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Suppose X and Y are independent nonnegative random variables, We study the behavior of P(XY> t), as t + SC, 
whenXhas a subexponential distribution. Particular attention is given to obtaining sufficient conditions on I’( Y> t) 
for XY to have a subexponential distribution. 

The relationship between P(X> t) and P(XY> t) is further studied for the special cases where the former 

satisfies one of the extensions of regular variation. 

1. Introduction 

In this paper we study products of independent nonnegative random variables in connection 

with the family of subexponential distributions and its various subfamilies. Formally, we 

have the following. 

Definition 1.1. A distribution F on [0, x) is called subexponential if P(t) > 0 for every t 

and 

l im F*F(t) 
-= 

r+a F(t) 
2 

’ (1.1) 

where F(t) = 1 -F(f) is the tail of the distribution function F and * denotes convolution. 

Examples of subexponential distributions include Pareto distributions, 

F(t)=l-(l+t/b)P”, cw>O,b>O; 
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the lognormal distribution, 

logr- j.L 
F(t)=@ ___ ( 1 CT ’ 

/_LEW, (T>o, 

where # is the standard normal distribution; and certain Weibull distributions, 

F(t)=l-e-“, O<p<l. 

Subexponential distributions have been found to be useful in the theory of branching 

processes (Chistyakov, 1969; Athreya and Ney, 1972; Chover, Ney and Wainger, 1973a,b), 

queueing theory (Pakes, 1975)) renewal theory (Teugels, 1975; Embrechts and Goldie, 

1982), infinite variance time series (Davis and Resnick, 1985b) and large deviations theory 

(Pinelis, 1985; Cline and Hsing, 1990). 

The class of subexponential distribution is typically denoted by 9 (or Y,,) ; it has been 

studied rather extensively in Pitman ( 1980), Embrechts and Goldie ( 1980, 1982)) Cline 

( 1986, 1987), Goldie and Resnick ( 1988), Kliippelberg ( 1988) and others. The following 

is a selection of the results from the above papers and used in the present paper. Note that 

the first statement accounts for the name ‘subexponential’ and defines a larger class, the 

long-tailed distributions dp. 

Theorem 1.1. (i) (Athreya and Ney, 1972). If F EP’, then FE-Y’, where -55 is the cluss 

of distributions on [ 0, X) satisfying 

lim F(t-u) 
___ =l foranyu>O, 

1’” F(t) 
(1.2) 

and, consequently, 

lim e”‘F( t) = 02 for any (Y > 0 . 
r-== 

(ii) (Embrechts and Goldie, 1980). Let FEP, GE.Y and sup,,$(t) /G(t) <m. 

Then F*GEP ifsG~5“. 

(iii) (Cline, 1987). LetFE3’uandGEP’. lfsup,,,,G(t)lF(t) <mthen F*GEP’. 

(iv) (Embrechts and Goldie, 1980). Let F, GEY. Then F*GEP iff pF+ 

( 1 -p) G E 9 for some (equivalently, all) p E (0, 1) . 

(v) (C&e, 1987). Let F, GEP’. If 

sup 
F(rt)G(t) <oc 

f>~ rZZ2 F(t)G(rt) ’ 

then F*GEP. 0 

Remark. It is important to remember in this connection that FEY and GE Y do not, in 

general, imply that F * G E 9’. See Leslie ( 1989). 

The above remark notwithstanding, Theorem 1.1 gives us a taste of the closure properties 
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of the family of subexponential distributions with convolutions. That is, if X and Y are 

independent random variables and the distribution of X is in 9, then, under appropriate 

conditions on the distribution of Y, the distribution of the sum X+ Y is also in 9. 

The present research is concerned with a related problem. Let, as above, X and Y be 

independent nonnegative random variables, and the distribution of X is in Y. Under what 

conditions on the distribution of Y will the distribution of the product XY (the product 

convolution) be in .y? 

Our interest in this problem has originated from two particular applications where the 

above question is of much importance. 

The first example concerns infinite variance regression (Cline, 1986, 1989) and infinite 

variance time series (Davis and Resnick, 1985a,b, 1986, and others). Consider the settings, 

say, of simple linear regression, 

Y; =X, +4, 

[X,, zi) i.i.d. with Xi and ei independent and of moving average time series, 

6, i.i.d. The statistical behavior of least squares estimators in these settings requires knowl- 

edge of the tail behavior of X, E, in the former case and of F, c2 in the latter. Previous work 

has been limited to distributions with regularly varying tails. However, consistency results 

in particular may extend to a broader class of subexponential random variables, for example 

those with dominated varying tails. 

The second application is related to the theory of sample paths of infinitely divisible 

stochastic processes. Rosinski and Samorodnitsky (1993) have considered the following 

problem. Given an infinitely divisible stochastic process 

X(t) = I f,(xjM(dx), tET. 

E 

where V;, t E T) is a family of measurable functions and M is an infinitely divisible random 

measure, it is frequently of interest to characterize the distribution (or at least the tail 

behavior) of certain functionals of the sample paths of the process (X(t) , t E T), e.g. 

sup X( t> 9 sup IX(t) I > 
I 

IX(f) I”4W . 
rtT fET 

T 

Under certain conditions, Rosinski and Samorodnitsky ( 1993) were able to characterize 

the tail behavior of such distributions. It turns out that, in many cases, the only condition 

one needs to check is whether or not the distribution of the product of a certain two 

independent random variables belongs to the subexponential class 9. (One random variable 

describes the effect of the Levy measure of the random measureM while the second describes 

the combined effect of the kernel V;, t E T] and of the control measure of M.) 

Although our original interest in the problem stems from the two applications described 
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above, insight into it will improve our understanding of the subexponentiality property in 

general. In particular, how ‘robust’ is subexponentiality? In this context we mention the 

following well known result due to Embrechts and Goldie ( 1980). First, we recall that a 

proper subclass of the subexponential family is the class of distributions with regularly 

Lsarying tails, that is, of distributions F such that for any A > 0, 

lim EJht) 
=A-” 

r-x F(t) 
for some ~~20. 

The Embrechts and Goldie result says that if F has regularly varying tails and G(t) = 

o( F( t) ) as t + m then the distribution H of the product XY also has regularly varying tails 

with the same index cr. 

This result expresses a certain ‘robustness’ of the family RV-,, under the product 

convolution. The underlying objective of this work is to study how much of this ‘robustness’ 

is shared by the whole subexponential family LP (Section 2) and by its various other 

subclasses (Section 3). 

We conclude this introductory section by mentioning that, as the many positive results 

of the following sections show, the subexponential family is ‘robust’ enough to have various 

closure properties under the product convolution; still the closure properties appear to be 

fewer (and harder to derive) than the closure properties under the sum convolution. This, 

of course, is natural if one recalls that the very definition of the subexponential family of 

distribution is in terms of sums (and not products) of independent random variables. 

Henceforth X and Y will be independent nonnegative random variables with distributions 

F and G, respectively (not degenerate at 0). The product XY has distribution H, whose tail 

behavior we study. 

2. Sufficient conditions for H to be in 1 or 4 

This section has two main purposes. The first is to show that _5? is closed under the product 

convolution and the second is to give a partial analysis for the subexponential case in the 

spirit of the above-mentioned Embrechts-Goldie result. For the latter, we are dealing with 

the question posed as follows. Suppose F E.Y. It is reasonable to believe that as long as 

the tail of the distribution G is ‘light enough’ compared to the tail of F, the ‘smoothness’ 

of the former will not matter, or the ‘perturbation’ of F caused by multiplying X by Y, will 

not be serious enough to remove the product distribution from the subexponential class. We 

know that this is true when F has regularly varying tails, and Embrechts and Goldie’s result 

is an example of ‘light enough’ in this case. The following exhibits one such situation in 

the general subexponential case and is the main result of this section. 

Theorem 2.1. Assume that FE 9. rf there is a function a : (0, “) + (0, m) satisfying the 

following, then HE Y’. 

(a) a(t) t cQast--,w; 
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(b) t/a(t) Tmas t+a; 

(c) lim,,,F(t-a(f))lF(t) = I; 

(d) Em,,, G(a(t))lH(t) =o. 

Remark. The assumption C?( a( bt) ) = o( F( t) ) for sume b > 0 is sufficient for condition 

(d) in Theorem 2.1. 

The proof of Theorem 2.1 is based on a sequence of lemmas. The first one provides 

conditions for H to be ‘long-tailed’, including the closure result for 9. 

Remark. Before we begin, however, we note that in proving either ( 1.1) or ( 1.2) the limits 

infinum hold automatically so it is necessary only to obtain the limits supremum. 

Theorem 2.2. (i) Assume that FE 2. Let H, represent the distribution ofX( Y V E). Fix 

6>0. IfH,E~foreueryEE(O, S) thenHEy. 

(ii) F, GE_!T=HE_~?. 

(iii)/fF~_5?aand~(t)=o(~(bt))forer~eryb>OthenH~_5?. 

Proof. (i) First we observe that it always suffices to assume Y>O a.s. Indeed, suppose 

P( Y = 0) is positive (but less than 1). Let Y, have the conditional distribution of Y, given 

Y> 0, and let H, be the distribution of XY,. Since H(t) = P(XY+ > t)P( Y> 0), it is easy 

to see that HEY-H+ ~2. 

For any fixed E> 0, 

H,.t)=P(X(YV&)>t) 

&H(t) 

>P(XY>t, Y>&) 

=P(X(YV&) >t> -P(Y,<&)P(EX>t) 

>P(Y>E)lj,(l) 

Therefore, for every u > 0, 

H(t-u) 
lim sup ___ 

1 
lim sup 

H,(t-u) 1 

I-= G(r) G P(Y>&) t-z H,(r) = P(Y>&) 

Letting E + 0, we conclude that HE 2’. 

(ii) Assume first that X> E, and Y> E* a.s. Fix u > 0, 6> 0. For large enough to, 

F(s-uIq,)~(l+S)F(s) and G(s-u/E,)<((~+~)~(s) 

whenevers>t,.Thusfort>tgandr,<y,<(t-u)”’, 

F((t-u)/y),(F(t/y-U/&*)~(1+~)F(t/y). 

With a similar inequality for G, 

(2.1) 
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(r-u)“’ (r-u)‘/2 

H(f-u) = I FW-u)b)G(dy) + I (%--u)bWYdy) 
62 FI 

+F((t-u)“2)G((t-u)“2) 
(r-u)“z 

[l 
(I-u)‘/2 

<cl+@ ~Wy)G(dy) + J‘ ~WW’Wy) 
E2 FI 

+F(tl(t-u)“2)G(tl(t-u)“2) I 
rli2 rl/Z 

<(1+6) 
i1 

F(tly)G(dy) + 
I 

G(t/y)F(dy) +F(t”2)G(t”2) 1 62 El 
=(l+@H(t). 

This shows 

&t-u) <l 
lim sup ___ 

t-a H(t) ’ ’ 

which is sufficient for HE 9. 

More generally, X2 0 and Y>, 0 as. It is clear that XV E, and YV q have the same 

probability tails as do X and Y. The above shows that (XV E, ) ( Y V e2) has a long-tailed 

distribution for any E,, q > 0. By part (i), applied twice, it follows that XY has a long-tailed 

distribution. 

(iii) By (i) it suffices to show that the result holds whenever Y& &as., regardless of the 

value of E. Take u > 0 and 8 > 0. Choose to > 0 so big that F( t - ul E) < ( 1 + 6) F(t) for all 

t > t,. Then 

H(r-u) <G(tlt,) + J &t/y-u/~)G(dy)<G(t/t~)+(l+t)fi(t). 

Therefore, 

H(t-u) 
lim sup -=--- <1+s 

f-m N(r) 

and, as this is true for every 6> 0, HE 2. 0 

Lemma 2.3. Let H, be as in Theorem 2.2(i) . 

(i) Suppose H, H,E_S? where P(Y>c) >O. Then HE3’-HH,E.Y. 

(ii) Let S>O. I~FE_S? then H,E9forall cE(O, 8) implies HEY. 

Proof. (i) Equation (2.1) justifies using Theorem 1.1 (ii) ,( iii). From these we see that 
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H,EY 3 H*H,EY * HEP 

and vice versa. 

(ii) This follows from Theorem 2.2(i) and part (i) of this lemma. 0 

We now turn to the final lemma to be used in the proof of Theorem 2.1. A piece of 

notation: for X- F and r > 0 we will denote the distribution of rX by F,. 

Lemma 2.4. Let F E 9, and let a: (0, ~0) + (0, 00) satisfy (a)-(c) of Theorem 2.1. Define, 

for t>inf(.,,oln(u), 

r(t) =inf(u: ua(tlu) > 1) . 

F*Fr(t) =1 . 

!E,.,,::f)i, F(t) +F,(t) 
(2.2) 

Proof. Note that our assumptions on the function a imply that it is continuous (although 

not necessarily strictly increasing). The function r is then continuous as well and (not 

necessarily strictly) decreasing. The fact that r(t) J 0 as t + ~0 is elementary. Fix an E> 0 

and choose an s > 0 so large that F( s) < E. It is straightforward to check that our assumptions 

implies 

lim F(t-q4t)) = l 

f-” F(t) 

for every q > 0. It follows that there is a to > 2s large enough so that for every t > to, we have 

r(t) < 1, a(t) > 1 and F( t - sa( t) ) < ( 1 - E) F( t) . Using the easily checked fact that for 

any r> r(t) we have ru( t/r) > 1, we obtain for any t > to, 

F,(t-u) F( (t-u>lr) 

I_?::.5 rc,P:!<, F,(t) = sup 
sup 

O<u<rr(r)sr<l F( t/r) 

< 
F(tlr-sa(tlr)) 

sup 
r(r) srs I F( t/r) 

Therefore, for every t > to and r(t) < r < 1, 

- 1 F(du) 

Similarly we obtain 

<l+&. 

+F(s) G2.7. 

--=---F,(du)-1 92s and --=---F(du)-I G2.5. 

0 0 
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We then obtain 

F*F,(t) =F(t-s)F,(s) + F,(t-u)F(du) 

0 

J f ~ J 

+ I F(r-I*)F,(du) + F,(t-u)F(du) 

0 
f - s 

<F(f-s)F(s) + (1+2s)(F,(t) +F(t)) + F(t-u)F(du) 

~F*F(t)-2(1-2&)F(t)+(l+2&)(F,(t)+F(t)). 

Since FE 9, we can choose tl 2 to such that for every t > t,, F * F( t) ,< 2( I + F)F( t). 

Then,foreveryt>t,andr(t)<r<l, 

F*F,(t)~(1+2~)(F,(t)+F(t))+6&F(t) 

~(1+2E)(F,(t)+F(t))+6&F*F,(t). 

Thus. 

lim 
F*F,(r) 1+2s 

1--r= ,,E!,, F(t) -t&t) 
<--- 

1-6~’ 

Letting c--f 0 proves the only non-trivial part of (2.2). q 

Proof of Theorem 2.1. By Theorem 2.2( iii), HE 9. Likewise, the distribution of X( Y V 1) 

is long-tailed. If P( Y> 1) > 0, it suffices by Lemma 2.3(i) to show the latter is subexpo- 

nential. Otherwise, we replace Y with cYV 1 where c> 1 and P( cY> 1) > 0. Note that 

condition (d) holds for the distribution of cY. Note also that both 9 and 9’ are closed 

under scalar multiplication. We are free therefore to prove the result only for the case Y> 1 

a.s. 

Let Xi and Y,, i = 1, 2, be independent copies of X and Y. We have 

H*H(t)=P(X,Y, +X2Y2>t) 

<P(X,Y, +x2yz>t, Y,<Y, <a(t)) 

+tyx, Y, +x,y, >t, Y, <Y, <a(t)) 

+2P(Y, >a(t)) 

Note that for every 1 f v1 <a(t) we have 

(2.3) 

t/Y, ( )I 1 
ua - 

u u= I/V, 
= ; a(t) >/ 1 1 



implying that for every 1 <y2 <y, <a(t) we have r( t/y,) < 1 ly, <y,/y,. We now apply 

Lemma 2.4 to conclude that for every E > 0 there is a t, > 0 so large that for every t > to and 

every 1 <yy2<y1 <a(t), 

F*F,,/,t (t/y,) ~ F*F,.(tl~,l 
MY,) +&\.,wYd sup 

et/j,, <r< I Rtly,) + F,(rly,) 
<l+&. (2.4) 

It follows now from (2.3) and (2.4), conditioning on Y, and Y2, that for any E> 0, 

H*H(t)i(l+c)[P(X,Y,>t, Yz<Y,<a(t)) 

+Fyx,y,>t, Y,<Y, <a(t))1 

+(l+E)[P(X,Y,>t, Y, <YzGa(t)) 

+fyx*yz>t, Y, <Y,<a(t))l 

+2P(Y, >a(t)) 

,<2( I +&)/Y(t) +2G(a(t)) 

Therefore, 

H*H(t) 
lim sup ___ <2(1+&) 

,-= H(t) 

And since E> 0 can be taken arbitrarily small, we conclude that HE 9. q 

We demonstrate applicability of Theorem 2.1 by several examples, the first of which is 

formulated as a corollary. 

Corollary 2.5. If F E 9’ and Y is a bounded random {sariable then H is in 9. 

Proof. Condition (d) in Theorem 2.1 holds trivially but we need to verify that we may 

choose a(t) to satisfy (a)-(c). One choice is 

i 

2 
- t, O<t<r,, 

u(t) = r’ 

IZ+ 
t - r,, ~ , 

r,, - r, - I ’ 
r,,-, <tgr,,, n=2, 3 ,..., 

where 

r. = 0 , r, =inf -C F(u-3) 
t>r,: ____ 

I’(u) 
-<l+i foralluat 

> 

and, inductively, for n 2 2, 

r,, =inf 
-t 

t>2r,,_,: 
F(u-(n+2)) Al+ 1 

F(u) 
-forallu>t 
n+l > 
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Since FE _Y, the sequence { r,, } r=, is well-defined, and thus the proof is complete. •i 

Example 2.1. Let X be a lognormal random variable with parameters p and I?, i.e. the tail 

ofFis 

F(t)=l-~((logt-~)/a), t>O, 

where @ is the standard normal distribution. Let Y be a nonnegative random variable, 

independent of X. We claim that if for some 8> 1, 

P(Y>t)=o (logt)-‘exp 
i { 

- & (logt+8loglogt)* 
l-1 

, 

as t + m, then the distribution of the product XY belongs to the subexponential class .y. 

Indeed, Theorem 2.1 applies with 

a(t)=tl(logt)B1 for l<f3, <f3. 

Both Corollary 2.5 and Example 2.1 deal with situations in which the tail of the distri- 

bution of a random variable Y is suitably lighter than the tail of the distribution of a random 

variable X. This is, indeed, the spirit of Theorem 2.1. It is also applicable to many situations 

discussed in the next section. However, Theorem 2.1 can be applied in certain situations 

when the tails of the two distributions are comparable, as our next example demonstrates. 

Example 2.2. Let X and Y be i.i.d. random variables with common distribution F such that 

F;(t) =exp( -t”L(t)) , O<p<{ , 

where L is slowly varying at infinity and eventually decreasing. Let H be the distribution 

of the product XY. It follows from Cline ( 1986) and from Goldie and Resnick ( 1988) that 

FEY. Since H(t) > (F(t”2))2, it follows that Theorem 2.1 applies with a(t) =Mt”2, 

where M > 2 ’ lp. Therefore HE 9’. 
We leave it for the reader to observe the numerous ways in which the above assumption 

on F can be relaxed. 

We conclude this section with an observation that even the spirit of the results discussed 

above seems nowhere to be found in the multivariate case. Apart from shedding light on 

the multivariate subexponentiality, this shows that the property of subexponentiality is 

fragile indeed where taking products of independent random variables is concerned. 

The extension of the notion of a subexponential distribution to the multivariate case is 

due to Cline and Resnick (1992); it is stated in terms of vague convergence of measures, 

which is, in the context of Wd, a language preferable to that of distribution tail functions. To 

this end let ‘ 4 ’ stand for the vague convergence of measures on E = [ - w, - ~1 d - ( ( - C)CJ, 
--cx: 1.‘., -m)) and let b(t) = (b,(t),..., bJf)):W+ -W”,, with b,(t) --)w as t+m for 

every i= l,..., d. 
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Definition 2.1. A distribution F on W”, is called subexponential if 

tF(b(t) + ‘) -L u 

85 

(2.5) 

and 

tF*F(b(t) + .) -!h 2u, 

where v is a finite measure concentrated on the 2”- 1 points in E= { - ~0, mid - (( -m, 
-cc . . . . . - ~0) ] and satisfying 

c vf(X,l...r&!)l>O 
(-VI. ..X,/)E3,1, = += 

for every i= l,..., d. 

In the one-dimensional case this definition reduces to the usual definition of subexpo- 

nentiality in terms of distribution functions (Cline and Resnick, 1992). 

The following example shows that multivariate subexponentiality is not necessarily 

preserved when we multiply componentwise independent random vectors in W’, one with 

a subexponential distribution and the other one bounded. Compare this fact with Corollary 

2.5 above. 

Example 2.3. Let X= (X,, X,) have distribution function F satisfying 

P(X, >x,, x2 >-$I 

1 +ysin(log( 1 +x, +x2)) sin(n(x, -x2)/( 1 +x, +x2)) 
= 

1 +.a+, +x, 

for x, > 0, x2 > 0, and 0 < 1 y( < &. Cline and Resnick ( 1992) exhibit this distribution and 

show that it is subexponential. 

Let Y = ( Y,, Y,) be a random vector independent of X such that 

P(Y=(l, I))=P(Y=(2,1))=i, 

and let Z = (X, Y,, X,Y2). We contend that the distribution of Z is not subexponential. 

Indeed, denoting Z, =X,Yi, i = 1, 2, it is obvious that 

P(Z,>z)-2~~’ asz*X, 

P(Z2>z)-z-’ asz+m. 

It follows then from Proposition 4.2 of Cline and Resnick ( 1992) that if the distribution 

of Z were subexponential, it must satisfy (2.5) with b,(t) = c,t, i = 1, 2, for some c, > 0, 

c2 > 0. That is, tP(Z, > z, + c,f, Z, > z2 + c2t) must converge to a limit as t * x. However, 

tP(Z, >z, +c,t, Z2 >zz +c,t) -A(t) -0, 

where 
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1 A+-- 
‘I 2 fc, +c, 

+ $ysin(logt) 
[ 

sin(f3,) cos(log(c, +c2)) + sin(&) cos(log(ic, +c2)) 

c, +c, ;c, fc, 1 
+ &y cos( log t) 

I 

sin(f3,) sin(log(c, +c2)) + sin( (3,) sin(log (+c, + c2) ) Cl fC2 ;c, fc, 1 
and 

e,=nE tc, -c2 
#0,=7T’--- 

I 2 $c, +c, . 

We therefore must have the coefficients of both sin( log t) and cos( log t) to be equal to 

0. Since it is straightforward to check that no choice of c, > 0 and r2 > 0 will ensure that, 

our argument is complete. 

3. Closure properties of subclasses of 4 

Because subexponentiality is a difficult property to characterize we consider in this section 

subclasses of Y which, being more easily characterized, lead to more refined results. We 

will look at classes whose tails have the regular variation property or one of its extensions. 

As before, we are principally interested in two questions: (a) if F is in some class .%, 

what conditions on G ensure that H is in .B? and (b) in particular, is F closed under the 

product convolution? A related question is the so-called factorization problem: how can 

fi( t) be approximated with a ‘relatively simple’ expression (such as a linear combination) 

of F( t) and G(t)? This is a much harder problem, difficult even in the situation of regularly 

varying tails (Cline, 1986 j and we only consider certain special cases here. 

These questions have been thoroughly studied in the case of regularly varying tails 

(Breiman, 1965) ; Embrechts and Goldie, 1980; Cline, 1986). An investigation of situations 

involving the extensions of regular variation leads to the general conclusion that the behavior 

of l? is determined principally by two features. The first of these is the behavior of the 

heavier of the two tails, F and G. Thus, if G has light enough tails then H and F are in the 

same class. The second feature is the behavior of the least ‘regular’ of the two tails. Thus, 

if F has dominated varying tails and G has regularly varying tails we generally can say only 

that H has dominated varying tails. There are, however, several special classes such that 

F’s membership implies H’s membership regardless of G. (The class with dominated 

varying tails is one of these.) We begin by defining the classes of interest. 

Definition 3.1. (i) FE 22 if F is regular varying, i.e. 

,im F(w 
=A-* 

r-x F(t) 
for some (~20, all A> 1 . 
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(ii) FE ZT if F is extended regular varying, i.e. 

lim inf ‘5 ht) - >A-“ 
f--l” F(t) 

for some c>O, all A> 1 . 

(iii) FE .2' if F is intermediate regular varying, i.e 

lim lim inf ‘5 *‘) - =l. 
ALI 1-r F(t) 

(iv) FE P? if F is dominated varying, i.e. 

lim inf Fj At) 
__ >0 forsomeA>l. 

f_% F(t) 

For detailed discussion of regular variation, extended regular variation and dominated 

variation, see Bingham, Goldie and Teugels ( 1989, Chapters 2-3) (hereafter referred to as 

BGT) . For discussion of intermediate regular variation, see Cline ( 1991). Because of mono- 

tonicity of FE .Y is easily seen to be equivalent to 

lim inf ‘Anti - = 1 
AL ~,r+= F(r) 

(3.1) 

(but, in fact, it can be shown that FE .Y is equivalent to (3. I ) even without assuming 

monotonicity of F). For continuous F, this is the defining property of regular oscillation 

(Berman, 1982, 1988). 

From Definition 3.1, it is evident that ,5? CE ~3 ~9. These inclusions are proper and 

furthermore .yC (9 n 9) CY (Borokov, 1976; Embrechts and Omey, 1984; Cline, 

1991).Forexample,letp(t)= -logF(e’-l).ThenF(t)=exp(-p(log(l+t)) and 

FE,%? if p(t) =f; 

FEZ but FE9 if p(t) = [t] + (I- [r])‘; 

FEY but FEg ifp(t)=[t]+(t-[t])“‘; 

FEgfl-‘?butF@Y ifP(t)=[t]+((t(r-[t])~l); 

FE9 but FGeY if p(t) = [t] + (e’(t- [t]) A 1); 

FEPbbutFPS%rnP ifp(t)=t2. 

Two further subclasses we refer to are the following. 

Definition 3.2. (i) FE 8’ if F is absolutely continuous and tF’ (t) /F(t) is bounded. 

(ii) FEY’ if Fis continuous and FEY. 

That 8'ciT follows from the representation theorem for extended regular variation 

(BGT, Theorem 2.2.6). The class Y’ is the class of distributions with regularly oscillating 
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tails, i.e. with tail satisfying (3.1) and continuous. Furthermore this is equivalent to 

“log F( e’ ) is uniformly continuous on [ 0, 00) and continuous elsewhere” (Berman, 1982). 

Associated with FE .9 are the Matuszewska indices of F, - (Ye and - PF where 

cu,->, &aO, which are the most narrowly defined constants satisfying the following. For 

every F> 0 there exist C and to so that 

A--EIC<F(Af)lF(f) <CA”_” (3.2) 

for all A > 1, t> to (cf. definition in BGT, p. 689,. These constants may be defined for any 

F, but FE 9 if and only if (Ye < m. Observe that cup is, in fact, (Y, ,p, the upper index for 

1 /F in the terminology of BGT, while PF is P,,F, the lower index for 1 lg. 

More precisely, we define the generalized index functions, for A > 0, 

F( At) 
F,(A) =liminf -=-- 

k;( At) 

c-a F(t) 
and F*(A) =lim sup _ 

,A” F(t) ’ 

If F(t) = 0 for some finite t, these limits are taken to be 0, 1 and ~0, for A > 1, A = 1 and 

A < 1, respectively. (Note: F*( 1 /A) = (F, (A) ) -I.) The Matuszewska indices may be 

determined by (BGT, Theorem 2.1 S, Corollary 2.1.6) 

ffF = lim 
-log& (A) -logF*(A) 

logh ’ 
PF = lim 

/\+= I-m log A . 
(3.3) 

A1so,F~~ifandon1yif~,(A)~1asA~1;andF~~ifandon1yifF,(A)~A-’, 

for some c < ~0, all A > 1. Moreover, there exist the Karamata indices of F, -c,< 

- dF < 0, for which 

uniformly for A E [ 1, A] and all large t (definition in BGT, pp. 66-67). They may be 

determined (BGT, Theorem 2.1.2, Corollary 2.1.3) by 

cF=c( l/F) =lim 
-log F’( A) -logF*(A) 

A\II log A ’ 
d,=d(llF) =lim 

log A 
(3.4) 

AlI 

and FE &Y if and only if cF < ~0. Finally, we have the relationship (BGT, Theorem 2.1.8) 

A-cF‘&.(A)<A-“F~A-Pf=&*(A)<A-dr<l, A>l. (3.5) 

As much as possible we derive results in terms of the index functions. To this end, also 

let G*, G *, l?* and G * be the corresponding index functions of G and H. These functions 

are nondecreasing but not necessarily continuous. 

First, we try to get a handle on fix and H, . To this end define, 

mF.G = lim lim inf 
.v-= r-3; 

and for A> 1, 
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R,,,(A) = lim sup lim sup F(tly) G( dv) 
,7-a t-z= H(t) ’ 

s 

with similar definitions for VZ~,~ and R,& A). Note that each of these values is in [ 0, I 1. 

Further points are given in the next lemma. 

Lemma 3.1. (i) i < mF,c; V Q~< 1 < mF,<; + mc.P 

(ii) Foranyh>l, (RF,G(A)ARG,F(A))<<. 

(iii)~fG(t)=o(H(bt))forallb>O,orifHE~andG(t)=o(H(bt))forsomeb>O, 

then rr+ = 1 nndR,,/(A) =O. 

Proof. (i) Since, for t > s2, 

m r t/s 

I F(tly)G(dy) + s G(t/y)F(dy) =f?(t) + 
I 

F(rly)G(dy) +F(s)G(t/s) 

.Y s s 

we immediately have mF,G + ran> 1. This in turn implies mF,G V m,_,> f and we have 

already noted that each value is bounded above by 1. 

(ii) 

(iii) 

Using (i), 

(RF,C(A)~RG,F(A))~(l-m~,G)A(l-mC;,F)~<. 

Let A > 1. First suppose G(t) = o( #( bt) ) for all b 2 0. 

1 > mc,F = 1 - lim lim sup 
r &t/x) I -F(b) 

.5-z f’” H(t) 

>l-il~!~i$ 

zzz 1 

Secondly, suppose HE 9 and G(t) = o( J?( bt) ) for some b > 0. Then H( bt) lf?( b, t) is 

bounded for any fixed b, > 0. Hence, the first condition holds and mc,F = 1. 

Finally. R&A) ,< 1 - mG,F= 0. 0 

Lemma 3.2. For any F and G and for each A > 1, 

(i) - 
H*(h) ’ { 

m,,F*(A)+(l-m,,)G,(A), F,(A)>G,(A), 

(1 -mp.F.c)F, (A) +mF,GG, (A), F, (A) <G,(A) , 

>&(A)r\G,(A), 

(ii) ~*(A)~(~*(h)v~*(A))+(R,,(A)AR,,~(A))(~*(A)A~*(A)) 

<(F*(A)vG*(A))+;(F*(A)AC*(A)). 
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Proof. We prove (i) when F*(A) < G*(A). Express fi( t) in the convenient form, with 

arbitrary s > 0, t > s, 

\ ri 

H(t) = 
I 

F(t/y)G(dy) + 
s 

G(tlx)F(dX) +Iqtls)G(s) . 

0 0 

Let A > 1 and E> 0. For large enough s and t/s, 

As f/T 

H( At) = 
I 

F(ht/y)G(dy) + 
i 

G(htlx)F(dx) +F(t/s)G(hs) 

0 0 

nr z 

FUb)G(dy) +G, (A) F(tly)G(dy) 1 0 7 
cc 

>(I-E) &(A)!?(t)+&(A)-&(A)) 
L 

F(t/y)G(dy) 
I 

(3.6) 

Since s, and then E, are arbitrary, it follows that 
_ 

@*(A)=liminf-=-- 
, + ?c 

H;(;;) >,&(A)+(G,(A)-F.(A))m,-,,, 

as was to be shown. 

(ii) Let A > 1 and F> 0. From (3.6) we have, for large enough s and t/s, 

As 

J 
&ly)G(dy) 

0 

m 

+(G*(A)Vs) htly)G(dy) 1 
<(l+c)(F*(A)VG*(A)VE)&t) 

I.5 

+(~+E)((F*(A)AG*(A))VC) F(tly)G(dy). 
I‘ v 

Hence, 

H*(A) =limsup _ , H(At) <(F*(A) ‘/G*(A)) +R&A)(F*(A) r\G*(A)) . 
f4” H(t) 

Likewise, 
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The second inequality holds by Lemma 3.1 (ii). 0 

We now state and prove our theorems, one each for the classes 9, Cy, and iE. Recall we 

assume both F and G are not degenerate at 0. 

Theorem 3.3. (i) For any F and G, 

(ii) 

(iii) 

(iv) 

IfF~.Sand~(t)=o(~(bt))forsomeb>Othenforeachh>1, 

F,(h) <N,(h) <H”(h) <F*(A) . 

IfF~53 andEY”‘+” < xfor some E> 0, then (3.7) holds and 

(3.7) 

H(t) 
O<E[F,(l/Y)],<liminf-- 

H(f) 

,+m F(t) 
< lim sup -=-- 

f+z= F(t) 
,<E[F*( l/Y,] <x. 

Remark. Theorems 2.2 and 3.3 together imply that the subexponential subclass 9 n .y is 

closed under products. 

Proof of Theorem 3.3. (i) Using (3.3) and Lemma 3.2( ii), 

PN = lim 
-logH*(A) > l im  

n _ X logh ‘l+r 
-log($(~i;~(&“G*(A))) =PF/\PG. 

Likewise, we can show tir, < c+ V a, but in fact we want to show more. In order to 

accomplish this, we resort to the representation for distributions in 9. It suffices to show 

aH < CQ in the case (Ye is finite. Let (Y > c+. By the representation theorem for O-regularly 

varying functions (BGT, Theorem 2.2.7), 

-log&) =qF(t) + I Mu) du 

- 
u ’ 

0 

where 71~. is bounded and k(t) Q a. Furthermore, since F is bounded and monotone, we 

may in fact choose Q and &- so that the latter is nonnegative. (This is evident from the 

proof of the representation theorem.) Now let 

h(f) = I k(u> du 

u 
0 

and 
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f%,(t) = e-PF”f~‘G(dy) . 

0 

Then we note that we may represent -log H(t) = q,(t) + I;,( &( u) lu) du, where 

rlH(f) = -log(~(W&W) 

is bounded and 

& j &( t/y)e-p’(““‘G(dy) E [ 0, cy] . 
0 

This shows that H satisfies the representation for 9 with some (Ye ,< cr. Since cy may be 

chosen at will in ((Ye, x), we conclude c+ < o+. 

(ii ) This follows immediately from (i) , since I+, < c+ < a. 

(iii) By (i), HE_%. From the proof of Lemma 3.l(iii), we have that G(t)= 

o( H( br) ) for all b > 0 and not just for some b > 0. 

Fix any A > 0 and choose t,, so large that F( At) < ( 1 + F) F* (A) F( t) when t >, t,,. Choose 

t, > t,, so that G( t/t,,) < &( t) when f > 1,. Then for such t, 

r/n1 

ti( At) < 
I 

F(Atly)G(dy) +G(t/t,) 

0 

f/41 

<(l+E)F*(h) s F(t/y)G(dy) +&H(f) 

0 

Thus,~*(A)~~*(A).AsthisistrueforanyA>O,wealsohave~~(A)>,~~(A). 

(iv) Let cr~(a,, a,+~). Then t??(t) --f 0 (follows from BGT, Proposition 2.2.1) 

and fLYF( t) + m. Hence G(t) = o( F( bt) ), all b > 0. This is sufficient for the condition in 

part (iii), so (3.7) holds. 

Since FE 9 and G is not degenerate at 0, it must be that E[ F * ( 1 /Y) ] > 0. The lower 

bound follows by Fatou’s lemma, 

liminffw = - 
,-a F(t) a -I F, (l/y)G(dy) 

0 

To obtain the upper bound we first use (3.2). For any E’ E (0, E), there is C < m and t,, 
such that 

Hence F*( l/y) <C(y”‘+” V y ” -“‘) SO that E[ F* ( I / Y) ] < M. Furthermore, when t 2 to, 
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I f/h, 

H(t) < I ~WyKWy) + F(tly)G(dy) +&r/r,,) 

0 
_r 

I 33 

BC 
[I 

yflF-G’c;(cly) + 0 _r 
y”F+“’ G(dy) +G(t/r,,)lF(t) F(t) 1 

Since G( t/t,,) = o( F( t) ), as t -+m, we conclude by dominated convergence that 

I/f11 _ * 
H(t) 

lim sup _ < lim sup 
f” F(r) ,‘T I 

F(tfv) 
_ G( dy) < 

F(r) I 
F*( I/y)G(dy) . 0 

0 0 

Theorem 3.4. (i) F, G E .y *HE 9. 

(ii) F~~andG(t)=o(H(bt))forsomeb>OitnpliesH~9. 

(iii) FE.Y’-HER’. 

Proof. (i) The assumption is that F, (A) r 1 and G * (h) t 1 as A 1 1. By Lemma 3.2(i), 

this implies a * (A) t 1 as h J. 1. Hence HE 9. 

(ii) ByTheorem3.3(iii),F,(h)<l?,(A). Thus,F,(h)Tl impliesH,(A)Tl and 

HE.P. 

(iii) As noted after Definition 3.2, FE 9’ is equivalent to log F( e’) is uniformly contin- 

uous on [ 0, m) and continuous elsewhere. We must therefore show that log 8( e’) shares 

this property. The assumption on F is the same as: for each E> 0 there is 6> 0 so that 

) h - 11 < 6 implies 

F( At) I I y-1 <E forallr>O 
F(t) 

By this, 

1 _ E< I~~Wf’y)‘Wy) < 1 + F 

’ /RF(t/y)G(dy) ’ 

whenever ) h - 1 1 < 6. And this demonstrates that H has the desired property. 0 

Theorem 3.5. (i) For any F and G, cH < cF. V cG. 

(ii) F, GEZ~HE~. 

(iii) F~~and~(t)=o(fi(bt)forsomeb>OthenHE~aand 

dF<dH<ccH<cp. 

(iv) FEF’-HE%‘. 

(v) IfFEKand EY”‘+” <co for some F > 0, then ( 3.8) holds and 

N(t) 
E[Y”AY”] <liminf=-- 

H(t) 

f-x F(r) 
< lim sup _ 

I’% F(t) 
<E[Y”vY”I]. 

(3.8) 

(3.9) 
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Furthermore, there exist I and &(t) such that 

- log F(t) = qp( t) + 
k(u) & 

(3.10) 
U 

0 

where q&t) --) m E 02, as t + (30, and & is bounded. If in addition & is slowly cwying, then 

lim fqt)E[ YCFCr)] 

fi(f) 
=I. (3.11) 

f-r 

Remark. Since the main purpose of this work is to relate the tail of H to the tail of F under 

various conditions on G, one should view (3.11) as a refinement of the results of the type 

(3.9) : we are establishing the actual limit instead of upper and lower bounds. We owe the 

idea for (3.11) to Berman ( 1992, Theorem 3.1) who assumes F and G are continuously 

differentiable and whose result is expressed in terms of the density of log X + log Y. We 

have also weakened his conditions on F and G in other ways. 

Proof of Theorem 3.5. (i) Using (3.4) and Lemma 3.2(i), 

c H=ii: 
-log@* (A) ,<lim -log(F*(A)AG*(W =c,“c 

log A log A 
F G. 

ALI 

(ii) This follows immediately from (i) . 

(iii) By Theorem 3.3( iii), 

F&A)<fi*(A)<ti*(h)<:*(A). 

Thus (3.8) follows from this by applying (3.4) as in part (i). 

(iv) By assumption, &(t) = tF’( t) /F(t) exists and is bounded, say, by c. Then H’ 

exists and 

a 

tH’( t) - = 
H(t) 

h i,(tly)F(tly)G(dy) <c. 
I 
0 

Hence HE8’. 

(v) Let c E ( cF, cF + E). Then t’c( t) + 0 and t’F( t) -+ ~13 (follows from BGT, Prop- 

osition 2.2.3). Hence G(t) =o(F(bt)), for all b> 0 which is sufficient for G(t) = 

o(fi(bt)),allb>O.Bypart(iii),thisensures (3.8).SinceF*(l/y)=(F,(y)))‘<y”’ 

for y > 1 by (3.5) and since F5 ~a, then Theorem 3.3( iv) applies and (3.9) is immediate. 

The representation (3.10) is provided by BGT (Theorem 2.2.6). 

NOW assume .!$ is slowly varying. This and the boundedness of lF- imply 

lim - du- (logy)&(t) =0 > 
f-r 

Ill 

(3.12) 
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uniformly for compact y-sets in (0, m) With the assumption of convergence for nF, 

lim F(rIY) y-if(‘) _ t 
r-a F(t) 

9.5 

= lim exp 
I-= 

VP(f) - %=(tb) + - du- (logy)Mt) f/ ,’ 

=o. 

From (3.12) and BGT (Theorem 2.2.6), 

(3.13) 

lim sup &(t) = lim lim sup & 
f-” All r--t= I 

!xLo 
-ddu=c,. 

u 

Since ,& is also eventually positive (to be slowly varying) choose to> 1 so that 0 ,< 

&F(t) G ( cF + E) and ( qF( t) -m ( G E for all t > to. Then it follows that, for some CE 

(0, x) andalltat,, 

l/C<EIY~F““] <C. 

It also follows, if both t> t(: and y < t/to, 

- VyiFc”=exp 
F(t) 

nF(t) -~(tly) + 
ji-0 ) I.ll du v#F(‘) 

Ll 
r/1 

With this bound and with (3.13), dominated convergence is allowed for 

lim 
II 

WY) 
-yiFcf) G(dy) =O. 

I+= F(f) 0 

Finally, 

< 
WY) - -y@(‘) G(dy) + 

G( t/t”) 

et) 
_ + E[ YL~“‘ly>,,fJ . 

F(t) 0 

The first term, we have just shown, vanishes as t + 30. The second term also vanishes by a 

remark made above and the third term clearly follows suit. Therefore, 

Since E[ YiFcr’] is bounded away from 0, (3.11) is proven. q 
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As a corollary, we provide the results for 2. All three are well known, though the second 

is a slight extension of the result by Embrechts and Goldie ( 1980) discussed in the intro- 

duction. Note that FE 357 means (Ye = PF = cF = d, < m and is implied by cF = dp < ~0. 

Corollary 3.6. (i) (Embrechts and Goldie, 1980). F, G E .2? - HE 2’ with c+, = c+ A Q. 

(ii) (Embrechts and Goldie, 1980). If F E S? and G(t) = o( fi( bt) ) for some b > 0, then 

HES? and c+=c+-. 

(iii) (Breiman,1965).Ij”F~2TundE[Y”“i”]<~forsome~>O,then 

lim f(r) 
- =E[Y"'] 

r-.x F(t) 

Proof. (i) If the regularly varying functions F(t) - ’ and G(t) _ ’ satisfy c+ < CQ then it is 

well known that C?(t) = o( F( br) ) , for all b > 0, and the condition for part (ii) holds. Thus 

c+ = c+. Likewise, (Ye = LYE if CQ < c+. 

Otherwise, assume c+= Q. Let F, be the measure satisfying F, (x, a) = F, (x) = 

X - nF and give a similar definition to G * . By a double application of Fatou’s lemma, 

I 

lim inf lim inf - 
fi(Q 1 

.5-+= f-z G(s)E;(t/s) 
> lim inf 7 

.5-m G(s) i 
F, (sly)G(dy) 

0 
_ 

F,(b) 
0 

2 G( l/x) F, (dx) 

0 

=x 

Thus 

As _ 

RF,G( A) = lim sup lim sup 
5’” r-2 I 

F( t/y) 
t7( G(dy) 

c 

F(tlhs) F(tls)G(s) 
f llT_siP l’Y_YP F;( t/s) 

H(f) 

=o. 

Since CQ = PI; = q = PG then Lemma 3.2 says, 

h-““=(F*(h)AG*(h))~H*(h)~H*(A)~(F*(h)VG*(A))=A~U~. 

Therefore HE 2 with CQ, = +. 

(ii) By Theorem 3.5 (iii), 
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Since d, = cH then HE 9. 

(iii) This follows from Theorem 3.5(v) since aF= c,= d,. 0 
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