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In order to predict unobserved values of a linear process with infinite variance, we introduce 
a linear predictor which minimizes the dispersion (suitably defined) of the error distribution. 

When the linear process is driven by symmetric stable white noise this predictor minimizes the 

scale parameter of the error distribution. In the more general case when the driving white noise 

process has regularly varying tails with index cr, the predictor minimizes the size of the error tail 

probabilities. The procedure can be interpreted also as minimizing an appropriately defined 

/,-distance between the predictor and the random variable to be predicted. We derive explicitly 

the best linear predictor of X,,,, in terms of X,, . , X, for the process ARMA(l, 1) and for the 

process AR(p). For higher order processes general analytic expressions are cumbersome, but we 

indicate how predictors can be determined numerically. 

ARMA process * regular variation * stable process 

1. Introduction 

We shall be concerned in this paper with prediction of the causal stationary 

solution {X,} of the ARMA(p, q) equations, 

x”-f$,x”-*-~~*-~pxn--p= w”+e,w,_,+~*~+e,w,_, (1.1) 

where { Wn}~_m is an independently and identically distributed (iid) sequence of 

random variables, and the polynomials Q(z) = 1 - 4,~ - * . . - q+,zp and O(z) = 

1+e,z+* - . + t9,z4 satisfy the condition 

@(z)e(z) # 0 for all z E C such that JzI s 1. 

It will be assumed throughout that there exists cy > 0 such that 

lim ‘[I wnl> xc1 = x --01 
t-m P[I Wnl> t] 

for all x > 0. 

(1.2) 

(1.3) 
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The distribution of W,, is then said to have regularly varying tails and the parameter 

Q is called the tail index. If LY <2 the variance of W,, does not exist. 

A straightforward argument shows that (1. I) has a unique stationary causal 

solution, namely 

m 

X” = 1 TjW,_j, 
j=O 

(1.4) 

where the coefficients {‘TT~},?~ are uniquely determined as the coefficients in the 

power series expansion 

; rrjzj= O(z)/@(z), (ZIG 1. 
j=O 

The argument for this basically follows the classical argument for the finite variance 

case, with minor adjustments. See, e.g. Yohai and Maronna (1977) for an alternative 

approach. In addition, 

(1.5) 

where 

1 -l+b,z-*zz2-~~ * = @(z)/@(z), IZI =G 1. 

Our aim is to predict the values X,,,,, Xn+2,. . . in terms of the observed values 

OfX,,.. . , X,,. We shall restrict attention to linear predictors. The predictor ? of a 

random variable Y will thus have the form 

where a’= (a,, . . . , a,) and X, =(X,,, X_,, . . . , X,). 

For ARMA(p, q) processes in which the white noise sequence { W,,} has finite 

variance, predictors are usually determined by minimizing the expected squared 

error E( Y - ?)’ (see for example Fuller (1976) and Box and Jenkins (1976)). If 

the process is Gaussian this procedure also minimizes the probabilities of large 

deviations P(( Y- ?I > K) for every K > 0. For processes with infinite variance 

however, an alternative criterion for selection of a best predictor is needed. Alterna- 

tive approaches which have been suggested include minimization of the expected 

absolute error and the pseudo-spectral technique of Cambanis and Soltani (1982). 
Most criteria however are complicated to use, are of limited applicability and require 

precise knowledge of the distribution of W,. This contrasts sharply (but not surpris- 

ingly) with the elegant Hilbert-space theory of minimum,mean squared error predic- 

tion which is applicable when E W’, < CO. 

It would be extremely useful, in the infinite variance case, to have a predictor 

which is reasonably simple to compute, which does not require full knowledge of 

the distribution of W,, and which (in a sense to be specified) minimizes the prob- 



D. B. H. Cline, P.J. Brockwell / Arma processes 283 

abilities of large prediction errors. In this paper we discuss such a predictor, based 

on the natural criterion of minimizing error ‘dispersion’ where dispersion is defined 

by (1.6) below. This criterion was introduced by Stuck (1978) who used it with 

considerable success to solve Kalman filtering problems associated with symmetric 

stable sequences. Blattberg and Sargent (1971), as well as others, have used the 

dispersion criterion in regression models with stable errors. In the special case when 

W,, has a symmetric stable distribution (i.e. E exp(itW,) = exp(-c)tj”), t E R, O-C a < 

2), the minimization is equivalent to minimization of the scale parameter of the 

error distribution. Thus if {W,,} is iid symmetric stable with index (Y and if 

I,“-_, lpjl” <a, then Y=C,Z_a pj Wj is also symmetric stable and in fact, 

Stuck therefore defines the dispersion of Y (relative to that of W,) as 

disp( Y) = f IpjJ”. 
j=-a0 

(1.6) 

We shall adopt the definition (1.6) for all random variables of the form Y = 

C,“=_, pj Wj:., so long as the iid sequence { W,,} satisfies (1.3). 

The ARMA process {X,,} can be expressed (using (1.4)) as the moving average 

X, =Cy”__, rrnPjWj with 3 =O,j<O. Hence disp(X,) =C,“==, InjIm. If Y =C,“_, pjWj 

then we define the minimum error dispersion linear predictor of Y (based on 

X1,..., X,,) to be the linear combination P= a,X, + * . . + anX, = a’X,, which 

minimizes 

* cc 

disp(Y- Y)= C IP~-(u,T,_~+. . .+u,,~,-~)l~. (1.7) 

In the special case where Y = X,,,, we minimize 

disp(~~+x-X~+~)=~~:lql”+ f Irj-(U,rjiTk+. ’ ’ + an~j+*-n-k)la. 
(1.8) 

j=k 

For a linear process driven by symmetric stable noise, the prediction error for 

any linear predictor also has symmetric stable distribution. The minimum dispersion 

prediction error has the distribution with the smallest scale and hence is optimal. 

The procedure is easily extended to more general linear processes, since it requires 

only knowledge of the coefficients of the process and of the tail index (Y of the noise 

distribution. Furthermore, by using the following theorem due to Cline (1983) we 

can relate dispersion to the probability of large error values. A corollary of this is 

that among linear predictors, the minimum dispersion predictor is optimal in the 

sense that it minimizes the probability of large prediction errors. 
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Theorem 1.1. Suppose { Wj} are independent and identically distributed and satisfy 

(1.3)andsupposeY=Ci”=__,pjU:whereC~=_,(pjlS<coforsome6<min(1,a). Then 

Y exists almost surely (is absolutely convergent) and 

. p[Iyl’tl 
& P[( W,l> t] 

=disp(Y)= f Ipjla. Cl 
j=-00 

Since the coefficients { rj} in the representation ( I .4) are geometrically decreasing 

in magnitude, this theorem indicates that disp(X,,+, -X,,+,) is roughly proportional 

to the probability of a large prediction error. 

We see from (1.7) that minimization of disp( ? - Y) is equivalent to minimization 

of a suitably defined I,-distance between Y and Y on the linear space generated 

by { W,,}. In the case Q = 2, ?= P,,Y where P, is the orthogonal projection from 

the L2 space @Zii{ W,,, n E Z} into span{X,, . . . , X,}, the space generated by linear 

combinations of X,, . . . , X,. With (Y < 2, we can still define an operator so that 

? = P,, Y but it is not necessarily unique if (Y G 1. 

We shall see in Sections 2 and 3 that minimum dispersion linear predictors can 

be found quite explicitly for autoregressive processes and for the mixed ARMA( 1, 1) 

process. In both cases, the prediction operator, P,, is unique and linear on 

span{X,, X2,. . . }. For higher order moving average and mixed processes, however, 

one cannot always give a single general expression which is acceptable for all values 

of the parameters. For particular values, determination of the predictor is straightfor- 

ward. Section 4 discusses the higher order processes. 

2. Linear prediction with the infinite past; the AR(p) process 

We begin with the simple but important problem of finding an optimal predictor 

for Xn+k, kz l,oftheformC,E, ajX,+,_j, i.e., a linear predictor based on the infinite 

past. The practical importance of this predictor lies in the fact that for large n its 

truncation CJ=, ajX,+, -j is approximately minimum dispersion optimal for predict- 

ing X,,+k on the basis of X,, . . . , X,. If {X”} is a pure autoregressive process (AR(p)) 

and if n up, the truncation will in fact be optimal. The results of this section will 

be seen to be almost identical to the corresponding results for least squares prediction 

of a finite variance process. First we establish a useful lemma. The sequences {rj} 

and {+j} are as in (1.4) and (1.5), respectively. 

Lemma 2.1. Fix 6 < min( 1, a). For the ARMA(p, q) process {X,,} satisfying (1 .l)- 

(1.3) let S, be the class of random variables of the form 

f PjF+ f vjxn+I-J 

j=n+l j=l 
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where 

IF IPjl' <cc and ; IVj16 <co. 
j=n+l j=l 

(2.1) 

7%en for each YE S,, the set 

P,Y= f CljX,+,_j: 
I 

disp Y- T VjX”+,_j 
> 

is minimum 
j=l j=l 

consists of exactly one element. For Y =x,:n+, pjW, +I,:=, v~X~+,_~, this element is 

Y”=.& Vjx”+,-j. Furthermore the mapping Y+ Y” is linear on S,. 

Proof. By Cline (1983), the condition in (2.1) guarantees that each element in S, 

exists and has a finite dispersion. Now, 

disp Y- f ajX,+,_j 
j=l > (. 

=disp ,=z+, Pjy+ Z (vj-O,)X.,r-j) 
j=l 

=disp 
( 

j=z+, Pjy+ IT ( i (vi-ai)rj-i) Wn+l-j) 
j=l i=l 

=jzf?+I IPjla+ F t: (vi-ai)nj-, az i3 lPjl”* 
j-1 i=l j=n+l 

(2.2) 

Equality holds in (2.2) if and only if aj = V~ Thus the unique element of P,Y is 

Y*=C,J?, vjXn+l-j as asserted. The linearity of the mapping Y-, Y* is apparent 

from the form of Y and the form of Y*. Cl 

We remark that for symmetric stable processes with (Y > 1, we have Y* = 

F[ YI X”, Xn-1, Xn-2,. . . ] (Cambanis and Miller (1981)). 

Theorem 2.2. For the ARMA( p, q) process there exists a unique minimum dispersion 

linear predictor X:+, for X,,+k, k 2 1, based on the infinite past X,, X.-,, . . . . This 

predictor satisjies the recursive relationship 

k-l 

xx+k = c $jxz+k-j+ f $jxn+k-j. 
j=l j=k 

Proof. For each k 3 1, 

k-l 

X n+k = Wn+k+ C $jxn+k-j+ g $‘jXn+l_j. 
j=l j=k 

(2.2) 

(The second term is taken to be zero when k = 1.) It follows by induction that 

Xn+k E S, and thus there exists a linear predictor Xz,,. Furthermore, by the linearity 
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of the prediction mapping. 

k-l 

xz+k= wz+k f 1 $jxz+k-j+ ,f ( (cjx,+k_j > *. 

j=l j=k 

Clearly Wf+k =O and <cj”=, $jxn-k+j)* =c,z, $jxn+k-j SO that we have the result 
(2.2). 0 

In practice, of course, one will usually have only the data X,,, . . . , Xl. For any 

YE S, one can use the ‘truncated’ predictor Y*(n) =CJ=, VjX,+,_j, where { ~j}j”=, 

is defined as in Lemma 2.1. Though the dispersion is not minimum, we have from 

(2.2) 

disp( Y - Y*(n)) - disp( Y - Y*) 

In particular, if Y = X,,+,, then 

diw(X,+, -XZ+,) = 1 

and 

disp(&+, -x:+,(n)) = 1+ : 
j=k+l Ii=;+, *4” 

so that for large n the truncation predictor is nearly optimal. 

The truncated predictor is in fact optimal when the process is purely autoregressive 

and n is large enough, that is when {X,} satisfies 

x, = 4,x,_, +* * *+4$,-p+ W” (2.3) 

and n 2 p. As always, { W,} is an iid sequence of random variables satisfying (1.3). 

Assumption (1.2) reduces to ( 1 - C#J,Z - . .*-&,zp)#O for all 1~1~1. We state the 

results for the autoregressive process in a lemma and corollary which are proved 

in a fashion identical to the previous lemma and theorem. Recall that X, = 

(X”, xn-1,. . . , Xl). 

Lemma 2.3. Let S, be the class of random variables of the form Y = Z + v’X, for 

some Y E R” and Z = C,“=,+, pj Wj such that Z exists. Then for each YE S,, the set 

P.Y = {a’&: disp( Y - a’X,) is minimum} consists of exactly one variable. For Y = 

Z+ u’X,, this unique variable is ?= u’X,,. Furthermore, the mapping Y+ ? is linear 

on S,. q 
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Corollary 2.4. For the process (2.3), provided n zp, there exists a unique minimum 

dispersion linear predictor J? “+&or X,,,, (k L 1) in terms ofX,, . . . , X,. This predictor 

satisfies the recursive relationship 

ri,+, = QL--l+. . ‘+4QL--p (2.4) 

with initial conditions 2j = Xj for 1 c j 6 n. 0 

Remarks. 1. The minimum dispersion predictor g”+, is exactly the same as the 

least squares predictor T?“+, for an autoregressive process. This is not the case for 

more general ARMA processes. 

2. The residuals Wn+,, W,,+2,. . . are predicted with zeroes, and for p <j G n, then 

Wj=Xj-4lXj-l-* * *-4Jj-p 

but the linearity principle does not apply to W,, . . . , W,. In fact, if cy c 1, the set 

P, Wj = (a’X,,: disp( Wj - a’&) is minimum} may not consist of exactly one element 

for jSp. 

3. Prediction of the ARMA(l, 1) process 

In this section we are concerned with the stationary process 

x*-+xn_,= w*+ew,_, 

where (~$1 < 1 and lti( < 1 and { W.} are iid, satisfying (1.3). We 

{X,} defined by 

(3.1) 

find it necessary to 

distinguish between the cases a s 1 and Q > 1. For both cases, however, we shall 

need the following lemma. 

Lemma 3.1. If a > 0 and a > 0, then h(x) = a/xl” + Jx - bJ” has its minimum value at 

X mr where 

1 

b ifczS1, aG1, 

0 ifa:Sl,a>l, 
x, = 

b 
1+ a’/a-1 iffz>l, 

andx,isuniqueifa#l ora>l. 

The minimum value of h is 

h(x,) = 
Ib(” min( 1, a) ifCY 4 1, 

albl”( 1 + a”“-L)‘-” ifa > 1. 

Proof. Define the function [xl” = sgn(x))xlY. Suppose b > 0. Then for x # 0, x f b 

h’(x) = a(a[xla-‘+[x- b-J”-‘), h”(x) = a(a - l)(a(xl”-‘+ (x - b(“-‘). 

So for x < 0, h’(x) < 0 and for x > b, h’(x) > 0. Thus h is minimized in [0, b]. 
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If cy s 1, then h”(x) s 0, so the minimum must be either at 0 or at b. It is easy to 

see that h(b) s h(0) if and only if a s 1. 

If (Y > 1, then h’ is continuous on [0, b] and h” is nonnegative. Thus h’(x,) = 0 

gives us the point of minimum. On [0, b], h’(x) = a(uxn-’ -(b - x)~-‘), so that 

x, = b( 1 + a”“-‘)-‘. Also 

The proof is similar if b < 0. 0 

Theorem 3.2.(i) For the ARMA(I, 1) process (3.1) there is a unique minimum 

dispersion predictor X,,+k =a’X,forX,,+k,exceptwhen~~land~~+O~”=l-~~~”, 

in which case a minimum dispersion predictor exists but is not unique. 

(ii) If CY s 1 the error dispersion is minimized when the coefficient vector a satisfies 

u,=(4+8)(-e)‘-‘f#J-‘, lCjSn-1, 

(~$+@)(-0)“-‘~~-’ if)++8)“6 1 -Jc#JJ”, 
a, = 

c#J”(-e>“-’ if I+ + 81” 2 1 - [+I*, 
(3.2) 

and the corresponding minimum dispersion is 

+I41 a(k-‘vlna min( 1,s). 

(iii) If (Y > 1 the error dispersion is minimized when the coefficient vector a 

satisfies 

Uj = ($k-‘(-e).-’ (4+e)(l-71+5)-577n-j(774+fe) lc=-j<n 
l-n+&(l-nn) ’ . . ’ (3.3) 

where 

T:=JeI”/(a-‘) and ,$:= 

The corresponding minimum dispersion is 

a+‘)) + ( &?“(l - 11) 
> 

a-1 

1+,$“-‘(1-14( 
l-r/+&(l-qn) . 

Proof. Since 141-c 1, we have 

xj= wj+(4+e) f +k-‘wj_k forallj. 
k=l 
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If m E R” and if we define m, = -4k-‘, then from the previous equation we can 

write for k 2 1, 

k-l 

m’x, - X,,+k = - w,,+k - c (4 + e)+k-‘-’ w,,+j 

j=l 

+ c mj+(4+O)‘i’ mj&-' Wntl-j 
j=l [ i=o 1 

Consequently, the dispersion is 

disp(m’X,-X,+k)=1+1~+8)“1-‘~’ 
ol(k-I) 

1 -Id” 

(3.4) 

where cj =I',=, m&-i, j a 0 (and m, = cj - +cj_,, j 3 1). It suffices now to minimize 

h(c) = i ‘cj+ &,_,‘” + 
j=l 

$$&“I- (3.5) 

and this will be done recursively, minimizing first with respect to c,, then c,-, and 

so on. 

There are three cases to consider: (a) (Y G 1 and I+ + 131” s l-/41”, (b) (Y s 1 and 

[++@I”> l-/+1”, and (c) cy> 1. We consider these in turn. 

(a) By Lemma 3.1, for fixed c,_,, . . . , c,, h(c) is minimized by choosing c, = 

-Oc,_,. Under this condition (3.5) becomes 

n-l 

rn$h(c)= C lcj+ecj-,l”+lel 
j=l 

-+$+J 

Since 18) < 1 (and hence JeJ”J4+ 8)” < 1 -\+I”), then h(c) is minimized further by 

choosing c,_] = --OC,_~, again using Lemma 3.1. The resulting value for h(c) will 

have a similar form so that continuing recursively, we can choose cj = - ecj_,, 

1 Gjs n. Since cO= mo= -+kp’, we find that cj = -(-13)‘4~-’ and the minimizing 

vector m is a, as given in (3.2). The minimum value of disp(X,,+k -a’_&) is 

i+14+el= 1 -141aCk-‘)+min h(c) 
l-141” 

= i+14+ey 
1 +I+‘) 

1 -IA” 



290 D. B. H. Cline, P.J. Brockwell / Arma processes 

(b) If (Y G 1 and )+ + 8)” > 1 -/+I”, the argument is the same except that first we 

choose c, = 0, according to Lemma 3.1, to minimize (3.5). In this case 

(3.6) 

Since )13(< 1, then (3.5) is further minimized by setting cj = - 8c,-,, 1 s j G n - 1, as 

done previously. Again using c,, = -d k-’ and mj = cj - @cl_1, we find that a, as defined 
in (3.2), is the minimizing value of m. The minimum error dispersion is 

1+(4+e(” 1 -141*(k-‘)+min h(c) 

l-144” 

= i+)4+eJQ 
1 _ I+l=(k-‘) 

1-141” 
+jepJ+Jack-‘). 

(c) In the case (Y > 1 we find from Lemma 3.1 that 

with the corresponding minimum value, 

C, = -ec,_,(i + t)yl 

n-l 

( > 775 
a-l 

tp k(c) = 1 (cj+ ecj_,(n + 
1+5 

lc*-,lcI. 
j=l 

This is further minimized when 

76 --I 
c,_, = -ec,_* i +- ( > 1+.$ ’ 

and the corresponding minimum is 

n-2 

min h(c)= 1 Jcj+ecj_,y+ 
C.,C.-I j=l ( 1 +::‘,,) a-’ ICJQ. 

Continuing the stepwise minimization we find that 

Cj = -ec,_, 
1-77+5(1-?7-j) 

I-T7+[(1-?7++i)’ 

Since c,, = -4k-‘, we deduce that 

(3.7) 

From this, and the relations aj = cj - ,#Ic~_,, we find that a as defined by (3.3) is the 
unique vector minimizing disp( X,,, - a’x,,). The minimum error dispersion, from 
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the expressions (3.4), (3.5) and (3.7), is 

disp(X,,+k-a’X,) = 1 +t”-‘(1 -141”‘k-“)+min h(c) 

ol(k-l))+ ( &I”(1 - 77) 
> 

a-l 

=1+5”-‘(1-141 
l-n+t(l-nn) . 

In all three cases (a), (b) and (c), Lemma 3.1 guarantees the uniqueness of the 

optimala,exceptwhen~~land~~+8~“=1-I~I (I, in which case the final coefficient 
a, may be chosen as either of the two expressions in (3.2). 0 

Remarks. 1. For an AR( 1) process the minimum dispersion predictor of Xn+k is 

rz ,,+k = 4kX,,, k 2 1, n 2 1, and the corresponding error dispersion is 

1 -Wk 
1-1w. 

2. For the MA( 1) process X, = W, + f3W,_,, the optimal predictor of X,,+k, k 2 2, 

is rZ n+k = 0 with error dispersion 1 + /@I*. For k = 1 the optimal predictor X,,,, is 

obtained by choosing 

uj = -(-ey’, j=l,..., n ifcrcl, 

and 
,l_qn+l-j 

aj = -(-ey 
l-7) 

n+l 3 j=l,.. 

where n = 181 e’(m-‘). The error dispersion of X”+, is 

1 +\#n+‘)o if (YS~, 

( > 
a-1 

l+lel(n+lb ‘-77 
1-n” 

ifa>l. 

3. In the case (Y s 1, although the predictor may not be unique, it can be specified 

in such a way that the mapping Y += 9 is linear on span{X,, X,, . . . }. To see this 

we need only observe that for each j 2 1 

j-1 

xj= wj+(4+e) 1 4i-‘wj_i++j-L(4+e)w$ 
i=l 

where W,* =CT=, 4iW_i, and to apply Theorem 3.5 of Cline (1983). In particular 

this allows us to write 

ttk = 6(,+,-t ei@,,+k-, + &“+k_, = &,,+k_, = 4k-‘rin+, 

in agreement with Theorem 3.2. 

4. In the case (Y > 1 we again have a partial linearity property for the minimum 

dispersion prediction operator. Thus if 

Y=/,X,+,+‘.‘+lkX,+k, 
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then 

?=z,&+,+. . .+z~~~+k=(I,+~/2+...+~~-‘I~)rZn+,. 

This can be established by minimizing h(c) in (3.5), now subject to cO= 

-(I,+&+’ ’ *++k-‘ik). 

5. Predictors can easily be computed recursively. Defining X,(k) = Pkxj, the best 

predictor of X, based on X,, . . . , Xk, j> k, we find that 

(a) ForcuSl, 

with 

X”+,(n) = 4x, + e(L(n - 1) -X,), 

X*(l)= 
i 

($+0)X, ifI++8(“Sl-I+)“, 

4x1 otherwise. 

(b) For cr> 1, 

with 

X+,(n) = 4x, + 4y-m - 1) -X”), 

X,(O)=0 and ~,=l+n+t(l-7”). 

The linearity properties and recursion formulae do not extend to higher order ARMA 

models. 

6. Minimizing (3.5) with CY = 2 gives the least squares predictor for X,,+k, namely 

%,+k = b’X, where 

b,=4k-‘(-e)‘-‘(++e) 1 - w-j) 
> 

++e 
1 - pZe2” 

9 p=------ i+4e’ 

and the error dispersion of this predictor, for any (Y, is 

The least squares predictor X,,+,( ) n is recursively calculated from 

2n+,(n)=$Xn+e 1 - P2e2(n--I) 
i - p2e2n 

(&(n-1)-X,), ri,(O)=O. 

(See also Brockwell and Davis (1983) for a general discussion of least squares 

prediction.) 
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4. Prediction for the MA(q) and ARMA(p, q) models 

Assume the process {X,} satisfies X,, = W, + 19, W,_, +. * * + 0, W,_, where (1 + 

f3,z+* * . + 8,~~) # 0 for complex JzI G 1. In order to predict X,,,, , we need to minimize 

n+q 
disp(X,+, -a’X,)=l+ c )uj+uj~,8,+~~~+aj~,eqJ” (4.1) 

j=l 

where a, = -1 and uj = 0 for j < 0 or j > n. According to Cline (1983, Theorem 3.4), 

when (Y =G 1 it suffices to consider only vectors u E R” which satisfy 

u,+u~_,B,+. . .+uj_qeq=o (4.2) 

for at least n of the n+q equations, 1 -J < . s n + q. The set of choices is thus limited 

to (“c”) possibilities. In Theorem 3.2 we have already established which choice is 

optimal for the MA( 1) model. Exactly one choice was the best for all values of 0, 

in the parameter space, le,l< 1. If q > 1, however, the optimal formula depends on 

the particular region of the parameter space. We look specifically at the MA(2) model. 

Lemma 4.1. Suppose {X,} is an MA(2) process with (Y s 1. Dejine z,, z2 to be the 
solutions to (z* + 8, z + 0J = 0, and 

1 

z’, - 2’2 
if z, # z2, 

S.= z,-z2 
J 

j,z-’ if z, = z2. 

Then the minimum dispersion predictor for Xn+, lies in the set of the (“l’) choices for 
a’& where lsj,<j,~n+2 and 

[-s,+, if 1 Gj<j2, 

. 
aj = ifj,<j<j,, 

0 ifj,sjs n+2. 

The dispersion of the prediction error is 

(4.3) 

Proof. We recognize that the S,‘s can be determined recursively by Sj+I+ S,Sj+, + 

6,Sj = 0 and that in fact Sj+,S,+, - &SjSk = Sj+,+,. From these we can easily verify 

that (using a, = -1, a_, = a,,, = a,,* = 0 and fixing j,,j,) 

Lo forj #j,,j #jz, 

1 S, 
aj + e,uj_, + e2aj-* = si-jl 

forj=j,, 

I _&-A * forj=j,. 
Jz JI 
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Thus for each of the (“z’) choices of j, and jZ? a satisfies n of the n + 2 equations 

in (4.2). It follows that a minimum dispersion predictor is of this form. The error 

dispersion is 

nt2 

div(X+, -a’.Xn)= 1+ C lUj+ O,Uj_1-t 02Uj_21a 

j=l 

To actually determine the predictor, we need to minimize (4.3) over the (“z2) 

possible choices of j,, j,. 0 

NOW for a general MA(q) process with CY > 1, the minimum dispersion predictor 

is obtained by finding a E R” to satisfy (using the notation [x]~-’ = sgn(x)(x)“-‘), 

[uj+ e,uj_, +. * . + e4u,_,]“-’ 

+ &[a,+, + O,uj+ * * . + e,u,_,+,]“-’ 

+. ..+6g[uj+4+...+8,uj]a-‘=0, 1SjSn. 

This can be accomplished recursively in the following manner: Let II and p 

respectively be the n x (n + q) matrix and 1 x (n + q) vector, 

1 0, e2 * .* e4 0 * .* 

I: . 

0 

n= 0 1.. e1 
. . . e4 .*- 0 

’ 8, ... 4 1 

and 

p=[e,e2...eqo...o]. 

Set a0 = (ZHJ’)-‘ZZp. (a&X,, is the least squares predictor.) Next define I,(a) = 

[a’IIj-pj]a-‘=[-Oj+u,0j_,+~~~+u,8j_q]a-’, l~jSn+q. The recursion is then 

given by 

CQ+, = ak -(HII’)_‘171(a,). 

The ARMA( 1, q) process can be handled similarly to the MA(q) process. Let 
.rrj=#+&-lel+. . . •k dej_, + e,. The process can then be expressed as 

x, = w, + ?r, w*_, +. . . + rr,+-2 w,_, + 
nn+q-I 

(1_141”)‘/” w*v ns’, 

where 

w*=(l-lqq”)“” f cp’w,_,_j: w,_, 
j=O 
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and is independent of W2_q, W,_,, . . . . To predict X,,,, we need to minimize 

n+q-I 

div(X,+, -a’X,)=l+ c Juj+~,uj_,+...+~juoJ~ 
j=l 

ncq-I IT c ID1 
= 1+ 1 Icj+e,cj_,+* * *+e,c,_,y+~ 

j=l 1 -IN 

where 

cj= i ~kZj_k,Uj=Cj-f#JCj_,, jZ0 
k=O 

cj = 0, j<O. 

Except for the last term this (as a function of c) is similar to (4.1). The minimization 

is thus done with respect to c and then a is obtained from c. 

The ARMA( 1, q) minimization involves a finite sum. This is not true for the more 

general ARMA( p, q) process (1.1). To deal with this process we define a sequence 

{cj} satisfying cj = 0, j <O, and uj = cj - +,cj-, -. . * - &,c~_~, j 3 0. Then X,,, is 

predicted by minimizing 

disp(X+, -U’X,)=l+ F )Cj+O1Cj_l+'* *+ eqcj_,y 
i=l 

=l+ i (Cj+O,Cj_,+** -+eqcj_q/“+ f JUj,c"+*. . + Uj"C,l" 
j=l j=I 

where cj,,...,uj,, satisfy c,+j+O,~,+~-,+. . *+Oq~,+j_q=uj,~,,+. . *+ajnc, (n> 

max(p, q + 1)). The sum can be truncated after an appropriate number of terms to 

facilitate the minimization. Alternatively, we can use the truncated predictor 

described in Section 2, Xz+,( n) = I,“=, JliXn+l-j, which will be close to optimal for 

large n. 
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