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Abstract

When considering the stability of a nonlinear time series, verifying aperiodicity, irreducibility and smoothness of the
transitions for the corresponding Markov chain is often the first step. Here, we provide reasonably general conditions
applicable to nonlinear autoregressive time series, including many with nonadditive errors. © 1998 Elsevier Science B.V.
All rights reserved
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1. Introduction

Suppose Y C R™ and {&,} is a Y-valued nonlinear autoregressive time series of order p, defined by

&E=8esdimr,. . 6—p), 21, (1.1)

where { is Borel measurable and {e;} is an ii.d. sequence of random variables in some space E, with
distribution F and independent of the initial state Xo = (&o,...,¢1—,). Thus {£} is embedded in a Markov
chain {X,} on X = Y?” with

X =%ty C—py1), 20, (1.2)

Having embedded the time series into a Markov chain, we are interested in whether the chain is irreducible,
or aperiodic or has smooth transitions (as does a Feller chain). Knowing these properties hold may make it
possible or easier to establish other properties, such as the stability of the time series. For example, papers
on the stability of a nonlinear time series typically start by assuming aperiodicity and irreducibility.

For time series with additive errors, establishing aperiodicity and irreducibility is often as simple as looking
at the error distribution. Having a continuous density, positive on R”, for example, suffices and the chain
will also be strong Felier in that case. However, in a nonlinear time series the error often is not additive. Its
variance could depend on the current state as in conditionaily heteroscedastic (ARCH) modeis and bilinear
models, or it could be involved in a very nonlinear way as in the mixture transition distribution (MTD)
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models of Le et al. (1996). With the increasing popularity of nonlinear time series modeling, there is also
increased interest in fitting general, even nonparametric, models and in moving away from such simplifying
assumptions as additivity.

In the present paper, we avoid assuming the model has additive errors. Specifically, we provide relatively
general, but simple to check, conditions for aperiodicity, y-irreducibility and T-continuity (the last of which
we define precisely below). Results and examples are in Section 2 and proofs are in Section 3.

We follow standard notation and terminology for a time homogeneous Markov chain {X;} on a topological
space X and with transition kernel P(x,4) = P,(A4). The Borel class of sets for X is denoted #(X) and a
kernel T is any function on X x #(X) such that T(-,4) is measurable for all 4 € #(X) and T(x,-) is a
measure for all x € X. When conditioning on the initial state we will indicate expectations so:

E(-) = E(:|Xo = x).

We assume the reader is familiar with the definitions of small sets, aperiodicity and y-irreducibility. If not,
the topics are thoroughly covered by Meyn and Tweedie (1993) whose notation and definitions we adopt.
The notions of I'-continuity and petite sets are perhaps less well known so we provide their definitions here.

Definition 1.1. Assume {X;} is a Markov chain on a locally compact, separable and metrizable space X. The
chain is a T-chain (or is T-continuous) if there exists a kernel 7 and a probability distribution {a,} on the
nonnegative integers such that

(1) T(x,X) > 0 for all x € X,

(ii) T(-,A) is lower semicontinuous for all 4 € #(X) and
(ili) Yoo anP"(x,A)=T(x,4) for all x € X, 4 € B(X).

Note that, like irreducibility and aperiodicity, 7-continuity may be determined by a sufficiently smooth
component of the transition kernel rather than of the kernel itself. Thus, T-continuity generalizes the notion
of a strong Feller chain but is more useful than the weak Feller property. In particular, it relates the topology
of X to the behavior of the chain. T-continuity also appears to be just the right assumption for studying
stability results (cf. Meyn and Tweedie, 1993).

A key concept for T-chains is that of the so-called petite sets, defined next.

Definition 1.2. A set 4 € #(X) is petite if there exists a nontrivial measure v on %(X) and a probability
distribution {a,} on the nonnegative integers such that

> a,P"(x,B)>¥(B) for all x € 4,B € B(X).
n=0

If each compact set in X is petite then {X;} is a T-chain and if {X;} is a y-irreducible T-chain then all
relatively compact sets are petite (Meyn and Tweedie, 1993, Theorem 6.2.5). Showing T-continuity typically
involves, in essence, showing that all compact sets are petite. However, some important and possibly non-
compact sets are also petite, as we will show. For y-irreducible aperiodic chains, petite sets are the same as
small sets (cf. Meyn and Tweedie, 1993, Theorem 5.5.7). Identifying particular petite sets or small sets is a
critical step in establishing stability (e.g., ergodicity) of the Markov chain.

2. Results and examples

Our own stability results (Cline and Pu, 1997a,b, 1998) assume that {X;} is an aperiodic, y-irreducible
T-chain. Chan (1993) discusses this assumption for models with additive errors. We will provide simple
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ways for determining this without assuming the model has additive errors. Meyn and Tweedie (1993, Ch. 7)
present a general control model approach, but their conditions require a high degree of smoothness and are
therefore somewhat more stringent and difficult to check than are ours. Included with the proofs in Section 3
are lemmas for proving i-irreducibility and T-continuity for general Markov chains.

First, we require some notation and assumptions, essentially to ensure the transition kernel has a Lebesgue
component.

Assumption 2.1. (i) Y and E are open subsets of R™, and X = YP. Let ur and px be Lebesgue measure
on E and X, respectively.

(ii) F has a nontrivial Lebesgue component F, with density f.

(iii) For fixed x € Y*, {(;x): E — Y is I-1, onto and continuous. Its inverse, denoted by [~ (:;x), is
differentiable and has Jacobian denoted by J(-;x).

Remark. For consistency, the “current” state x comes first in kernels such as P(x,4) or T(x,A4), but in other
functions we have placed it second, behind a semicolon as in {(-;x) and J(-;x).

Given the situation in Assumption 2.1, there are two simple but separate conditions each of which will give
the result we want. The first assumes more about { (continuity in x) while the second assumes more about
f. We state these in Theorem 2.2. A more general version of the second condition is given in Theorem 2.3
after the examples.

Theorem 2.2. Assume {X,} is defined by (1.1) and (1.2) and Assumption 2.1 holds. Each of the following
conditions implies {X,} is aperiodic, y-irreducible and T-continuous.

(i) {(u; ") is continuous on X a.e.(ug), f is positive a.e.(ur) and J is locally bounded on Y x X.

(ii) f ol and J are each bounded away from 0 on compact sets of Y x X.

The second part of Theorem 2.2 probably gives the most useful, easily stated assumption for nonparamet-
rically defined models, since it requires little of {. Chan (1993) proves a special case of this for models with
additive noise. On the other hand, the first case in Theorem 2.2 will apply for some parametric models such
as the amplitude dependent exponential autoregressive models (EXPAR) (Jones, 1976; Ozaki and Oda, 1978;
cf. also Tong, 1990) and the Gaussian mixture transition distribution models of Le et al. (1996).

Also, note that since all three properties (aperiodicity, y-irreducibility and T-continuity) may be determined
from a component of the transition kernel one does not necessarily have to know the density f precisely in
order to check the conditions of the theorems. An appropriate lower bound on that density will suffice.

Example 2.1. Let Y = £ = R™. Consider the nonlinear autoregressive model
&=al-1,... »S—p)+ b1, ét—p)eh

Both conditionally heteroscedastic (ARCH) model (Engle, 1982; Guégan and Diebolt, 1994) and bilinear
models (Granger and Andersen, 1978) are of this form. (See also Tong, 1990.) Assume a : R?" — R™ is
locally bounded, b(x) is an invertible m x m matrix for each x € R?™ such that both b(x) and 5~!(x) are locally
bounded and e, has density f which is positive everywhere on R™. Note that {—(:;x) = b~ ' (x)(- — a(x)) and
J(-;x) = det(b~!(x)). If a and b are continuous then {(&,...,&_ ,+1)} is an aperiodic -irreducible T-chain
by Theorem 2.2(i). The same conclusion holds, by Theorem 2.2(ii), if f is locally bounded away from 0.

Example 2.2. In Example 2.1, only the variance of the noise term depends on the current state. In a self-
exciting threshold (SETAR) model, however, the distribution of the noise term may depend on which of several
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regions the current state is in. A model which incorporates this is
G=a(C—ts. s &= p) F 0(&imry. . & p)F 7 (e) i &1 €Ry, 2.1

where @ and b are as in Example 2.1, ¢, has uniform (0,1) distribution, {R,...,R;} partitions R™, and
F1,...,F; are probability distributions with positive densities f,..., f4. Clearly, if the conditions referred to
in Example 2.1 hold with f = f; for each j then the Markov process associated with (2.1) is aperiodic,
y-irreducible and T-continuous.

Example 2.3. A mixture version of (1.1) would be

gl :Ci(et;gt—l,“'aft—p) Wp Pis

where p; > 0,i=1,...,k and p; +---+ p, = 1. This is a general, and possibly nonparametric, version of
the MTD models (cf. Le et al.,, 1996). If F and some {;, 1 <i<k, satisfy the conditions of either Theorem
2.2(i) or 2.2(ii) then the conclusion of that theorem will hold. This is so since only a component of the
transition distribution needs to be sufficiently smooth. Such {; could be as in Example 2.1 or 2.2 above.

The next theorem is a generalization of the second part of Theorem 2.2.

Theorem 2.3. Assume {X.} is defined by (1.1)~(1.2) and Assumption 2.1 holds. For x = (xi,...,xp,) and
x* = Xpt1,-..,X2p), define

p
g(x;x") = HJ(xk;xk+1, s X p) ST Gk Xhg 15+ 5 Xk p))- (2.2)
k=1

If there exists a nonempty open set GC X and for each y € X there exists an open B, C X such that
y €B, and

ixéfl; g(x;x*) > 0 for almost all x € G

X

then {X,} is aperiodic, y-irreducible and T-continuous.

The function g in (2.2) is essentially the transition density (or a component of it) for X, given Xy = x*.
The behavior of g is critical since the dimension of the error space E is typically less than that of the state
space X and studying only the one-step transition P(x,-) usually does not suffice.

To show only that {X;} is a T-chain, one may weaken the conditions slightly. For part (i) of Theorem
2.2, the condition that f is positive a.e. is not needed for T-continuity. For Theorem 2.3 (which includes
Theorem 2.2(ii)), the open set G may depend on y.

If f is not positive almost everywhere (e.g., has compact support), it may still be possible to verify
Y-irreducibility. Let T be the kernel defined by

T(x*,4) = /A gxx") d,

define K = 2, 27'T" and let k(x;x*) be the corresponding kernel density. To prove y-irreducibility (as well
as T-continuity), the assumption f is positive almost everywhere in Theorem 2.2(i) may be replaced with
k(-;x) is positive almost everywhere for each x. Likewise, if k replaces g in Theorem 2.3, both y-irreducibility
and T-continuity are assured.
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In case m = p = 1 and the process is real-valued with additive noise, specific conditions for T'-continuity
may be formulated depending on the discontinuities of the autoregression function. The next result illustrates
how these conditions can range from one extreme to another.

Corollary 2.4. Assume X =E =R and

&G=all-)+e
where e, has density f. Define

o(x) =lim sup la(x)) —a(x).
DY
Any one of the following is sufficient for {&,} to be a T-chain.
(i) a is continuous on R.

(i) For each x € R, w(x) < oo and there exists an interval I, of length greater than w(x) on which f is
bounded away from 0.

(iit) For each x € R, the set of limit points of a at x is finite, w(x) < oo and there exists an open interval
I, of length greater than w(x) such that every open interval in I, contains a nonempty subinterval on
which f is bounded away from zero.

(iv) The set of discontinuities of a is locally finite, the set of limit points of a at each x € R is finite and
[ is positive everywhere.

(v) a is locally bounded and f is locally bounded away from 0.

With the additional condition, of course, that f is positive aimost everywhere the model in Corollary 2.4
is aperiodic and -irreducible.

We observed earlier that for y-irreducible T-chains, compact sets are petite. Petiteness of a set, however,
is a characteristic of the continuity properties of the chain and as such is defined by the chain. In particular,
certain noncompact sets associated with the chain can be petite. This is described in our final result.

Theorem 2.5. Suppose {X;} is a y-irreducible T-chain on X, a closed subset of RP™. Suppose also
Xy = a(X;—1) + Ples Xemr),
where a(x) is locally bounded and, for some r > 0,

sup  E.(||Bes;)|") < 00 for all M < . (23)
[l | <M

Then {x : ||la(x)|| <M} is petite for every finite M.

The observation that {x : ||a(x)|| <M} is petite makes it possible to construct better criteria for ergodicity
or recurrence of the process (Cline and Pu, 1997a).

3. Proofs

Recall from Definition 1.1 that showing T-continuity requires finding a nontrivial kernel T for which
T(-,4) is lower semicontinuous for all 4 € #(X). The lemma given next is useful for identifying a lower
semicontinuous kernel.
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Lemma 3.1. Assume X is a locally compact, separable metrizable space, T : X x B(X) — [0,1] is a kernel

and u is a measure on X which is bounded on compact sets. If

(i) for each & > 0 and compact K,,K, there is 6 > 0 such that if A C K, and y(A) < 0 then sup,cx, T(y,4)
< ¢ and

(i) T(-, O) is lower semicontinuous for all (relatively compact) open sets O, then T(-,A4) is lower semicon-
tinuous for all A € B(X).

Proof. Note that X is also topologically complete (cf. Ash, 1972, Theorem A.9.12). Let C be a compact
subset of X. For some open 4 and compact K, we have CC A4 CK;. Fix x € X and choose K| to be a
compact set containing a neighborhood of x. Given ¢ > 0, let § be as in (i). Also there exists an open set O
such that CC O C 4 and u(OC°) < 4. Hence,

liminf T(y,C) > liminf T'(y,0) — ¢
y—x y—x

=2T(x,0)—¢
=>TxC)—e

It follows that 7'(-,C) is lower semicontinuous for every compact C.
By standard arguments (cf. Ash, 1972, Corollary 4.3.7 and Theorem 4.3.8), T(-,A) is lower semicontinuous
for all 4 € #(X). O

Remark. The conditions in Lemma 3.1 are not any stronger than we need them to be. They are obviously
satisfied when T(x,A) = s(x)u(A4), where s is a positive continuous function on X and p is a nontrivial
measure defined on Z(X). But in fact if {X;} is a y-irreducible T-chain then it is always possible to choose
such a kernel T and to have it also satisfy Definition 1.1(iii) (Meyn and Tweedie, 1993, Proposition 6.2.6).

Next is the lemma we use to verify the chain is aperiodic and y-irreducible.

Lemma 3.2. Suppose {X;} is a T-chain on a locally compact, separable metrizable space X. Suppose there
exists a positive integer k and a kernel T, such that
(1) T.(x,A)<P¥(x,4) for all x € X and A € B(X),
(ii) T.(-,A) is lower semicontinuous for all A € B(X), and
(iii) there exists x* € X such that T.(x,0) > 0 for any x € X and open set O containing x*.
Then {X,} is aperiodic and y-irreducible.

Proof. To show irreducibility we will follow the argument in Meyn and Tweedie (1993, Proposition 6.2.1)
and then extend it to show aperiodicity. Suppose 4 € #(X) is such that T.(x*,4) > 0. By (ii), there exists
an open set O, such that x* € O, and

Tu(y,4) > 1T.(x*,4) for all y € Oy.

Since T,.(y,0,) > 0 by (iii), for any y € X, we have

PH(y.d) > / T.(x, A)T. (3, dx)

1

> (T A)Tu(3,00) > 0. G-

This shows {X;} is y-irreducible with irreducibility measure T.(x*,-) (cf. Meyn and Tweedie, 1993, Ch. 4).
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In addition, T.(x*,0,) > 0 and T,(-,0) is lower semicontinuous so there exists an open set O, which
contains x* and for which

T.(y,0v) > %T*(X*,Ol) for all y € O,.
Using (3.1), we obtain
PZk(y,A)BA'—tT*(x*,Ol)T*(x*,A) for all y € O,, 4 € #B(X), (3.2)

and therefore O, is a small set (cf. Meyn and Tweedie, 1993, Ch. 5).
Likewise, PT,(-,0;) 1s lower semicontinuous and

PT (x*,00) = / T.(v,0)P(x*,dy) > 0
so there exists an Oy C O; such that x* € O; and
PT.(»,0y) > $PT.(x*,0y) forall y € 0.
Furthermore, by repeating the argument for (3.2),
P (3, 4)= IPT,(x*,00)T.(x",4) for all y € O3, 4 € B(X). (3.3)

From (3.2) and (3.3) it follows that O3 is small and that {X;} is aperiodic (Meyn and Tweedie, 1993,
Theorem 5.4.4). O

Proof of Theorem 2.2. (i) We use the notation as in (2.1): x = (x;,...,xp) and x* = (xp11,...,X2,), where
x; € Y. With this notation and given X, = x*, we have

X = (e X" ) xpita s X2p—1)
Define
T(x*,4)= /1A((C(u;x*),xp+1,...,xzp_n))f(u)du for x* € X, 4 € B(X), (34)
E
where 14(-) is the indicator function over 4. By Assumption 2.1(ii), P(x*,4)2>T(x*,A4), and thus
PE(x*,A)=T*(x*,4) for all k,x* 4.
Let ug» be Lebesgue measure on EP. For w = (wy,...,w,) € E?, recursively define
Cpws x* ) =L(Wps Xpsts. .5 X2p),
Cp—l(W;X*) = C(wp—l; Cp(w;x*)7x[l+l>- . 9-x2p—l )a
: (3.5)
Ow;x™)y = {wi; La(ws X)L X ), xp41)
Now fix ¢ > 0, x € X and choose > 0 so that ug,(B) < 6 implies

/ﬁf(wk)dw < &
B

k=1
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Let K;,K; be compact subsets of X. For x* € K;,x € K, there exists M < oo such that

p
HJ(xk;xk-H’- . -sxk+p)<M
k=1

Let 4 be a relatively compact set in #(X) such that 4 CK, and ux(4) < 6/M. Define
B={welkl: (Li(w;x™),.... ,(w;x™)) € 4}. (3.6)
Thus, if x* € K; then

b
per® = [ TTI 0001
A=

< Mpx(4) < 6

and therefore,

TP(x",4)= g Li(Gi(w; x™), .., {p(w; x™)) dw

P
= Hf(wk)dw<s for all x* € K.
B =

This verifies condition 3.1(i) for the kernel 77 and the measure pux.

Let 4 be open in X. By assumption (i), {y € X : {(u; y) € 4} is open a.e.(F,) and therefore 1,4({(;"))
is lower semicontinuous a.e.(F;). It follows, by Fatou’s lemma, that T(-,4) is lower semicontinuous and by
similar reasoning that 77(-,4) is lower semicontinuous. Since 4 is an arbitrary open set, we have verified
condition 3.1(ii) for the kernel 77 and it follows from Lemma 3.1 that T7(-,4) is lower semicontinuous for
all 4 € #(X). Thus {X,} is a T-chain.

By Assumption 2.1(iii), the vector ({,(;x*),...,{1(-;x*)) defined in (3.5) is a 1-1, onto and continuous
mapping of E” to X. Therefore, if 4 is an open and nonempty subset of X then B defined in (3.6) is also
open and nonempty. Since f is positive a.e.,

14
TP(x*,4) = /Hf(wk)dw > 0.

B p=1

By Lemma 3.2, {X;} is aperiodic and y-irreducible.
(ii) This follows from Theorem 2.3 as a special case. [

Proof of Theorem 2.3. From the definition of 7 in (3.4) we have
TP(x*,A) = /Ag(x;x*)dx.
Define
1) = 10,0) [ inf gteix)ax 3.7)

For fixed 4 the integral is a constant and B, is open and so T,(-,4) is lower semicontinuous. Borrowing an
argument from Meyn and Tweedie (1993, Proposition 6.2.4), let {3} be a countable set of points in X such
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that | J°, B,, = X and let T, = .2, 27'T,,. Then T,(-,4) is lower semicontinuous for each 4 € Z(X) and
PP(y3,AY=T?(y,A)2T.(y,4) for all y e X, 4 € B(X).

Therefore, {X;} is a T-chain.
Furthermore, for any open set O intersecting G and any y € X,

1.(,0) =275, (») /0 nf g(xix*)dx > 0.
i=1 ’ Y

So by Lemma 3.2, {X,} is aperiodic and y-irreducible. [

Proof of Corollary 2.4. Cases (i), (i1) and (v) are direct consequences of the T-chain part of Theorems 2.2
and 2.3. Case (iv) is proved in a manner analogous to Theorem 2.3. See Pu (1995) for proofs. Case (iii)
also follows from Theorem 2.3 and we provide its proof here:

Fix y and let @; < @, < --- < a; be the limit points of @ at y (including a(y) itself). Since /, has length
greater than w(y), there exist ¢ and c so that the intervals H, = (¢ — a; — ¢,q — a; +¢) are all in I, and are
disjoint. Choose open J; C H, so that f is bounded away from O on J;. Now, recursively for j = 2,...,k
choose open J; CJ;_ +a;- —a; (since J;_| +a;_ —a; CH;) so that f is bounded away from 0 on J;. By
this construction, we have J; + a; — a; CJ; for each j.

Let G, be the middle third of J; +a, and let ¢ be the length of G,. Choose ¢ so that [x* — y| < J implies
|a(x*)—a;| < ¢ for some j and let B, = (y — &, y+ ). Therefore, x € G, and x* € B, implies x —a(x*) € J,
for some j. Hence, if x € G,,

X}IEM;. g(x;x*) = xyégy fx—a(x*))

> min inf > 0.
min i Sf(u)
As remarked following Theorem 2.3, this suffices to show T-continuity. O

Proof of Theorem 2.5. Given M < oo choose Ky, > SUP| ey <as Ex(J1X1]]7), which is finite by (2.3). Thus,
by Markov’s inequality

inf  P.(||X;1]||<Ky) > 0.
()| <M

Since C = {x : ||x|| <Ky} is compact, it is petite (Meyn and Tweedie, 1993, Theorem 6.2.5). Therefore,
D= {x: |Jax)||<M} is petite (Meyn and Tweedie, 1993, Proposition 5.5.4(i)). O
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