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A subtle error in the recent paper (Cline, Adv. Appl. Probab. 39, 462–491,
2007) has resulted in an incorrect proof of the critical Lemma 4.1. The result
may be salvaged with the addition of another (quite reasonable) assumption.

First, we take note of Assumption 1.4(i) which says

There exists a set Θ#, open in Θ = {x ∈ X : ||x|| = 1}, such that
{B(·, u)}|u|≤M is equicontinuous on Θ# for all finite M .

For the intended applications such as threshold models, Θ# =
⋃N

i=1 Θi where
Θ1, . . . , ΘN are open, connected and disjoint. They usually have, however,
common boundaries. An interpretation of the assumption was given as follows.

For each ε > 0 and M < ∞, there is δ > 0 such that ||θ − θ′|| < δ,
θ, θ′ ∈ Θ# implies ||B(θ, u)−B(θ′, u)|| < ε for all |u| ≤ M .

The interpretation was meant to treat ||θ − θ′|| as a norm on Θ# (not on Θ),
but this may be confusing. To be correct, we define a metric d(θ, θ′) on Θ# that
reflects the intended meaning:

d(θ, θ′) =

{
||θ − θ′||, if there is a connected subset of Θ# containing

both θ and θ′,
||θ − θ′||+ 1, otherwise.

The equicontinuity of Assumption 1.4(i) above, therefore, is reinterpreted as

(i) For each ε > 0 and M < ∞, there is δ > 0 such that d(θ, θ′) < δ, θ, θ′ ∈ Θ#

implies ||B(θ, u)−B(θ′, u)|| < ε for all |u| ≤ M .

The point is that not only θ, θ′ ∈ Θ# is required but also (in the threshold
model context) θ and θ′ must be in the same Θi. In other words, if θ′ and θ are
close in Θ but on opposite sides of a boundary, they are not close in Θ#.

Assumption 1.4(ii) accordingly should be rephrased as well, as
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(ii) For each ε > 0 there exists L < ∞ such that

P
(
θ̃1 ∈ Θ#, θ̃∗1 ∈ Θ#, d(θ̃1, θ̃

∗
1) < 1

∣∣∣ X0 = x
)

> 1− ε

for all x ∈ X with x/||x|| ∈ Θ# and ||x|| > L.

That is, it is highly likely that θ̃1 and θ̃∗1 are in Θ# and on the same side of all
boundaries, when ||x|| is large.

This confusion of norms/metrics also occurs in the proof of Lemma 4.1.
Recalling the definition η(θ, u) = B(θ,u)

||B(θ,u)|| , we observe that, by (i), for each υ >

0 there exists δ such that d(θ, θ′) < δ, |e1| ≤ M implies ||η(θ, e1)−η(θ′, e1)|| < υ.
But this does not preclude the possibility that d(η(θ, e1), η(θ′, e1)) ≥ 1. As
discussed below, this causes the existing proof of Lemma 4.1 to fail.

Before providing a resolution, we require an additional assumption, namely
that Θ# may be chosen in such a way that the following holds.

(iii) For each ε > 0 and M < ∞ there exists δ > 0 such that d(θ, θ′) < δ,
θ, θ′ ∈ Θ# implies P (d(η(θ, e1), η(θ′, e1)) ≥ 1, |e1| ≤ M) < ε.

In other words, the probability that η(θ, e1) and η(θ′, e1) fail to be in the same
Θi is small, uniformly for d(θ, θ′) < δ.

Returning specifically to the model (1.2) investigated in section 5 of the
paper, we define Θ# as was done in the proof of Theorem 5.3. Now suppose
that δ is chosen to ensure that d(θ, θ′) < δ implies ||η(θ, e1) − η(θ′, e1)|| < υ
when |e1| ≤ M . Note that θ and θ′ are in the same Θi. One may see that,
under this scenario, the event

d(η(θ, e1), η(θ′, e1)) ≥ 1 and |e1| ≤ M

is contained in a finite union of events of the form |rie1 − si| < υ, with ri, si

chosen independently of θ, θ′. (The correct definition of Θ# is important here.)
Therefore, since the density of e1 is assumed bounded, it follows that

P (d(η(θ, e1), η(θ′, e1)) ≥ 1, |e1| ≤ M) < L1υ

for some constant L1. Thus, (iii) holds with the choice υ = ε/L1. Similarly,
the probability in (ii) differs from 1 by no more than L2/||x|| for some other
constant L2, and so (ii) holds as well with L = L2/ε.

Now we will revise the proof of Lemma 4.1. Suppose q is a bounded function,
uniformly continuous (with respect to d) on Θ#. The error in the proof of
Lemma 4.1 occurs after (4.4) where it is claimed incorrectly that assumption (i)
above “implies {q(η(θ, u))(w(θ, u))ζ}|u|≤M likewise is equicontinuous on Θ#.”
(Note: w(θ, u) = ||B(θ, u)||.) This is because η(θ, u) may cross a boundary with
even a small change in θ.

What we may say instead, based on (i) and the uniform continuity of q,
is that there exists sufficiently small δ and υ such that d(θ, θ′) < δ implies
||η(θ, u)− η(θ′, u)|| < υ and

|q(η(θ, u))(w(θ, u))ζ − q(η(θ′, u))(w(θ′, u))ζ | < ε/4,
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if |u| ≤ M , d(η(θ, u), η(θ′, u)) < 1. (1)

Additionally, let K = b̄(1 + M)ζ supθ∈Θ q(θ) (cf. Assumption 1.2(ii)). By (iii),
we actually may choose δ so that also

P (d(η(θ, e1), η(θ′, e1)) ≥ 1, |e1| ≤ M) < ε/(8K). (2)

From (1) and (2), it follows with little calculation that
∣∣E (

q(θ∗1)(W ∗
1 )ζ1|e1|≤M

∣∣ θ∗0 = θ
)− E

(
q(θ∗1)(W ∗

1 )ζ1|e1|≤M

∣∣ θ∗0 = θ′
)∣∣

≤ E
(|q(η(θ, e1))(w(θ, e1))ζ − q(η(θ′, e1))(w(θ′, e1))ζ |1|e1|≤M

)
< ε/2,

which is (4.5) in the paper. The rest of the proof then proceeds as originally
stated.

The remainder of the results and proofs may be allowed to stand essentially
as they are, with the understanding that d is to be used as the metric on Θ#.
Note that (ii) justifies its use in the proofs of Lemma 4.3 and Theorem 3.4, in
particular.
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