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Abstract We give conditions for the convergence of an infinite linear

series of independent and identically distributed random variables, whose
distribution has regularly varying tails. More importantly, we aho%

that the distribution of such a series is tail equivalent to the
distribution of its components. This enables us to define a quantity,
which we call dispersion, measuring the relative thickness of the tails
and thereby to compare different infinite series. The dispersion may

be related to the za metric for sequence spaces and this leads to a
notion of linear projection which isiusefulwfor prediction of time

series.
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1. Introduction

o
We are concerned with random variables of the form ¥ = Z pjwj
: =1
where {W,} is a sequence of independent random variables, all from a

]
distribution F* with regularly varying tails. Let F be the distribu-

tion of |wj| and define F(t) = 1-F(t) = P[|Wj|>t]. We say that F(t)

is regularly varying with exponent -a (?eRV_u) if for every s>0

1in F(st) -
% F(e)

In fact, 1f the limit exists at all, then it will be of the form

s ¢ for some a>0 and the convergence will be uniform on [so,w) for any

so>0. Furihermore, for any €>0 there exists c>0 such that f‘(t)j_ct.OH-e
for all tzﬁo. (See Feller II for a discussion of more general regularly

"varying functions.) The parameter a we call the tail index of F.

Distributions with index a have moments up to (and perhaps including)
order a, but higher moments do not exist. In particular, if a<2 then
the variance does not exist. More precisely, Feller (1971), p. 283,

S

proves the following relationship between ¥ and its truncated moments.

Lemma 1.1 Suppose IWI has distribution F* with F(t) = P[]W|>tl £ RV_Q.

Define my(t) = EIIWIYlIW|§;] and, when it exists, uy(t) = E[lW|Y1|w|>t].

m (t)
Um _y *~ ..o , and when uy(t)<m,

-,
Then for vy>a, t 'm_(t) € RV__ and — —
Y * B YF @y Y

lim ux(t) o #

B Yy Y

t Tu (t)eRV  and
Y ~a
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Random variables with regularly varying tails exhibit a striking

relationship between the distributions of sums and of maxima. The

following is a modification of a theorem in Feller (1971), p. 278.

Lemma 1.2 Suppose Wl,wz, ...,wn are independent. Let g, be the

. F (v)
distribution of |W I and suppose lbn =1, where F e RV ., For
J F(t) -a
real numbers PrseseP s define G(t) = P [ Y p |>f] and .
o 3=19 :
H(t) = P| sup ij j|>t . Then GeRV_a. HeRV_u and

1<j<n

1im G(t) _ 1im H(t) _ 2 lo |
TE() YU F@) =1

Proof: The result, if true for n=2, extends by induction. We therefore

consider only the case n=2, First,

1im A(t) _ lim £t/ o, D+E(e/ |0, D=t/ |0, DELe/ [0, )

T F@) U F(t)

a G ;
Ipll +|°2| +0 ;
by the regular variation principle.

Second, By an application of the theorem in Feller (1971), p. 278,

Tim §(t) _ lim Pl W [+]o W, [>¢]

P F@) U7

F(t)

_ lim gftllpl|)+§§t/|pzl)

tr

F(t)

= loy %[0, % o (1.1)
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However, for any 6>0
G(t) = P[|p W +p W, |>t]

> p[[p1w1|>(1+5):, |p2w2 <8t]+P[ |p2W2'>(1+6)t, ,p1W1|£6t]

-3 /(1+<S)t)F/6t )+'((1+5)t)p st )

F
Nlegl /A0y [) "1\ oy | |

And from this we calculate

UnSE) 5 (148)™ o, |*+(1+8) o, | . | (1.2)

£ F(t)

Since 6§ is arbitrary, then (1.2) combined with (1.1) gives us the result.f
Lemma 1.2 tells us in particular, how to compare the tail of the
distribution of a sum with the tail of the distribution of each component.

We will extend this result to infinite series in Section 2. Whenever

two distributions with regularly varying tails (say Fl and F2) satisfy

1in F1 )
o0 = exists and is nonzero, we say that F1 and F2 are tall equiva-
F,(t) ‘
2

lent. The limiting ratio gives us a convenlent means to compare the
probability of large values of random variables from the two distribu-

tions. In particular, we may be interested in the probability that

|Y W&I is large relative to the probability that

- P
1! |j£1 1

|Y2| = |j§1p2jwj| is large. For example, Yl and Y2 might be the pre-

diction errors from alternate methods of predicting a time series and we

may prefer to choose the predictor which has the least chance of large

" errors (see Cline and Brockwell (1983?).
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The limiting ratio of probabilities for Y= J p JWy and W) will
j=1

- -]
turn out to be z ijla, a quantity we will call the dispersion of Y.
i=1

When comparing variables on the linear space generated by a given

sequence {W,}, the dispersion is a useful measure of distance. This

3

leads to the concept of minimum dispersion projection for variables in

this linear space. Section 3 investigates this notion.
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2. Existence and Tail Behavior of Infinite Series

We start with an application of Kolmogorov's three series theorem

to series of regularly varying tail variables.

Theorem 2.1 Suppose {wj} are 1id F* and F(t) = P[le|>t]eRV_a.

' n
Then Y = 1im ] p_ W, exists almost surely if either
a0
1) ¥ |p | <w for some §<a, 6<1
j=1
or . L .
i1) ij exists and equals 0, and Z |p | < ®
j=1
for some 6<a,8<2 (or 8=1 if a=1).
Proof:
i) The series Y = Z pjw, is absolutely convergent if and only if
=14
for all v>0
-] [
2 P[|pjwj|>v] = z F(V/ijl) < ®
i=1 j=1
and

jz e[ lo9, 1o ,q,] z 1o, lmy /10, ]) < =

(The third series is not necessary to prove absolute convergence.)

Since by Lemma 1.1,




l-a

= — 1if a<
1im _ F(t) a <1
- 9
tre ¢ 1ml(t) 0 otherwise

then the terms in the first series are docinated by the terms in the

second and it suffices to show the second series converges,
If a<l then t—lml(t)eRV_a and so there exists a ¢>0 such that for

v -1 -3
any s>;E;T;;T, s ml(s)fps y 1f 6<a. If a>1 then ml(t)+E|wj| and so
b

we can use the bound s-lml(s)fps—G if 86<1. 1In either case,
T 8% 1. (8
z |pj|m1(v/|pj ') f. cv z lpjl < =,
3=1 3=1

Thus, condition i) 1is sufficient for absolute convergence of Y.

1i) 1I1f ij=0 (in which case a>1), then

IE[“jlle l:t]l - |E[‘”11'lel>t:l|
< E[IW |1Iw |>t]

= u, (t)
for Y to exist, it suffices to prove that
¥ P[lijjIW] - Z?‘(V/ijl) <w
jsl j=1

z |pj [?j1|p W |<Y]| z |pj|u1(V/|p h <=

and

2
zlEl:(pjwj) llojw:l Iiv] = Z Djmz(vllp ) < .
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From Lemma 2.1

1im  F(t) _ o-1

tw t-lu (t) a
1
= 2-a
m _F(t) _ )= 1if a<2
too =2
. t mz(t) 0 otherwise

Thus if o=1, convergence of the second series is sufficient and if
a>1, convergence of the third is sufficient. For o=l, since ul(t)+0

there exists c such that for all s>;;ﬁfh;—r R ul(s) <c so that
h|

Llogluy /oy s e 1 loy]

and hence condition i11i) guarantees that Y exists.
For a>1, we can find ¢ such that s—zmz(s)ics-t|s where 6<a,

6<2, so that

< 2 2-6
Doy I'mye/]o, ) <ev™ " 1 |o
=1 jl 2 h| =1 ]

5
|

and again condition 1i) is sufficient. #

We remark that when Z P i1s absolutely convergent then

RAEK

sup[pjwj( exists almost surely, also.
3

. -]
Sometimes the condition Z |pj|a'<m is sufficient for the existence
j=1

- -]
of Z pjwj. For an example, assume the wj are symmetric about 0 and
i=1

FeRV_ , 0<a<2. In this case it is sufficient to show
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)) F(v/lpjl) < « for all u>0.

i=1
If F satisfies lim taf(t) < », then there exists ¢ such that for
to
> L= F(r) < ct *. Thus
su ’ — *
jplpj |

% < o

I Fo/log <ev™® ] o,
371 3=1

and hence z p.W
s4°3%

On the other hand, a counterexample is the following. Suppose
1/a

exists almost surely.

h|
s : . 2.=1/a- A e
uppose also that Py = (3(In3)) ™'7; 32 3. Then

[--]
)) p; < =, but with j, chosen large enough, -
=3

@ ) . 2
Y Fas) =e § M&%l
3=3 ] 3=3  3(1n3)

v 1
zej=23 Ty "

Therefore z p almost surely does not exist.

44571

Lemma 2.2 Suppose F* is a probability measure for W with F the

distribution of |W| and F(t) = P[|w|>t]eRV_a,a>'0. Suppose also that

{pj} satisfies ) ijl6 < w for some §<a. Then
j-.:

I 7 -
£ 7D F ey
3= 3

1) lim _
e F(t)
and

1- 1 F(ellod

i1) 1‘_1’2 El_ ) lpjla.
F(t) j=1

{W,} are distributed so that for t 2 e ', P[]Wj|>t] = F(t) = ae t1nt.




Proof:

i) Let m = suplpj|. There exists ¢>0, t0>0 such that for all
b

vy

t>t, ¥ >1/m,

F(ty) icy-G

F(t)

Therefore Z F(t/lp < z |p |6 © t2t

F(t) j=1 0°
Since L. L ijla

then by dominated convergence the result i) holds.

i1) By 1) Z F(t/lp |) < «» for all t>0 and sup F(t/|p [)+0 as tow

j=1 ]
=z We can therefore exchange F with InF and 1 - II F(t/lp |) with
J=1
. 2 In F(t/]p [) to get -
=1 -
Idnfltllp 1) ) ?(t/lpjl)
1im J=1 _ lim _j=1 -1
tr

o w
1- n F(t/lpj|) ¥ lnF(t/ijl)
j=1 j=1

With 1), this implies ii). #

The main result of this section is next.

Theorem 2.3 Suppose {w&}'biidiF*where F(t) = P[|w |>t]eRV and suppose {pj}

satisfy X |o IG< o for some & < min(l,a). Let G(t) = P[] 2 Py J|>t] and
3=1 3 j=1

H(t) = P[suP'ijJ|>t]. Then 1im G(t) _ 1lim H(t) _

+0 - $0 - |
: 3 ERo  TTRo  sm .
Proof: Set Y = z p,W,, Y = 2 p z |p |and Z = 8up|p Ww.|[.
: =113 45 §=1 g 37

exists almost surely and hence Z_ and Y do also.

By Theorem 2.1, Z1
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Since H(t) = 1 (l-f(tllpjl), Lemma 2.2 immediately gives the second
=1 ‘

conclusion.
To prove the first, we let Gn be the distribution of Yn' Then

for any n>1, >0,
PIY|>t1>P[Y [>Q+e)e, |Y-Y_|<et]

=G_((1+e)t)P[|¥-Y_[<et].
Thus,
- G_((14€)t)

Um G(€) 5, 1m0~ " " pr|y-y |<et]
B F(r) ~ ' F(r) .

1%

n
-a
= (14e) ) |Dj
i=1
where the limit is obtained by using Lemma 1.2 and the fact that FeRV_a.
Since both n and e are arbitrary;

lim G st
2 G(t) > y ,D-|a (2.1)

too

F(t) 3=1

The alternate inequality 1is first proven for a<l. Define

¢(r) = Ee-xlel. When a<l, then by Feller (1971), p. 447,

1lim 1 --¢(1/t) - I‘(l-a) ' . (2.2)
T Fe)

This indicates that 1-¢(1/t) is a regularly varying distribution tail,

so that Lemma 2.2 applies.

1- 1 ¢(|Dj|/t) .
11 i=1 - a ’
toe 1= 6C1/0) jzlh’jl . (2.3)
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Of course, Ee Azl I ¢(A|pjl). Let H, be the distribution of Z.
i=1
Applying the theorem in Feller again, il t:RV__cl and
1- H ¢(|p |/t) :
Ho __ J=1 - I(1-a). (2.4)
tro
Hl(t) '

Combining (2.2), (2.3) and (2.4) we have

1lim l Z I ,
B Fr) 3=1

Since |Y| izl, then

Tim G(t) _ lim H, (1)

5 F(er) ~ T F(e) 3=

- Tlol® -
Llegl®

which, together with (2..1), proves the result for a<l,
When a>1, then a = Z |p | <=. Let vy € (a,a/8) and p, = % ij|. By
3=1 ]
Holder's iﬁeduality, with {pj} as the probability measure,

zy=a [ W

Y
(jillel b,

20T Y, l)”* (2.5)

|A

j=1
The distribution of |wj|Y is F(tlly) and has index a/y<l. Letting

ve= ] ijIYlpjl and relying on the result for index less than 1,
j:l -
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; lim Pfv>e] E Io Iu/Y < w, (2.6)
‘ el TEU NS | | |

.

From (2.5) and (2.6) we can calculate,

T B 1mp Y, g

B F) TV F(t)
_ 1im P[V> a1 7] -
s F(31/\()

- (al-Y)-u/Y Z ijla/Y
i=1

© Q_Q/Y @
( ) lij I Ioyl*/.
i=1 3=1 -

Since Y>a is arbitrary,

—— H.(t) © a
e ) e
F(t) i=1

This is still not strong enough to prove our result. However,
n
with Y = J} p W, and e<k,
n .33
3
PIIY]>e] < P|Y_| > (1-e)e] + PIIY-Y_[ > (1-e)¢]
+ P[IYnl >et, [|¥-Y | > etl.
= Gn((l-e)t) + C_n((l-e)t) + Gn(et)G_n(et) (2.8)

2 ’ where G_n is the distribution of Y-Yn, which is independent of Yn'

By Lema 1.2 and an inequality similar to (2.7), respectively,
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G (v) n
lim 2o 7 |o,®
B+ F(e)  4=1 3
and ' .
" 1= o-n®) < lm P[j-gwllpjwj, >:].
B F(r) — v F(t)

1(3=§+1|p3 I)“.

Using these in (2.8),

— n © a
%_i:f_(ﬂi (1-¢)"* § lpjla + (1—;)'“( ) lpj l) .
F(t) j=1 j=n+l

Since n and € are arbitrary, then

——— oy o
lim G(t)
tom oo I 1oyl

F(t) 3=1

and with (2.1) we have our result for a>1. #

The quantity Z
i=1

after a similar usage by Stuck (1978). This theorem indicates that disp(Y)

ij]“ we call the dispersion of Y (disp(Y)).

is a measure of the probability of large values of Y. If {WJ} are v
3

symmetric stable (a) in distribution, then Y will also be symmetric

stable(a) and (disp(Y))l/a will be the ratio of Y's scale parameter to Wj's

scale. Section 3 demonstrates how dispersion may be used as a measure

of distance between random variables which are infinite series in {W }.

b
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Corollary 2.4 Let -Z,Y =[ X |pj‘i!j|:|1/Y for vy > §, then

P >
1im [Z ¢l

o
t+oo——|—w|>Y] z ijl ’

Proof: ij|Y has distribution tail Fy(t) = F(tI/Y)ERV_a/ . For

Y

o )
<a/y and ) (lp IY) ! ¢ e Thus z_ exists
=] j Y
. 3 »
almost surely. Let HY be the distribution of (Zy)'Y = Z ijwj
=1

61 = G/YQ 51 _<_ 1 and 61

|Y. By

the theorem,

10w 2§ (jp V) Elo .
to 'f- (t) j-1 h|

Thus

Plz >t] 1m 8 (:2Y) =

1im = too 2 lp |a

t+= P[|W|>t] f(tl’Y
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3. Dispersion as a Metric

In this section we define a metric for infinite series of regularly
varying variables and a corresponding projection operator. We also elab-
orate on the nature of the projection operator. As before, the sequence
{w } will be independent and identically distributed, F(t) = p[|wj|>c]
is the tail of IW | and regularly varying with exponent -a. Recall that

we have defined the dispersion of Y = z p
3=1

dsp(¥) = I o |°
=1 3

Let 6>0 satisfy 6 < min(l,a). Define now the (random) linear space

for given sequence {W_},

b

S =.{Y = z p.W, such that z Ip.|6
j=1 N | =1 -J

We remark that in fact we need only work with a space of equivalence

classes which are well defined by the distribution structure, but S is

a convenient méans to express this. For Y z p1j 50 z pzjwj we
define r _
= - <
Z |plj pzjl disp(¥,~Y,) ifa<1

d(¥,,Y,) =34 /
© : l/a

z 'plj-pzj ,a = (diSp(Yl-Yz))l/a 1f a > 1.
W\j=1
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Lemma 3.1 d is a metric on S.

Proof: The only condition not obvious is that d(Yl'Y2) = 0 if and only

if Y almost surely. Clearly, if d(Yl‘YZ) = 0 then plj-p2j for all

1°Y

jJ and hence

. n n
Y-Y, = 1im| Yo, W, - § o W
172 (j-l 1573 7 45"2 j)

jzl(pli—ij)wj

=0

On the other hand, if Yl-Y2 = 0 almost surely, then by Theorem 2.3,

11mP[|Y1"Y2| >t] =

o

Therefore, we see that dispersion is not only a measure of tail

thickness, but can also be used to define distance between two random

variables in S. We remark that if, as in the example given in Section 2,

(-4 . .
X ijla < @ is sufficient for existence, then the use of § < a is not
i=1

required in the definition of S.
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We recognize that when a=2, § is a subspace of a Hilbert space. In
this case and when a>2 so that variances are finite, it is usually most
convenient to consider a Hilbert space setting. However, we are primar-
ily interested in cases where a<2. To consider projection operators in

S, let X Xn €S, then for any Ye S define the projection operator

l’ ...’
P
x *Y

PxY - {Y = a'X such that disp(Y-{f) is minimum}.

Theorem 3.2 Assume a>1 and suppose x = ) w, WeS,1i<n. Assume

51 41

for each m 2n, H(m) =[r,, 1™ ™ is of full rank n. Suppose also
ij = =
- 1=1 j=1
that Y = Z pjwjeS. Then PxY has a unique element. Furthermore, if
| j=1 = «
m
x(m) - Z pij Wj, then : , e e — —
3=1
‘; =PY=1im P (Y), almost surely,
- m
Proof: We start by assuming X I n Z Py W where n<m and m
21902 1" 5 4%
is finite. We wish to minimize
h (a) = disp(¥-a'X)
' 3.1
ij_ﬂ - (3.1)

where m . 1s the jth column of 1) . [+ ,J® ™ . We have assumed 1™ phag
] 374e1 321
full row rank n. Define




R Ead

-

- 18 -

Dj = {acR" such that _a_'lj - pj}

and g (a) = [o,-a'n, |,

For _a_lij (using [x]Y = sgﬁ(x)lxly).
3g, (a)
1= - 1%°1
7 an, [3'1:1 pj]
328 (a) | a-2

Since a>1 and 7, 1! is nonnegative definite then g:l is convex off

57

of Dj' In fact, gJ is minimized on D

so that gj is everywhere convex.

3

"~ We can actually go a step further and say that for _a_l,'gzekn, Ae(0,1),

Agj(gl)+(1-l)g (EQ) 3_83(X21+(1"A)22)

3

with equality iff a'n = a That 1is, g:l is strictly convex except

11y = 2Ty

along lines orthogonal to lj' Equality cannot hold for every j}, since

m
H(m) is full rank, so that h-z gj must be strictly convex. Furthermore,
i=1

as max |a,|+», h(a)+=. Thus h must have a unique minimum.
1<j<n

The argument that h is strictly convex and has a unique minimum

holds even when the series are infinite, that is, when Y = z pjwj,
© j:l
X, = jzl LPALP and
h(a) = disp(Y-a'X)

= 7 |o,ma'n |
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Let a, be the unique minimum of h(a) and set (for m>n)

(4]

m

' h _(a) = Z lo -a'm |“ with unique minimum a . Suppose for some subse-
m j=1 3 3 -m

quence {a_ }, max |a

1<in T |

+x, Then

limh (a ) >limh (a ) == /

ko D ko

But for any m,

hm(gm) inf hm(_a_)

a

[N

inf h(a)
a

h(a,) . (3.3)

Thus, the sequence {gm} must be compact and every subsequence must have

a convergent subsequence. Suppose a »a,. Then from (3.3)

h_ (a_ ) < h(a,)
m'k_mk -
:h(gl).

But since hmfh and the functions are all continuous, convergence is
locally uniform, by an application of Dini's Theorem. This means
limh (a ) = h(a,)

k> -1

which implies h(gl) = h(go) and hence a, =a,. Thus a) = lim a and

= a! = 'Y = Y).
PyY = aj X = lim a'X 1imP(m)() ¢

= me m*> X
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To actually calculate a is not easy unless either m=n

(a, = (n (n)? )~ g) or o=2 (a = (H(m) (m)* )" n (m) p). An iterative

procedure would be

N [
.- (@@ y-1,m)p

\ (@ @’

L @ ® (2 10]

where E( )(a) = [a' n(m) ] (using [x]z = Sgn(x)lxlz). 1<j<m.

Even though the mapping Y+Y = PxY 1s unique it will not be a
linear mapping (except when a=2 or wm=n). (See the example at the end

of the section.)

Theorem 3.3 Assume that X and Y are as in Theorem 3.2, except assume
a<l. To minimize disp(Y-a'X), it suffices to consider gci, the closure

for at least n values of jl.

3

of E= {ngn:gfﬂj‘O

Proof: As before, we seek to minimize

p (™)

-a'm | , m>n, (3.5)

(a) = Z lpj
3=1

befi e again D, = {acR":a'n, = and a) = la'n -p.|®. The matrix

of second derivatives given in (3.2) indicate that at every ngj, gj

is concave since a<l. However, gj is minimized on D,. Since

k|
m
2 g, is continuous everywhere, concave at all af ) DJ and
i=1

(m)

infinite at infinity, then h must therefore be minimized on U Dj

(This is not to say that points of minimum are exclusively in this set.)
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Now éonsider the set

E = {geRn:g'lj =0,

Since H(m) = [n n o m has rank n, then D

N E is non empty.

Suppose 2, €D, and a eDan . From (3.4) we clearly have

3
h(m)(gi) 3_h(m)(32). Thus h(m) will be minimized on the set

jgl(Danm) = P

Suppose a e:E minimizes h X g To minimize h = X g, we
-m j=1 3

consider the sequence {gm}. As in Theorem 3.2, this sequence must be

compact, and hence there exists a subsequence a *ger where

E=1lim Em' That a, will minimize h is also true, and this is argued
-

as in the previous theorem. #

(m)

will not necessarily be unique,

(m)’

The point of minimum a for h

except when m=n. In that case, a = (m ' g_and the mapping Y+PXY

is linear. When m=nt+l, however, such a linear mapping can still be

defined, even when there is not a unique minimum,

Theorem 3.4 Suppose Y = X pj Jes, a<l and suppose, for 1<i<n,

J=1
n+l
z T w and H [*,.] has rank n. Then there exists a linear

13

mapping Y+Y into span {Xl, coey xn} which minimizes disp(Y-Y).

for at least n values of je{l,2, ...,m}}.
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Proof: Let 2= [ o

W
j=n+2 33
and W = (Wl,..., wn+l)'

We wish to minimize

so that Y = Z+p'W, where p’'= (Pys =ons pn+1)

h(a) = disp(¥-a'X)

ntl

= disp(Z) + Z lo -_g'.'n
§=1 IJ=——3

Iu
Since a<l, then according to Theorem 3.4 a solution 1s given by a
satisfying E'lj = pj for at least n values of je {1, 2, ..., ntl}. If
n
p = l'['_ao for some goeR , then Y = Z+aD'X . Clearly, in this
case, Y = aO'X is the unique solution and the mapping is linear.
On the other hand, 1f p is not in the row space of T, then it

suffices to consider a such that 3‘_111 - pj for exactly n values of j.

Suppose k is the one value for which 3'1rk ¢ pk. Define H_k and ey

to be I and p, respectively, with kP column (lk) and kP element (pk)

removed. Then a = (H:k)-l_g__k and

n+l a
min h(a) = min J |p,-a"n, | +disp(2)
a a2 371 3 3
= min o -p! (1_)7'm |*+atsp(2) (3.5)
1<k<n+l

By inverting Q = [n'g]'we can find the (n+l,k) element of Q-l, namely

ety M r 070 = D derm_pder@ 1™, (3.6)

Note that this factors into a part depending only on p and a part

depending only on k.
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Define j, = max{kiml:ldet(ﬂ_k)-]" is minimum}. Then from (3.5) and
(3.7) we have ’

- |_det(Q) a
m:n h(a) det(II_j ) +disp(2)
- 0

- )"1

a
- lpjo g__jo (H_jo Ej | +disp(2).

0

And a point of minimum for h is a, = (' )-lp . If we define P to
0Ty T

be the matrix (T’ -1 where a column of zeroes is squeezed in to make

)
jO
a new joth column, then 3 - Pp.

By this definition, Y = (Pp)'X defines a linear mapping on S and
YePXY, so that it is a minimum dispersion projection of Y. #

The following example illustrates that PX is not necessarily linear.

With X = W_+2W +w3, then Px(w1+w2) ¢ PX(wl)+PX(w2) fora = 1/2, 1, 3/2.

17"
a 12 1 3/2

P, (W) 0 0 2—'4"—5 X

PX(WZ) 0 0 1/3 X

1/2 X 1/2 X i/z X

PX (W1+W 2 )
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