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Abstract: The least squares estimators are discussed for the linear regression model with random 

predictors. Both predictors and errors may have infinite variance. Under the condition that the 

predictors are in a stable domain of attraction, we determine necessary and sufficient conditions 

for weak consistency of the least squares estimators in the simple linear model. The conditions 

vary, depending on whether the intercept parameter is included in the model. We also give suffi- 

cient conditions for consistency in a multiple regression setting. 
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1. Introduction 

We are concerned with asymptotic results for the least squares estimators of 

regression models when both errors and regressors may have infinite variance. In 

particular, we wish to obtain as close to necessary and sufficient conditions for weak 

consistency of the estimators, as is possible. To obtain such precise conditions, we 

will concentrate on the two simple models: 

Y=&X+Z (Model I) 

and 

y=p,+pix+z. (Model II) 

However, we will also provide sufficient conditions for weak consistency of 

estimators for the multiple regression model: 

Y=X’P+Z, XJIERk. (Model III) 
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Asymptotic distributions for the estimators will be discussed in a subsequent paper 

since the techniques are different for that theory. 

Various authors have studied practical and theoretical aspects of this problem 

when either the errors or the regressors have infinite variance. Blattberg and Sargent 

(197 1) and Smith (1973) offered initial work for models in which the errors followed 

stable laws. Press (1975) discusses general inference procedures for stable data. An- 

drews (1987a, b) provides a complete list of references for applications of infinite 

variance regression and time series models, particularly in economics. 

Among those who have studied asymptotic results are Kanter and Steiger (1974) 

and Maller (1981). Kanter and Steiger limited their work to the special case where 

both X and Z have symmetric distributions with asymptotically Pareto tails of the 

same index. They showed consistency of the estimators for Model I (and actually 

get a bound on the convergence rate). Maller provided a general result in case both 

X and Z are in a normal domain of attraction. Andrews (1987a, b) was concerned 

with sufficient, rather than necessary, conditions for strong, rather than weak, con- 

sistency. Carroll and Cline (1988) considered consistency and rates of convergence 

of weighted least squares estimators, when weights are determined by sample 

variances. They showed that slow rates and inconsistency can occur, even with nor- 

mal data. 

The limitation that errors and regressors have equivalent tails, which Kanter and 

Steiger imposed, was apparently due their greater interest in autoregressive pro- 

cesses. Others that have investigated least squares estimation in autoregressive pro- 

cesses include Hannan and Kanter (1977), Yohai and Maronna (1977) and Davis and 

Resnick (1985a, b, 1986). Indeed, when the errors have regularly varying tail prob- 

abilities, such processes must have probability tails similar to the errors (Cline, 

1983). In our case, however, we do not wish to suppose that regressors and errors 

have similar tails, or even that they are in similar domains of attraction. 

Like Kanter and Steiger, Maller, and Andrews, our motivation is to avoid specific 

distributional assumptions. Ideally, we would like to dispence with all assumptions. 

But with only an assumption on the distribution tails of X, we will determine the 

precise requirements on the errors to obtain consistency. Of course, the adverse ef- 

fect of heavy-tailed errors in regression is well documented and numerous alter- 

natives to least squares have been proposed (e.g. Huber, 1981, Maronna and Yohai, 

1981, and Bierens, 1981). However, we are here less interested in efficiency than in 

establishing the scope of least squares estimation. Stochastic regressors with infinite 

variance actually moderate the effect of large errors. Thus, as Kanter and Steiger, 

Maller, and Andrews have shown, consistency is possible if the regressors have 

heavy enough tails. 

Our focus, then, is to describe how consistency depends on the exact relationship 

between regressors’ and errors’ distributions, and thereby to determine necessary 

conditions for consistency in least squares regression. The precise relationship turns 

out to be relatively simple to describe. Besides extending the mathematical under- 

standing, we hope this work will also provide practical insight into the range of 

situations in which least squares is at least appropriate. 
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Before stating our theorems, we first set forth our notation. After the theorem 

statements, in the second section, we will provide several preliminary results and in 

the third section we prove the theorems. 

Consider Models I and II, where X is real valued. We will assume X-F and 

Z- G, independently. The pairs (Xj, Zj) will be independent copies of (X, Z). The 

distribution of XZ will be denoted with H. Let F1, G, and HI be the distributions 

of 1x1, IZJ and /XZI, respectively. Define the truncated moment functions 

s 

r 
Pu(O = Wdu), 

-t 

i 
’ ,Mt) = tQW4 and p2(t) = 
-t 3 

t 
u2F(du). 

-t 
The functions v, v1 and v2 are defined similarly for G, as are A, A1 and A2 for H. 

The class of functions which vary regularly with index Q will be denoted RV,. 

Generally speaking, consistency in Model I depends on an asymptotic relationship 

between the tails of Z and X2. This is stated in Theorem 1.1. 

Theorem 1.1. Suppose p2 E RV2_ a for some a > 0. Then the least squares estimator 
fi,,n for Model I is weakly consistent if and only if each of the following hold: 

(0 lim,, m t(1 - Gl(t))/p2(t 1’2) = 0, and 
(ii) lim, ~ m A(t)/,u2(t”2) = 0 whenever a = 2. 
In particular, if v, E RV, _ Y, consistency occurs if y > + a and only if y L + cr. 

Aside from centering considerations in special cases, the precise condition for 

consistency is roughly that the probability tails for Z are dominated by those for 

X2. That this should be the case can be argued heuristically as follows. The 

estimator B1+ for Model I satisfies 

p^,,,-p* = y;; y, 

J1 J 

where (Xj, Zj) are independent copies of (X, Z). Letting H be the distribution of XZ 

and F2 be the distribution of X2, we see that & -/3, + 0 when the tails of F2 
dominate those of H. Since the tails of H dominate both those of F and those of 

G, and the tails of F2 dominate those of F, then it is at least sufficient that the tails 

of F2 dominate those of G. This argument, of course, will be made precise. It relies 

on the fact that, for ai=inf{t: np2(t”2)s t}, ai CT=, Xj2 is stochastically bounded. 

The conditions in Theorem 1.1 are necessary under the assumption p2 E RV, _ a, 

a>O. However, one might wonder whether the regular variation of ,u2 is required. 

Under strict dominated variation requirements, similar arguments could be valid. 

On the other hand, the general condition may not be so nicely expressed in terms 

of a comparison between G1 and ,Y~. Also, if ,u2 E RV, then 1 -F, is slowly varying. 

In this case ai CJEl 4 2 is unbounded and it is sufficient that ai Cy= 1 XjZj be 

stochastically bounded. 
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The consistency problem for Model II differs from Model I in that the location 
parameter &, is of overriding importance. Indeed, it must be meaningful, at least 
in the sense of the ordinary weak law of large numbers. 

Theorem 1.2. Assume n2 E RV2_.. The least squares estimators (&,, p^,,J for 
Model II are weakly consistent if z + 0 in probability. Furthermore, this condition 
is necessary if one of the following hold. 

(i) a> 1, 
(ii) EIZjY<cO for some y>a/(a+l), or 

(iii) v~ERV~_~ for some y>O. 
(Note that Z,, L 0 implies v1 E RV, .) 

Theorem 1.2 shows that the regressor with the lightest tails, in this case the con- 
stant 1, dictates the necessary behavior of the error probability tails. This concept 
carries over to multiple regression. On the other hand, pi,, can be consistent even 
when &n is not. The precise condition is exactly that for Model I. 

We turn now the problem of consistency for multiple regression. Suppose that 

x,&,X2, *-* are independent and have multivariate distribution F (XE Rk) and 
that Z,Zl,Z2, ,.. are independent with distribution G. As before, the two sequences 
are independent. For /I E @, the usual multiple regression model is 

~=Xxj’P+Zj. (Model III) 

To give general conditions we first define the marginal distributions 4 (for XG) 
and Hi (for XuZj). Let 

f &Z(t) = 
.i 

u2Fj(du) 
-t 

Taking our cue from Theorems 1.1 and 1.2, we have the following. 

t 
and A,(t) = uH;(du). 

-t 

Theorem 1.3. Suppose ,uui2 E RV2_ a,, ai > 0, for each i = 1,2, . . . , k. Define ai, = 
inf(t: n,uj2(t) 5 t2}. Let Q, be the matrix 

Q, = 

Define also n:(t) = mini(pui2(t)). The least squares estimator&for Model III is con- 
sistent if each the following hold: 

(i) The sequence {Q;’ > is stochastically bounded. 
(ii) lim, _ m t(l-Gl(t))//&t”2)=0 

(iii) lim, ~ co n;(t)/&(t 1’2) = 0 whenever ai = 2. 
In particular, tf (i) holds, consistency occurs in any of the following cases: 
(a) vi E RV, _ Y, y > +a*, where a*= maxi( 
(b) Model III includes an intercept and Z,, 5 0 in probability. 
(c) For some i, aj>maxh+i(ah) and a,;2 cy=, XuZjzO. 
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The necessity of conditions (ii) and (iii) in Theorem 1.3 is also true, we surmise, 

at least when vr E RV, my, y > 0. Proof of this would involve some knowledge of the 

joint distribution for ((X’X))‘,X’Z). And that will require techniques using 

multivariable regular variation. Such techniques would also illustrate when condi- 

tion (i) holds. One situation when (i) holds, however, is the following. 

Lemma 1.4. Let ,uiz, ai,, and Q,, be as in Theorem 1.3. The sequence {Q;‘} is 
stochastically bounded if 

lim 
EWjXhjl llX,X,~ ca,,LJ 

= 3 

o 
rl’o3 ain ahn 

whenever Epic = 03 or EX$. = 03. 

2. Preliminaries 

This section provides preliminary lemmas; the next section will investigate con- 

sistency for estimators in Models I and II. The most important results in this section 

are the known results, Lemmas 2.2 and 2.3, and the new result Corollary 2.7. The 

remainder help establish Corollary 2.7, but are interesting in their own right as 

parallels to familiar results for regularly varying functions. 

First, we make note of a basic property of regularly varying functions. If 

SE RV,, then for any E>O and K> 1, there exists to such that 

1 
Q-t < s(tu) I K&+C -u -- 

K s(t) 
for all uz 1, tz to. (2.1) 

This well known result (Potter’s Theorem, cf. Bingham, Goldie and Teugels, 1987, 

p. 25) is primarily used for uniform and/or dominated convergence arguments. It 

can be strengthened to the following lemma, enhancing its use and allowing one to 

avoid arguments which would otherwise be piecemeal. 

Lemma 2.1. Assume s(t) E RV,. 

(i) Suppose s(t)? is bounded on [0, l] for some real 6. Then for each E> 0 and 
K > 1 there exists to such that 

s(ut) 
s:: s(t) 

- 5 K max(u@“, ue-E, u6 lU1,) for all u > 0. 

(ii) Suppose s(t)t-’ is bounded away from 0 on [0, l] for some real 6. Then for 
each E > 0 and K > 1 there exists to such that 

s(ut) 1 
inf - 
fZlg s(t) 

2 zmin(u@+‘, u @-“, (KS lUsE)-‘) for all u > 0. 

Proof. (i) When u> 1 we can choose tI so that (2.1) holds, i.e. 
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IKu~+’ for all ~21, tztl. 

The left inequality in (2.2) gives 

Now choose M, so that s(t) sM, c @+’ for all t 2 1. Choose t, so that 

s(t) Ml ZE 

-z----t, 
te-’ K 

for all tz t2. 

Thus, if lrutst,, t? t,, 

SW) Kp 
- I M,(ut)@‘“----- 
s(t) M, t@-& 

=KuQ+e ?_ 
2E 

0 
5 KU@-&. 

t1 

(2.2) 

(2.3) 

(2.4) 

Now choose A& so that s(f)cM2 ts for all t s 1. Choose t3z l/c so that 

s(r) M2 
- 2 -f te-c for all t 2 t3. 

Then if ut 5 1, t 2 t3, it follows that USE and 

- s M2(l.& 5-e 
SW) 
s(t) M2 

= Ku*ts+E-e I K max(us, ue-‘). 

The result follows from (2.2)-(2.5) by letting to = max(tl, t2, t3). 

(ii) This follows by a similar argument. q 

(2.5) 

We start by recalling the general form for the weak law of large numbers. 

Lemma 2.2 (Gnedenko and Kolmogorov, 1968, p. 134). There exists a sequence a,, 
such that 

if and only if each of the following hold for some monotone function s(t): 

lim s(t)(l - G,(t)) =0, (2.6) 
t-tm 

lim 
s(Ov(O ~ =z 

t 
(2.7) 

f-)rn 
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and 

lim s(t)vz(t) = o 

t-m t2 
(2.8) 

In this case we may choose a,, = inf{ t : s(t) 2 n}. 0 

Note that if (1 -G~)ERV_,, O<y<2, then 

t2( 1 - G, (0) 2-Y -+- 
V2W Y ’ 

rendering (2.6) and (2.8) equivalent. Another known result is the following. 

Lemma 2.3 (Feller, 1971, pp. 236 and 448). There exist a, such that 

where T is almost surely finite and positive, if and only if pl E RV, _ a for some 
a> 0. In this case we may choose a,, = inf{ t : n,u,(t) I t}. Two possibilities may 
occur: 

(i) T= 1 almost surely, if a = 1. 

(ii) T has positive stable (a) law, if a < 1. Cl 

For the regression problem, we intend to apply Lemma 2.2 to the partial sums 

CT= t Xj Zj, that is, to H and its truncated moment functions. This could mean, for 

example, examining the tail behavior of H in terms of F and G as is done in Cline 

(1986). Actually, we will not require so much, although a few results are necessary. 

Lemma 2.4. Let a 2 0, y 2 0 and 6= min(a, v). 

(i) rf(l-F,)ERV_,, (l-Gt)~Rv_~, then (l-H,)~Rv-s. . . (11) zf p1 eRVi_,, v1 ERV~_~, then A1 ERV~-~. 
. . 

(in) Zf ,u2ERV2_., v~ERV~_~, then A2~RV2_s. 

Proof. (i) When a>y, we have in fact 

l im 1 -ff,w 

twm 1 -G,(t) 
=EIXIY< co, (2.9) 

since EjXjY+’ < 03 for some F> 0. This is due to Breiman (1965, Proposition 3) for 

the case y = 1 (and hence for any y> 0). The proof is implicit in the proof of Lemma 

2.5(i) below. The result is similar when y>a. 
When y = a, the result holds by Embrechts and Goldie (1980, Corollary 3). 

(ii) This is equivalent to (iii) by the transformation x+x2. 

(iii) When y < 2, then 1 - G,(t) E RV-,. So 1 -H,(t) E RV_, for the same rea- 

sons as in (i). Thus A2 E RV2_d. If y = (Y = 2, the result is given by Maller (198 1, 

Theorem 3). 0 
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The next two results are completely new in that we do not require regular 

variation of the distribution tails, but rather of a dominating function. 

Lemma 2.5. Let s be a function in RV,, ~20. Assume F is not degenerate at zero 
and EjXIY< CO for some y>~. Then 

0) lim s(t)( 1 - HI(t)) = 0 H lim s(t)( 1 - G1 (t)) = 0. 
f+w t-m 

(ii) 
lim s(tV I (t) lim m? (0 = o -ZOO ~ 
1-m t t-m t * 

(iii) 
lim sW~,W -=Oe ~. 
f-03 t2 

lim SWV2W = o 

t-03 t2 

(iv) 
s(tMt) 

lim sup ~ 
I I 

s(tMt) 

t 
lElXl@ lim sup ~ 

t-m 1-m I I t 

And, if lim,,, s(t)v(t)/t = c, then 

l im  s(f)40 
=cE[sgn(X)jXl@]. 

t+m t 

Proof. We prove only (i), since each of (ii)- may be proven in a similar manner. 

(i) There is no loss in assuming s(t) = 1 for all t 5 1. We apply Lemma 2.1 (ii) with 

E=Y-Q and 6=0. Then for some to, 

s(t) 
sup - 
f 2 to s(t/u) 

lKmax(uY,l) for all u>O. (2.10) 

If s(t)(l - G,(t))+c, then Lebesgue convergence with (2.10) gives 

s(t) 
- s(t/u)( 1 - G1 (t/u)) F, (du) 
s(t/u) 

cm 

=C ueF1(du). 
0 

In particular, this holds with c=O. 

Suppose instead that s(t)( 1 - H, (t))+O. Choose 6 > 0 so that 1 - Fl (6) > 0. Then 

for every t, 

(1 -H,(&))l 
s 

O” (1 - G,(Gt/u))F,(du) 
6 

2 (1 - G1 (t))(l -F, (4). 

Therefore, 

s(t) s@t)(l - H, (80) = o 
lim sup s(t)( 1 - G1 (t)) 5 lim - 

I-cc t+cc s(6t) 1 -F,(6) * 

q 
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The various limits in (i), (ii) and (iii) of Lemma 2.5 will in fact imply each other, 
depending on the value of Q. This is explained in the next lemma. 

Lemma 2.6. Define for t > 0, 

if 6>0, 

if 610. 

Suppose s(t) E RV,, Q 2 0. If, for some real S, 

lim s(t)tC6va(t)=c<03, (2.11) 
t-m 

then 6 1 Q or 6 I 0. Furthermore, if (2.11) holds, then for any y > Q or y I 0 (y < 0, 

if e = O), 
6-e 

lim s(t)t - Yv,(t) = c ~ 
I I 

(2.12) 
t+m Y-Q * 

Remark. When c> 0, then vg E RVB_, and this is the familiar result for regular 
variation (cf. Feller, 1971, p. 283). We will apply the lemma, however, with c=O. 

Proof. Suppose s(t)tCdvs(t)+c<oo for some 6. There is no loss in assuming 
s(t) = 1 for all ts 1. Note that for any 6, tPdys(t)-+O. Thus we may as well assume 
s is bounded away from zero. Furthermore, if 6>0 then vg is nondecreasing and 
s(t)t -6 must be bounded. Thus either 6r Q or 6~ 0. 

Assume first that 62 Q. Let y 5 0, y <Q. Note that 

tPv,(t)=t-Y ‘03 
i 

P&(du) 
f 

s 
m =(d- y)t_Y P-‘v&)du - t -‘vg(t) 
t 

=(6-y) m(xY~‘(xt)~Bvg(xt))dx-t-Sv~(t). 
1 1 

We apply (2.1) with 0< E <Q - y. There exists to such that 

40 
sup - I Kx”-@ for all x2 1. 
t>t, s(xt) 

Since x~+‘-@-~ is integrable on [l, oo), the Lebesgue convergence theorem yields 

lim s(t)tCYv,(t) 
tjm 

xYP ‘s(t) 
~ s(xt)(xt) - %+(xt) dx - c 

sw 



172 D. B. H. Cline / Consistency for least squares 

c 

(2.13) 

Now assume 6~0. Let y>@. With O<&<y-Q and Lemma 2.l(ii), there is some 
to such that 

s(t) 
sup - IKx-e-E 
I? to SW) 

for all x5 1. 

Again we use Lebesgue convergence since xY-@-‘- ’ is integrable on [0, l] and since 
s(t)t Cdvs(t) is bounded for all t>O, 

lim s(t)t - Yv,(t) 
t-m 

- c 

2?I?C 
Y-e . 

(2.14) 

Two cases remain to be resolved. First, assume again that S~Q, but choose y>O. 
By the first argument, (2.13) holds (with y1 replacing y) for some y1 ~0. By the 
second argument, which leads to (2.14), 

lim s(t)tCYv,(t) = e 6-e C. 
1-‘co Y-L? e-r1 

This resolves the first case. The second case, 65 0, y SO (with y< 0, if Q = 0) is 

likewise resolved using first (2.14), then (2.13). 0 

The above lemmas lead to the following. 

Corollary 2.7. Suppose s(r) is unbounded and in RV,, ~20, and define a,, = 
inf{t: s(t) 2 n}. Assume EIXly<cx, for some y>e and Fis not degenerate at zero. 

(i) If e< 1 the following are equivalent: 

(a) 

0) 

(c) 

(4 

$ +J+o. 
n j- 

;j~,4~0. 

lim s(t)(l- G,(t)) = 0. 
r-m 

lim s(t)(l -H,(t)) = 0. 
t-o, 
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(ii) If Q = 1, (a) is equivalent to (c) combined with 

lim WY(t) 
(e) ~ = 

o 

f-cc t * 

Proof. (i) Statement (b) implies (c) by Lemma 2.2. By Lemma 2.6, (c) implies each 
of the three conditions (2.6)-(2.8). Thus, by Lemma 2.2, (c) implies (b). By Lemma 
2.5(i), (c) is equivalent to (d). Statement (a) is equivalent to (d) for the same reason 
that (b) is equivalent to (c). 

(ii) Again, (c) and (d) are equivalent by Lemma 2.5(i) and each implies 

lim W~2W () 

r-00 
t2 =. 

Applying Lemma 2.2, (a) is thus equivalent to (c) with (e). Cl 

Remark. In situation (i) of Corollary 2.7, one has in fact that (a) and (b) are each 
equivalent to each of 

(a’) 

and 

(b’) 

This is not generally the case for situation (ii) of the corollary. 

3. Consistency proofs 

We begin by noting that the least squares estimator j&n for Model I satisfies 

p^,,,-p, = ;;; z. (3.1) 
Ji 1 

The least squares estimators j?O,n and p^1,n for Model II satisfy 

and 

(3.2) 

(3.3) 

We will first prove conditions for consistency for the estimator of Model I. Note 
that we make no assumptions of symmetry. Kanter and Steiger (1974) prove a 
special case. 

Proof of Theorem 1.1. Let s(t) = t/p2(t 1’2) and u,’ = inf{ t: s(t) 2 n}. From Lemma 
2.3, applied to the distribution of X2, 
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where T is almost surely finite and positive. We see therefore that 

p^ + = ES=1 xjzj Lo 
I,n 1 cp,q” ’ 

if and only if Q,~CJ=, XjZj~O. But SERV,,~ and EIXl”<m for +o<b<o. 
By Corollary 2.7, therefore, consistency is equivalent to 

lim s(t)(l- G,(t)) = 0 (3.4) 
t-rm 

and, if cr=2, 

lim NV(t) 
----= 

o 

r+m t * 
(3.5) 

(Note that (3.4) implies (3.5) if a<2 by Lemma 2.6,) This is the equivalence to be 
proved. 

Finally, if vr E RVr _,, with y < +a (so y< 1) then 1 - Gl(t) E RV,. Since s(t) E 

RVa/2 3 (3.4) fails. On the other hand if 1 ?~>+a, similar reasoning assures that 
(3.4) holds. 0 

Unfortunately, it is not possible to replace (3.5) with a version involving v instead 
of A, when a=2. One condition implying (3.5) is suggested by Lemma 2.4(iv): 

( s(t)v(t) EX = o 
lim ~ , 
t+m t > 

where the limit is assumed to exist, finite. 

Proof of Theorem 1.2. We will handle the three cases as follows. First, we will show 
necessity and sufficiency of Z,, 4 0 in case a> 1. Then we will show sufficiency 
when (YS 1. Finally, we will demonstrate necessity for cases (ii) and (iii). 

Again define u,” = inf{ t: np2(t 1’2) 5 t}. By Lemma 2.3, ai CT=, Xj.’ converges 
weakly to a positive stable law or to 1. 

(i) Assume a> 1. Then EIX( < m and 

X2 
plim 

rlXJ&? (EX )2 - = plim n = - 
d n+m iu2W EX 

2 * 
n-m 

Thus 
Var(X) 

EX2 

1 

if EX2 c 03, 

ifEX’=cc a=2, , 

[ positive stable if 1 < a < 2. 
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From (3.3) we have therefore that fi,,,~& if and only if 

Similarly, & -% PO if and only if 

1 -n 
1 
4 ( 

Z, C Xj2-Xn i XjZj 
L0* 

j=l j=l > 

(3.6) 

(3.7) 

Since E IX j < 03, we can reparametrize the model as 

q=((po+Pi(EX-l))+Pr(Xj-EX+l)+Zj. 

Thus we see there is no loss in assuming EX = 1. Then X,, -% 1 and (3.6), (3.7) 

become equivalent to 

Thus, consistency occurs if and only if Z,, L 0 and n-r cy= r XjZj 2 0. Further- 

more, Corollary 2.7(ii) and Lemma 2.5(iv) show that Z,, L 0 implies 

lim t( 1 -Hi(t)) = lim A(t) = 0. 
I-m t+m 

And this is sufficient for n-l Es= r XjZj J+ 0. 

Suppose instead as 1. We will show that Z,, 4 0 is sufficient for consistency. 

We know l-F,(t)ERV, and ,ui~RVi_.. In this case Lemma 2.3 says that if 

b,=inf{t: n,uu,(t)st}, then 

positive stable law if a < 1, 

if a= 1. 

However, b,/a, is slowly varying. Hence, 

(3.8) 

Therefore, ai2( Cy= i Xj” - nXn2) 3 a positive stable law. We again see that con- 

sistency is equivalent to (3.6) and (3.7). 

If &--% 0, then vl(xt) - VI(t) + 0 for any x>O. Clearly, vi is thus slowly 

varying. By Lemma 2.4(ii), A, E RV,_, . Again applying Lemma 2.3, there exist d,, 

such that d;’ CJ= I IXjZj I converges weakly and d,/a, is slowly varying. Include 

the facts that n/b,, is bounded and b,/a, is slowly varying and we have 

plim sup 
n-c= ( 

y j$, IX,zjl) 
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14.1 (3.9) 

Thus, (3.7) holds since ai2 CJzl Xj2 converges weakly to a positive stable and 
Zn$+ 0. Likewise, (3.6) follows from (3.8) and (3.9) and Zn -% 0. (In fact, (3.7) 
and all imply (3.6).) 

We now show that under (ii) or (iii), Z,, -5 0 is necessary for consistency. 
(ii) SupposeE/ZIY< 00 for some y > a/(a + 1). There is no loss in taking y < al 1. 

Thus E(XZIY<m. Then 

and is stochastically bounded. Since nai/n”Yb, -+ 00, it then follows that 

Therefore, in this case, (3.7) is equivalent to 

which is equivalent to Z,, LO. 

(iii) Finally, suppose vr E RV,_, for some 
assume y< a. Let (2;‘) be a sequence of 
variables and independent of (Zj} and {Xi}. 

y> 0. In view of the above we can 
independent, G-distributed random 
If (3.7) holds, then certainly 

(3.10) 

Define Wj = Zj - zj and let G2 and Hz be the distributions of 1 Wjl and IXj WjI, 

respectively. 

BY (2.9), 
lim l-Hz(t) 

I-CC 1- G2(t) 
=EIXIY, 

which says there exists c, such that both 

converge weakly to symmetric stable (y) laws. In fact (cf. Cline, 1988), 

where (S,,S2) is independent of T. It therefore follows that 

and thus neither (3.10) nor (3.7) can hold when y< cz. 0 
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The second term in (3.7) certainly seems to be relatively negligible, but in the cases 
where both terms are unbounded we found that we needed to impose some regulari- 
ty on G. Thus, Theorem 3.2 does not quite show that Z,, --% 0 is necessary in all 
cases for consistency in Model II. 

Before proving Theorem 1.3, consistency for multiple regression, the following 
remark is helpful. An obvious, but limited, approach to the consistency problem is 
to determine a sequence c, such that c,(X’X))’ is stochastically bounded and 

IxLz= (+&;zJ,J+o. 
cn 

This approach is limited because /?,, may be consistent when no such sequence exists 
(and generally this is the case). For example, consider Model II. Consistency occurs 
if Z,, -% 0, but it is not necessary that H-’ Cy= t XjZj$+ 0. The terms involving 
Cy=, XjZj are sufficiently dominated to allow consistency. 

Proof of Theorem 1.3. The least squares estimator & satisfies 

(Bn - p) = (X,X))iX’2, 

where X= (Xj’)j”= 1, Z= (Zj)j”= 1. We will assume X’X is almost surely of full rank 
when nrk. 

Note that mini(ain) = inf{ t: n&(t) I t2}. AS before, 

positive stable (+a;) law if oi < 2, 

if (yi = 2. 

Let Rihn and I&, be defined by 

Qi’ = (&n)i, h and w, = (x%)-l = (w/&h. 

By a little algebra, wi,, = (l/LZinahn)Rih,, %lCe 

& is consistent if 

-$ i XhlZj~O for all i,h. 
m hn j=l 

(3.11) 

To show that (3.11) in fact holds, first set 

sib(f) = inf{n: a;,,ah, > t}. 

Note that sib is regularly varying with index @ih=aioh/(oi+ @<oh. Thus E IXhj[“<m 

for some 6 > eih. Furthermore, 

~(t)5 inf n: min(ak) 1 t = f/&(tl’*). 
i 
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Therefore, by (ii), 

lim Sih(f )( 1 - Cl (t )) = 0. (3.12) 
f+O 

Additionally, eih I 1 with eih = 1 only if ai= ah = 2. In the latter case, condition (iii) 
implies 

lim 
Sib(t) 
-Ah(r) = 0 when eih = 1. (3.13) 

1’03 t 

By Corollary 2.7, (3.12) and (3.13) imply (3.11) and hence consistency holds. 
(a) In the particular case v1 ERV)_~, ~>+a*, condition (ii) holds automatically 

and (iii) is trivially true. 
(b) In case Model III has an intercept, we can reparametrize so that EXhj=O 

whenever ah = 2 and X, is not degenerate. In this case p;(t) = 1, for all t 2 1. Thus 
(ii) and (iii) become 

lim t(1 - G,(t)) = lim v(t) = 0, 
t-+m t+m 

i.e., Zn,40. 
(c) A similar argument holds when there is some i for which (Y; is the unique 

maximum. 0 

Finally, we have the proof of Lemma 1.4. 

Proof of Lemma 1.4. The condition guarantees that Q, converges to a matrix 
whose only random components are on the diagonal and whose nonzero degenerate 
components form a positive definite matrix. q 
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