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Abstract

We prove both geometric ergodicity and regular variation of the stationary distribution for a class of
nonlinear stochastic recursions that includes nonlinear AR-ARCH models of order 1. The Lyapounov
exponent for the model, the index of regular variation and the spectral measure for the regular variation
all are characterized by a simple two-state Markov chain.
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1. Introduction

1.1. Overview

Several papers have been devoted to bounding and/or characterizing the probability tails of the
stationary distribution for a (generalized) autoregressive conditional heteroscedastic ((G)ARCH)
model [15,19,30,3,23]. In each of these, the conditional variances can be characterized as linear
in the squared components of the “state vector” and the model can be embedded in a random
(matrix) coefficients model, with iid coefficients. This puts it within the stochastic recursion
framework of Kesten [22] and Goldie [17] who used renewal theory arguments to identify the tail
behavior. Unfortunately, this framework does not allow for extended models such as a combined
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AR-(G)ARCH model or a threshold (G)ARCH model. Any attempt to embed these models in
random coefficients models leads to “coefficients” that are no longer independent and, indeed,
not known a priori even to be stationary.

Recent papers that have capitalized on regular variation of (G)ARCH models to study the
sample autocovariance function include Davis and Mikosch [14], Mikosch and Stărică [25]
and Borkovec [6]. Papers that deal with extremal behavior include Borkovec [5], Hult and
Lindskog [20] and Hult, Lindskog, Mikosch and Samorodnitsky [21].

In this paper we will provide conditions for, and characterize, both the ergodicity and the
tail behavior of a general one-dimensional stochastic recursion model that includes standard
nonlinear ARCH and AR-ARCH models. The results here are precise, as opposed to the stronger
ergodicity condition and bounds given in Diebolt and Guégan [15] and Guégan and Diebolt [19].
Our approach will avoid a random coefficient embedding and therefore may have more promise
for other nonlinear models. Instead, we use the piggyback method of Cline and Pu [13] to
show ergodicity and we verify and solve an invariance equation to determine regular variation.
Like Borkovec and Klüppelberg [7], who studied an order 1 AR-ARCH model, our approach is
essentially Tauberian in nature but it applies more generally to nonlinear models.

Specifically, we consider the Markov chain on R given by

ξt = a(ξt−1, et )
def
= b(ξt−1/|ξt−1|, et )|ξt−1| + c(ξt−1, et ) (1.1)

where {et } is an iid sequence, |b(x/|x |, u)| ≤ b̄(1 + |u|) and |c(x, u)| ≤ c̄(1 + |u|) for finite
b̄, c̄. The point to be made here is that the first term on the right is homogeneous in ξt−1 while
the second is bounded in ξt−1. Such a decomposition is possible for any first order AR-ARCH
model and for first order threshold AR-ARCH models. For example, suppose

ξt = a(ξt−1, e1) =


a10 + a11ξt−1 + (b10 + b11ξ

2
t−1)

1/2et , if ξt−1 < x1,

a20 + a21ξt−1 + (b20 + b21ξ
2
t−1)

1/2et , if x1 ≤ ξt−1 ≤ x2,

a30 + a31ξt−1 + (b30 + b31ξ
2
t−1)

1/2et , if ξt−1 > x2,

(1.2)

with each bi j ≥ 0. Then we may set b(−1, u) = −a11 + b1/2
11 u, b(1, u) = a31 + b1/2

31 u and
c(x, u) = a(x, u) − b(x/|x |, u)|x |.

A similar decomposition holds for models with smooth transitions and for certain random
switching models (see Section 3).

1.2. Assumptions

Throughout we assume the following.

Assumption A.1. The error sequence {et } is iid and E(|et |
β) < ∞ for all β > 0.

Assumption A.2. There exist b̄ < ∞, b̃1 > 0, b̃2 ≥ 0 and c̄ < ∞ such that

(i) max(b̃1|u| − b̃2, 0) ≤ |b(θ, u)| ≤ b̄(1 + |u|) for all u ∈ R, θ ∈ {−1, 1}, and
(ii) |c(x, u)| ≤ c̄(1 + |u|) for all u ∈ R, x ∈ R.

Note the lower bound on b(θ, u) as well as the upper bound. This is the generalized ARCH-
like behavior and it also applies to random coefficient and bilinear models.



842 D.B.H. Cline / Stochastic Processes and their Applications 117 (2007) 840–861

Assumption A.3. For each θ ∈ {−1, 1}, b(θ, e1) has absolutely continuous distribution, 0 <

P(b(θ, e1) > 0) < 1, E(| log(|b(θ, e1)|)|) < ∞, and either

∆−1
def
= min

θ=±1
lim inf
w→∞

P(b(θ, e1) < −w)

P(|b(θ, e1)| > w)
> 0

or

∆1
def
= min

θ=±1
lim inf
w→∞

P(b(θ, e1) > w)

P(|b(θ, e1)| > w)
> 0.

In the time series literature, one often sees the assumption that et has a positive density. In such
a case, Assumption A.3 simply requires some regularity on the functions b(−1, ·) and b(1, ·).
However, even in a nonlinear time series setting, the assumption typically applies.

Assumption A.4. {ξt } is an aperiodic, Lebesgue irreducible T -chain.

The reader is asked to refer to standard texts on Markov processes (such as [24]) for the
definition of these terms, as well as the terms “ergodic” and “transient”. The T -chain property is
a generalization of the Feller property and is needed here because, as is common with threshold
models, the transition probabilities may not be continuous in the current state.

We are making the last assumption outright, as the primary focus of this paper is on the
regular variation of the tails of the stationary distribution rather than on the ergodicity of the
process, though we do identify a critical condition for ergodicity. Assumption A.4 will be valid,
however, if the following hold (cf. [10]).

(i) The distribution of et has Lebesgue density f on R which is bounded and locally bounded
away from 0, and

(ii) for each x ∈ R, a(x, ·) = b(x/|x |, ·)|x | + c(x, ·) is strictly increasing, with a derivative that
is locally bounded and locally bounded away from 0, locally uniformly in x .

In particular, (1.2) satisfies Assumptions A.2–A.4 if (i) holds and each bi0 > 0, i = 1, 2, 3, and
each bi1 > 0, i = 1, 3. These assumptions are likewise easily checked for each of the examples
in Section 3.

1.3. Objectives

Our objectives are two-fold.
First, we establish a sufficient condition for {ξt } to be geometrically ergodic, meaning that

lim
n→∞

rn sup
A

|P(ξn ∈ A | ξ0 = x) − Π (A)| < ∞

for some r > 1, some probability distribution Π and every x ∈ R [24, Ch. 15]. Simply stated,
the condition is that the (largest) Lyapounov exponent of the process,

lim inf
n→∞

lim sup
|x |→∞

1
n

E
(

log
(

1 + |ξn|

1 + |ξ0|

) ∣∣∣∣ ξ0 = x
)

, (1.3)

is negative, meaning ξt tends to contract when very large in magnitude.
In a random coefficients setting, Bougerol and Picard [8,9] define the Lyapounov exponent

in terms of the asymptotic behavior of the sequential product of random coefficients. Its value
is easily seen to equal a limiting behavior of the process itself, such as the limit above. Indeed,
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as will become clear in the next section, the Lyapounov exponent in our context also may be
interpreted in terms of a sequential product of random variables. (See [13], also.) We point out,
however, that our definition is not to be confused with the Lyapounov exponent of a noisy chaos.

The key result is that the value of this exponent may be expressed in terms of the stationary
distribution of a simpler process ((1.6) below). We actually will verify geometric ergodicity
through the Foster–Lyapounov drift condition method, thereby endowing the process with
mixing, strong laws, etc. (cf. [24]).

The second, and greater, objective is to verify that if {ξt } satisfies an appropriate drift condition
then its stationary distribution Π has regularly varying tails with some index −κ < 0. That is,
under stationarity,

lim
r→∞

P(ξt < −λr)

P(|ξt | > r)
= µ−1λ

−κ and lim
r→∞

P(ξt > λr)

P(|ξt | > r)
= µ1λ

−κ , all λ > 0. (1.4)

Knowing that Π has regularly varying tails helps to establish the existence of moments (none are
of order greater than κ) and limit theorems for statistics such as the sample autocovariance and
autocorrelation functions (see the references in Section 1.1).

Let (Rt , θ̃t ) = (|ξt |, ξt/|ξt |) and define

w(θ, u) = |b(θ, u)|, η(θ, u) = b(θ, u)/|b(θ, u)|, for θ ∈ {−1, 1}, u ∈ R.

A related (though inherently non-ergodic) process is the homogeneous form of (1.1):

ξ∗
t = b(ξ∗

t−1/|ξ
∗

t−1|, et )|ξ
∗

t−1|. (1.5)

This can be collapsed to a two-state Markov chain on {−1, 1}:

θ∗
t

def
= ξ∗

t /|ξ∗
t | = η(θ∗

t−1, et ). (1.6)

Also, let W ∗
t = w(θ∗

t−1, et ). The “collapsed” process is Markov and ergodic. Its behavior (and
more specifically, the behavior of W ∗

t ) determines both the ergodicity and the distribution tails
of the original process {ξt }.

2. Main results

2.1. The collapsed process

We first describe the principal properties of the process {θ∗
t } which will, in turn, inform the

behavior of {ξt }. Let

pi j = P(θ∗

1 = j | θ∗

0 = i) = P(η(i, e1) = j), i, j ∈ {−1, 1}. (2.1)

Then, clearly, {θ∗
t } has stationary distribution given by

π1 = 1 − π−1 =
p−1,1

p1,−1 + p−1,1
.

To establish the ergodicity criterion (in the proof of Theorem 2.2), we will require a function
ν : {−1, 1} → R and a constant γ which solve the equilibrium (Poisson) equation

E(ν(θ∗

1 ) − ν(θ∗

0 ) + log W ∗

1 | θ∗

0 = i) = γ, i = ±1. (2.2)
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The solution is easily seen to be

ν(±1) = ±
E(log W ∗

1 | θ∗

0 = 1) − E(log W ∗

1 | θ∗

0 = −1)

2(p1,−1 + p−1,1)
(2.3)

with

γ = π−1 E(log W ∗

1 | θ∗

0 = −1) + π1 E(log W ∗

1 | θ∗

0 = 1)

= π−1 E(log |b(−1, e1)|) + π1 E(log |b(1, e1)|), (2.4)

the expectation of log W ∗

1 under the stationary distribution π . Since the collapsed process is
ergodic, it is clear that

γ = lim
n→∞

1
n

E(log(W ∗

1 · · · W ∗
n )) = lim

n→∞

1
n

log(W ∗

1 · · · W ∗
n ) a.s.

Ergodicity of {ξt } depends on the value of γ . The regular variation, however, relies on a
different set of characters from the collapsed process. These are given in the following lemma.

Lemma 2.1. Suppose the value of γ in (2.4) is negative. Then there exist unique κ > 0 and
probability measure µ on {−1, 1} such that µ is invariant for the (transition) matrix Mκ with
elements

mκi j
def
= E((W ∗

1 )κ1θ∗

1 = j | θ∗

0 = i) = E(|b(i, e1)|
κ1η(i,e1)= j ), i, j ∈ {−1, 1}. (2.5)

For this κ , Mκ has maximal eigenvalue 1 and µ is the corresponding left eigenvector with

µ1 = 1 − µ−1 =
mκ,−1,1

1 − mκ,1,1 + mκ,−1,1
=

1 − mκ,−1,−1

1 − mκ,−1,−1 + mκ,1,−1
. (2.6)

Actually evaluating the κ in Lemma 2.1 seems to be a non-trivial task. Since Mκ is a 2 × 2
matrix, we can say that the solution must satisfy

mκ,−1,−1 < 1, mκ,1,1 < 1 and (1 − mκ,−1,−1)(1 − mκ,1,1) = mκ,−1,1mκ,1,−1,

(2.7)

or, equivalently,

mκ,−1,−1 + mκ,1,1 +

√
(mκ,−1,−1 − mκ,1,1)2 + 4mκ,−1,1mκ,1,−1 = 2.

2.2. Geometric ergodicity

The now quite standard argument for ergodicity of a nonlinear time series, and for Markov
chains in general, includes demonstrating a Foster–Lyapounov drift condition. Ours is no
exception. The basic idea of the piggyback method is that a Foster–Lyapounov test function
may be computed from the equilibrium equation (2.2).

Indeed, the value γ from the equilibrium equation (2.2) holds the key to ergodicity. The
following is taken from Cline and Pu [13]. We will demonstrate it here as well, however,
partly because the (one-dimensional) model here is more general and partly because the earlier
arguments were specifically designed for a multidimensional Markov model.
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Theorem 2.2. Let γ be as in (2.2) and (2.4).
(i) The Lyapounov exponent for {ξt } (see (1.3)) is γ . Indeed,

lim
n→∞

lim sup
|x |→∞

∣∣∣∣1
n

E(log(|ξn|/|ξ0|) | ξ0 = x) − γ

∣∣∣∣ = 0. (2.8)

(ii) Suppose γ < 0 and let κ be as in Lemma 2.1. For any 0 < ζ < κ , there exists a function
V : R → R+ satisfying
(a) there exist finite, positive d1, d2 such that

d1|x |
ζ

≤ V (x) ≤ d2(1 + |x |
ζ ), (2.9)

and
(b) there exist finite M0, K0, and ρ < 1 such that

E(V (ξ1) | ξ0 = x) ≤ ρV (x)1V (x)>M0 + K01V (x)≤M0 , for all x ∈ R. (2.10)
(iii) If γ < 0 then {ξt } is geometrically ergodic, but if γ > 0 then {ξt } is transient.

When γ < 0, we let Π be the stationary distribution for {ξt }.

2.3. Regular variation

We now describe the tail behavior for the stationary distribution Π . For our argument, it will
be advantageous to think of Π as the stationary distribution of (Rt , θ̃t ) = (|ξt |, ξt/|ξt |) and to
define the measure Qv on R+ × {−1, 1} by

Qv((r, ∞) × {i}) =
Π ((rv, ∞) × {i})

Π ((v, ∞) × {−1, 1})
, for r > 0, i ∈ {−1, 1}. (2.11)

Regular variation of Π (recall (1.4)) is equivalent to Qv
v

→ Q (vague convergence) as v → ∞,
for some measure Q with Q((1, ∞) × {−1, 1}) = 1. If this occurs then necessarily [26, p. 277]

Q((r, ∞) × {i}) = r−κµ({i}),

with some index of regular variation κ > 0 and some spectral probability measure µ on {−1, 1}.
In fact, we can identify κ and µ from the collapsed process.

Theorem 2.3. Suppose the Lyapounov exponent γ is negative and {ξt } has stationary
distribution Π . Let κ and µ be as in Lemma 2.1. Then Π has regularly varying tails with index
of regular variation κ and spectral probability measure µ. That is, (1.4) holds.

We note that our assumptions of irreducibility and 0 < P(B1 > 0) < 1 ensure that both
probability tails are regularly varying. A one-sided result holds as well but arguing it would
require specialization in the proof of the theorem and of Lemma 4.2 below, and we leave this to
the reader. See [17] for one-sided examples under continuity assumptions.

In proving regular variation, we will first verify that the probability tails of Rt are dominated
varying, under stationarity. This will entail consideration of the Matuszewska indices (cf. [4, Ch.
2]), defined as follows.

Definition 2.4. Let p(v) be a positive function on (0, ∞).
(i) The upper Matuszewska index for p is the infimum of those α such that

inf
c>1

lim sup
v→∞

sup
1≤λ≤c

λ−α p(λv)

p(v)
< ∞.
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(ii) The lower Matuszewska index for p is the supremum of those β such that

sup
c>1

lim inf
v→∞

inf
1≤λ≤c

λ−β p(λv)

p(v)
> 0.

Since probability tails are nonincreasing, the indices will be nonpositive. More importantly,
we will need to verify that they are finite, negative and equal. Although equality of the
Matuszewska indices generally does not imply regular variation, it will in fact suffice for us.

3. Examples

3.1. Random coefficients model

Goldie [17] analyzes the tail behavior for the stationary distributions of models of the form

ξt = Btξt−1 + c(ξt−1, Bt , Ct ), (3.1)

where et
def
= (Bt , Ct ) is an iid sequence in R2, c(·, B, C) is continuous for each (B, C) and

|c(x, B, C)| ≤ c̄(1 + |B| + |C |) for some finite c̄. An important special case, studied by
Kesten [22] and also by de Saporta [27], is the one-dimensional random coefficients model

ξt = Btξt−1 + Ct .

Model (3.1) is a special case of (1.1) with b(x, B, C) = sgn(x)B. There is no loss in allowing
et to be multidimensional as long as our other assumptions are met. Those assumptions are not
automatic, however. For example, Ct = m(1 − Bt ) almost surely for some constant m leads to a
degenerate stationary distribution for the random coefficients model (cf. [17]), but the model is
not irreducible. (See also [12].)

From (2.4), γ = E(log |b(±1, e1)|) = E(log |B1|). Verwaat [29] and Grincevičius [18] (for
example) showed that γ < 0 suffices for ergodicity. Likewise, from Lemma 2.1, the parameter
κ satisfies E(|Bt |

κ) = 1 and µ1 = µ−1 =
1
2 since mκ,−1,1 = 1 − mκ,1,1 = E(|Bt |

κ1Bt <0), in
agreement with Goldie (under the assumption 0 < P(B1 > 0) < 1).

3.2. AR-ARCH model

The AR-ARCH model of order 1 is

ξt = a0 + a1ξt−1 + (b0 + b1ξ
2
t−1)

1/2et .

This is the model examined by Borkovec and Klüppelberg [7], under the additional assumption
that et has a distribution symmetric about 0. The ordinary ARCH(1) model is a special case
with a1 = a0 = 0. If a1 6= 0, however, the combination of an autoregression term with the
ARCH term precludes the possibility of embedding it in a random coefficients model. We have
b(i, e1) = ia1 + b1/2

1 e1, i = ±1, so that

p−1,1 = P(−a1 + b1/2
1 e1 > 0) and p1,−1 = P(a1 + b1/2

1 e1 < 0).

From (2.4), the Lyapounov exponent is

γ =
p1,−1 E(log |a1 − b1/2

1 e1|) + p−1,1 E(log |a1 + b1/2
1 e1|)

p1,−1 + p−1,1
.
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The index of regular variation, κ , solves (2.7) with

mκi j = E(|ia1 + b1/2
1 e1|

κ1 j (ia1+b1/2
1 e1)>0), i, j ∈ {−1, 1},

and the tail weights are given by

µ1 = 1 − µ−1 =

E(|a1 − b1/2
1 e1|

κ1a1−b1/2
1 e1<0)

1 − E(|a1 − b1/2
1 e1|κ1a1−b1/2

1 e1<0) + E(|a1 + b1/2
1 e1|κ1a1+b1/2

1 e1>0)
.

When e1 is assumed to have a symmetric distribution, the results simplify considerably. In this

case, |a1 − b1/2
1 e1|

D
= |a1 + b1/2

1 e1| so that γ = E(log |a1 + b1/2
1 e1|), µ−1 = µ1 = 1/2 and κ

solves E(|a1 + b1/2
1 e1|

κ) = 1.
When a0 = a1 = 0, we of course have the standard ARCH model. Here, γ = log b1/2

1 +

E(log |e1|), κ satisfies bκ/2
1 E(|e1|

κ) = 1 and µ1 = bκ/2
1 E(|e1|

κ1e1>0). Note that ξ2
t satisfies

a random coefficients model. Goldie’s results would only determine the tail properties of |ξt |,
whereas we also identify the tail weights.

3.3. Threshold AR-ARCH model

The results for the threshold model (1.2) are only slightly more involved. Here, we have

p−1,1 = P(−a11 + b1/2
11 e1 > 0) and p1,−1 = P(a31 + b1/2

31 e1 < 0).

The Lyapounov exponent is

γ =
p1,−1 E(log |a11 − b1/2

11 e1|) + p−1,1 E(log |a31 + b1/2
31 e1|)

p1,−1 + p−1,1

and κ solves (2.7) with

mκ,−1, j = E(|a11 − b1/2
11 e1|

κ1 j (a11−b1/2
11 e1)<0), j ∈ {−1, 1},

and

mκ,1, j = E(|a13 + b1/2
13 e1|

κ1 j (a31+b1/2
31 e1)>0), j ∈ {−1, 1}.

Again, these quantities are used in (2.6) to compute µ1 and µ−1.
For a threshold ARCH model (without the autoregression term), a11 = a31 = 0.

Consequently,

γ = p log b1/2
11 + (1 − p) log b1/2

31 + E(log |e1|),

where p = P(e1 < 0). Also, µ1 = E
(
|e1|

κ1e1>0
)
/E (|e1|

κ) and κ solves

bκ/2
11 E(|e1|

κ1e1<0) + bκ/2
31 E(|e1|

κ1e1>0) = 1.

Smooth transition models also fall within the framework here. Suppose G is a continuous
probability distribution function on R, with supx∈R |x |G(x)(1 − G(x)) < ∞, and

ξt = (a10 + a11ξt−1 + (b10 + b11ξ
2
t−1)

1/2et )(1 − G(ξt−1))

+ (a30 + a31ξt−1 + (b30 + b31ξ
2
t−1)

1/2et )G(ξt−1).
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Then the above conclusions hold exactly as stated.

3.4. Random switching AR-ARCH model

Our results allow for some nonlinearity in the errors. For example, regime switching could be
signaled by the value (or sign) of the errors rather than by the time series itself. A simple example
that satisfies our assumptions is

ξt = a0 + a1ξt−1 + (b0 + b1ξ
2
t−1)

1/2et G(et ) − (d0 + d1ξ
2
t−1)

1/2et G(−et ),

where again G is a continuous probability distribution function on R. Now b(i, e1) = ia1 +

b1/2
1 et G(et ) − d1/2

1 et G(−et ), i = ±1, and γ , κ and µ can be computed accordingly from (2.4)
and Lemma 2.1.

4. Proofs

4.1. Showing ergodicity

Here we show that γ is in fact the Lyapounov exponent for {ξt } and that γ < 0 implies {ξt }

is geometrically ergodic. This argument is actually a much simpler version of the piggyback
argument in Cline and Pu [13] where we dealt primarily with higher order AR-ARCH models.

Lemma 4.1. Let ν and γ be as in (2.3) and (2.4), respectively. Extend ν to R by ν(x) = ν(x/|x |)

if x 6= 0 and ν(0) = 0. Then

lim
|x |→∞

E
(

ν(ξ1) − ν(ξ0) + log
(

1 + |ξ1|

1 + |ξ0|

) ∣∣∣∣ ξ0 = x
)

= γ. (4.1)

Proof. By the definitions of ξt and θ∗
t , if x = i |x |, i = ±1, then

|E(ν(θ∗

1 ) | θ∗

0 = i) − E(ν(ξ1) | ξ0 = x)| ≤ |ν(1)|P(η(i, e1) 6= a(x, e1)/|a(x, e1)|)

≤ |ν(1)|P(|c(x, e1)| > |b(x/|x |, e1)| |x |)

≤ |ν(1)|P(c̄(1 + |e1|) > |b(i, e1)| |x |). (4.2)

Obviously, therefore,

lim
|x |→∞, x/|x |=i

|E(ν(θ∗

1 ) | θ∗

0 = i) − E(ν(ξ1) | ξ0 = x)| = 0. (4.3)

By Assumption A.3, E(| log W ∗

1 | | θ∗

0 = i) = E(| log(|b(i, e1)|)|) <∞. Also, Assumptions A.1
and A.2 imply

E
(

log
(

1 + |b(i, e1)|x | + c(x, e1)|

1 + |x |

))
≤ E (log (1 + |b(i, e1)| + |c(x, e1)|)) < ∞,

E
(

log
(

1 + |b(i, e1)x |/2
1 + |x |

))
≥ E

(
log (|b(i, e1)|/2) 1|b(i,e1)x |<2

)
> −∞

and

E
(

log
(

1 + |b(i, e1)|x | + c(x, e1)|

1 + |b(i, e1)||x |/2

))
≥ E(−log (1 + |b(i, e1)x |/2) 1|c(x,e1)|>|b(i,e1)x |/2)

≥ E(−log (1 + |c(x, e1)|)) > −∞.
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Then easily by dominated convergence,

lim
|x |→∞, x/|x |=i

E
(

log
(

1 + |ξ1|

1 + |ξ0|

) ∣∣∣∣ ξ0 = x
)

= lim
|x |→∞, x/|x |=i

E
(

log
(

1 + |b(i, e1)|x | + c(x, e1)|

1 + |x |

))
= E(log b(i, e1)) = E(log W ∗

1 | θ∗

0 = i). (4.4)

The conclusion (4.1) follows from (2.2), (4.3) and (4.4). �

Proof of Theorem 2.2. (i) Fix L < ∞ arbitrarily. Observe that

lim sup
|x |→∞

P(|ξ1| ≤ L | ξ0 = x) = lim sup
|x |→∞

P(|a(x, e1)| ≤ L) = 0.

Let ε > 0 and choose L0 such that sup|x |>L0
P(|ξ1| ≤ L | ξ0 = x) < ε. Thus,

lim sup
|x |→∞

P(|ξt | ≤ L | ξ0 = x)

≤ lim sup
|x |→∞

E(P(|ξt | ≤ L | ξt−1)1|ξt−1|>L0 | ξ0 = x) + lim sup
|x |→∞

P(|ξt−1| ≤ L0 | ξ0 = x)

≤ ε + lim sup
|x |→∞

P(|ξt−1| ≤ L0 | ξ0 = x).

Hence, inductively, for any L < ∞,

lim sup
|x |→∞

P(|ξt | ≤ L | ξ0 = x) = 0, each t ≥ 1. (4.5)

Now let B̄t = ν(ξt ) − ν(ξt−1) + log(
1+|ξt |

1+|ξt−1|
) for t ≥ 1. Fix ε > 0. From Lemma 4.1 we may

choose L1 such that

sup
|x |>L1

|E(B̄1 | ξ0 = x) − γ | < ε.

Also, let

L2 = sup
|x |≤L1

|E(B̄1 | ξ0 = x) − γ |.

Then, using (4.5),

lim sup
|x |→∞

|E(B̄t | ξ0 = x) − γ | ≤ lim sup
|x |→∞

E(|E(B̄t | ξt−1) − γ | | ξ0 = x)

≤ lim sup
|x |→∞

E(ε1|ξt−1|>L1 + L21|ξt−1|≤L1 | ξ0 = x)

≤ ε + L2 lim sup
|x |→∞

P(|ξt−1| ≤ L1 | ξ0 = x) ≤ ε.

Therefore, since ε is arbitrary,

lim sup
|x |→∞

|E(B̄t | ξ0 = x) − γ | = 0, each t ≥ 1. (4.6)

From (4.6) we thus have

lim sup
|x |→∞

∣∣∣∣1
n

E
(

ν(ξn) − ν(ξ0) + log
(

1 + |ξn|

1 + |ξ0|

)∣∣∣∣ ξ0 = x
)

− γ

∣∣∣∣
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≤
1
n

n∑
t=1

lim sup
|x |→∞

|E(B̄t | ξ0 = x) − γ | = 0

and conclude

lim
n→∞

lim sup
|x |→∞

∣∣∣∣1
n

E
(

log
(

1 + |ξn|

1 + |ξ0|

)∣∣∣∣ ξ0 = x
)

− γ

∣∣∣∣ = 0,

which is (2.8).
(ii) This is similar to the proof of Lemma 4.1. For ζ < κ , define Mζ to be the matrix with

positive elements

mζ i j
def
= E((W ∗

1 )ζ 1θ∗

1 = j | θ∗

0 = i), i, j ∈ {−1, 1}.

Let ρζ be the maximal eigenvalue with corresponding right eigenvector φ, which we interpret as
a function on {−1, 1}. Note that φ is nonnegative. We will demonstrate in the proof of Lemma 2.1
below that ρζ < 1. Define

V (x) =

{
1 + φ(x/|x |)|x |

ζ , x 6= 0,

1, x = 0.

This function satisfies (2.9).
Recall (4.2) and (4.3), which say in essence that

lim sup
|x |→∞

P(η(i, e1) 6= a(x, e1)/|a(x, e1)|) = 0.

We similarly have

lim sup
|x |→∞

E(|b(1, e1)|
ζ 1η(i,e1)6=a(x,e1)/|a(x,e1)|) = 0.

Thus,

lim sup
x→∞

E
(

V (ξ1)

V (ξ0)

∣∣∣∣ ξ0 = x
)

= lim sup
x→∞

E
(

φ(a(x, e1)/|a(x, e1)|)(|b(1, e1) |x | + c(x, e1)|
ζ )

φ(1)|x |ζ

)
=

φ(−1)

φ(1)
E(|b(1, e1)|

ζ 1η(1,e1)<0) + E(|b(1, e1)|
ζ 1η(1,e1)>0)

=
φ(−1)

φ(1)
mζ,1,−1 + mζ,1,1 = ρζ < 1. (4.7)

Likewise,

lim sup
x→−∞

E
(

V (ξ1)

V (ξ0)

∣∣∣∣ ξ0 = x
)

= ρζ < 1. (4.8)

Since E(V (ξ1) | ξ0 = x) is locally bounded as a function of x , (4.7) and (4.8) suffice to prove
(2.10) with ρ ∈ (ρζ , 1).

(iii) From (2.8) and [11], γ > 0 implies |ξt | → ∞ in probability and thus that the process is
transient.

Suppose instead that γ < 0. By Assumption A.4, {ξt } is irreducible with Lebesgue measure
as a maximal irreducibility measure, is aperiodic and is a T -chain. Consequently, by Thm. 15.0.1
of [24], (2.9) and (2.10) are sufficient to ensure {ξt } is geometrically ergodic. �
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4.2. Showing regular variation

In this, the final and longest, subsection we assume {ξt } is stationary with negative Lyapounov
exponent γ and distribution Π . Here, we will verify the regular variation of its probability tails.

We start by proving Lemma 2.1.

Proof of Lemma 2.1. Since, for any κ > 0, all the elements of Mκ are positive, it has a
nonnegative maximal eigenvalue ρκ and a unique left eigenvector µκ (µ′

κ Mκ = ρκµ′
κ ) such

that µκ is a probability measure on {−1, 1}. We want to show that there is a unique κ > 0 such
that ρκ = 1.

We first show that ρ
1/κ
κ is strictly increasing in κ . To this end, let ζ > κ > 0 and define the

matrix Mζ accordingly. Let ρζ be the maximal eigenvalue for Mζ . Define pi j as in (2.1) and

dκi j =
mκi j

pi j
, dζ i j =

mζ i j

pi j
.

Thus, there exists c < 1 such that

dκi j = E((W ∗

1 )κ | θ∗

0 = i, θ∗

1 = j)

< c(E((W ∗

1 )ζ | θ∗

0 = i, θ∗

1 = j))κ/ζ
= c

(
dζ i j

)κ/ζ
, i, j ∈ {−1, 1}.

It follows that, for any probability measure µ and vector 1 =

(
1
1

)
,

µ′Mn
κ 1 =

∑
il =±1

l=0,...,n

µi0

n∏
l=1

pil−1il

n∏
l=1

dκil−1il

< cn
∑
il =±1

l=0,...,n

µi0

n∏
l=1

pil−1il

n∏
l=1

(dζ il−1il )
κ/ζ

< cn

 ∑
il =±1

l=0,...,n

µi0

n∏
l=1

pil−1il

n∏
l=1

dζ il−1il


κ/ζ

= cn(µ′Mn
ζ 1)κ/ζ .

Hence,

ρκ = lim
n→∞

(µ′Mn
κ 1)1/n

≤ c lim
n→∞

((µ′Mn
ζ 1)κ/ζ )1/n

= c
(
ρζ

)κ/ζ
,

showing the strict monotonicity as desired.
Now let Ẽ be the matrix with elements

ei j = exp(E((log W ∗

1 )1θ∗

1 = j | θ∗

0 = i)), i, j ∈ {−1, 1}.

and note that

lim
κ↓0

d1/κ
κi j = exp(E(log W ∗

1 | θ∗

0 = i, θ∗

1 = j)).

So, by an argument similar to the above, limκ↓0 ρ
1/κ
κ is the maximal eigenvalue of Ẽ . Since

(
exp(ν(−1))
exp(ν(1))

) is a nonnegative eigenvector for Ẽ with corresponding eigenvalue eγ , by (2.2), it
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must be that eγ is the maximal eigenvalue of Ẽ . Therefore, since γ < 0, ρκ must be less than
1 for small enough κ . Also, ρκ clearly is continuous in κ and, by Assumptions A.1 and A.3,
ρκ > 1 for large enough κ . From all this, it follows that there is a unique positive κ for which
ρκ = 1. �

Lemma 4.2. Let κ and µ j , j = ±1, be the solution in Lemma 2.1 and set

Ti j (w) = P(W ∗

1 ≤ w, θ∗

1 = j | θ∗

0 = i).

Suppose q−1, q1 are nonnegative measurable functions on R+ such that

sup
0<r≤1

rκ+δq j (r) < ∞ and sup
r≥1

rκ−δq j (r) < ∞, j = ±1,

for every δ > 0. Suppose also that they solve the system of equations

q j (r) =

∑
i=±1

∫
∞

0
qi (r/w)Ti j (dw). (4.9)

and q−1(1) + q1(1) = 1. Then q j (r) = µ jr−κ .

Proof. Define g j (x) = eκx q j (ex ). By Assumption A.3, each Ti j is absolutely continuous with
density, say, ti j . Define τi j (x) = eκx ti j (ex ). Then (4.9) becomes

g j (x) =

∑
i=±1

∫
∞

−∞

gi (y)τi j (x − y) dy, j = ±1, (4.10)

namely, a linear system of integral equations with a convolution kernel, subject to e−δ|x |g j (x), is
bounded, j = ±1. By Assumptions A.1 and A.2, we also deduce that

∫
∞

−∞
eζ |x |τi j (x) dx < ∞

for all ζ, i, j . Expressing (4.10) more simply,

g−1 = g−1 ∗ τ−1,−1 + g1 ∗ τ1,−1 and g1 = g−1 ∗ τ−1,1 + g1 ∗ τ1,1.

We are thus justified in computing

g1 ∗ (1 − τ−1,−1) = g−1 ∗ (1 − τ−1,−1) ∗ τ−1,1 + g1 ∗ τ1,1 ∗ (1 − τ−1,−1)

= g1 ∗ τ1,−1 ∗ τ−1,1 + g1 ∗ τ1,1 ∗ (1 − τ−1,−1), (4.11)

or, equivalently, g1 = g1 ∗ σ , where

σ = τ−1,−1 + τ1,1 − τ−1,−1 ∗ τ1,1 + τ−1,1 ∗ τ1,−1.

Similarly, g−1 = g−1 ∗ σ . Let τ̂ = {τ̂i j } be the matrix of Fourier transforms for the τi j ’s. So

τ̂i j (α) = E((W ∗

1 )κ+iα1θ∗

1 = j | θ∗

0 = i) and σ̂ (α) = det(I − τ̂ (α)). (4.12)

From classical results (e.g., Sec. 11.2 of [28]), the solutions to (4.11) are linear combinations of
eiαk x Pjk(x), where αk is a root of σ̂ (α) = det(I − τ̂ (α)) = 0 in the strip Im(α) < δ and Pjk
is a polynomial of degree one less than the multiplicity of αk . Note that α = 0 is root, by (4.12)
and Lemma 2.1, and it has multiplicity 1 because τ̂ (0) = Mκ has a simple eigenvalue equal to
1. Also, δ may be chosen arbitrarily small. Hence, the only nonnegative solutions to (4.10) are
constant functions which thus satisfy

g j =

∑
i=±1

gi

∫
∞

−∞

τi j (y) dy =

∑
i=±1

gi mκi j .
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By the conclusion of Lemma 2.1, and since g−1 + g1 = 1, g−1 and g1 must be equal to the
elements of µ.

We conclude, then, that q j (r) = µ jr−κ gives the unique nonnegative solution to (4.9) subject
to q−1(1) + q1(1) = 1. �

The significance of the above result is in the next one, which essentially identifies the unique
invariant measure for the transient process {ξ∗

t } defined in (1.5). Observe that

P(|ξ∗
t | > r, ξ∗

t /|ξ∗
t | = i | |ξ∗

t−1| = s, ξ∗

t−1/|ξ
∗

t−1| = θ)

= P(W ∗

1 > r/s, θ∗

1 = i | θ∗

0 = θ)

= P(w(θ, e1) > r/s, η(θ, e1) = i). (4.13)

Corollary 4.3. Let κ and µ j , j = ±1, be the solution in Lemma 2.1. Suppose Q is a measure
on R+ × {−1, 1} satisfying Q((1, ∞) × {−1, 1}) = 1,

sup
r≤1

rκ+δ Q((r, ∞) × {i}) < ∞ and sup
r≥1

rκ−δ Q((r, ∞) × {i}) < ∞,

for every δ > 0, and

Q((r, ∞) × {i}) =

∫
R+×{−1,1}

P(w(θ, e1) > r/s, η(θ, e1) = i)Q(dsdθ),

r > 0, i ∈ {−1, 1}. (4.14)

Then Q((r, ∞) × {i}) = µir−κ .

Proof. Let qi (r) = Q((r, ∞) × {i}). Then by (4.13) and a simple integration by parts, (4.14) is
exactly the same as (4.9). �

We now turn to the tail behavior of the stationary distribution Π . It actually will be convenient
to think of Π as the stationary distribution of {(Rt , θ̃t )} = {(|ξt |, ξt/|ξt |)}.

A helpful alternative to Definition 2.4 is given by the following result (cf. [4], Thm. 2.2.2,
or [1]).

Theorem 4.4 (Aljančić and Arandelović). Let p(v) be a positive function on (0, ∞).

(i) The upper Matuszewska index for p is the infimum of those α such that there exist finite K
and v0 with

p(λv)

p(v)
≤ Kλα, for λv ≥ v ≥ v0.

(ii) The lower Matuszewska index for p is the supremum of those β such that there exist finite K
and v0 with

p(λv)

p(v)
≤ Kλβ , for v ≥ λv ≥ v0.

Lemma 4.5. Suppose {ξt } is stationary.

(i) Then P(Rt > v) is of dominated variation: its Matuszewska indices are finite.
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(ii) Let −κL be the lower Matuszewska index for P(Rt > v). Then for any β > κL there exists
K1 < ∞ and v0 < ∞ such that

P(R1 > λv)

P(R1 > v)
≤ K1λ

−β , for v > λv ≥ v0. (4.15)

(iii) Additionally,

lim
v→∞

sup
x∈R

P(|c(x, e1)| > εv)

P(R1 > v)
= 0, for all ε > 0. (4.16)

Proof. Recall Assumption A.2. We may assume b̃2 ≥ max(b̃1/2, 2) without any loss. Note that

R1 = |b(θ̃0, e1)R0 + c(θ̃0 R0, e1)| ≥ (b̃1|e1| − b̃2)R0 − c̄(1 + |e1|).

Let M1 = 8c̄/b̃1. Then R0 > M1 and |e1| ≥ 2b̃2/b̃1 ≥ 1 imply

R1 ≥ (b̃1|e1| − b̃2)R0 − c̄(1 + |e1|) ≥ R0(b̃1/2 − 2c̄/M1)|e1| ≥ R0b̃1|e1|/(2b̃2).

Let 0 < δ < 1. Given R1
D
= R0 and v > M1/δ, we have

P(R1 > v) ≥ P(R0 > δv, b̃1|e1| > 2b̃2/δ) = P(R1 > δv)P(b̃1|e1| > 2b̃2/δ).

Hence,

sup
v>M1/δ

P(R1 > δv)

P(R1 > v)
≤ K2

def
=

1

P(b̃1|e1| > 2b̃2/δ)
< ∞, (4.17)

showing that R1 has dominated varying probability tail (cf. [4]).
In particular, this means the probability tail has a finite (and nonpositive) lower Matuszewska

index, say −κL . From Theorem 4.4(ii) we find that for each β > κL , (4.15) must hold with some
finite K1. In particular (take λv = v0 in (4.15)), P(R1 > v) > δ0v

−β for some δ0 > 0. Taken
with Assumption A.2 and the fact E(|e1|

β) < ∞, this implies (4.16). �

Lemma 4.5 shows that the Matuszewska indices are finite. Lemma 4.7 below will show that
they are in fact negative. Ultimately, they will turn out to be equal to each other.

Lemma 4.6. Assume as in Lemma 4.5. For any r > 0 and ε > 0, there exists δ > 0 and M2 < ∞

such that
P(R1 > rv, R0 < δv)

P(R0 > v)
< ε, for all v > M2.

Proof. Let F1 be the distribution of 1 + |e1|. Suppose 0 < δ ≤ 1 and let β > κL . By
Assumption A.1 and Lemma 4.5, we know

lim
v→∞

P(|e1| > cv)

P(R1 > v)
= 0, for any c > 0. (4.18)

Choose v0 as in (4.15) with v0 ≥ c̄/b̄. If v > v0/δ then, using (4.15),

P(R1 > rv, R0 < δv)

≤ P((b̄R0 + c̄)(1 + |e1|) > rv, R0 < δv)

≤ P(b̄R0(1 + |e1|) > rv/2, r/(2δb̄) ≤ 1 + |e1| ≤ rv/(2b̄v0))
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+ P(1 + |e1| > rv/(2b̄v0))

=

∫ rv/(2b̄v0)

r/(2δb̄)

P
(
R0 > rv/(2b̄u)

)
F1(du) + P(1 + |e1| > rv/(2b̄r0))

≤ K1

∫ rv/(2b̄v0)

r/(2δb̄)

(
2b̄u

r

)β

F1(du)P(R0 > v) + P(1 + |e1| > rv/(2b̄v0)). (4.19)

We may choose δ > 0 to make K1
∫

∞

r/(2δb̄)
( 2b̄u

r )β F1(du) < ε/2 and, by (4.18), we may choose
M2 > v0/δ so that

P(1 + |e1| > rv/(2b̄v0))

P(R0 > v)
< ε/2, for all v > M2.

Combining these with (4.19) gives the result. �

Lemma 4.7. Suppose {ξt } is stationary with (2.9) and (2.10) holding. Let the stationary
distribution be Π .

(i) The upper Matuszewska index for P(Rt > v) is no bigger than −ζ .
(ii) For each k ≥ 0, the measures Q̄k

v , v ≥ 1, given by

Q̄k
v((r, ∞) × {i}) =

Π ((max(r, 2−k)v, ∞) × {i})
Π ((v, ∞) × {−1, 1})

, r > 0, i ∈ {−1, 1}, (4.20)

are tight on R+ × {−1, 1}.

Proof. First, suppose k = 0. Note that Q̄0
v is the conditional distribution of (Rt/v, θ̃t ), given

Rt > v, under stationarity.
By (2.9) and (2.10) and Assumption A.2,

V (ξ1) ≤ d2(|b(θ̃1, e1)ξ0| + |c(ξ0, e1)|)
ζ

+ d2 ≤ d2(b̄|ξ0| + c̄)ζ (1 + |e1|)
ζ

+ d2.

This implies the existence of finite, positive d3, d4 such that

V (ξ1) ≤ (d3V (ξ0) + d4)(1 + |e1|)
ζ

+ d2.

Let K3 = E((1 + |e1|)
ζ ). Then, if r > M0,

E(V (ξ1)1V (ξ1)>r ) = E(V (ξ1)1V (ξ1)>r,V (ξ0)>r ) + E(V (ξ1)1V (ξ1)>r,V (ξ0)≤r )

≤ E(E(V (ξ1) | ξ0)1V (ξ0)>r )

+ E(((d3r + d4)(1 + |e1|)
ζ

+ d2)1V (ξ1)>r )

≤ ρE(V (ξ0)1V (ξ0)>r ) + ((d3r + d4)K3 + d2)P(V (ξ1) > r).

Under stationarity, V (ξ1)
D
= V (ξ0), and E(V (ξ0)) < ∞ by Meyn and Tweedie [24, Thm. 14.0.1].

Hence

1
r

E(V (ξ1) | V (ξ1) > r) =
E(V (ξ1)1V (ξ1)>r )

r P(V (ξ1) > r)

≤ ρ
E(V (ξ1)1V (ξ1)>r )

r P(V (ξ1) > r)
+ d3 K3 + (d4 K3 + d2)/M0. (4.21)
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It follows from (4.21) that

sup
r>M0

1
r

E(V (ξ1) | V (ξ1) > r) ≤ K4
def
=

d3 K3 + (d4 K3 + d2)/M0

1 − ρ
< ∞. (4.22)

Furthermore, we have d1 Rζ
0 ≤ V (ξ0) ≤ d2(1 + Rζ

0 ). Thus,

E(Rζ
0 1Rζ

0 >r ) ≤
1
d1

E(V (ξ0)1V (ξ0)>d1r ) (4.23)

and, if d1r > 2d2,

P(Rζ
0 > d1r/(2d2)) ≥ P(V (ξ0) > d1r). (4.24)

Let δ = (d1/(2d2))
1/ζ and obtain M1, K2 from the proof of Lemma 4.5. Set

r0 = max(M0, 2d2, 2d2 Mζ
1 )/d1.

Then, by (4.17) and (4.22)–(4.24), we obtain

sup
v>r1/ζ

0

∫
∞

1

∫
{−1,1}

sζ Q̄0
v(dsdθ) = sup

r>r0

1
r

E(Rζ
0 | Rζ

0 > r)

= sup
r>r0

P(Rζ
0 > d1r/(2d2))

P(Rζ
0 > r)

E(Rζ
0 1Rζ

0 >r )

r P(Rζ
0 > d3r/(2d4))

≤ K2 sup
r>r0

1
d1r

E(V (ξ1) | V (ξ1) > d1r)

≤ K2 K4 < ∞. (4.25)

This is sufficient for the probability measures {Q̄0
v}v≥1 to be tight on R+ × {−1, 1}.

Indeed, from (4.25), we easily determine that

P(R0 > λv)

P(R0 > v)
≤ K2 K4λ

−ζ , λv ≥ v ≥ r1/ζ

0 .

Hence, the upper Matuszewska index is no more than −ζ .
Let ε1 > 0. By the above we can choose M3 ∈ [1, ∞) so that Q̄k

v((M3, ∞) × {−1, 1}) =

Q̄0
v((M3, ∞) × {−1, 1}) < ε1, for all v ≥ r1/ζ

0 , k ≥ 1. This proves the tightness of {Q̄k
v}v≥1 on

R+ × {−1, 1} for each k. �

In fact, assuming γ < 0, we may choose any ζ < κ , by Theorem 2.2(ii). This implies that the
upper Matuszewska index is no more than −κ , but is still some way from saying Π is regularly
varying or even that the two indices are equal.

Next is the lemma that is at the heart of our proof. Recall the definition of Qv in (2.11).

Lemma 4.8. Assume as in Lemma 4.7. For any sequence ṽn → ∞, there exists a sub-
sequence vn → ∞ and a continuous measure Q on R+ × {−1, 1} such that Qvn

v
→ Q,

Q((1, ∞) × {−1, 1}) = 1 and

Q((r, ∞) × {i}) =

∫
R+×{−1,1}

P(w(θ, e1) > r/s, η(θ, e1) = i)Q(dsdθ), (4.26)

for i ∈ {−1, 1}, r > 0.
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Proof. Let Q̄k
v , v ≥ 1, be as in (4.20), namely the restriction of Qv to (2−k, ∞) × {−1, 1}.

Note that, by (4.17) for each k, the measures Q̄k
v are uniformly bounded. By Lemma 4.7, the

probability measures Q̄0
v are tight on R+ × {−1, 1}. Given any sequence ṽn → ∞, there

exists a subsequence v0
n → ∞ and a measure Q̄0 such that Q̄0

v0
n

v
→ Q̄0 and, of course,

Q̄0((1, ∞) × {−1, 1}) = 1. Iteratively we may find a further subsequence vk
n → ∞ and a

measure Q̄k such that Q̄k
vk

n

v
→ Q̄k and Q̄k agrees with Q̄k−1 on (21−k, ∞) × {−1, 1}. Letting

vn = vn
n , we have Qvn

v
→ Q where Q is a measure that agrees with Q̄k on (2−k, ∞) × {−1, 1}

for each k. At this point we do not know that Q is continuous.
Note that w(θ̃0, e1)R0 > (1 + ε/2)v implies either R1 > v or |c(θ̃0 R0, e1)| > εv/2. Thus,

P(R1 > v, θ̃1 = i | R0 = s, θ̃0 = θ)

≥ P(w(θ, e1) > (1 + ε/2)v/s, η(θ, e1) = i) − P(|c(θs, e1)| ≥ εv/2). (4.27)

Using (4.27) and (4.16),

lim inf
n→∞

Qvn ((r, ∞) × {i}) = lim inf
n→∞

P(R1 > rvn, θ̃1 = i)
P(R0 > vn)

≥ lim inf
n→∞

∫
R+×{−1,1}

P(R1 > rvn, θ̃1 = i | R0 = s, θ̃0 = θ)

×1(2−kvn ,∞)(s)
Π (dsdθ)

Π ((vn, ∞) × {−1, 1})

= lim inf
n→∞

∫
R+×{−1,1}

P(R1 > rvn, θ̃1 = i | R0 = vns, θ̃0 = θ)

×Q̄k
vn

(dsdθ)

≥ lim inf
n→∞

∫
R+×{−1,1}

P(w(θ, e1) > (1 + ε/2)r/s, η(θ, e1) = i)

×Q̄k
vn

(dsdθ).

By Assumption A.3, P(w(θ, e1) > ·, η(θ, e1) = ·) is continuous in R+ × {−1, 1}. It follows by
standard theory for vague convergence (e.g., [2, Thm. 4.5.1]) that

lim inf
n→∞

Qvn ((r, ∞) × {i})

≥

∫
R+×{−1,1}

P(w(θ, e1) > (1 + ε/2)r/s, η(θ, e1) = i)Q̄k(dsdθ).

By monotone convergence, as k ↑ ∞ and ε ↓ 0,

lim inf
n→∞

Qvn ((r, ∞) × {i}) ≥

∫
R+×{−1,1}

P(w(θ, e1) > r/s, η(θ, e1) = i)Q(dsdθ). (4.28)

Fix m ≥ 0. Let ε1 > 0 be chosen arbitrarily. By Lemma 4.6, with r = 2−m , we may choose
δ = 2−k to make

lim sup
n→∞

P(R1 ≥ 2−mvn, R0 < 2−kvn)

Π ((vn, ∞) × {−1, 1})
< ε1.
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Then, again using (4.16) and [2, Thm. 4.5.1],

lim sup
n→∞

Qvn ([2
−m, ∞) × {−1, 1})

≤ lim sup
n→∞

∫
R+×{−1,1}

P(R1 ≥ 2−mvn | R0 = s, θ̃0 = θ)1[2−kvn ,∞)(s)

×
Π (dsdθ)

Π ((vn, ∞) × {−1, 1})

+ lim sup
n→∞

P(R1 ≥ 2−mvn, R0 < 2−kvn)

Π ((vn, ∞) × {−1, 1})

≤ lim sup
n→∞

∫
R+×{−1,1}

P(R1 ≥ 2−mvn | R0 = vns, θ̃0 = θ)Q̄k
vn

(dsdθ) + ε1

≤ lim sup
n→∞

∫
R+×{−1,1}

P(w(θ, e1) > (1 − ε/2)2−m/s)Q̄k
vn

(dsdθ) + ε1

=

∫
R+×{−1,1}

P(w(θ, e1) > (1 − ε/2)2−m/s)Q̄k(dsdθ) + ε1.

Dominated convergence as ε ↓ 0 and monotone convergence as k ↑ ∞ yields

lim sup
n→∞

Qvn ([2
−m, ∞) × {−1, 1}) ≤

∫
R+×{−1,1}

P(w(θ, e1) ≥ 2−m/s)Q(dsdθ) + ε1.

The arbitrary choice of ε1 finally gives

lim sup
n→∞

Qvn ([2
−m, ∞) × {−1, 1}) ≤

∫
R+×{−1,1}

P(w(θ, e1) ≥ 2−m/s)Q(dsdθ). (4.29)

Since P(w(θ, e1) = 2−m/s) = 0 for all s > 0, (4.29) combined with (4.28) for r = 2−m implies

lim
n→∞

Qvn ([2
−m, ∞) × {−1, 1}) =

∫
R+×{−1,1}

P(w(θ, e1) ≥ 2−m/s)Q(dsdθ). (4.30)

From (4.28) and (4.30), we can now conclude that the measures Q̄m
vn

converge vaguely, once

again by Ash [2, Thm. 4.5.1]. Therefore, in fact Qvn
v

→ Q̃, where Q̃ is continuous and defined
by

Q̃((r, ∞) × {i}) =

∫
R+×{−1,1}

P(w(θ, e1) > r/s, η(θ, e1) = i)Q(dsdθ).

Finally, since also Qvn
v

→ Q, it must be that Q̃ = Q and (4.26) holds. �

Lemma 4.9. Let Q be a vague subsequential limit of Qv , as in Lemma 4.8. Then

either inf
r>0

Q((r, ∞) × {−1})

Q((r, ∞) × {−1, 1})
> 0 or inf

r>0

Q((r, ∞) × {1})

Q((r, ∞) × {−1, 1})
> 0. (4.31)

Proof. Let ∆−1 and ∆1 be as in Assumption A.3 and assume ∆1 > 0. Choose r0 such that
P(b(θ, e1) > r) ≥

∆1
2 P(|b(θ, e1)| > r) for all r ≥ r0. Let δ = min(

∆1
2 , P(b(θ, e1) > r0)).

Then

P(b(θ, e1) > r/s) ≥ δP(|b(θ, e1)| > r/s), for all r > 0, s ≤ r/r0,
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and

P(b(θ, e1) > r/s) ≥ P(b(θ, e1) > r0) ≥ δP(|b(θ, e1)| > r/s), for all r > 0, s ≥ r/r0.

Note that b(θ, e1) > r iff w(θ, e1) > r and η(θ, e1) = 1. Thus, from (4.26),

Q((r, ∞) × {1}) =

∫
R+×{−1,1}

P(b(θ, e1) > r/s)Q(dsdθ)

≥ δ

∫
R+×{−1,1}

P(|b(θ, e1)| > r/s)Q(dsdθ) = δQ((r, ∞) × {−1, 1}).

This shows that the second inequality in (4.31) holds if ∆1 > 0. A similar argument applies to
show that the first inequality in (4.31) holds if ∆−1 > 0. �

Finally, we are ready to prove our principal result.

Proof of Theorem 2.3. Let −κL ≤ −κU be the lower and upper Matuszewska indices,
respectively, for the function p(r) = P(Rt > r) under stationarity. From Lemmas 4.5 and
4.7 we know they are finite and negative. Before we can proceed further, we need to show that
these indices are both equal to κ . This will require several steps. First, let Qvn be a sequence
converging vaguely to Q, as in Lemma 4.8. Let α > −κU . By Theorem 4.4,

Q((λr, ∞) × {−1, 1})

Q((r, ∞) × {−1, 1})
= lim

n→∞

P(Rt > λrvn)

P(Rt > rvn)
≤ Kλα, (4.32)

for some finite K and all λ ≥ 1. Consequently, the upper Matuszewska index for q(r) =

Q((r, ∞) × {−1, 1}) is no more than −κU . Likewise, the lower Matuszewska index for q(r)

is no less than −κL . This is true for any vague subsequential limit Q.
Next, we apply the Pólya peak theorem (Thm. 2.5.2 in [4], from [16]): there exists a sequence

ṽn → ∞ such that

lim sup
n→∞

Qṽn ((r, ∞) × {−1, 1}) = lim sup
n→∞

P(Rt > r ṽn)

P(Rt > ṽn)
≤ r−κL , for all r > 0. (4.33)

From Lemma 4.8, there is a subsequence vn → ∞ and a continuous measure Q such that
Qvn

v
→ Q. Define the upper and lower orders for q(r) = Q((r, ∞) × {−1, 1}) by

ωL = lim inf
r→∞

log q(r)

log r
and ωU = lim sup

r→∞

log q(r)

log r
.

Hence, ωL ≤ ωU ≤ −κL , by (4.33). From Prop. 2.2.5 of [4] and our comment above about
the lower Matuszewska index for q(r), ωL ≥ −κL also. Thus, ωL = −κL . Therefore, by Thm.
2.3.11 (note the misprint) of [4] and the continuity of Q, there exists a function g(r) which is
regularly varying on R+ with index −κL such that lim infr→∞ Q((r, ∞) × {−1, 1})/g(r) = 1.
Define

qi = lim inf
r→∞

Q((r, ∞) × {i})
g(r)

, i = ±1. (4.34)

Both q−1 and q1 are finite and at least one is positive by Lemma 4.9 (critical points that have
compelled us to this intricate, nested argument of indices and orders).



860 D.B.H. Cline / Stochastic Processes and their Applications 117 (2007) 840–861

Recall that Q satisfies (4.26). Letting Ti j (w) = P(W ∗

1 ≤ w, θ∗

1 = j | θ∗

0 = i), (4.26) may be
reexpressed as

Q((r, ∞) × { j}) =

∑
i=±1

∫
∞

0
Q((r/w, ∞) × {i}) Ti j (dw). (4.35)

From (4.34) and (4.35) and the regular variation of g(r) we get

q j ≥

∑
i=±1

∫
∞

0
lim inf
r→∞

Q((r/w, ∞) × {i})
g(r/w)

g(r/w)

g(r)
Ti j (dw)

=

∑
i=±1

∫
∞

0
qiw

κL Ti j (dw) =

∑
i=±1

qi mκL i j ,

where mκL i j is defined by (2.5). This means the maximal eigenvalue of the matrix MκL =

[mκL i j ]i j is no larger than 1. That, in turn, implies κL ≤ κ by the proof of Lemma 2.1. A similar
argument (or the comment following the proof of Lemma 4.7) confirms κU ≥ κ . But κL ≥ κU .
Therefore, κL = κU = κ .

The point to all this is that we may now claim that for all δ > 0 (see (4.32) with r = 1 and
α = −κ + δ),

sup
λ≥1

λκ−δ Q((λ, ∞) × { j}) < ∞

for any vague subsequential limit Q. Likewise, Theorem 4.4 also yields

sup
λ≤1

λκ+δ Q((λ, ∞) × { j}) < ∞,

for all δ > 0. We therefore have the conditions of Corollary 4.3 fulfilled so that the unique
solution to (4.35) (and thus to (4.26)), subject to Q((1, ∞) × {−1, 1}) = 1, is given by
Q((r, ∞) × {i}) = µir−κ . Since this true for any vague subsequential limit, we conclude that
Qv

v
→ Q, and therefore Π has regularly varying tails. �
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[1] S. Aljančić, D. Arandelović, O-regularly varying functions, Publications de l’Institut Mathématique, Belgrade
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