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LIMIT THEOREMS FOR THE SHIFTING LEVEL PROCESS 


DAREN B. H. CLINE.* Colorado State University 

Abstract 

This paper studies the asymptotic properties of moment estimators for the 
general shifting level process (SLP). A law of large numbers and a weak 
convergence theorem are obtained under conditions involving the unobservable 
processes which make up SLP. Specific conditions about those underlying 
processes are acided to give explicit results, applicable to a large class of moment 
estimators. Actual formulae for asymptotic variances, etc. are obtained for a 
simple example, the GNN model. 

SHIFTING LEVEL. PROCESS; LAW OF LARGE NUMBERS; WEAK CONVERGENCF. 

MOMENT ESTIMATORS; ERGODICITY. 19-MIXING; /-DEPENDENCE 

1. Introduction 

The shifting level process (SLP) is an alternative to the familiar ARMA time 
series model. The process was first formulated by Boes and Salas (1978) as a 
possible explanation of the Hurst phenomenon in hydrological time series. 
Special cases of the model were suggested earlier by Hurst (1957) and Klemes 
(1974). Boes and Salas showed also that the covariance structure of SLP is in some 
cases identical to that of ARMA, providing additional rationale for the use of SLP in  
time series modeling. 

Random changes ('shifts') in the attributes ('levels') of the model characterize 
the shifting level process, thus giving it its name. In addition to the moments and 
covariance structure, therefore, the frequency and the extent of the level shifts 
require estimation. Maximum likelihood estimation is difficult, however, be- 
cause the density is a complex mixture. Moment estimators may thus provide 
cheaper, if not more precise, estimates. This paper establishes basic results 
concerning the asymptotic behavior of moment estimators, namely a law of large 
numbers and a central limit theorem. (On the other hand, it does not attempt to 
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discuss estimation procedures or even to justify the use of moment estimators in 
a general model.) 

The second section discusses the law of large numbers for sample moments, 
while the third section concentrates on weak convergence. Calculations are 
covered in Section 4 and a simple model illustrates applications in Section 5. 

The shifting level process. Let (X, Z),(A, 3)and (N, N )  be measurable 
spaces, with N ={1,2,3,. . . ). Also let (R, 9 ,  P )  be the underlying probability 
space. 

Definition 1.0. If {{X~)),",l, A EA) is a family of stochastic processes on 
(R, 9 ,  P )  with elements in X, and {N,, A,);=, is a stochastic process on (R, 9 ,  P )  
with elements in N x A, then the process 

is called a shifting level process with shift epochs {T,,)~=l ={Nl+ - + N,);=,, 
levels {A,);=1 and underlying processes {Xy))T=l, A hA. 

Essentially, the process {Y,) is constructed as a concatenation of segments of 
random length, randomly selected from the family of processes {XI"'). The 
example which will be used at the end of this paper is the 
geometric-normal-normal (GNN) model, where {N,) - i.i.d. G(T), {An)-
i.i.d. N(p, pa2),{XI"))- i.i.d. N(A, (1 -p)u2) with p, T E (0,l) and all processes 
are independent. In this case, the process shifts randomly from mean to mean 
with A, as the mean of the nth segment. The parameters of chief interest in 
estimation are the overall mean p, the composite variance uZ,  the relative 
frequency of shifts T, and the relative variance of shift p. 

Sample moments. In practice {N., A,) is unobservable. Thus estimators will 
consist entirely of functions of {Y,). In particular, they can be functions of the 
sample moments: 

It will suffice to consider only real-valued sample moments as estimators, 
because the convergence theorems are easily extended to vector-valued mo- 
ments and to continuous functions of the sample moments. It is assumed that the 
parameters of interest are actually estimable by using sample moments. In 
certain models this may not be the case. For purposes of the following limit 
theorems, here are defined the (unobservable, auxiliary) random variables, 
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where 

L j=A, ,  h=j - (T , , -T , )  and mlsatisfies(Tm,-T,)<jS(Tm,+,-T,). 

Basically, R! is the sum of the functional values between the (n  - 1)th and the 
nth shift epochs. For example, for 

and for 
.\-I 

f :X2+R, R ',= x f (XjAm', xi'>') +f (X',;', X',An+l'1. 
, = I  

For convenience in the succeeding sections, let 

and 

Note that R', is measurable with respect to the field U({XI"');=~, A E 

{Ai);$, {N,);L;). Hence, when {Xy') are independent processes and independent 
of {N,, An) which itself is 1-dependent (1-order Markov), then {N,, R',) is 
(1 + k)-dependent ((1 + k)-order Markov with respect to a u-field expanded to 
include {XI"'), A EA). 

The sample moments (l/a)S', will generally behave similarly to the sample 
means of the process {N,, R',). This is a reasonable expectation, because the 
quantity (l/a)S', will be something like 

for some random index M. Furthermore, because of the relationship R!, = 

c;:, fjn', it is reasonable to expect R', and N,, to behave similarly. Therefore, the 
major theorems following will assume convergence for the sample mean of the 
process {N,, R!) and the corollaries will demonstrate conditions on the underly- 
ing processes {N,,, A,), {XI"') to satisfy this. 

2. Law of large numbers 

A law of large numbers will show that the sample moments of SLP are 
consistent under general conditions. Theorem 2.0 states the convergence of the 
sample moment (I/a)S', generally, but with the assumption of convergence for 
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(lln) T, = (lln)Z&, 4.and for (l1n)U'. = (lln)X;=l Rf .  The remaining part of 
the section discusses convergence for particular cases. 

Theorem 2.0. Let {Y,):=, a= {{x~))~:~);=~ be shifting level process. If 
(lIn)Tn+N almost surely (in probability), P[N < m] = 1 and (l/n)U',+ R 
almost surely (in probability) and (lln)R!'+O almost surely (in probability), 
then (l/cu)S',+ RN-' almost surely (in probability). 

Proof. The proof is identical in the cases of almost sure convergence or 
convergence in probability. Let Mn = maxG : T,4 n). Both M, +m and T,, +m. 

Also note (lln)T, 2 1 almost surely so that N > 0 almost surely. 
Then, too, 

Therefore, (lln)Tn +N implies (l/n)M, +N-I 
Thus, 

On the other hand, 

+0, since -
1 

R L!'+ 0. n 

Therefore, 
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In Theorem 2.0, the condition (l/n)R!'-+ 0 is required, but in most examples 
it can easily be shown. Before giving an example, two lemmas are provided. The 
first is given without proof. For the second, refer to Billingsley (1968) and 
Breiman (1968), respectively, for definitions of 8-mixing and ergodicity. 

Lemma 2.1. Assume (2,)is a real-valued sequence of random variables 
with 1-dependence. Let 2,= (l/n)C;=, 2,. 

1. If {Z,) are identically distributed, with E[Z,]  = 8< m, then 2,+8 almost 
surely. 

2. If E [Z,] = 8, +8 and there exists /3 < 1, K >0 such that V[Z,,] = y :  5 
Kn @, then 2,-+ 8 almost surely. 

Lemma 2.2. Let (T,T) and (A, 9)be measurable spaces, with 9the Bore1 
class of events in A. Let A = {A,, r E T) be a family of independent random 
elements in A, and independent of {r,,), a stationary process of elements in T, 
such that P[rn = r,,,] = 0 for n # m. Then the process {A,") is stationary and 

1. if {r,) is 6-mixing, then {A,") is 6-mixing; 
2. if {r,) is ergodic, then {A,,,) is ergodic. 

Proof. The measurable functional $(t, S( .)) = S(t) gives A," = $(r,, A) for 
every n. Letting A, ,  A,, . . . ,Al  E 9, 

by independence of A and (7,). 

by stationarity of (7,). 

=P[A,+, E A , ; i = l , . . . , l ] ,  for every n. 

Therefore, {A,) is stationary. 
If (7,) is $+-mixing, a similar calculation shows that {A,) is also. Let 

A,,  A,, E 9.Then+ .  + 

-P[(r,, 6 )  E $-'(A,); i => n +j])P[A E dS] by independence. 

Therefore, using the 6-mixing of {r,,}, 
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Hence {A,) is 6-mixing. 
Now suppose that (7,) is stationary ergodic, and let the random variable Z be 

bounded and invariant for {A,). Thus for some function P I ,  Z = 

P,(A,, A,,,, . . ) for all n. Let B E 93, the Bore1 class on R, {t,) a sequence in A 
with t, # t,. 

= 0 or 1 by Kolmogorov's 0-1 law since {A,,,) is an 
independent sequence for t,,# t,. 

The conditional probability distribution of Z ,  given r,, r ,+~, . ., being trivial, it + 

follows that a function P,  exists so that Z = P2(r., r,+,, . . . ) almost surely for 
every n. That is, Z is invariant for (7,). But {r,) is ergodic and hence Z is almost 
surely constant. This shows that {A,") is ergodic. 

Theorem 2.0 can now be applied to SLP in the following two particular cases. 
(A,,) NnCorollary 2.3. Let {Y,)= { { X ,  I,=,) be a shifting level process such that 

(i) {N,,, A,} is a sequence of random elements in N X A with P[A,  = A,] = 0, 
n# m. 

(ii) {XI^)) ,A E A is a family of independent stochastic processes and indepen- 
dent of (N,,A,). 
Let f : Xk+'+R and define R', and S', as before. 

1. If {N,,A,} is stationary, ergodic and E[N,] = 77 < m, E[R',]= 778 < m,then 
(I/a)S',-+ 8 almost surely. 

2. If {N,, A,) is 1-dependent, and E[N,]+ 77, E[R',]+ 778, E [ R [ ' ]  -.r]( and 
V[R',]5 KnP, V [ R ! ' ]  5 KnP, V[N,,] 5 KnP, /3 < 1 ,  then (lla)S',+ 8 almost 
surely. 

Case 1. By Lemma 2.2, setting r, = (N,, A,) and A(,*)= (v, {X)"};=,)the 
random sequence {A7n)z=l= { N , , , { X ~ ~ ' ) ~ = I ) ~ = Iis stationary ergodic. It is clear 
that (N,, R',, R! ')  relies on {N,,,, {Xj4-)))",+:, in the same way for every n, i.e., that 
I,/I exists such that 

(N,,R',,R!')=I,/I(A ,n,A,+,,...,A,n+,) foreveryn .  

Therefore, {N,,,R ',,R !I) is also stationary ergodic. The ergodic theorem thus 
gives 
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where 6 = ( 1 / q ) E [ R!'I. In particular, ( 1 l n ) RA'+ 0 a s .  Applying Theorem 2.0, 

1 
- SL-+ (qH)q = 8 a.s. 
a 

Case 2. Since {A,}  are almost surely distinct and {XiA'}are independent 
processes, then {Xj'.'} and {Xj'm'} are independent processes whenever 

( i )  'rI n - r n j > l .  Also R ! , € v ( { X , I } , : , ;  j = n , n + I ; . . , n + k ) .  It follows. then, 
that {R',, N,} is k + 1-dependent. 

Lemma 2.1.2 implies that 

-
1 2 R q a s .  and ;1 2 N,+q a s .  
n /= I  

and 
1

so that - R:'+O a.s. 
n 


By Theorem 2.0, then, (l/a)S',-+ 8 a s .  

Note that the condition P [ A ,  = A,,] = 0 presents no problem since ,ZA= 

(,l,, n )  may be used instead. 
Thus sample moments of SLP are consistent estimators in these two special 

cases. When SLP is built from different types of processes, similar theorems may 
be applied to get the consistency, such as whenever {N, ,A , }  behaves well and 
appropriate moments of R', exist. 

3. Weak convergence 

This section covers the convergence in distribution of the sample moments of 
a shifting level process, thus helping to determine the precision of the estimators. 
The section is organized like Section 2. It begins with a general theorem 
requiring convergence conditions on {R' , ,  N,} and continues with particular 
cases when the conditions are met. 

Let D be the space of right-continuous functions on [0,x ) with finite left limits. 
and let TL = C,"-I(N ,- q )  and UL= C;=, (RT- TO), where f :Xk+'-+ R. Also, 
define f - 8 to be the function with values f ( x l , . . .,x ~ + ~ )8. [ n  . ] represents the -

function with values equal to the integer part of ( n t ) .  
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Theorem 3.0. If, as jointly distributed random functions on D3 (using the 
Skorohod topology), 

} -+ { U ( + ) ,  T (  . ), 0) in distribution, 
an ' a, 

with U and T stochastically continuous and a, = o(n), then 
(Sf,.)- [n .]e)/an+U( . IT)- 8T( 17)  in distribution. 

Proof. Since a, = o(n), then TL.Jn must converge to 0 in probability. That 
is, 

-
1 

TI,,]= -
["'Ix N,-,qt  in probability for all t > 0. 

n n j= l  

But as shown in the proof of Theorem 2.0, 

1-- , so that -MInlI+ t / ~  in probability for all t > 0.
M[nll M["ll n 

Since this limit is degenerate and continuous, 

MI,., Rif,Tle') -+ {U( - ), T( ), ( - )Is 0) in distribution. a , ' n '  an 

Now apply the continuous functional $, : D" D, $,(w, X, y, Z)= w O y - OX O Y ,  
so that 

M 1 - ( 1 )- 6 ) in distribution, 
an 

by the continuous mapping theorem, since U and T are stochastically 
continuous. 

Next consider 

where M denotes MInll and QInll is the remainder. Then, 

Also 
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1 '"'I 7" 
= - 1 c (f:M+u- 6)  

a, 

+0 for all t >0, 

by the continuous mapping theorem with &(w, X. y, z )  = z o y. ( l la , )Q, ,  is 
easily accommodated into the convergence statement since the limit is both 
continuous and degenerate. Therefore, 

+ U ( . l q )- 6T( . l q )  in distribution. 

Note that the joint convergence of UA and TA is quite reasonable considering 
the relationship R',= c;:, fj"', so that one might expect R', and N, to behave 
similarly. 

( \  I hCorollary 3.1. Let { Y , }= { { X , "},>} be a shifting level process and 
f :Xk+'-+R such that 

(i) {N,,, A,} is a strictly stationary, 6-mixing sequence of random elements in 
N x A with P[A ,  = A,] = 0 for n #  m and Z;-, 60')'" < x .  

(ii) {XjA)},A EA is a family of independent stochastic processes and indepen- 
dent of {N,,, A, ). 

(iii) V[R',]< x, V[N,,]<x,  V [ R ; ''1 <x ,  letting rl = E[N,] , ~6 = E[R!,] .  
V X ,  =Cov[R',-6N,,R',+,-ON,,,]. j 2 0 .  
Then 

+N(O, -y') in distribution, y' = x0+ 2 C X, 
, = I  

Proof. Using Lemma 2.2, as in the proof of Corollary 2.3, the sequence 

is stationary and 6-mixing. Apply the functional $(A,,v,,,,,,,,. . . , A , % n + ,\,,+,,)= 

(N,,, R f , ,  RZ-"I). Clearly, $I does not upset the stationarity, but it perturbs the 
6-mixing by overlapping k variables. The outcome of this is that {N,, IS,R i,, R i'} 
stationary, 6,-mixing with 6 , o )  = 6 ( j  - k)  for j > k and 6 , u )  = 1 for j 5 k. 
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Furthermore, El:=, 6,(j)'/' <a,so that by Billingsley's theorem (cf., Billingsley 
(1968), p. 174) setting 

n 

u;= 2 (R;- .e), v: = 5 (~ j f - ' I -  qEIR~- ' l ] ) ,  7:= (N,- 9). 
j = I  ,=1 I = I 

then 

in distribution. 

a trivariate Wiener process. In particular, 

1+{ W v n  ' v n  ' V n  ) W ) 0 in distribution. 

By Theorem 3.0, then, 

Sf,,.,- [n .10 
+ W,(. /q)-OW2(.I r ) )  in distribution. 

V'n 

Billingsley's theorem further gives the variances of these processes, so that 

v [ w ~ ( t ) -  OW2(t)] = * ( V [ R ~ -  ONl] + 2  j = 12 COV[R(- ONI, R(+,- ON^+,]) 
= tr) (Xo +2 , = Ii:x,) 

= tqyZ, for all t >0. 

And hence, 

''.- Wl(l /q)- f3W2(1/q)-N(0, y2) in distribution. 
Va 

The following is given without proof. 

Corollary 3.2. If instead of requiring that {N,, A,) is stationary, one requires 

that {N,} is a stationary renewal process and that {N,, A,}~=2 is stationary, then 

the conclusions of both Corollary 2.3.1 and Corollary 3.1 are valid. 


This completes the sections on the limit theorems for sample moments of SLP. 


When the underlying processes {N,, A,} and {X)")}have different characteristics, 

similar theorems may be devised. 


4. Calculating moments 

Corollaries 2.3 and 3.1 require the calculation of the moments of {Y.),{R'.), 
etc. This section provides formulae (without derivation) under the following 
assumptions: 
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1.  {XjA'},A EA is a family of independent stochastic processes, each of which 
is a sequence of exchangeable random elements of X. 

2. {N,}and {A,} are sequences of independent and identically distributed 
random elements of N and A, respectively, and are independent of each other 
and of {Xj"}. 
For f : X k + R ,  

For k = 1 ,2  the latter formula is 

Also 

and for i 2 0 

If the limit theorems are to be applied, then the moments of R', are required. 
Let O = E[R' , ] /E[N, , ]and ( x ) ,= max(x,O). 

For f  : X + R ,  

and 

V[R',-'1 = V [ R ' ,-ON,,] 

= E[N,,]  V[f(X\.'n')] + E [ N ,  ( N ,  - I ) ]  Cov[f(X',.'9tJ),f(X4\.')]. 

For f :  X2+R 

E[R' ,]= E [ N ,  - l ]E[ f (X \ ' " ' ,  Xi'"')] + E[f(X\\n',X\\n-)')I 

V[R',-'1 = E [N ,  - 11 V [ f  (XI'"' ,  Xii,>')] 

+2E [ (N ,  -2),] Cov[f (X\\,m', X:'"'), f (Xi'.', X!'"')] 

+ E [(N,, -2)+(N,-3)+] Cov[f (X:',,', X$'ml), f (X!'. ',Xi'"))] 

+ V[f (X ' , ' " ' ,X!'" * I 1 ) ]  
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5. The GNN model 

The first section introduced a very elementary shifting level model which is 
briefly defined again here. Let {N,) - i.i.d. geometric(r), {A,) - i.i.d. 
normal(p, pu2) and {XI^') - i.i.d. normal(A, (1 - p)u2), all processes indepen- 
dent, 0 < p < 1 , 0< r < 1. As usual, the observable process is {Yo) = {{Xj"~'),N=.,). 
This example is elementary enough so that Cf(Yo, . . ., Yo+,)) is stationary and 
6-mixing for virtually any square integrable function f, so Billingsley's theorem 
applies directly. For purposes of illustration, however, Corollary 3.1 will be 
applied. 

Corollary 3.1 may indeed be applied because 
(i) {N,,,A,) is i.i.d., hence stationary and 6-mixing with 6'I2(k) summable, 

and P[A, =A,] =0 ,  nZ m. 
(ii) {X)"') is a family of independent processes and independent of {N,, A,). 
(iii) E[N,,] = l / r  < and V[N,,] = (1- . r r ) / rz< x .  

Therefore, if f is such that V[R',] <x then (l/cu)S', is approximately N(f3, -y21a), 
where f3 = rE[R' , ]  = E[f(Yo, . ., Yo+,)] and 

In addition (i), (ii) and (iii) satisfy the conditions for Corollary 2.3 whenever 
6 = rE[R' , ]  <x ,  so that (l/a)S',+ 6 a.s. 

First- and second-moment estimators will be considered for the parameters p ,  
a2and y, = Cov[Y,, Y,+,]. These estimators will involve the sample moments, 

The functions f, then, are the identity and the kth lag product (denoted f,). 



Sample mean and variance. The sample mean is f in  =( l ln )S ,  = 

( l /n )E;= ,y.  

V [ R ,- pN,,] = E[N,,] - Xi',-']VIX','nl]+ E [ N ,(N,, ~)]cov[x\ '~' ,  

-

Hence, f in  -+ p almost surely and kJn( f in- p )-+ N(O.(1+2~((1 - )/7T))g2)in 
distribution. 

1 1 - 7TCov[R,, R$) - (u'+ pl )N"]=- (2pu2)+2 7(2ppa2).
7T 

Thus, ( l / n ) S $ - +a' + p' almost surely and letting 

then 6:- u2almost surely and 

in distribution. 

Sample autocovariances. The autocovariances for GNN are yk = p ( 1 - 7 ~ ) ~ 

and the sample moments are given by .ik= ( l / n ) S $- ( ( l /n)S , ) ' .In view of the 
definition of R', and S',, fk ( X I ; .  ' ,Xk+1) = XIXk+l must be considered as a 
function of k + 1 ,variables, even though it involves only two variables. The point 
is that {R',.) is k-dependent and moments are correspondingly more compli-
cated. The only asymptotic variances given are for TI and q2. 
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Of course, since the variances are finite, = ( l /n)S' , l- ( ( l ln)S , , )2converges 
to a normal distribution. The results above give the asymptotic variance 

= (1 + ( 2 p  - 3p2 ) (1- 7~) '+2 p 2  - 7 T ) ( 2- ) u4. 
n 7~ 

Also 

Further calculations show that the asymptotic variance-covariance matrix for 
(&', q17q 2 )  is u4Cwhere C is given by 
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Also, f i  is asymptotically independent of the autocovariance estimators. 

Moment estimates for the shift parameters. The simplest estimates are given 
by the relations 

So the covariance matrix for (fi, 7 j )  is JCJ' where 

Summary 

Although there is a great deal of structure in the shifting level process, its 
mixture nature has thus far hindered dramatic exploitation of that structure. 
Nevertheless, this paper utilizes the limiting behavior of the sample moments of 
{R ',, N,,), which is based directly on the processes making up SLP, in order to get 
at the limiting behavior of SLP itself. The results confirm one's intuition that the 
convergence is not disturbed by combining the processes together, even if in a 
relatively complicated manner. Even when the underlying processes are 
stationary or 6-mixing, SLP is not necessarily so, yet it maintains the limiting 
properties required for estimation. 
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