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Abstract.

We characterize the Lyapounov exponent and ergodicity of nonlinear stochastic recursion
models, including nonlinear AR-GARCH models, in terms of an easily defined uniformly
ergodic process. Properties of this latter process, known as the collapsed process, also
determine the existence of moments for the stochastic recursion when it is stationary. As
a result, both the the stability of a given model and the existence of its moments may be
evaluated with relative ease.

The method of proof involves piggybacking a Foster-Lyapounov drift condition on cer-
tain characteristic behavior of the collapsed process.
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1. Introduction.

1.1. Overview and Objectives. Interest in the highly successful generalized autore-
gressive conditional heteroscedastic (GARCH) time series models has been, in recent years,
extended to models with autoregression and threshold or other nonlinear behavior. We
term such models generally as “nonlinear AR-GARCH type” time series. Like most time
series models, they have a state space representation that is a stochastic recursion of the
form

Xt = F (Xt−1, et), (1.1)

with F : Rm × E → X ⊂ Rm and {et} is an iid sequence of random variables in some
Euclidean space E. The definitions for the state vector Xt, the state space X and the
recursion function F will depend on the time series model.

Nonlinear AR-GARCH time series, characteristically, exhibit stochastic volatility be-
cause the random errors get multiplied by something roughly proportional to the size of the
previous state vector. Indeed, they typically can be expressed in a m-dimensional Markov
(state space) representation of the form

Xt = B
(

Xt−1

||Xt−1|| , et

)
||Xt−1||+ C(Xt−1, et) (1.2)

where 0 < ||B(x/||x||, u)|| ≤ b̄(1 + |u|) and ||C(x, u)|| ≤ c̄(x)(1 + |u|) for finite b̄ and
c̄(x) = o(||x||). (See examples in section 2.) The point to be made here is that the first
term on the right is homogeneous in Xt−1, and it dominates when the process becomes very
large.

We are interested whether such a time series is ergodic, and specifically whether it is
stable and does not grow indefinitely. Accordingly, the geometric “drift” of the state process
{Xt}, when large, is characterized in terms of the limiting parameter

γ̄
def= lim inf

n→∞ lim sup
||x||→∞

1
n

E

(
log

(
1 + ||Xn||
1 + ||X0||

) ∣∣∣ X0 = x

)
. (1.3)

We call this constant the Lyapounov exponent of the process because it describes the
longterm change in the magnitude of Xt, at least when the initial state is large. Further-
more, it is the critical value for stability. Under irreducibility and aperiodicity assumptions,
geometric ergodicity is a consequence of a negative Lyapounov exponent (Cline and Pu
(1999)). Conversely, with similar assumptions, a positive Lyapounov exponent ensures that
{Xt} is transient (Cline and Pu (2001)).

Since γ̄ is defined as a double limit, it seemingly is difficult to compute. Estimating it
by simulation requires observing the time series during its most extreme (and most volatile)
behavior. Our primary objective in this paper, therefore, is to give a precise value to γ̄ in
terms that may more easily be computed.

To see how this may be accomplished, observe that only the first term in (1.2) describes
the behavior of Xt when ||Xt−1|| is large. To exploit this, we consider the related (though
inherently non-ergodic) Markov process

X∗
t = B

(
X∗

t−1

||X∗
t−1|| , et

)
||X∗

t−1||. (1.4)

This is the homogeneous form of (1.2). Let Θ = {x ∈ X : ||x|| = 1} and define

w(θ, u) = ||B(θ, u)||, η(θ, u) = B(θ, u)/||B(θ, u)||, for θ ∈ Θ, u ∈ E.
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The homogeneous process can be collapsed to Θ:

θ∗t = X∗
t /||X∗

t || = η(θ∗t−1, et). (1.5)

Also, let W ∗
t = w(θ∗t−1, et). The “collapsed” process {θ∗t } also is Markov and typically it

is uniformly ergodic. Its behavior (and more specifically, the behavior of W ∗
t ) determines

both the stability and the existence of moments of the original process {Xt}.
In fact, we will demonstrate (Theorem 3.3 below) that the Lyapounov exponent is equal

to the stationary value of
γ

def= E
(
log(W ∗

t )
)
.

One very practical consequence of this result is that it provides a straightforward method to
evaluate the Lyapounov exponent of {Xt} (given the model and parameter values) because
an expectation for a uniformly ergodic process frequently is very easy to estimate.

Our second objective is to determine which moments are finite for the stationary distri-
bution of {Xt} when the process is ergodic. Again, the answer can be expressed precisely in
terms of {(θ∗t ,W ∗

t )}. Simply stated, the ζ-moment for {Xt} exists when there is a bounded,
positive function λ(θ) such that

sup
θΘ

E(λ(θ∗1)
λ(θ) (W ∗

t )ζ
∣∣∣ θ∗0 = θ

)
< 1.

The exact result is contained in the statements of Theorems 3.2 and 3.4.
This paper extends similar results for a threshold AR-ARCH model (Cline and Pu

(2004)) and advances that work in several respects. First, the model is more general and
includes models with GARCH-like behavior. This is notable because the state vector is
more complex for GARCH type time series. In particular, it includes each new “volatility”
value which depends completely on the previous state, thereby adding to the singularity of
the stochastic recursion and complicating both proofs and assumptions. The new results
also apply to regime switching models, threshold variable driven switching models and to
models that are not strictly piecewise versions of GARCH models. The arguments have
been disentangled with certain of the assumptions and have been clarified substantially. In
addition, there is more detail and precision in the theorem statements than there was for
the analogous AR-ARCH versions. Finally, we describe the behavior of the process when it
is not stable and demonstrate the sharpness of our stability condition.

An ultimate goal, not undertaken here, is to investigate the tail properties of stationary
distributions when they exist. We simply note that various authors have shown station-
ary distributions typically have regularly varying probability tails, at least for the special
cases studied so far (Borkovec and Klüppelberg (2001), Basrak, Davis and Mikosch (2002),
Klüppelberg and Pergamenchtchikov (2004)), Zhang and Tong (2004), de Saporta (2005)
and Cline (2007b)).

1.2. Motivation and Background. A motivating factor for desiring a simple but
precise condition for stability is that, with only a limited understanding, a time series analyst
may make parameter assumptions that are based on the requirements for ordinary GARCH
and AR-GARCH models. Although shown to be sufficient for some models (Lanne and
Saikkonen (2005) and Lee and Shin (2005)), such assumptions can be unduly harsh. Like
threshold autoregression models, the parameter spaces of stable nonlinear AR-(G)ARCH
models can be unexpectedly large. See Cline (2007a) for a simple example. Similarly,
while moment conditions have been ascertained for ordinary GARCH models (e.g., He and
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Teräsvirta (1999a,b)), those conditions do not translate well to nonlinear models or even to
GARCH models with autoregression terms.

Identifying conditions for ergodicity of the model (1.1) is a problem of longstanding
interest, and determining when the process is (geometrically) ergodic and mixing implies
useful statistical behavior. In this paper we establish geometric ergodicity conditions for
(1.1) when

(i) the stochastic recursion is neither linear nor “close” to linear,

(ii) F (·, u) is discontinuous, albeit piecewise continuous,

(iii) F (x, e1) has a singular distribution with support on a low-dimensional manifold of
Rm that, in addition, depends on x, and

(iv) the process exhibits stochastic volatility such that the random part of F (x, e1) is of
the order ||x|| for large ||x||.

Each of the characteristics just described presents complications for proving accurate/sharp
conditions of ergodicity. For example, (ii) and (iii) each rule out that (1.1) is a Feller process,
and usually they imply great care is required just to establish irreducibility and aperiodicity.
The stochastic volatility prevents comparisons to dynamical systems and the nonlinearity
implies that conditions based on “linear bounds” may not be sharp.

Numerous results are available in more “ideal” scenarios. For example, Bougerol and
Picard (1992a,b) showed that embedding pure GARCH time series into (linear) random
coefficients models is very beneficial, and obtained necessary and sufficient conditions for
ergodicity based on the work of Brandt (1986). (See also Vervaat (1979), Grincevičius
(1981), and Goldie and Maller (2000).) For this approach to apply more generally, there
must at least exist a matrix function G(u) such that E

(
log+ (||F (x, e1)−G(e1)x||)

)
is

bounded. The Lyapounov exponent turns out to be infn≥1
1
nE (log (‖∏n

t=1 G(et)‖)). Since
this is defined in terms of the matrix norm of a longterm product of random matrices, it is
not necessarily easy to compute. (It coincides with (1.3), with little additional assumption.)

Likewise, a condition is known (in a very general setting) when F (x, ·) is Lipschitz contin-
uous (Barnsley and Elton (1988), Elton (1990), Diaconis and Freedman (1999), Alsmeyer
and Fuh (2001) and Jarner and Tweedie (2001)). Again the condition for ergodicity is
that the Lyapounov exponent is negative: infn≥1

1
nE

(
supx,y∈X log

(
d(Xn(x),Xn(y))

d(x,y)

))
< 0,

where d is a metric on the state space X and Xn(x) is the value Xn takes when X0 =
x. As this also often is difficult to compute, one may utilize a stronger condition such

as E

((
supx,y∈X

d(F (x,e1),F (y,e1))
d(x,y)

)ζ
)

< 1 for some ζ > 0. Steinsaltz (1999) has an ap-

parently weaker condition which posits the existence of a test function λ(x) such that
supx∈XE

(
λ(F (x,e1))

λ(x) lim supy→x
d(F (x,e1),F (y,e1))

d(x,y)

)
< 1, but then the problem also requires

finding an optimal test function. Chan and Tong (1985) also used a Lipschitz continuity
assumption early in the study of nonlinear time series.

Additionally, if the time series is a nonlinear autoregression with (roughly) constant
noise variance then dynamical systems analysis and other methods have yielded important
results. The literature is quite rich and we simply mention that it primarily begins with
the work of Tong and Lim (1980), Tong (1981, 1983), Chan and Tong (1985) and Tong
(1990), and was aided greatly by the Foster-Lyapounov drift condition theory ultimately
consolidated in Meyn and Tweedie (1993). The drift condition approach has the advantage
that it also provides sufficient conditions for the existence of moments.
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Establishing sharp conditions for the ergodicity of the models we discuss here, however,
has proven to be more difficult. The nonlinear, discontinuous, singular and stochastically
volatile behaviors all have thwarted attempts to capitalize on comparisons to simpler, and
more easily analyzed, models. There have been many papers that identify sufficient condi-
tions for ergodicity of these models. These include the works of Rabemanajara and Zakoian
(1993), Li and Li (1996), Liu, Li and Li (1997), Lu (1998), Ling (1999), Hwang and Woo
(2001), Lu and Jaing (2001), Lanne and Saikkonen (2005), Lee and Shin (2005) and Meitz
and Saikonnen (2006). But the conditions imposed are often restrictive because they rely on
some sort of linear bound. For example, a typical condition requires ||F (x, u) −G(x, u)x||
to be bounded in x for some matrix function G(x, u) such that the elements of G(x, u) are
uniformly bounded in x by G∗(u), and G∗(e1) satisfies a stability condition such as those
for ordinary GARCH models or random coefficients models. Alternatively, the condition
may be difficult to compute because it requires accurately bounding a high order iteration
of F .

Ultimately, regardless of the assumptions, the issue of stability lies with an accurate
computation of the Lyapounov exponent for the process. Even if the process is an ordinary
high order GARCH time series and fits the results described in the literature above, we
need to show how to compute the Lyapounov exponent efficiently.

The remainder of this section will explain the assumptions we use. Examples of nonlinear
AR-GARCH models are given in section 2. Section 3 contains our results, section 4 has the
proofs and section 5 verifies that the assumptions will hold for typical threshold models.

1.3. Assumptions. We list here the various assumptions held throughout the paper
(except in section 5 where they are verified for certain models).

To be general, we express our results in terms of the m-dimensional state process {Xt}
as given in (1.2). In practice, the specifics will depend on the particular time series model
under consideration. However, we assume B(·, u) is piecewise continuous so that our results
will be useful for threshold models. In section 2 we will illustrate the decomposition for
several types of models.

Let || · || be the usual Euclidean norm on Rm. For the sake of generality, {et} will be an
iid error sequence on some open set E contained in an Euclidean space. We let the norm
for this be denoted | · | to distinguish it from the other. In many cases, E will in fact be R.
The state space, X ⊂ Rm, for {Xt} will be a cone: x ∈ X implies cx ∈ X for all c > 0. Let
X∗ = X\{0} be the appropriate space for the homogeneous process {X∗

t }, defined in (1.4).
The first assumption below is standard and the second is easily verified for typical

models. The third assumption, while standard, may require technical verification and the
fourth would certainly have to be checked for specific models. We discuss the validity of
these assumptions for threshold AR-GARCH models in section 5.

Assumption A.1 The error sequence {et} is iid with E(|et|β) < ∞ for some β > 0.

The errors are often assumed to have a positive bounded density as well, mainly for the
purpose of establishing Assumption A.3 below.

The first part of the next assumption ensures that the stochastic volatility component
of {Xt} is roughly proportional to the magnitude of the process. That is, the process is
something like a (G)ARCH type model. The second part of Assumption A.2 guarantees the
existence of a negative moment for W ∗

t . This could be relaxed slightly for the ergodicity
proof but we use it when we verify that {Xt} is transient if the Lyapounov exponent is
positive.
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Assumption A.2

(i) There exist b1 > 0, b2 ≥ 0, b̄ < ∞ and c̄(x) = o(||x||), as ||x|| → ∞, such that
max(b1|u| − b2, 0) ≤ ||B(θ, u)|| ≤ b̄(1 + |u|) for all u ∈ E, θ ∈ Θ, and ||C(x, u)|| ≤
c̄(x)(1 + |u|) for all u ∈ E, x ∈ X.

(ii) For some finite K and α ∈ (0, 1], P
(
||B(x/||x||, e1)||x|| + C(x, e1)|| < δ||x||

)
< Kδα

for all x ∈ X such that ||x|| > 1, all δ ∈ (0, 1].

The next assumption is a requirement for ergodicity of a Markov chain in the time series
setting. It can be easy or difficult to verify for specific models. In our case, the difficulty
arises since B(x, e1) typically is discontinuous in x (e.g., for threshold models) and has a
singular multivariate distribution. We provide a common approach in Theorem 5.1 and
use it to look at threshold AR-GARCH models. The reader may wish to consult a text on
discrete time Markov processes (such as Meyn and Tweedie (1993)) for definitions of the
properties mentioned here.

Assumption A.3 {Xt} and {X∗
t } are each aperiodic φ-irreducible Markov chains, on X

and X∗, respectively. Furthermore, bounded subsets of X are small for {Xt} and subsets of
X∗ that are bounded and bounded away from {0} are small for {X∗

t }.
The requirement in Assumption A.3 that bounded sets are small is needed essentially

because the critical behavior for stability of a time series is off bounded sets, that is, for
large values. It is at the heart of the drift condition argument we will use. It is a continuity
assumption but, unlike the Feller assumption, it is reasonable for most threshold models.
If X is closed in Rm and the chains are aperiodic and φ-irreducible then this requirement is
equivalent to saying that {Xt} and {X∗

t } are T -chains (cf. Meyn and Tweedie (1993)).
It will be useful to study the directional component of the process, θ̃t = Xt/||Xt||, in

addition to the collapsed process defined in (1.5). Also, let θ̃∗1 = η(X0/||X0||, e1) which is
the value of θ∗1 if θ∗0 = θ̃0 = X0/||X0||. When ||X0|| is large, we would expect θ̃1 and θ̃∗1
to behave similarly. However, they must avoid the thresholds (points of discontinuity) and
because B(x, e1) is singular this may require even further restriction. Thus, the purpose of
the next assumption is to control the discontinuous behavior of the process. In particular,
we expect B(·, u) to be piecewise uniformly continuous for each u with its discontinuities
on thresholds that do not attract the process. In combination with Assumption A.3, this
imparts enough regularity for the homogeneous process to properly mimic the state space
model. See section 5 for specifics in the case of a threshold AR-GARCH model.

Assumption A.4 There exists a set Θ#, open in Θ = {x ∈ X : ||x|| = 1}, such that

(i) {B(·, u)}|u|≤M is equicontinuous on Θ# for all finite M . That is, for each ε > 0 and
M < ∞, there is δ > 0 such that |θ−θ′| < δ, θ, θ′ ∈ Θ# implies |B(θ, u)−B(θ′, u)| < ε
for all |u| ≤ M .

Additionally,

(ii) for each ε > 0 there exists L < ∞ such that P
(
θ̃1 ∈ Θ#, θ̃∗1 ∈ Θ#

∣∣∣ X0 = x
)

> 1− ε

for all x ∈ X with x/||x|| ∈ Θ# and ||x|| > L,

and
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(iii) for every ε > 0 there exists n ≥ 1 and L < ∞ such that P
(
θ̃n ∈ Θ#

∣∣∣ X0 = x
)

> 1− ε

for all x ∈ X with ||x|| > L.

The equicontinuity assumption above is used to prove uniform continuity of certain
conditional expectations. Part (ii) indicates that θ̃1 and θ̃∗1 are similarly restricted to the
“nice” set Θ# while part (iii) provides that Θ# will eventually be reached.

Assumption A.4 allows for less regularity on bounded sets. In some cases, {Xt} may
in fact be weak Feller when restricted to Θ# × [0,∞) but such a restriction does not
immediately simplify the problem: in order to establish Assumption A.3, we have to deal
with the closure of Θ# × [0,∞) one way or another.

2. Examples.

2.1. Threshold AR-GARCH Model. The “GARCH” in AR-GARCH can be in-
terpreted two different ways. In this subsection and the next, we present the simpler inter-
pretation also called “double autoregression” by Ling (2004). In subsection 2.3 we discuss
the other interpretation, which is a nonlinear autoregression with GARCH errors and which
(ironically) includes the “double threshold ARCH” model investigated by Li and Li (1996)
and Ling (1999).

Essentially, a threshold AR-GARCH model is defined like a GARCH model with autore-
gression but with different parameter values on different subsets (“regimes”) of the state
space. To describe a typical threshold model explicitly, first suppose C1, . . . , CN are disjoint
cones partitioning Rp and having, say, affine boundaries (which are the thresholds). Let
y = (y1, . . . , yp) ∈ Rp, s = (s1, . . . , sq) ∈ [0,∞)q and define

ai(y) = a0i + a1iy1 + · · ·+ apiyp,

bi(y) =
(
b0i + b1iy

2
1 + · · ·+ bpiy

2
p

)1/2
,

and ci(s) =
(
c1is

2
1 + · · ·+ cqis

2
q

)1/2
, i = 1, . . . , N , (2.1)

with each bki ≥ 0 and each cki ≥ 0. The threshold AR-GARCH(p, q) model is expressed by

ξt = aIt(ξt−1, . . . , ξt−p) + σtet,

σt =
(
b2
It

(ξt−1, . . . , ξt−p) + c2
It

(σt−1, . . . , σt−q)
)1/2

, (2.2)

where

It =
N∑

i=1

i1(ξt−1,...,ξt−p)∈Ci
. (2.3)

The index It is called the regime index.
In the simplest scenario, there are just two regimes and the threshold variable is ξt−k,

k ≤ p, meaning the regime is chosen with a delay. The regimes (cones) for this scenario are

C1 = {y ∈ Rp : yk ≤ 0} and C2 = {y ∈ Rp : yk > 0}.
Lee and Shin (2005) have recently verified that extending the standard assumption for

stability of a GARCH model suffices for models including those of the form we have just
described, when each ai(y) = 0. Specifically, their condition is

p∑

k=1

max
1≤i≤N

bkiE(e2
1) +

q∑

k=1

max
1≤i≤N

cki < 1. (2.4)
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By explicitly identifying the Lyapounov exponent of the model, we will obtain a much
weaker, and sharper, sufficient condition. Lee and Shin (2005) also show that (2.4) ensures
a finite second moment for the stationary distribution. Again, we can weaken the condition.
Note that c1i + · · ·+ cqi < 1 is necessary for at least one i, and possibly all, since otherwise
σt is certain to converge to infinity.

The state vector for the model (2.2) is

Xt = (Yt, St) with Yt = (ξt, . . . , ξt−p+1) and St = (σt, . . . , σt−q+1),

and m = p + q. Additionally, the state space for {Xt} is X = Rp × [0,∞)q. For topological
reasons, we allow σt to take the value 0 but this is a transitory state.

Now let a∗i (y) = ai(y) − a0i and b∗i (y) = (b2
i (y) − b0i)1/2. Then both are homogeneous:

a∗i (y) = a∗i (y/||y||)||y|| and b∗i (y) = b∗i (y/||y||)||y||. Also, d0i(y, s) def= (b2
i (y) + c2

i (s))
1/2 −

((b∗i (y))2 + c2
i (s))

1/2 is bounded. Let i(y) =
∑N

i=1 i1y∈Ci . We therefore can express the
model in the form (1.2) with x = (y, s),

B(x, u) = B(x/||x||, u)||x|| =
(
a∗i(y)(y) + ((b∗i(y)(y))2 + c2

i(y)(s)))
1/2u, y1, . . . , yp−1,

((b∗i(y)(y))2 + c2
i(y)(s)))

1/2, s1, . . . , sq−1

)
(2.5)

and C(x, u) = (a0,i(y) + d0,i(y)(y, s)u, 0, . . . , 0, d0,i(y)(y, s), 0, . . . , 0). Only the leading com-
ponents of B(x, e1) and C(x, e1) are random.

In section 5, we will verify that this model satisfies our assumptions when the coefficients
bki and cki are positive and c1i + · · · + cqi < 1. Because σt is completely determined by
past values, verifying Assumption A.3 for the threshold AR-GARCH is much more involved
than it would be for a threshold AR-ARCH model (that is, with q = 0).

2.2. Nonlinear AR-GARCH Model. More generally, a nonlinear AR-GARCH
model may satisfy

ξt = a(ξt−1, . . . , ξt−p) + σtet,

σt =
(
b2(ξt−1, . . . , ξt−p) + c2(σt−1, . . . , σt−q)

)1/2
, (2.6)

assuming only that

a(y) = a0(y) + a∗(y) and b(y) = b0(y) + b∗(y),

where a0 and b0 are bounded functions, b, b∗ and c are positive, a∗ and b∗ are homogeneous,
as well as piecewise continuous, and c is assumed to be homogeneous and piecewise contin-
uous itself. Let x = (y, s) with y = (y1, . . . , yp) and s = (s1, . . . , sq). The state vector and
state space are as in the previous subsection. Define

d0(x) = (b2(x) + c2(s))1/2 − ((b∗(y))2 + c2(s))1/2

and note that |d0(x)| ≤ |b0(y)|. Then the model satisfies (1.2) with

B(x, u) = B(x/||x||, u)||x|| =
(
a∗(y) + ((b∗(y))2 + c2(s)))1/2u, y1, . . . , yp−1,

((b∗(y))2 + c2(s)))1/2, s1, . . . , sq−1

)

and C(x, u) = (a0(y) + d0(x)u, 0, . . . , 0, d0(x), 0, . . . , 0).
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One advantage of such a representation is that it allows for threshold-like models with
smooth transitions. For example, a smooth transition model with delay lag k ≤ p could
have

b(y) =
(
b01 + b11y

2
1 + · · ·+ bp1y

2
p

)1/2
G(yk/||y||)

+
(
b02 + b12y

2
1 + · · ·+ bp2y

2
p

)1/2
(1−G(yk/||y||))

with G a continuous probability distribution on [−1, 1]. Then

b∗(y) =
(
b11y

2
1 + · · ·+ bp1y

2
p

)1/2
G(yk/||y||)

+
(
b12y

2
1 + · · ·+ bp2y

2
p

)1/2
(1−G(yk/||y||))

and b0(y) = b(y)− b∗(y) which is bounded. The functions a(y) and c(s) could have similar
representations. See Lanne and Saikkonen (2005) for a discussion on models of this type
(without the AR component). They also impose quite strong conditions for stability.

2.3. Nonlinear Autoregression with GARCH Errors. It is perhaps more common
to define a model for which the conditional heteroscedasticity is an autoregression on past
squared values of the error terms, rather than on past squared values of the time series.
That is, the error terms are a (possibly nonlinear) GARCH process. This is the type of
model discussed by Li and Li (1996), Ling (1999) and Meitz and Saikkonen (2006), and it
requires a longer state vector than the models of the preceding subsections.

The threshold version is defined by

ξt = aIt(ξt−1, . . . , ξt−p) + ζt,
ζt = σtet,

σt =
(
b2
It

(ζt−1, . . . , ζt−r) + c2
It

(σt−1, . . . , σt−q)
)1/2

,

where ai, bi and ci are as in subsection 2.1 and It =
∑N

i=1 i1(ξt−1,...,ξt−p)∈Ci
. The state vector

now is (Yt, Zt, St) with Yt and St as before and Zt = (ζt, . . . , ζt−r+1). Letting a∗i and b∗i also
be defined as they were in subsection 2.1, we may express (for x = (y, z, s))

B(x, u) = B(x/||x||, u)||x||
=

(
a∗i(y)(y) + ((b∗i(y)(z))2 + c2

i(y)(s)))
1/2u, y1, . . . , yp−1,

((b∗i(y)(z))2 + c2
i(y)(s)))

1/2u, z1, . . . , zr−1, ((b∗i(y)(z))2 + c2
i(y)(s)))

1/2, s1, . . . , sq−1

)
.

Our results apply equally well to models of this variety. The only difficulty might be the
the extra effort required to verify Assumptions A.3 and A.4.

2.4. Variable Driven Switching Model. Wu and Chen (2007) recently introduced a
variable driven switching model that combines the advantages of random regime switching
with those of thresholds. Such a model fits into our framework as well. In the ordinary
threshold model of subsection 2.1, the “threshold variable” (one or more linear combina-
tions of (ξt−1, . . . , ξt−p)) determines the regime variable (It) for the next observation. In
a switching model, the regime is randomly determined. The model that Wu and Chen
proposed uses the threshold variable to drive the random switching.

9



Specifically, in our context, suppose h1(θ), . . . , hN (θ) are positive functions of θ ∈ Θ.
Recall that we defined θ̃t = Xt/||Xt||. The regimes are randomly chosen so that

P
(
It = i

∣∣∣ θ̃t−1 = θ
)

=
hi(θ)∑N

j=1 hj(θ)
.

Even more precisely, we augment the errors with an iid uniform(0,1) sequence {vt}, inde-
pendent of {et}, and define

qi(θ) =
∑

j≤i hj(θ)∑N
j=1 hj(θ)

, i = 0, . . . , N.

Then, in (2.3), the equation for It is replaced with

It = i(θ̃t−1, vt)
def=

N∑

i=1

i1qi−1(θ̃t−1)<vt≤qi(θ̃t−1),

while (2.1) and (2.2) stay the same. The state vector is as before, and the representations
for B and C remain much the same except that now the index function also depends on vt

and the random error is (et, vt).

2.5. Markov Regime Switching Model. Regime switching models traditionally
have involved a finite state Markov chain that dictates the regime. Letting {It} be this
chain, the model is further defined by (2.1) and (2.2). Now, however, the state vector must
be Xt = (Yt, St, It) with the corresponding change in the state space. Let θ∗t and Θ be
defined in terms of (Yt, St) just as before and let I = {1, . . . , N} be the set of regime indices.
Then the collapsed model is now {(θ∗t , It)}, a Markov chain on Θ × I. The results and
proofs of the following sections are easily modified to accommodate this change. In fact,
this really is just a special case of both the threshold and the variable driven models, with
cones Ci = Θ × {i} for the former and link functions hj((θ, i)) = P (It = j | It−1 = i) for
the latter.

Franq and Zaköıan (2005) investigate even integer order moment properties of this
model, without the AR term ai(y), obtaining necessary and sufficient conditions that agree
with ours. Their conditions are expressed in terms of expectations of Kronecker products
of random matrices but do not require an implicitly determined (test) function such as the
λ of the next section.

3. Main Results.

3.1. The Collapsed Process. We remind the reader that Assumptions A.1–A.4 are
in effect for all the results. The collapsed process {θ∗t }, defined in (1.5), is evidently Markov.
In this subsection we consider the behaviors it exhibits that are necessary for describing
the stability results of the next subsection. The first result is preliminary and establishes
ergodicity of {θ∗t } and existence of moments of W ∗

t = w(θ∗t−1, et) while the second identifies
the specific behavior we will use to verify stability of {Xt}. Proofs are in section 4.

Theorem 3.1 {θ∗t } and {(θ∗t ,W ∗
t )} are uniformly ergodic. Furthermore, with β as in

Assumption A.1 and α as in Assumption A.2(ii),

sup
θ∈Θ

E
(
(W ∗

t )ζ
∣∣∣ θ∗t−1 = θ

)
< ∞ for any ζ ∈ (−α, β].
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In particular, if π is the stationary distribution for {θ∗t } then

γ =
∫

Θ
E

(
log W ∗

1

∣∣∣ θ∗0 = θ
)

π(dθ) =
∫

Θ
E

(
log w(θ, e1)

)
π(dθ) exists finite. (3.1)

In view of (3.1) and the uniform ergodicity of the collapsed process, there must exist a
bounded solution ν to the Poisson equation

E
(
ν(θ∗1)− ν(θ) + log w(θ, e1)

∣∣∣ θ∗0 = θ
)

= γ (3.2)

(Meyn and Tweedie (1993, Thm. 17.4.2)). This solution, unfortunately, is generally not
continuous on Θ. But we can show that it is uniformly continuous on Θ# (hence piecewise
continuous on Θ) and that will suffice.

Theorem 3.2 Let Θ# be as in Assumption A.4 and let π be the stationary distribution
for {θ∗t }.

(i) There exists a bounded, measurable function ν : Θ → R, uniformly continuous on
Θ#, such that (3.2) holds for all θ ∈ Θ.

(ii) Let Λ be the class of measurable, positive functions on Θ that are bounded and
bounded away from 0. If γ < 0 then there exists a unique κ ∈ (0,∞] such that for all
ζ ∈ (0, κ)

E
(
λ(θ∗1)(W

∗
1 )ζ

∣∣∣ θ∗0 = θ
)
≤ ρλ(θ) for all θ ∈ Θ and some ρ ∈ (0, 1), λ ∈ Λ, (3.3)

but not for any ζ > κ. Furthermore, such λ may be chosen to be uniformly continuous
on Θ# (possibly by increasing the value of ρ).

The Poisson equation (3.2) will be the basis for identifying the Lyapounov exponent of
{Xt} and (3.3) will be the basis for constructing the proof of ergodicity and the existence
of moments. We now turn to these questions.

3.2. Geometric Ergodicity. Our approach is to verify Foster-Lyapounov drift con-
ditions that are piggybacked on the collapsed process, specifically on (3.2) and (3.3). The
first order of business is to identify the Lyapounov exponent for {Xt}. Again, the proofs
are in section 4.

Theorem 3.3 Let γ be as in (3.1). The Lyapounov exponent γ̄ for {Xt} is γ. Indeed,

lim
n→∞ lim

||x||→∞

∣∣∣ 1
n

E
(
log

(1 + ||Xn||
1 + ||X0||

) ∣∣∣ X0 = x
)
− γ

∣∣∣ = 0. (3.4)

We now turn to the primary result, a sharp condition for ergodicity. In addition to
establishing the condition, we also determine which moments exist under stationarity. As
indicated below, these two objectives can be attained simultaneously. Other approaches
have been used to determine existence of moments, primarily for the basic GARCH model.
These include the methods of He and Teräsvirta (1999a,b) and of Basrak, Davis and Mikosch
(2002).
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Theorem 3.4 Let γ be as in (3.1).

(i) If γ < 0 then {Xt} is geometrically ergodic. Furthermore, let κ be as in The-
orem 3.2(ii). For every ζ ∈ (0, κ) there exists a Foster-Lyapounov test function
V : X→ R+ satisfying

(a) there exist ρ0 < 1 and finite M0, K0 such that

E
(
V (X1)

∣∣∣ X0 = x
)
≤ ρ0V (x)1V (x)>M0

+ K01V (x)≤M0
, for all x ∈ X, (3.5)

and

(b) there exist finite, positive d1, d2 such that

d1(1 + ||x||)ζ ≤ V (x) ≤ d2(1 + ||x||)ζ . (3.6)

Consequently, the stationary distribution for {Xt} has finite ζ-moment for every ζ ∈
(0, κ).

(ii) If γ > 0 and there exists an irreducibility measure φ for {Xt} such that
φ({x ∈ X : ||x|| > M}) > 0 for all M < ∞, then {Xt} is transient and, for some
ρ < 1,

P
(

lim
n→∞ ρn||Xn|| = ∞

∣∣∣ X0 = x
)

= 1, for all x ∈ X.

If {x ∈ X : V (x) ≤ M} is bounded in Rm for all finite M then condition (3.5) is
known (under Assumption A.3) to imply V -uniform ergodicity. That is, for some ρ < 1 and
K < ∞,

sup
A∈B(X)

|P (Xn ∈ A|X0 = x)−Π(A)| ≤ KρnV (x) for all x ∈ X, n ≥ 1,

where Π is the stationary distribution (cf. Meyn and Tweedie (1993, Thm. 16.0.1)). This,
in turn, implies geometric ergodicity and geometric mixing properties (Meyn and Tweedie
(1993, Thm. 16.1.5)). It also implies

∫
X V (x)Π(dx) < ∞ which, in conjunction with (3.6),

is what determines the existence of moments.
It is easy to conjecture, although we do not show it here, that the ζ-moment does not

exist for ζ > κ. A more precise description of the probability tails for Π would establish
this.

3.3. Evaluating the Stability Conditions. Geometric ergodicity is a consequence
of a negative Lyapounov exponent γ which in turn is a parameter of the collapsed process.
As suggested by (3.1),

1
n

n∑

t=1

log W ∗
t → γ almost surely, as n →∞.

Thus γ may be estimated simply by simulating the collapsed process and obtaining the
sample average of log W ∗

t . Since {(θ∗t , W ∗
t )} is uniformly ergodic, such an estimator will be

easy to generate and very reliable.
Alternatively, γ may be determined as a consequence of numerically solving (3.2). For

example, suppose e1 has density f . Define ν̄0(θ) = q0(θ) =
∫
E log w(θ, u) f(u) du and let µ
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be a probability measure on Θ. Then an iterative procedure, apparent from the proof of
Theorem 3.2(i), is to compute numerically

mn =
∫

Θ
ν̄n(θ) µ(dθ), νn(θ) = ν̄n(θ)−mn and ν̄n+1(θ) = q0(θ)+

∫

E
νn(η(θ, u)) f(u) du,

and then to estimate γ by either of

γ̄n = sup
θ∈Θ

(ν̄n(θ)− νn−1(θ)) or γ
n

= inf
θ∈Θ

(ν̄n(θ)− νn−1(θ)).

The purpose for computing and subtracting mn is to provide numerical stability. See Cline
(2007a) for a discussion of this approach. We state the result as follows.

Corollary 3.5 Define γ̄n, γ
n

and νn as above. Then γ̄n ↓ γ and γ
n
↑ γ as n → ∞ and

νn(θ) converges uniformly to a solution of (3.2) that is uniformly continuous on Θ#.

In fact, if one’s purpose (say, in modeling a time series) is merely to determine stability
then one does not need to solve (3.2) or evaluate γ precisely, as the following corollary
shows.

Corollary 3.6 If there exists a bounded function ν : Θ → R such that

sup
θ∈Θ

E (ν(θ∗1)− ν(θ) + log w(θ, e1) | θ∗0 = θ) < 0 (3.7)

then {Xt} is geometrically ergodic.

Analogous to the last corollary, the expression in (3.3) may be used to determine the
existence of a ζ-moment for the stationary distribution of {Xt}. See Theorem 3.4(i). (As
(3.3) also implies that (3.7) holds with ν(θ) = 1

ζ log λ(θ), by Jensen’s inequality, it simul-
taneously verifies the existence of the stationary distribution.) To determine whether (3.3)
holds for a particular choice of ζ, one may iteratively compute

λ̃n(θ) =
∫

E
λn−1(η(θ, u))(w(θ, u))ζ f(u) du, ρn = sup

θ∈Θ

(
λ̃n(θ)/λn−1(θ)

)
,

λn(θ) = λ̃n(θ)/
∫

Θ
λ̃n(θ̃) µ(dθ̃),

with λ0(θ) ≡ 1 and where ρn < 1 indicates the condition is satisfied.
Unfortunately, the moment condition cannot be determined by evaluating E((W ∗

1 )ζ)
under the stationary distribution of the collapsed process even though E((W ∗

1 )ζ) < 1 does
imply that γ < 0 (also by Jensen’s inequality).

4. Proofs.

4.1. Analyzing the Collapsed Process. Here we verify the needed properties
of {θ∗t }. We start by proving uniform ergodicity of the collapsed chain. Recall, from
section 1.1, that θ∗t = η(θ∗t−1, et) and W ∗

t = w(θ∗t−1, et), where w(θ, u) = ||B(θ, u)|| and
η(θ, u) = B(θ, u)/||B(θ, u)||.
Proof of Theorem 3.1 By Assumption A.3, {X∗

t } is aperiodic and φ-irreducible on X∗.
It easily follows that {θ∗t } is aperiodic and φ-irreducible on Θ. Since Θ is bounded and
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bounded away from 0, it is small for {X∗
t }, again by Assumption A.3. Thus, there exist

n1 ≥ 1 and a non-trivial measure µ such that

P
(
X∗

n1
∈ A

∣∣∣ X∗
0 = x

)
≥ µ(A) for all x ∈ Θ, A ∈ B(X).

That is,

P
(
θ∗n1

∈ A
∣∣∣ θ∗0 = θ

)
= P

(
X∗

n1
∈ A× R+

∣∣∣ X∗
0 = θ

)

≥ µ(A× R+), for all θ ∈ Θ, A ∈ B(Θ). (4.1)

Hence Θ is small for {θ∗t }. By Meyn and Tweedie (1993, Thm. 16.0.2)), {θ∗t } is uniformly
ergodic. Since W ∗

t = w(θ∗t−1, et) and et is independent of θ∗t−1, it follows trivially that
{(θ∗t ,W ∗

t )} also is uniformly ergodic.
From Assumption A.2(i),

sup
θ∈Θ

E
(
(W ∗

t )β
∣∣∣ θ∗t−1 = θ

)
= sup

θ∈Θ
E

(
||B(θ, e1)||β

)
< b̄βE((1 + |e1|)β) < ∞. (4.2)

From Assumption A.2(i,ii), on the other hand,

sup
θ∈Θ

P
(
W ∗

t < δ
∣∣∣ θ∗t−1 = θ

)
= sup

θ∈Θ
P

(
||B(θ, e1)|| < δ

)

≤ sup
θ∈Θ

lim
||x||→∞

P
(
||B(θ, e1) + C(θ||x||,e1)

||x|| || ≤ δ
)

≤ Kδα, (4.3)

if 0 < δ ≤ 1. Therefore, for any ζ ∈ (−α, 0),

sup
θ∈Θ

E
(
(W ∗

t )ζ
∣∣∣ θ∗t−1 = θ

)
≤ 1 +

∫ ∞

1
sup
θ∈Θ

P
(
W ∗

t < u1/ζ
∣∣∣ θ∗t−1 = θ

)
du

≤ 1 + K

∫ ∞

1
uα/ζ du < ∞. (4.4)

It follows from (4.2) and (4.4) that {log w(θ, e1)}θ∈Θ is uniformly integrable. Hence γ exists
and is finite. tu

Before we continue, we have a lemma that will be used to ensure uniform continuity of
the functions ν and λ on Θ# .

Lemma 4.1 Suppose q : Θ → R is bounded on Θ and uniformly continuous on Θ#.

Then, for each ζ ∈ [0, β), q̄(θ) = E
(
q(θ∗1)(W ∗

1 )ζ | θ∗0 = θ
)

is bounded on Θ and uniformly

continuous on Θ#.

Proof The boundedness of q̄(θ) is obvious by Theorem 3.1.
Suppose ε > 0. Since {q(η(θ, e1))(w(θ, e1))ζ}θ∈Θ is uniformly integrable, again by The-

orem 3.1, and q(η(θ, u))(w(θ, u))ζ →∞ requires |u| → ∞ (cf. Assumption A.2(i)), we may
choose M < ∞ so that

E
(
|q(θ∗1)|(W ∗

1 )ζ1|e1|>M | θ∗0 = θ
)

= E
(
|q(η(θ, e1))|(w(θ, e1))ζ1|e1|>M

)

< ε/4. (4.5)
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On the other hand, {B(θ, u)}|u|≤M is equicontinuous on Θ# by Assumption A.4(i). This
implies {q(η(θ, u))(w(θ, u))ζ}|u|≤M likewise is equicontinuous on Θ#. Hence, there exists
sufficiently small δ such that |θ − θ′| < δ, θ, θ′ ∈ Θ# implies

|q(η(θ, u))(w(θ, u))ζ − q(η(θ′, u))(w(θ′, u))ζ | < ε/2 for all |u| ≤ M .

Thus,
∣∣∣E

(
q(θ∗1)(W

∗
1 )ζ1|e1|≤M | θ∗0 = θ

)
− E

(
q(θ∗1)(W

∗
1 )ζ1|e1|≤M | θ∗0 = θ′

)∣∣∣
≤ E

(∣∣∣q(η(θ, e1))(w(θ, e1))ζ − q(η(θ′, e1))(w(θ′, e1))ζ
∣∣∣ 1|e1|≤M

)

< ε/2. (4.6)

Combining (4.5) and (4.6), we conclude that |θ−θ′| < δ, θ, θ′ ∈ Θ# implies |q̄(θ)−q̄(θ′)| < ε.
This demonstrates that q̄(θ) is uniformly continuous on Θ#. tu

We now establish the characteristic behavior of the collapsed process that is used to
describe our conditions for the stability of the stochastic recursion process.

Proof of Theorem 3.2 (i) Define q0(θ) = E (log w(θ, e1)), which is bounded on Θ and
uniformly continuous on Θ# (similar to the proof of the previous lemma). Let qt(θ) =
E (q0(θ∗t ) | θ∗0 = θ). By the Markov property,

E (q0(θ∗t ) | θ∗0 = θ) = E (E (q0(θ∗t ) | θ∗1) | θ∗0 = θ) = E (qt−1(θ∗1) | θ∗0 = θ)

and so, by Lemma 4.1 and induction, qt(θ) is bounded on Θ and uniformly continuous on
Θ# for each t ≥ 1.

By (3.1) and the uniform ergodicity of {θ∗t }, there exists r < 1 and K < ∞ such that

|qt(θ)− γ| = |E (q(θ∗t ) | θ∗0 = θ)− γ| < Krt for all t ≥ 1 and all θ ∈ Θ

(cf. Meyn and Tweedie (1993, Thm. 16.2.1)). It follows (see, e.g., Meyn and Tweedie (1993,
Thm. 17.4.2) that ν(θ) =

∑∞
t=0(qt(θ) − γ) is a bounded solution to the Poisson equation

(3.2).
Now, fix ε > 0 and choose n1 such that 4Krn1

1−δ ≤ ε. Then

∞∑

t=n1+1

|qt(θ)− γ| < ε/4 for all θ ∈ Θ,

while
∑n1

t=0(qt(θ) − γ) is uniformly continuous on Θ# by the comments above. So there
exists δ > 0 such that |θ − θ′| < δ, θ, θ′ ∈ Θ# implies

∣∣∣
n1∑

t=0

(qt(θ)− γ)−
n1∑

t=0

(qt(θ)− γ)
∣∣∣ < ε/2,

and hence |ν(θ)− ν(θ′)| < ε. Therefore, ν is uniformly continuous on Θ#.
(ii) Now suppose γ < 0 and choose ε ∈ (0,−γ) and ν as above. By Theorem 3.1, we

may choose M < ∞ so that

sup
θ∈Θ

1
β

E
(
(eβ(ν(θ∗1)−ν(θ))(W ∗

1 )β − 1)1| log W ∗
1 |>M

∣∣∣ θ∗0 = θ
)

< ε/3. (4.7)
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Observe that 1
ζ (eζv − 1) ↓ v, as ζ ↓ 0, uniformly on compact sets. Thus, since ν also is

bounded,

lim
ζ↓0

sup
θ∈Θ

E
(∣∣∣ eζν(θ∗1)−ζν(θ)(W ∗

1 )ζ−1

ζ
− (ν(θ∗1)− ν(θ) + log W ∗

1 )
∣∣∣1| log W ∗

1 |≤M

∣∣∣ θ∗0 = θ
)

= 0. (4.8)

By (3.2), (4.7) and (4.8),

sup
θ∈Θ

1
ζ
E

(
eζν(θ∗1)−ζν(θ)(W ∗

1 )ζ − 1
∣∣∣ θ∗0 = θ

)
< γ + ε < 0

for ζ small enough. Therefore, for some ζ > 0, (3.3) holds with λ(θ) = eζν(θ), ρ = 1+ζ(γ+ε).
Now define κ to be the supremum of all ζ > 0 such that (3.3) holds for some λ ∈ Λ and

ρ ∈ (0, 1). Choose any such ζ, ρ and λ, and suppose s ∈ (0, ζ). Jensen’s inequality implies

E
(
(λ(θ∗1))

s/ζ(W ∗
1 )s

∣∣∣ θ∗0 = θ
)
≤

(
E

(
λ(θ∗1)(W

∗
1 )ζ

∣∣∣ θ∗0 = θ
))s/ζ ≤ (ρλ(θ))s/ζ ,

for all θ ∈ Θ. Thus, we may conclude there exists λ ∈ Λ and ρ ∈ (0, 1) (both depending on
ζ) such that (3.3) holds, for every ζ ∈ (0, κ).

It remains to be shown that we can choose λ to be uniformly continuous on Θ#.
Assume λ ∈ Λ, ρ < 1 satisfy (3.3). By the Markov property,

E
(
λ(θ∗t )

t∏

k=1

(W ∗
k )ζ

∣∣∣ θ∗0 = θ
)

= E
(
E

(
λ(θ∗t )(W

∗
t )ζ

∣∣∣ θ∗t−1

) t−1∏

k=1

(W ∗
k )ζ

∣∣∣ θ∗0 = θ
)

≤ ρE
(
λ(θ∗t−1)

t−1∏

k=1

(W ∗
k )ζ

∣∣∣ θ∗0 = θ
)

≤ · · · ≤ ρtλ(θ), for all θ ∈ Θ, t ≥ 1. (4.9)

Again suppose ε ∈ (0, 1− ρ). Since λ is bounded and bounded away from 0, it follows from
(4.9) that, for large enough n2,

sup
θ∈Θ

(
E

( n2∏

k=1

(W ∗
k )ζ

∣∣∣ θ∗0 = θ
))1/n2

< ρ + ε < 1. (4.10)

Next, let q̄1(θ) = E
(
(w(θ, e1))ζ

)
, which is bounded. By Lemma 4.1, q̄1 is uniformly

continuous on Θ#. Also,

inf
θ∈Θ

q̄1(θ) ≥ inf
θ∈Θ

(
E

(
(w(θ, e1))−α/2

))−2ζ/α
> 0, (4.11)

by Jensen’s inequality and Theorem 3.1. We define

q̄t(θ) = E
( t∏

k=1

(W ∗
k )ζ

∣∣∣ θ∗0 = θ
)

= E
(
E

( t∏

k=1

(W ∗
k )ζ

∣∣∣ θ∗1, W ∗
1

) ∣∣∣ θ∗0 = θ
)

= E
(
E

( t∏

k=2

(W ∗
k )ζ

∣∣∣ θ∗1
)
(W ∗

1 )ζ
∣∣∣ θ∗0 = θ

)

= E
(
q̄t−1(θ∗1)(W

∗
1 )ζ

∣∣∣ θ∗0 = θ
)
. (4.12)
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By Lemma 4.1, (4.11) and induction, each q̄t(θ) is bounded, bounded away from 0 and is
uniformly continuous on Θ#.

We now define λ̄(θ) =
∏n2−1

t=1 (q̄t(θ))1/n2 . Then λ̄ ∈ Λ and it likewise is uniformly
continuous on Θ#. Finally, by Hölder’s inequality and (4.12),

E
(
λ̄(θ∗1)(W

∗
1 )ζ

∣∣∣ θ∗0 = θ
)

= E
(n2−1∏

t=1

(
q̄t(θ∗1)(W

∗
1 )ζ

)1/n2
(
(W ∗

1 )ζ
)1/n2

∣∣∣ θ∗0 = θ
)

≤
n2−1∏

t=1

(
E

(
q̄t(θ∗1)(W

∗
1 )ζ

∣∣∣ θ∗0 = θ
))1/n2

(
E

(
(W ∗

1 )ζ
∣∣∣ θ∗0 = θ

))1/n2

=
n2−1∏

t=1

(
q̄t+1(θ)

)1/n2
(
q̄1(θ)

)1/n2

= (q̄n2(θ)
)1/n2

n2−1∏

t=1

(
q̄t(θ)

)1/n2
< (ρ + ε)λ̄(θ),

for all θ ∈ Θ, with the final inequality by (4.10), thus completing the proof. tu

4.2. Showing Stability. In this subsection we verify that γ is the Lyapounov exponent
and thus γ < 0 implies geometric ergodicity for {Xt}. We also prove that the stationary
distribution, when it exists, has moments of all positive orders ζ < κ. The method is similar
to the “piggyback” proofs in Cline and Pu (2004) but greatly improved and clarified, as well
as handling the distinctive features of a GARCH-type model (as opposed to ARCH-type).
We start with a couple of lemmas.

Lemma 4.2 Let β be as in Assumption A.1 and α as in Assumption A.2. Then

sup
x∈X

E

((
1 + ||X1||
1 + ||x||

)ζ ∣∣∣ X0 = x

)
< ∞ for all ζ ∈ (−α, β]. (4.13)

Consequently, γ̄, as defined in (1.3), is finite.
Furthermore, for each ε > 0, there exists L < ∞ such that

P
(
||Xt1 ||/L ≤ ||Xt2 || ≤ L||Xt1 ||, 0 ≤ t1 < t2 ≤ n

∣∣∣ X0 = x
)

> 1− nε (4.14)

for all x ∈ X such that ||x|| > L and all n ≥ 1.

Proof For any ζ ∈ (0, β], the conclusion (4.13) is easy. From Assumption A.2(i) we know
that

M̄
def= sup

x∈X
sup
u∈E

1 + ||B(x/||x||, u)||x||+ C(x, u)||
(1 + ||x||)(1 + |u|) < ∞. (4.15)

Then
E

(
(1 + ||X1||)ζ

∣∣∣ X0 = x
)
≤ M̄ ζ(1 + ||x||)ζE((1 + |e1|)ζ)

and (4.13) follows. Now suppose −α < ζ < 0 and let δ ∈ (0, 1) be arbitrary. We have

P
(
1 + ||X1|| < δ(1 + ||x||)

∣∣∣ X0 = x
)
≤ P

(
||B(x/||x||, e1)||x||+ C(x, e1)|| < δ||x||

)

< Kδα,

when ||x|| > 1, by Assumption A.2(ii). In the same way that (4.3) implies (4.4), this suffices
to show (4.13).
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Additionally, let

M1 = sup
x∈X

E

(∣∣∣∣log
(

1 + ||X1||
1 + ||x||

)∣∣∣∣
∣∣∣ X0 = x

)
≤ (log M̄)E(log(1 + |e1|)),

which is finite. By conditioning on Xt−1,

1
n

E
(∣∣∣∣log

(
1 + ||Xn||
1 + ||x||

)∣∣∣∣
∣∣∣ X0 = x

)
≤ 1

n
E

(
max

0≤t1<t2≤n

∣∣∣∣log
(

1 + ||Xt2 ||
1 + ||Xt1 ||

)∣∣∣∣
∣∣∣ X0 = x

)

≤ 1
n

n∑

t=1

E
(∣∣∣∣log

(
1 + ||Xt||

1 + ||Xt−1||
)∣∣∣∣

∣∣∣ X0 = x
)

≤ M1 < ∞, (4.16)

for all n ≥ 1 and all x ∈ X. This shows that |γ̄| < ∞.
Also, if ||x|| > L ≥ 2eM1/ε then Markov’s inequality and (4.16) show

P
(
||Xt1 ||/L ≤ ||Xt2 || ≤ L||Xt1 ||, 0 ≤ t1 < t2 ≤ n

∣∣∣ X0 = x
)

≥ P
(
2/L ≤ 1 + ||Xt2 ||

1 + ||Xt1 ||
≤ L/2, 0 ≤ t1 < t2 ≤ n

∣∣∣ X0 = x
)

≥ 1− 1
log(L/2)

E
(

max
0≤t1<t2≤n

∣∣∣∣log
(

1 + ||Xt2 ||
1 + ||Xt1 ||

)∣∣∣∣
∣∣∣ X0 = x

)

≥ 1− nM1

log(L/2)
≥ 1− nε,

verifying (4.14). tu
The next lemma is where we piggyback a drift condition for {Xt} on the Poisson equation

for {θ∗t }.

Lemma 4.3 For each ε̄ > 0 there exist n ≥ 1 and a positive function V1(x) satisfying

lim sup
||x||→∞

∣∣∣E
(
log

V1(Xn+1)
V1(Xn)

∣∣∣ X0 = x
)
− γ

∣∣∣ < ε̄.

Furthermore, for some positive d1 and finite d2, V1 may be chosen to satisfy

d1(1 + ||x||) ≤ V1(x) ≤ d2(1 + ||x||).

Proof Fix ε̄ > 0 and set M1 = supx∈XE
(∣∣∣log 1+||B(x/||x||,e1)||x||+C(x,e1)||

1+||x||
∣∣∣
)

and K1 ≥
max(2 supθ∈Θ |ν(θ)|, 1). Fix ε = ε̄

5+2M1
and choose ν according to Theorem 3.2(i). Accord-

ing to Assumption A.4(ii,iii), choose n ≥ 1 and L0 ≥ 1 such that

sup
||x||>L0, x/||x||∈Θ#

P
(
θ̃1,x /∈ Θ# or θ̃∗1,x /∈ Θ#

))
< ε/K1 (4.17)

and
sup

||x||>L0

P
(
θ̃n /∈ Θ#

∣∣∣ X0 = x
)

< ε/K1. (4.18)

With n fixed, Lemma 4.2 allows us to choose L1 ≥ L0 to satisfy

sup
||x||>L1

P
(
||Xn|| ≤ ||x||/L1

∣∣∣ X0 = x
)

< ε/K1. (4.19)
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Define θ̃1,x = B(x/||x||,e1)||x||+C(x,e1)
||B(x/||x||,e1)||x||+C(x,e1)|| and θ̃∗1,x = B(x/||x||,e1)

||B(x/||x||,e1)|| , that is, θ̃1 and θ̃∗1 as

functions of x, respectively. Since ||θ̃1,x− θ̃∗1,x|| → 0 almost surely as ||x|| → ∞, by Assump-
tion A.2(i), and since ν is uniformly continuous on Θ#, it follows that

lim sup
||x||→∞

E
(
|ν(θ̃1,x)− ν(θ̃∗1,x)| 1θ̃1,x∈Θ#, θ̃∗1,x∈Θ#

)
= 0.

Thus, by (4.17) there exists L2 ≥ L1 such that

sup
||x||>L2, x/||x||∈Θ#

E
(
|ν(θ̃1,x)− ν(θ̃∗1,x)|

)

≤ sup
||x||>L2, x/||x||∈Θ#

E
(
|ν(θ̃1,x)− ν(θ̃∗1,x)| 1θ̃1,x∈Θ#, θ̃∗1,x∈θ#

)

+ sup
||x||>L2, x/||x||∈Θ#

K1P
(
θ̃1,x /∈ Θ# or θ̃∗1,x /∈ Θ#

)

< 2ε, (4.20)

Analogous to the definition of θ̃∗1 prior to Assumption A.4, let θ̃∗n+1 = η(Xn/||Xn||, en+1).
Conditioning on Xn, (4.20) gives

sup
x∈X

E
(
|ν(θ̃n+1)− ν(θ̃∗n+1)| 1||Xn||>L2, θ̃n∈Θ#

∣∣∣ X0 = x
)

= sup
x∈X

E
(
E

(
|ν(θ̃1,Xn)− ν(θ̃∗1,Xn

)|
∣∣∣ Xn

)
1||Xn||>L2, θ̃n∈Θ#

∣∣∣ X0 = x
)

< 2ε. (4.21)

Then, by combining (4.21) with (4.18) and (4.19),

sup
||x||>L2

2

E
(
|ν(θ̃n+1)− ν(θ̃∗n+1)|

∣∣∣ X0 = x
)

≤ sup
||x||>L2

2

E
(
|ν(θ̃n+1)− ν(θ̃∗n+1)| 1||Xn||>L2, θ̃n∈Θ#

∣∣∣ X0 = x
)

+ sup
||x||>L2

2

K1P
(
θ̃n /∈ Θ# or ||Xn|| ≤ ||x||/L2

∣∣∣ X0 = x
)

< 4ε. (4.22)

We also have 1+||B(x/||x||,e1)||x||+C(x,e1)||
1+||x|| −w(x/||x||, e1) → 0 almost surely, as ||x|| → ∞,

so that by uniform integrability (cf. Theorem 3.1 and Lemma 4.2),

lim sup
||x||→∞

E
(∣∣∣log

1+||B(x/||x||,e1)||x||+C(x,e1)||
1+||x||

− log w(x/||x||, e1)
∣∣∣
)

= 0.

Thus, for some L3 ≥ L2,

sup
||x||>L3

E
(∣∣∣log

1+||B(x/||x||,e1)||x||+C(x,e1)||
1+||x||

− log w(x/||x||, e1)
∣∣∣
)

< ε. (4.23)

Recall the definition of M1 and observe that supθ∈Θ E(log w(θ, e1)) ≤ M1 as well. Using
(4.19) and (4.23), condition on Xn to obtain

sup
||x||>L2

3

E
(∣∣∣log

1+||Xn+1||
1+||Xn||

− log w(θ̃n, en+1)
∣∣∣
∣∣∣ X0 = x

)
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≤ sup
||x||>L2

3

E
(∣∣∣log

1+||Xn+1||
1+||Xn||

− log w(θ̃n, en+1)
∣∣∣1||Xn||>L3

∣∣∣ X0 = x
)

+ sup
||x||>L2

3

2M1P
(
||Xn|| ≤ L3

∣∣∣ X0 = x
)

< (2M1 + 1)ε (4.24)

(since K1 ≥ 1).
Conditioning on Xn one last time, now with (3.2),

sup
x∈X

∣∣∣E
(
ν(θ̃∗n+1)− ν(θ̃n) + log w(θ̃n, en+1)

∣∣∣ X0 = x
)
− γ

∣∣∣ = 0. (4.25)

Combining (4.22), (4.24) and (4.25), we arrive at

sup
||x||>L2

3

∣∣∣E
(
ν(θ̃n+1)− ν(θ̃n) + log

1+||Xn+1||
1+||Xn||

∣∣∣ X0 = x
)
− γ

∣∣∣ < (5 + 2M1)ε.

= ε̄, (4.26)

and the result is obtained with V1(x) = eν(x/||x||)(1 + ||x||). tu
We now can identify the Lyapounov exponent.

Proof of Theorem 3.3 We start with (4.26) and the constants chosen in its proof. Note
that n is fixed and depends on ε̄. Set L̄0 = L2

3. By Lemma 4.2, there exists L̄t ≥ L̄t−1 such
that

sup
||x||>L̄t

P
(
||Xt|| ≤ L2

3

∣∣∣ X0 = x
)
≤ ε̄

K1+2M1+|γ| , for t ≥ 1. (4.27)

Hence, using (4.26) and conditioning on Xt in the manner of the previous proof,

sup
||x||>L̄t

∣∣∣E
((

ν(θ̃n+t+1)− ν(θ̃n+t) + log
1+||Xn+t+1||
1+||Xn+t||

− γ
)
1||Xt||>L2

3

∣∣∣ X0 = x
)∣∣∣ < ε̄, (4.28)

t ≥ 1, whereas by (4.27)

sup
||x||>L̄t

∣∣∣E
((

ν(θ̃n+t+1)− ν(θ̃n+t) + log
1+||Xn+t+1||
1+||Xn+t||

− γ
)
1||Xt||≤L2

3

∣∣∣ X0 = x
)∣∣∣

≤ (K1 + 2M1 + |γ|) sup
||x||>L̄t

P
(
||Xt|| ≤ L2

3

∣∣∣ X0 = x
)

< ε̄. (4.29)

Combining (4.28) and (4.29) and summing over t = 0, . . . , k − 1, we obtain

sup
||x||>L̄k−1

∣∣∣E
(
ν(θ̃n+k)− ν(θ̃n) + log

1+||Xn+k||
1+||Xn||

∣∣∣ X0 = x
)
− kγ

∣∣∣ < 2kε̄, (4.30)

In other words, (4.30) declares

lim sup
||x||→∞

∣∣∣1
k
E

(
ν(θ̃n+k)− ν(θ̃n) + log

1+||Xn+k||
1+||Xn||

∣∣∣ X0 = x
)
− γ

∣∣∣ < 2ε̄,

for all k ≥ 1. Since ν is bounded and E
(
log 1+||Xn||

1+||X0||
∣∣∣ X0 = x

)
is bounded (as n is fixed),

we conclude
lim sup

k→∞
lim sup
||x||→∞

∣∣∣1
k
E

(
log

1+||Xn+k||
1+||X0||

∣∣∣ X0 = x
)
− γ

∣∣∣ ≤ 2ε̄.
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Finally, ε̄ may be chosen arbitrarily and thus the conclusion (3.4) follows. tu
Now we prove the principal result for stability and the existence of moments by piggy-

backing a drift condition on (3.3).

Proof of Theorem 3.4 (i) We may suppose ζ ∈ (0, κ), λ ∈ Λ and ρ ∈ (0, 1) satisfy (3.3),
and λ is uniformly continuous on Θ#. It is well known that (3.5) and (3.6) imply geometric
ergodicity and finite ζ-moment of the stationary distribution, under Assumption A.3. So
our proof will be to validate (3.5) and (3.6). To this end, let ε̄ ∈ (0, 1−ρ) and set ρ0 = ρ+ ε̄.
Also, choose K2 so that 1/K2 < λ(θ) < K2 for all θ.

Note that (3.3) and Assumption A.2(i) imply E(|e1|β) < ∞ for all β < κ. Indeed, we
may assume β > ζ in Theorem 3.1 and Lemma 4.2. Let M3 = M̄ ζE((1 + |e1|)ζ), where M̄
is defined in (4.15). Then

sup
x∈X

E
(
(w(x/||x||, e1))ζ

)
≤ sup

x∈X
E

((
1 + ||X1||
1 + ||x||

)ζ ∣∣∣ X0 = x

)
≤ M3. (4.31)

Now let ε = 1
32

(
ε̄

K2
2M3

)2
. According to Assumption A.4(ii,iii), fix n and L0 so that

sup
||x||>L0, x/||x|∈Θ#

P
(
θ̃1 /∈ Θ# or θ̃∗1 /∈ Θ#

∣∣∣ X0 = x
)

<
ε̄

8K2
2M3

(4.32)

and
sup

||x||>L0

P
(
θ̃n /∈ Θ#

∣∣∣ X0 = x
)

< ε. (4.33)

Next, select L1 ≥ L0 so that (by Lemma 4.2)

sup
||x||>L1

P
(
||Xn|| ≤ ||x||/L1

∣∣∣ X0 = x
)

< ε. (4.34)

Then, using (4.31) and (4.32),

sup
||x||>L1, x/||x|∈Θ#

E
(∣∣∣λ(θ̃1)− λ(θ̃∗1)

λ(x/||x||)
∣∣∣ (w(x/||x||, e1))ζ1θ̃1 /∈Θ# or θ̃∗1 /∈Θ#

∣∣∣ X0 = x
)

≤ 2K2
2M3 sup

||x||>L1, x/||x|∈Θ#

P
(
θ̃1 /∈ Θ# or θ̃∗1 /∈ Θ#

∣∣∣ X0 = x
)

< ε̄/4. (4.35)

Recall that, by Assumption A.2(i), 1+||B(x/||x||,e1)||x||+C(x,e1)||
1+||x|| − w(x/||x||, e1) → 0 almost

surely, as ||x|| → ∞. By dominated convergence and the uniform integrability implied by
Theorem 3.1 and Lemma 4.2, we get

lim sup
||x||→∞

E
( λ(θ̃1)
λ(x/||x||)

∣∣∣(1 + ||X1||)ζ

(1 + ||x||)ζ
− (w(x/||x||, e1))ζ

∣∣∣
∣∣∣ X0 = x

)
= 0. (4.36)

Using the uniform continuity of λ on Θ#, on the other hand, and uniform integrability
again,

lim sup
||x||→∞

E
(∣∣∣λ(θ̃1)− λ(θ̃∗1)

λ(x/||x||)
∣∣∣ (w(x/||x||, e1))ζ1θ̃1∈Θ#,θ̃∗1∈Θ#

∣∣∣ X0 = x
)

= 0. (4.37)
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Therefore, from (3.3) and (4.35)–(4.37), there exists L2 ≥ L1 such that

sup
||x||>L2, x/||x|∈Θ#

E
( λ(θ̃1)
λ(x/||x||)

(1 + ||X1||)ζ

(1 + ||x||)ζ

∣∣∣ X0 = x
)

< ρ + ε̄/2. (4.38)

Let V2(x) = λ(x/||x||)(1 + ||x||)ζ . Thus, from (4.38), we have

E
(
V2(X1)

∣∣∣ X0 = x
)

< (ρ + ε̄/2)V2(x), for all ||x|| > L2, x/||x| ∈ Θ#. (4.39)

Observe that, by conditioning on Xn and applying (4.31),

E
(
V2(Xn+1)

∣∣∣ X0 = x
)
≤ K2

2M3E
(
V2(Xn)

∣∣∣ X0 = x
)
. (4.40)

Now we fix β ∈ (ζ, 2ζ) such that

(
E

(
(V2(Xn+1))β/ζ

∣∣∣ X0 = x
))ζ/β ≤ 2E

(
V2(Xn+1)

∣∣∣ X0 = x
)
. (4.41)

For ||x|| > L2
2, (4.33), (4.34), (4.40), (4.41) and the choice of ε and β yield

E
(
V2(Xn+1)1θ̃n /∈Θ# or ||Xn||≤L1

∣∣∣ X0 = x
)

≤
(
E

(
(V2(Xn+1))β/ζ

∣∣∣ X0 = x
))ζ/β (

P
(
θ̃n /∈ Θ# or ||Xn|| ≤ L1

∣∣∣ X0 = x
))1−ζ/β

≤ 2E
(
V2(Xn+1)

∣∣∣ X0 = x
)
(2ε)1−ζ/β

< 2K2
2M3(2ε)1/2E

(
V2(Xn)

∣∣∣ X0 = x
)

≤ (ε̄/2)E
(
V2(Xn)

∣∣∣ X0 = x
)
. (4.42)

Conditioning on Xn once again, (4.39) and (4.42) yield, for ||x|| > L2
2,

E
(
V2(Xn+1)

∣∣∣ X0 = x
)
≤ E

(
(ρ + ε̄/2)V2(Xn) + V2(Xn+1)1θ̃n /∈Θ# or ||Xn||≤L1

∣∣∣ X0 = x
)

< (ρ + ε̄)E
(
V2(Xn) | X0 = x

)
= ρ0E

(
V2(Xn)

∣∣∣ X0 = x
)
. (4.43)

The desired test function is V (x) = E
(
V2(Xn)

∣∣∣ X0 = x
)

which, by Lemma 4.2 applied
iteratively and the fact λ is bounded and bounded away from 0, clearly satisfies (3.6).
Consequently, we may select M0 such that V (x) > M0 implies ||x|| > L2

2, and then (3.6)
confirms also

K0
def= sup

V (x)≤M0

E
(
V (X1)

∣∣∣ X0 = x
)

= sup
V (x)≤M0

E
(
V2(Xn+1)

∣∣∣ X0 = x
)

< ∞.

With (4.43), this completes the verification that (3.5) holds as well.
(ii) A positive Lyapounov exponent implies {Xt} is transient by Theorem 3.3, Lemma 4.2

and Cline and Pu (2001, Thm. 2.2).
Indeed, from the arguments of Cline and Pu (2001), it follows that, for some ρ < 1,

ζ ∈ (0, 1), K < ∞ and L < ∞,

E
(( 1 + ||X0||

1 + ||Xn||
)ζ ∣∣∣ X0 = x

)
< Kρn, for all n ≥ 1 and ||x|| > L.

22



Hence, by Markov’s inequality,

P
(
ρn||Xn|| ≤ M

∣∣∣ X0 = x
)
≤ P

(( 1 + ||X0||
1 + ||Xn||

)
≥ ρnL/M

∣∣∣ X0 = x
)

≤ (ρnL/M)−ζ E
(( 1 + ||X0||

1 + ||Xn||
)ζ ∣∣∣ X0 = x

)

≤ K(M/L)ζρ(1−ζ)n, (4.44)

for every M ≥ L and all ||x|| > L.
Since {x : ||x|| ≤ L} is small the irreducibility assumption ensures there exist n0 ≥ 1

and δ > 0 such that P
(
||Xn0 || > L

∣∣∣ X0 = x
)
≥ δ for ||x|| ≤ L. It is then easy to show by

induction and the Markov property that, for any k ≥ 1,

P
(
||Xn|| ≤ L, n ≤ kn0

∣∣∣ X0 = x
)
≤ P

(
||Xjn0 || ≤ L, j ≤ k

∣∣∣ X0 = x
)
≤ (1− δ)k.

That is, P
(
||Xt|| ≤ L, t ≤ n

∣∣∣ X0 = x
)
≤ (1 − δ)n/n0−1 for all n. Combining this with

(4.44), we have

P
(
ρn||Xn|| ≤ M

∣∣∣ X0 = x
)

≤ P
(
||Xt|| ≤ L, t ≤ n/2

∣∣∣ X0 = x
)

+
bn/2c∑

t=1

E
(
P

(
ρn||Xn|| ≤ M

∣∣∣ Xt

)
1||Xt||≤L

∣∣∣ X0 = x
)

≤ (1− δ)n/2n0−2 +
n

2
K(M/L)ζρ(1−ζ)(n/2−1).,

for all x ∈ X, M ≥ L. This and Borel-Cantelli thus imply P
(
ρn||Xn|| → ∞

∣∣∣ X0 = x
)

= 1
for all x. tu
Proof of Corollary 3.5 Define qt(θ) as in the proof of Theorem 3.2(i). It is then easy
to show that

νn(θ) =
n∑

t=0

(
qt(θ)−

∫

Θ
qt(θ) µ(dθ)

)
=

n∑

t=0

(qt(θ)− γ)−
∫

Θ

n∑

t=0

(qt(θ)− γ) µ(dθ),

which converges uniformly, as n → ∞, by the theorem’s proof. From that proof it also is
clear that the limit will be uniformly continuous on Θ#.

Furthermore,

ν̄n(θ)− νn−1(θ) = E(νn−1(θ∗1)− νn−1(θ) + log W ∗
1 | θ∗0 = θ) → γ, uniformly.

This shows that the limit solves (3.2) and that both γ̄n and γ
n

converge to γ. Additionally,

γ̄n = sup
θ∈Θ

(ν̄n(θ)− νn−1(θ)) = sup
θ∈Θ

qn(θ)

= sup
θ∈Θ

∫

E
qn−1(η(θ, u)) f(u) du ≤ sup

θ∈Θ
qn−1(θ) = γ̄n−1.

Therefore γ̄n ↓ γ and, in like manner, γ
n
↑ γ. tu

Proof of Corollary 3.6 Let π be the stationary distribution for {θ∗t }. Then (3.7)
implies

γ =
∫

Θ
E(log w(θ, e1))π(dθ) =

∫

Θ
E (ν(θ∗1)− ν(θ) + log w(θ, e1) | θ∗0 = θ) π(dθ) < 0,

and geometric ergodicity follows by Theorem 3.4(i). tu
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5. Verifying Assumptions.

Here we sketch out verification of the regularity Assumptions A.2–A.4 for the threshold
AR-GARCH model as defined in subsection 2.1. In particular, we will assume Assump-
tion A.1 and the following.

(i) et has a density f which is bounded and locally bounded away from 0 on R,

(ii) bki > 0, k = 0, . . . , p, i = 1, . . . , N ,

(iii) c1i + · · ·+ cqi < 1 and cki > 0, k = 1, . . . , q, i = 1, . . . , N , and

(iv) the thresholds (boundaries of C1, . . . , CN ) are affine.

These undoubtedly are not necessary assumptions and one may wish to weaken them
slightly, especially (ii). But to do so would make the following arguments more intricate
than they already are. Recall also that X = Rp × [0,∞)q.

Throughout this section, we let x = (y, s) where y = (y1, . . . , yp) and s = (s1, . . . , sq).
We write b(y) = bi(y)(y), b∗(y) = (b2(y)− b0,i(y))1/2 and c(s, y) = ci(y)(s). Set

δ0 = inf
||(y,s)||=1

((b∗(y))2 + c2(s, y))1/2,

which is positive under (ii) and (iii) above.
Assumption A.2(i) clearly holds. Recall the expressions for B(x, u) and C(x, u) in section

2.1. Since (note b(y) ≥ b∗(y))

||B(x/||x||, e1)||x||+ C(x, e1)|| ≥ ((b∗(y))2 + c2(s, y))1/2 ≥ δ0||x||,
Assumption A.2(ii) is trivially true with K = 1/δ0 and α = 1.

Since X is closed, Assumption A.3 holds if {Xt} is an aperiodic φ-irreducible T -chain on
X and {X∗

t } is an aperiodic φ-irreducible T -chain on X∗ = X\{0}. (See Meyn and Tweedie
(1993).) To verify these, we rely on the following result.

Theorem 5.1 Let {Xt} be a Markov process on X ⊂ Rm with transition kernel T defined
by T (x,A) = P (X1 ∈ A | X0 = x) and suppose the following three conditions hold.

(i) For some k ≥ 1, T k(x, ·) is absolutely continuous for all x ∈ X and hence for each
n ≥ k, Tn(x, ·) is absolutely continuous with some density gn(x, ·).

(ii) For each x ∈ X there exists n ≥ k satisfying: there exists open A ⊂ X and δ > 0 such
that

inf
x̂:||x̂−x||<δ

gn(x̂, x̃) > 0 for x̃ ∈ A.

(iii) There is x̃ ∈ X satisfying: for each x ∈ X and δ > 0, there exists n ≥ k such that

P
(
||Xn − x̃|| < δ

∣∣∣ X0 = x
)

> 0 and P
(
||Xn+1 − x̃|| < δ

∣∣∣ X0 = x
)

> 0.

Then {Xt} is an aperiodic φ-irreducible T -chain.

Proof The first two conditions imply that {Xt} is a T -chain by the argument in Meyn
and Tweedie (1993, Prop. 6.2.4). The first inequality of the third condition states that x̃
is “reachable” which, combined with the above, implies {Xt} is φ-irreducible by Meyn and
Tweedie (1993, Prop. 6.2.1). The irreducibility measure φ is absolutely continuous with
respect to Lebesgure measure. The additional inequality of the third condition then implies
aperiodicity. tu
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Theorem 5.2 Assume et has a density f which is locally bounded and locally bounded
away from 0 on R and suppose b0i > 0, bpi > 0, cqi > 0 and c1i + · · · + cqi < 1 for all
i = 1, . . . , N . Then the threshold AR-GARCH(p, q) model of section 2.1 satisfies Assump-
tion A.3.

Proof This is a sketch as the algebra involved can get tedious. We focus here on the basic
process {(Yt, St)} but the argument is valid for the homogeneous process also. The main
distinction is in showing that {X∗

t } is a T -chain on X∗ rather than on X.
Let b0 = mini=1,...,N b0i which is positive, and b̄0 = maxi=1,...,N max(maxj=1,...,p bji, 1).

Suppose Y0 = y = (y1, . . . , yp) and S0 = s = (s1, . . . , sq). Then 0 < b0 ≤ σ2
t ≤

b̄t
0(1+ ||(y, s)||2) for all t ≥ 1. (For the homogeneous process, we instead let d0 = mini=1,...,N

minj=1,...,q cji ∈ (0, 1). Then σ2
t ≥ dt

0 max(s2
1, . . . , s

2
q) > 0, for all t ≥ 1.) Let σ1(y, s) =

((b(y))2 + c2(s, y))1/2. It is clear, then, that the conditional distribution of ξ1, given Y0 = y
and S0 = s, has density

1
σ1(y, s)

f

(
u− a(y)
σ1(y, s)

)
,

which is both locally bounded and locally bounded away from 0.
Indeed, one may show iteratively that the conditional distribution of (ξn, . . . , ξ1), given

Y0 = y and S0 = s, has a density hn((y, s), ·) which is both locally bounded and locally
bounded away from 0, and if εt ∈ (0, 1), t ≥ 1, then

hn((y, s), z1, . . . , zn)
n∏

t=1

εt ≤ P
( ⋂

t≤n

{|ξt − zt| < εt}
∣∣∣ Y0 = y, S0 = s

)

≤ h̄n((y, s), z1, . . . , zn)
n∏

t=1

εt, (5.1)

for some hn and h̄n, both locally bounded and locally bounded away from 0 in (z1, . . . , zn, y, s).
We first discuss a condition to ensure the existence of a k-step transition density for

some k ≥ p + q. Throughout, we assume we are conditioning on Y0 = y and S0 = s. The
regime indices I1, . . . , Ik are determined by (ξk−1, . . . , ξ1, y). It follows that (σ2

k, . . . , σ
2
1) is a

linear transformation of (ξ2
k−1, . . . , ξ

2
1), depending on I1, . . . , Ik and (y, s). We show by the

analysis below that (ξ2
k, . . . , ξ2

k−p+1, σ
2
k, . . . , σ

2
k−q+1) is a linear transformation of (ξ2

k, . . . , ξ2
1),

again depending on I1, . . . , Ik and (y, s).
To be specific, let Y 2

k = (ξ2
k, . . . , ξ2

k−p+1), Ỹ 2
k−p = (ξ2

k−p, . . . , ξ
2
1), S2

k = (σ2
k, . . . , σ

2
k−q+1)

and S̃2
k−q = (σ2

k−q, . . . , σ
2
1). Also let y2 = (y2

1, . . . , y
2
p) = Y 2

0 and s2 = (s2
1, . . . , s

2
p) = S2

0 .
(All these are to be treated as column vectors.) We can define column vectors B01 and B02

and matrices B11, B12, B22, C11, C12, C22, D1 and D2, with elements determined by the
parameters and the values of I1, . . . , Ik, so that

(
S2

k

S̃2
k−q

)
=

(
B01

B02

)
+

(
B11 B12

0 B22

) (
Y 2

k

Ỹ 2
k−p

)
+

(
0

D1

)
y2

+
(

C11 C12

0 C22

) (
S2

k

S̃2
k−q

)
+

(
0

D2

)
s2.

Note that C11 (which is q × q) and C22 (which is k − q × k − q) are upper triangular
matrices with 0’s for the diagonal elements. Thus, I −C11 and I −C22 are invertible upper
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triangular matrices. Let F1 = (I−C11)−1B11 and F2 = (I−C11)−1(B12+C12(I−C22)−1B22).
Therefore, it may be seen that

(
Y 2

k

S2
k

)
=

(
I 0
F1 F2

) (
Y 2

k

Ỹ 2
k−p

)
+

(
0
G

)
,

where G is linear in (y2, s2). Again, all this is conditional on I1, . . . , Ik.
Now let k = p+2q. We want to show that F2 (which is q×2q) has rank q. The rightmost

q columns of B12 (which is q× 2q) are 0’s and, since bpi > 0 and cqi > 0 for all i = 1, . . . , N ,
the rightmost q columns of B22 (which is p+q×2q) have rank q and C12 (which is q×p+q)
also has rank q. It follows that F2 will have rank q for any choice of the values of I1, . . . , Ik.
This means for each Ξ = (I1, . . . , Ik) there is a nonsingular transformation HΞ and a vector
KΞ such that 


Y 2

k

S2
k

Ỹ 2
q


 = HΞ

(
Y 2

k

Ỹ 2
k−p

)
+ KΞ.

Now, we put Z = (Yk, Sk, Ỹq) and as a column vector and let Z2 denote the corresponding
vector of squared terms. Let v be a vector of +1’s and −1’s and set

Y(Z, v,Ξ) = v · (H−1
Ξ (Z2 −KΞ))1/2

where the square root is taken componentwise and the multiplication by v is also com-
ponentwise. Note that, if the regime indices match up correctly, Y(Z, v,Ξ) is a possible
value for (Yk, Ỹk−p). Also, we define I(Yk, Ỹk−p) to be the regime indices I1, . . . , Ik that are
determined by (Yk, Ỹk−p). We can then explicitly give a density for Z (abusing the notation
somewhat for clarity), namely

∑
v

∑

Ξ:I(Y(Z,v,Ξ))=Ξ

det(H−1
Ξ )hk((y, s),Y(Z, v,Ξ)), (5.2)

with the sum being taken over all possible combinations that give a legitimate set of regime
indices. Integrating out the values for Ỹq, we conclude that (Yk, Sk) has a conditional density
gk((y, s), ·), given (Y0, S0) = (y, s), (however messy) and condition (i) of Theorem 5.1 holds.

This density is not everywhere positive due to lower bounds on the values of the σt’s.
However, from (5.1) and (5.2) we may deduce that for some open set A ⊂ Rp × (0,∞)q,
possibly depending on (y, s), gk((ỹ, s̃), x̃) is bounded away from 0 for (ỹ, s̃) in a neighborhood
of (y, s), for each x̃ in A. This verifies condition (ii) of Theorem 5.1.

To show the existence of a reachable point, suppose (1, . . . , 1) is in the interior of cone
Ci. (If it is not in the interior, the following can be modified for an arbitrary point in the
interior of some cone.) Define b̄i = b1i + · · ·+ bpi and c̄i = c1i + · · ·+ cqi and let σ2

0 = b0i+b̄i
1−c̄i

.
Suppose εt ∈ (0, 1), t ≥ 1, and each is small enough that |ξt − 1| < εt, implies Yt ∈ Ci for
t ≥ p. Then |σ2

t − σ2
0| < δt, t = 1, . . . , n− 1, further implies

|σ2
n − σ2

0| < 3b̄i max
t=1,...,p

εn−t + c̄i max
t=1,...,q

δn−t for t ≥ max(p, q).

Since c̄i < 1, choosing εt → 0 means we can also have δt → 0, whence it follows that
|ξt − 1| < εt for all t implies Xn is in a neighborhood of (1, . . . , 1, σ0, . . . , σ0) for large n.
With (5.1), we conclude that for any ε > 0

P
(

max
t=1,...,p

|ξn−t−1| < ε, max
t=1,...,q

|σn−t−σ0| < ε
∣∣∣ Y0 = y, S0 = s

)
> 0 for all n large enough.

This verifies that condition (iii) of Theorem 5.1 is satisfied. tu
We finish by verifying the final assumption.
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Theorem 5.3 Suppose the boundaries of C1, . . . , CN are contained in the union of affine
planes

Hj = {y = (y1, . . . , yp) :
p∑

i=1

hjiyi = 0}, j = 1, . . . , Ñ .

Assume et has a density f which is bounded and suppose bki > 0, k = 0, . . . , p, and cki > 0,
k = 1, . . . , q, for all i = 1, . . . , N . Then the threshold AR-GARCH(p, q) model of section
2.1 satisfies Assumption A.4.

Proof Let n = max(p, q) and suppose θ̃0 = x/||x||, ||x|| > 0. The thresholds (in Θ) depend
only on the first p components of θ. For each j = 1, . . . , Ñ define k(j) = min{k ≥ 1 : hjk 6=
0}. There is no loss of generality to assume hj,k(j) = 1. We denote θ = (θ1, . . . , θp+q). For
m ≤ k(j), define

∆jm(θ) = |hj,k(j)θm + · · ·+ hjpθp+m−k(j)|,
so that the thresholds are given by ∆j,k(j)(θ) = 0. We define Djm = {θ : ∆jm(θ) > 0} and

Θ# =
⋂Ñ

j=1

⋂k(j)
m=1 Djm. Note that Θ# excludes the thresholds and is open and nonempty.

When m = 1,

∆j1(θ̃1) =
∣∣∣a(y) + (b2(y) + c2(s, y))1/2e1 +

p∑

i=k(j)+1

hjiyi−k(j)

∣∣∣ ||x||
||X1||

and ∆j1(θ̃∗1) is similar with a replaced by a∗ and b replaced by b∗. Thus,

P (∆j1(θ̃1) > 0 | X0 = x) = P (∆j1(θ̃∗1) > 0 | X0 = x) = 1

for all j and all θ ∈ Θ. Additionally, when m > 1, we have ∆jm(θ̃1) = ∆jm(θ̃∗1) =
∆j,m−1(θ)||x||/||X1||. Hence θ ∈ Dj,m−1 implies each of θ̃1 ∈ Djm and θ̃∗1 ∈ Djm.

It follows from all the preceding, therefore, that θ ∈ Θ# implies

P (θ̃1 ∈ Θ# | X0 = x) = P (θ̃∗1 ∈ Θ# | X0 = x) = 1,

and θ ∈ Θ implies P (θ̃n ∈ Θ# | X0 = x) = 1.
The above assumed ||x|| > 0. If, however, this is not so then we still have X1 6= 0 with

probability 1 and thus P (θ̃n+1 ∈ Θ# | X0 = x) = 1.
Finally (see (2.5)), {B(θ, u)}|u|≤M clearly is equicontinuous on Θ#, for any finite M . tu
The above arguments can be modified to include the variable driven switching model

of subsection 2.3, at least if the link functions h1, . . . , hN are sufficiently smooth (such as
piecewise continuous on the regimes C1, . . . , Cn). In fact, by conditioning on the values of
{vt}, the argument in Theorem 5.2 can be used basically intact.
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Grincevičius, A.K. (1981). A random difference equation, Lithuanian Math. J. 20, 279–282.
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