweedie, 1993, Proposition 6.2.6). 

Next is the lemma we use to verify the chain is aperiodic and ~-irreducible. 

Lemma 3.2. Suppose {Xt} is a T-chain on a locally compact, separable metrizable space X. Suppose there 
exists a positive integer k and a kernel I", such that 

(i) T,(x,A)<~Pk(x,A) for all x E X and A E ~ (X) ,  
(ii) T,(.,A) is lower semicontinuous for all A E ~ ( X ) ,  and 

(iii) there exists x* E ~ such that T,(x, O) > 0 for any x E X and open set 0 containing x*. 
Then {Xt} is aperiodic and ~k-irreducible. 

Proof. To show irreducibility we will follow the argument in Meyn and Tweedie (1993, Proposition 6.2.1) 
and then extend it to show aperiodicity. Suppose A E ~ ( X )  is such that T,(x*,A) > 0. By (ii), there exists 
an open set O1 such that x* E O1 and 

T,(y ,A)  > ½T,(x*,A) for all y E Oj. 

Since T,(y, Ol ) > 0 by (iii), for any y E X, we have 

P2k(y'A) >1 __fOl T,(x,A)T,(y,  dx) 

>>. ½T,(x*,A)V,(y, 01) > 0. (3.1) 

This shows {Xt} is ~/-irreducible with irreducibility measure T,(x*, .) (cf. Meyn and Tweedie, 1993, Ch. 4). 
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In addition, T.(x*,Ol)  > 0 and T.( . ,OI)  is lower semieontinuous so there exists an open set 02 which 
contains x* and for which 

T,(y, O1) > ½T,(x*,Ol) for all y E 02. 

Using (3.1), we obtain 

pZk(y,A)> - 1 • • ~.~T.(x ,O~)T.(x ,A) for all y E O2, A E ~ (X) ,  (3.2) 

and therefore Oz is a small set (cf. Meyn and Tweedie, 1993, Ch. 5). 
Likewise, PT.(.,  01 ) is lower semicontinuous and 

PT.(x*,O1) = f T.(y, Ol)P(x*,dy)  > 0 

so there exists an 03 C 02 such that x* E 03 and 

PT.(y,  Oi) > ½PT,(x*, O1) for all y E 03. 

Furthermore, by repeating the argument for (3.2), 

I * * PZk+l(y,A)>~-~PT.(x ,O1)T,(x ,A) for all y E 03, A E ~ (X) .  (3.3) 

From (3.2) and (3.3) it follows that 03 is small and that {Xt} is aperiodic (Meyn and Tweedie, 1993, 
Theorem 5.4.4). [] 

Proof  of Theorem 2.2. (i) We use the notation as in (2.1): x = (xl . . . . .  Xp) and x* = (Xp+l,... ,XZp), where 
xi E Y. With this notation and given X0 = x*, we have 

Xl = (~(el ;X*),Xp+l . . . . .  XZp--l). 

Define 

T(x*,A) = flA((~(U;X*),Xp+t,...,X2p_I))f(u)du for x* C K, A E ~ ( ~ ) ,  (3.4) 

where 1A(-) is the indicator function over A. By Assumption 2.1(ii), P(x*,A)>~ T(x*,A), and thus 

Pk(x*,A)>~Tk(x*,A) for all k,x*,A. 

Let /~Ep be Lebesgue measure on ~:P. For w = (w~ . . . . .  wp) E ~_P, recursively define 

(p(W; X* ) = ~(Wp; Xp+l . . . . .  X2p), 

~p-l(W'~X*) = ( (Wp- l ;  ~p(W;X*),Xp+I . . . . .  X2p-I ), 

: ( 3 . 5 )  

~I(W;X*) ~--- ~(W1; ~2(W;X*) . . . . .  ~p(W'~X*),Xp+ 1 ). 

Now fix e > 0, x E ~ and choose 6 > 0 so that ~tE~(B) < 6 implies 

p 
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Let Kz,Kz be compact subsets of X. For x* E Kl,x E K2 there exists M < ec such that 

P 

I I  J(xk; xk+l ..... xk+p) <~M. 
k=l 

Let A be a relatively compact set in ~ (X)  such that A CKz and #×(A) < 6/M. Define 

B = {w ~ n:p : ( ~ ( w ; x * )  . . . . .  ~p(W;X*)) ~.4}. 

Thus, if x* E K1 then 

(3.6) 

P 
I.t~,(B) =- ~ H J(xk;xk+l ..... Xk+p)dx 

k=l 

<~ M#×(A) < 

and therefore, 

TP(x*'A) = [ IA((1 . . . .  (w,x ),...,~p(w,x ) ) d w  
JE P 

P P 

= L l - I f ( w k ) d w <  e for a l l x * E K l .  
k=l 

This verifies condition 3.1(i) for the kernel TP and the measure/~×. 
Let A be open in ?(. By assumption (i), {y E ~ : ~(u; y) E A} is open a.e.(Fa) and therefore 1/t(~(u; .)) 

is lower semicontinuous a.e.(Fa). It follows, by Fatou's lemma, that T(.,A) is lower semicontinuous and by 
similar reasoning that TP(.,.4) is lower semicontinuous. Since A is an arbitrary open set, we have verified 
condition 3.1(ii) for the kernel T p and it follows from Lemma 3.1 that TP(.,.d) is lower semicontinuous for 
all A E ~(X).  Thus {Xt} is a T-chain. 

By Assumption 2.1(iii), the vector ((p(.;x*) . . . .  ,(~(.;x*)) defined in (3.5) is a 1-1, onto and continuous 
mapping of Ep to •. Therefore, if A is an open and nonempty subset of ~ then B defined in (3.6) is also 
open and nonempty. Since f is positive a.e., 

P / .  

T P ( x * , A ) =  [ _ H f ( W k ) d w  > O. 
dB k=l 

By Lemma 3.2, {Xt} is aperiodic and ~k-irreducible. 
(ii) This follows from Theorem 2.3 as a special case. [] 

Proof  of  Theorem 2.3. From the definition of T in (3.4) we have 

T P ( x * ' A )  = fA g ( x ; x * ) d x .  

Define 

Ty(.,A) = 18..(.) [ inf g(x;x*)dx. (3.7) 
" JA x* EBy 

For fixed A the integral is a constant and By is open and so Ty(.,A) is lower semicontinuous. Borrowing an 
argument from Meyn and Tweedie (1993, Proposition 6.2.4), let {yi} be a countable set of points in • such 
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~ B  c¢ that I,,Ji:l y = X and let T, = ~--~t=l 2-iTv, • Then T,(.,A) is lower semicontinuous for each A E ~ ( X )  and 

PP(y,A)>~TP(y,A)>~T,(y,A) for all y E X, A E ~(X) .  

Therefore, {At} is a T-chain. 
Furthermore, for any open set O intersecting G and any y E X, 

o c  / .  

~-"2-ilB, (y) ] inf g(x;x*)dx > O. T.(y,O) 
~...Id J O ~:* C:: Bvi 
i = 1  

So by Lemma 3.2, {Xt} is aperiodic and ~b-irreducible. [] 

Proof of Corollary 2.4. Cases (i), (ii) and (v) are direct consequences of the T-chain part of Theorems 2.2 
and 2.3. Case (iv) is proved in a manner analogous to Theorem 2.3. See Pu (1995) for proofs. Case (iii) 
also follows from Theorem 2.3 and we provide its proof here: 

Fix y and let al < a2 < . ' .  < ak be the limit points of a at y (including a(y) itself). Since ly has length 
greater than og(y), there exist q and c so that the intervals Hi = (q - ai - c , q  - ai + c) are all in Iy and are 
disjoint. Choose open Jj C Hi so that f is bounded away from 0 on Jl. Now, recursively for j = 2 . . . .  , k 
choose open Jj CJj-1 +aj-I - a j  (since Jj-1 +aj-t  - a j C H j )  so that f is bounded away from 0 on Ji. By 
this construction, we have Jk + ak - aj c Jj for each j.  

Let Gy be the middle third of Jk + ak and let e be the length of Gy. Choose 6 so that Ix* - Yl < 6 implies 
[a(x*)-a] ] < e for some j and let By  : ( y - f , y + 6 ) .  Therefore, x E Gv and x* E By  implies x-a(x*)  E Jj 
for some j.  Hence, if x E Gy, 

inf g(x;x*)= inf f ( x - a ( x * ) )  
x* CB, x* CB,. 

>~ rain inf f ( u ) > O. 
j uEJj  

As remarked following Theorem 2.3, this suffices to show T-continuity. [] 

Proof of Theorem 2.5. Given M < ~ choose KM > sup/I~(x)I[~< M Ex([IXl[lr) ,  which is finite by (2.3). Thus, 
by Markov's inequality 

inf Px([]XI[I<~KM) > O. 
ql~x)ll<M 

Since C = {x : []xl] <~KM} is compact, it is petite (Meyn and Tweedie, 1993, Theorem 6.2.5). Therefore, 
D -- {x: II~(x)ll <M} is petite (Meyn and Tweedie, 1993, Proposition 5.5.40)). [] 
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