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GEOMETRIC TRANSIENCE OF NONLINEAR TIME SERIES

Daren B. H. Cline and Huay-min H. Pu

Texas A&M University

Abstract: In this paper we provide conditions for nonlinear time series to be geo-
metrically explosive with positive probability. The paper complements earlier work

by the authors on geometrically ergodic nonlinear time series, showing that the con-
ditions for examples in the earlier paper are sharp. We also study the transience
of polynomial autoregression models.
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1. Introduction

Nonlinear time series modeling is attracting increasing interest, particularly
with the development of nonparametric methods for estimating such models (eg.,
Chen and Tsay (1993a,b), Tjøstheim and Auestad (1994a,b)). The stability of
general nonlinear models is only partially understood, however. Groundbreaking
work appeared in Petruccelli and Woolford (1984), Chan and Tong (1985, 1986),
Chan (1990) and Tjøstheim (1990). These papers, and the many that followed,
dealt primarily with determining sufficient conditions for stability of nonlinear
time series. Only a few also have results on nonstability, including Chan (1990),
Tjøstheim (1990), Guo and Petruccelli (1991), Bhattacharya and Lee (1995) and
Cline and Pu (1999b).

The conditions for stability/nonstability fall into two classes: conditions that
are not necessarily sharp but are applicable to relatively general time series (in-
cluding nonparametric time series), and conditions that are usually sharp and
are applicable to specific parametric models. Except for ARCH models (Lu
(1998a,b)) and bilinear models (Pham (1985)), the error distribution usually
plays no role in the derived stability condition other than ensuring irreducibility
of the process. In Cline and Pu (1999a,c) we showed that the error distribution
nevertheless can have a significant effect on stability. In particular, we obtained
drift conditions sufficient for general nonlinear models to be geometrically ergodic
and applied them to models that failed the drift conditions of the earlier papers.

This article is complementary to Cline and Pu (1999a), hereafter referred to
as CP. We now seek sufficient conditions for transience of nonlinear time series
models, including some studied in CP. Noting that stable series can have char-
acteristics that, at face value, appear to be explosive, a study of transience helps
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to identify what is in fact necessary for stability. We also note there is a clear
preference for proving geometric ergodicity (when possible) over simply showing
ergodicity, because the conclusion is stronger and the drift conditions are more
readily checked. We therefore want to provide corresponding “geometric” condi-
tions for transience. Our examples include multivariate threshold models, models
with a periodic “coefficient function” and polynomial autoregression models.

As in CP, {Xt} denotes a time homogeneous Markov chain defined on X ⊂ R
p

by
Xt = α(Xt−1) + γ(et;Xt−1), t ≥ 1, (1.1)

where α(x) and γ(e;x) are measurable functions and {et} is an i.i.d. sequence
of random variables, independent of the initial state X0. The process may be
a R

p-valued nonlinear autoregression of order 1, or it may be the state space
vector Xt = (ξt, . . . , ξt−p+1) for a nonlinear autoregression {ξt} of order p. We
operate under the assumption that X is an unbounded subspace of R

p and that α
is essentially unbounded on X. Otherwise, with minimal assumptions on γ, the
process would be recurrent.

In Section 2 we provide general drift conditions for transience of a Markov
chain, complementing those for geometric ergodicity, and show they imply a type
of geometric transience. Specific results and time series examples are in Section
3 and the proofs and lemma are in Section 4.

2. Geometric Transience

We are principally interested in forms of transience for which ||Xt|| becomes
unbounded (as this is most relevant in a time series setting), obtaining useful but
readily applied drift conditions that mimic those for geometric ergodicity. As a
bonus, we show that the conditions imply the time series explodes geometrically
with positive probability. Specifically, we say the time series is geometrically
transient if there exists q < 1 such that P(qt||Xt|| → ∞ | X0 = x) > 0, as
t→ ∞, for all x ∈ X.

The notation and terminology used here are the same as in CP. In particular,
Px(·) = P(·|X0 = x) and Ex(·) = E(·|X0 = x). We assume throughout that
{Xt} is a ψ-irreducible Markov chain defined by (1.1) on X ⊂ R

p with maximal
irreducibility measure ψ (cf. Meyn and Tweedie (1993)). Conditions for ψ-
irreducibility can also be found in Cline and Pu (1998), as well as examples. We
also assume

lim sup
||x||→∞

E(||γ(e1;x)||r) <∞, for some r > 0. (2.1)

Let V be a nonnegative measurable function on X. A drift condition for
transience is one which determines that Ex(1/V (X1)) is sufficiently smaller than
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1/V (x), when V (x) is large. While V (x) = ||x||r is an obvious choice for such a
test function, model specific choices often work better. As a result, a “directional
method” uses V (x) = ||α(x)||r or V (x) = |ν ′x|r, or even modifies such V with
λ(x)V (x), where λ and/or ν are chosen suitably for each model. Authors who
have used handpicked versions of the directional approach for showing ergodicity
include Petruccelli and Woolford (1984) and Chan, Petruccelli, Tong and Wool-
ford (1985). The method performed excellently in determining conditions for
both ergodicity and transience of threshold AR(1) models with delay (Cline and
Pu (1999b)). Also, checking for transience differs from checking for ergodicity in
the sense that, for transience to hold, V (X1) often need only be large when V (x)
is large in a particular section, say D ⊂ X, while V (X1) must be more globally
small for ergodicity to hold. This means conditions for transience may take a
more restrictive look at V (X1) than do conditions for ergodicity. This directional
approach is illustrated next.

Theorem 2.1. Let Λ be the class of nonnegative functions on X, bounded and
bounded away from 0. Assume V : X → R is nonnegative and D ⊂ X. If

ψ({x ∈ D : V (x) > M}) > 0, for all M <∞, (2.2)

lim sup
V (x)→∞

x∈D

(V (x))rPx(X1 /∈ D) = 0, for some r > 0, (2.3)

and there exists q ∈ (0, 1) such that

lim sup
V (x)→∞

x∈D

Ex

(( λ(x)
λ(X1)

V (x)
V (X1)

)r
1{X1∈D}

)
< qr, for some r > 0 and some λ ∈ Λ,

(2.4)
then {Xt} is transient and Px(qtV (Xt)1{Xt∈D} → ∞) > 0 for all x ∈ X.

When V (x)/||x|| remains bounded as ||x|| → ∞, say, then one may conclude
from Theorem 2.1 that the process has a positive probability of increasing geo-
metrically fast, hence our use of the term “geometric transience”. Also, condition
(2.4) is completely analogous to the condition for geometric ergodicity (for which
the ratio in the expectation is inverted), except it allows for a look at the process
restricted to a set D. It does not, however, imply a geometric rate of convergence
of return probabilities (to 0), a notion of geometric transience studied by Kendall
(1959), Vere-Jones (1962) and Kingman (1963) for countable Markov chains.

In fact, the relationship between these two notions is open to study. We
briefly mention two examples to illustrate the issues involved, although a full
study is beyond the scope of this paper. First, consider a random walk with
drift, Xt = Xt−1 + b + et, with b �= 0 and having Gaussian errors. It is easy to
see that Px(|Xt| ≤ y) decreases geometrically fast, as t → ∞, even though the
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time series does not increase geometrically fast. Condition (2.4), however, is met
with V (x) = ex, λ(x) = 1, D = R and r sufficiently small. Second, consider the
threshold model, Xt = max(Xt−1, aXt−1)− b+ et, with a > 1, b > 0 and Cauchy
errors. Here, condition (2.4) is met with V (x) = |x|, λ(x) = 1, D = (0,∞) and
r < 1, so there is a positive chance that qtXt → ∞ for q > 1/a. Despite this,
the Cauchy errors ensure that Px(|Xt| ≤ y) decreases at a polynomial rate for
any x, as t → ∞, since the chance that the process eventually drifts off to −∞
decreases slowly as x→ ∞.

Models which are transient but which do not satisfy a geometric drift condi-
tion such as (2.4) usually require a more subtle and careful analysis. For example,
in Cline and Pu (1999b) we determined sharp conditions for nongeometric ergod-
icity and nongeometric transience of a parametric threshold model with delay.

The directional approach used in Theorem 2.1 often requires a selective choice
of the test function V , or equivalently, of the modifying function λ. An alternative
approach was suggested by Tjøstheim (1990), who noted that it suffices to apply
drift conditions to the m-step process {Xmt}. A generalization of this “m-step”
approach, we show below, is actually equivalent to the directional method.

Theorem 2.2. Assume V : X → R is nonnegative and D ⊂ X. If

sup
x
Ex

(( V (x)
V (X1)

)r
1{X1∈D}

)
<∞, for some r > 0, (2.5)

and, for some q ∈ (0, 1), either

lim sup
V (x)→∞

x∈D

Ex

( n∑
j=m

log
(V (Xj−1)
qV (Xj)

)
1{Xj∈D}

)
< 0, for some n ≥ m ≥ 1 (2.6)

or

lim sup
V (x)→∞

x∈D

Ex

( n∏
j=m

(V (Xj−1)
qV (Xj)

)r1{Xj∈D})
< 1, for some r > 0 and n ≥ m ≥ 1,

(2.7)
then (2.4) holds (with a possibly different value for r).

3. Results and Examples

We start with a surprisingly sharp condition for models with periodic coef-
ficient functions. Suppose Xt is real valued and satisfies

Xt = β0(Xt−1) + β1(Xt−1)Xt−1 + et, (3.1)

where β0 and β1 are bounded and β1 is periodic with period τ . While such
a model may be unusual (but see the estimated coefficient functions for the
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sunspot example in Chen and Tsay (1993a)), it is a useful illustration of the
improvement gained by carefully applying the approaches discussed above. It
is well-known, and easily shown, that the time series in (3.1) is geometrically
ergodic if supx |β1(x)| < 1. In fact, by CP (Theorem 3.4), a sufficient condition
for geometric ergodicity is

1
τ

∫ τ

0
log(|β1(u)|)du < 0. (3.2)

We now proceed to show that the condition in (3.2) is sharp.

Assumption 3.1. Let β : R → R be periodic with period τ . For each ε > 0,
there is an open set Aε ⊂ [0, τ ] with µ(Aε) ≥ τ − ε, where µ is Lebesgue measure,
such that β is continuously differentiable on Aε and its derivative is bounded
away from 0 on Aε.

Theorem 3.2. Assume the model is given by (3.1), where β0 and β1 are bounded
and β = β1 satisfies Assumption 3.1. Assume also et has density f on R which is
locally bounded away from 0 and locally Riemann integrable, supxEx(|β1(X1)|−r)
<∞ and E(|et|r) <∞ for some r > 0. If

log ρ def=
1
τ

∫ τ

0
log(|β1(u)|)du > 0 (3.3)

then {Xt} is transient and Px(qt|Xt| → ∞) > 0 for all q > 1/ρ and all x ∈ R.

Example 3.1. (Cf. Example 3.1 in CP.) Suppose Xt is as stated in Theorem
3.2 with β1(x) = a+ b cos(x) and f is the density function for et. If supx f(x) <
∞ and f(x) ≤ f1(|x|) where f1 is monotone and integrable on (0,∞), then
supx Ex(|a + b cos(X1)|−r) < ∞ for any r < 1/2. By Gradshteyn and Ryzhik
(1980, eq. 4.226.1),

1
2π

∫ 2π

0
log(|a+ b cos(u)|)du =

{
log( |b|2 ), if |a| ≤ |b|,
log( |a|+

√
a2−b2

2 ), if |a| > |b|.

Thus (3.3) holds if |b| > max(2, |a|) or |a| + √
a2 − b2 > 2.

Now consider a ψ-irreducible chain on R
p defined by (1.1) with α(x) = A(x)x,

where A(·) is a (p × p)-matrix valued function on R
p. If (2.1) holds and there

exists a constant matrix A0 with an eigenvalue of modulus greater than 1 such
that supx ||(A(x) −A0)x|| <∞, then it is easy to show that {Xt} is geometrically
transient. (Cf. Tjøstheim (1990) for a related result.)

It is thus tempting to think that {Xt} is transient if the maximum modulus
of eigenvalues of A(x) is larger than, and bounded away from, 1. This is not true,
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however, as is shown by the following simple threshold model on R
2. Suppose

Xt =

(
Xt,1

Xt,2

)
= A(Xt−1)

(
Xt−1,1

Xt−1,2

)
+
(
et,1
et,2

)
, (3.4)

where

A(Xt−1) =
(
φ1 0
0 Φ1

)
1{Xt−1,1≤0} +

(
φ2 0
0 Φ2

)
1{Xt−1,1>0}. (3.5)

Note that the sub-process {Xt,1} is itself an ordinary threshold model of order 1
(cf. Petruccelli and Woolford (1984)) and it drives the nonlinearity of {Xt,2}.
If, for example, φ1 < −1, 0 < φ2 < 1 and Φ2 > 1, then there is Φ1 small enough
such that {Xt} is ergodic, not transient. (See CP Example 3.2.) We revisit this
example after Theorem 3.4 below.

To generalize, suppose Xt may be represented as

Xt =
(
Xt,1

Xt,2

)
=
(
A1(Xt−1,1)Xt−1,1 + γ1(et;Xt−1,1)
A2(Xt−1,1)Xt−1,2 + γ2(et;Xt−1)

)
, (3.6)

where Xt,i ∈ R
pi , Ai(·) is a pi×pi-matrix valued function on R

p1 and p1 +p2 = p.
Note that {Xt,1} is also a Markov chain while the nonlinearity of {Xt,2} is driven
entirely by {Xt,1}. If {Xt,1} is known to be ergodic then stability/nonstability
of {Xt,2} will depend on the invariant distribution of {Xt,1}.

For the next theorem and example, x′ = (x′1, x′2) where xi ∈ R
pi , i = 1, 2.

Also, Ex1(·) will refer to expectations for the process {Xt,1} conditioned onX0,1 =
x1. If {Xt} is ψ-irreducible then {Xt,1} is ψ1-irreducible for some ψ1, as is easily
checked. We need the following assumption.

Assumption 3.3. The complex vector ν ∈ C
p2 satisfies ψ({x : |ν ′x2| > M,x1 ∈

C}) > 0 for all M <∞ and all C ⊂ R
p1 such that ψ1(C) > 0.

Theorem 3.4. Suppose {Xt} is an aperiodic, ψ-irreducible Markov chain on
X ⊂ R

p satisfying (3.6). Assume {Xt,1} is aperiodic and geometrically ergodic,
and has invariant distribution G1. Fix ν ∈ C

p2 and let ϕ(x1) = minx2

|ν′A2(x1)x2|
|ν′x2| .

Suppose (2.1) and Assumption 3.3 hold and supx1
Ex1((ϕ(X1,1))−r) < ∞ for

some r > 0. If

log ρ def=
∫

log(ϕ(x1))G1(dx1) > 0 (3.7)

then {Xt} is transient and Px(qt|ν ′Xt,2| → ∞) > 0 for all q > 1/ρ and all x ∈ X.

Example 3.2. (Cf. Example 3.2 in CP.) Let p1 = p2 = 1 and suppose {Xt} is an
aperiodic, µ2-irreducible chain given by (3.4) and E(|e1,i|r) <∞ for i = 1, 2 and
some r > 0. This defines a bivariate threshold model with coefficient matrix given
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in (3.5). Thus {Xt,1} is the univariate TAR(1) model known to be geometrically
ergodic if

max(φ1, φ2, φ1φ2) < 1. (3.8)

Assume (3.8) and let G1 be the invariant distribution for {Xt,1}. If Φ1Φ2 �= 0
then supx1

Ex1(ϕ
−r(x1)) <∞, and the condition

|Φ1|G1(0)|Φ2|1−G1(0) > 1 (3.9)

implies (3.7) and therefore transience. In case Φ1 = 0, (3.9) implies G1(0) = 0
and |Φ2| > 1. Hence ψ1({x1 : x1 ≤ 0}) = 0 and Xt,2 = Φ2Xt−1,2 + et,2 for all
t large enough. In this case, {Xt} is clearly transient. Similarly, (3.9) is also
sufficient for transience if Φ2 = 0. In CP we showed that if (3.8) holds and
|Φ1|G1(0)|Φ2|1−G1(0) < 1 the time series is geometrically ergodic.

Now we turn to nonlinear autoregressive time series of order p > 1, namely

ξt = a(ξt−1, . . . , ξt−p) + c(et; ξt−1, . . . , ξt−p) (3.10)

for some a : R
p → R. We assume also that

lim sup
‖x‖→∞

E(|c(e1;x)|r) <∞, for some r > 0, (3.11)

and that Xt = (ξt, . . . , ξt−p+1)′ is µp-irreducible (that is, Lebesgue irreducible).
(See Cline and Pu (1998).) For x = (x1, . . . , xp)′ ∈ R

p, y ∈ R, let α(x) =
(a(x), x1, . . . , xp−1)′ and γ(y;x) = (c(y;x), 0, . . . , 0)′, so that {Xt} satisfies (1.1)
and (2.1).

Example 3.3. When a(x) = β1(x)x1 + · · · + βp(x)xp with bounded “coefficient
functions” β1, . . . , βp, we have the FAR model of order p defined by Chen and
Tsay (1993a):

ξt = β1(ξt−1, . . . , ξt−p)ξt−1 + · · · + βp(ξt−1, . . . , ξt−p)ξt−p + c(et; ξt−1, . . . , ξt−p).
(3.12)

If supx |
∑p

i=1(βi(x) − bi)xi| < ∞, where bi are the coefficients of a nonstable
linear AR(p) time series, then (3.12) is nonstable. (This is easily shown.)

Chen and Tsay (1993a) showed that (3.12) is geometrically ergodic if |βi(x)|
≤ bi for i = 1, . . . , p and b1 + · · · + bp < 1. In fact, supx

∑p
i=1 |βi(x)| < 1 suffices

(Chan and Tong (1985, 1986), Chan (1990) and An and Huang (1996)). We
cannot, however, expect that |βi(x)| ≥ bi > 0 for i = 1, . . . , p and b1 + · · · +
bp > 1 imply transience since there are stable linear time series satisfying these.
Nevertheless, we have the following.
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Theorem 3.5. Consider the model (3.12) and let Xt = (ξt, . . . , ξt−p+1)′. As-
sume {Xt} is µp-irreducible and (3.11) holds. Suppose b1, . . . , bp are all pos-
itive constants such that b1 + · · · + bp > 1 and let ρ be the maximal root of
zp − b1z

p−1 − · · · − bp = 0. Then any one of the following implies {Xt} is tran-
sient and Px(qt|ξt| → ∞) > 0 for all q > 1/ρ and all x ∈ R

p.
(i) For some M <∞, min1≤i≤p xi > M implies βi(x) ≥ bi, i = 1, . . . , p.
(ii) For some M <∞, max1≤i≤p xi < −M implies βi(x) ≥ bi, i = 1, . . . , p.
(iii) For some M <∞, max(min1≤i≤p((−1)ixi),min1≤i≤p((−1)i+1xi)) > M im-

plies (−1)iβi(x) ≥ bi, i = 1, . . . , p.

Our final result captures explosive behavior of nonlinear time series in a way
useful for studying polynomial autoregressions.

Theorem 3.6. Let {ξt} be defined by (3.10) and let Xt = (ξt, . . . , ξt−p+1)′.
Assume {Xt} is µp-irreducible and (3.11) holds, and there exists M < ∞, b > 1
and d > b so that

a(x) ≥ d a(z) whenever xj ≥ bzj for j = 1, . . . , p and zp > M. (3.13)

Let ρ ∈ (b, d) and

Dm = {x : a(x) ≥ ρx1, xj ≥ bxj+1, for j = 1, . . . , p− 1, and xp > m}. (3.14)

Assume also µp(Dm) > 0 for all m ≥ M . Then {Xt} is transient and Px(qt|ξt|
→ ∞) > 0 for all q > 1/ρ and all x ∈ R

p.

Example 3.4. For a particular example, suppose we have the model of Theorem
3.6 such that, for some i and j,

a(x) =
p∑

k=i

p∑
l=j

aklxkxl

with aij > 0. (If aij < 0 we can consider the time series {−ξt} instead.) Choose
K so that |akl|/|aij | ≤ K for k ≥ i, l ≥ j and choose b > max(3, 2p2K). Thus, if
xp > 0 and xk ≥ bxk+1 for k = 1, . . . , p− 1, then aijxixj/2 ≤ a(x) ≤ 3aijxixj/2.

Let d = b2/3. Then d > b and it can be checked easily that (3.13) is satisfied
for any M . Let ρ ∈ (b, d). If M ≥ 2bi+j+2−p/aij , xk ≥ bxk+1 for k = 1, . . . , p− 1
and xp > M , then

a(x) >
1
2
aijxixj > bp+2xp > ρbpxp.

Clearly, Dm as defined in (3.14) has nonempty interior and hence µp(Dm) > 0.
Thus, the condition for geometric transience given in Theorem 3.6 holds and
Px(qt|ξt| → ∞) > 0 for all q > 0 and all x.
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Tjøstheim (1990) considered a special case of this model with a(x) = x1x2.
He speculated that a generalization would be possible by proving directly the
transience of {Xpt}. We can now see that such a “multi-step” method is not
necessarily required.

The method described above clearly can be modified to include linear and
constant terms in a(x). Also, it may be generalized for higher order polynomials
of the form

a(x) =
∑

ij≤kj≤p

ak1...kd
xk1 · · · xkd

, where ai1...id �= 0.

Chan and Tong (1994) use a related approach to show geometric transience in
models for which a(x) is a d-degree polynomial having a nontrivial xd

1 term, d ≥ 2.
Unfortunately, their generalization to all polynomial autoregression models is
incomplete and thus the general result appears to be unresolved.

4. Proofs

We first reformulate a drift condition for transience given in Meyn and
Tweedie (1993, Theorem 8.4.2) to identify conditions for geometric transience.
Recall that {Xt} is assumed to be ψ-irreducible on X.

Lemma 4.1. Assume V : X → R is nonnegative. Suppose ψ({x : V (x) > M}) >
0 for all M <∞. If

lim sup
V (x)→∞

Ex

(( V (x)
V (X1)

)r)
< qr, for some r > 0, q < 1, (4.1)

then {Xt} is transient and Px(qtV (Xt) → ∞) > 0 for all x ∈ X.

Proof. First note that, for all M large enough, both CM = {x : V (x) ≤M} and
Cc

M have positive ψ-measure. Also, V ∗(x) = 1 − (1 + V r(x))−1 is nonnegative
and bounded on X. Clearly (4.1) implies the existence of M < ∞ such that
Ex(V ∗(X1)) − V ∗(x) > 0 for x ∈ Cc

M . By Theorem 8.4.2 of Meyn and Tweedie
(1993), we conclude {Xt} is transient.

Now we show the condition implies qtV (Xt) → ∞ with positive probability.
Note that, if b1, b2, . . . are positive constants and E(Y ) < a, Jensen’s inequality
gives

E
( m∏

i=1

(1 − biY )+
)
≥

m∏
i=1

(1 − bia)+. (4.2)

Choose M <∞ and δ > 0 such that

sup
V (x)>M

Ex

(( V (x)
V (X1)

)r) ≤ ((1 − δ)q)r < 1.
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Assume X0 = x almost surely with V (x) > M . For n ≥ 1 let

Yn =
( V (Xn−1)
(1 − δ)(V (Xn))

)r
and Wn =

( V (x)
(1 − δ)n(V (Xn))

)r
= Y1 · · ·Yn.

Thus, Wn−1 < 1 implies V (Xn−1) > (1 − δ)1−nM and

E
(
Yn1{Wn−1<1}

∣∣∣ Xn−1

)
≤ qr a.s. (Px). (4.3)

Using the Markov property and recursively applying the inequality (4.2) by way
of (4.3),

Px (W1 < 1, . . . ,Wn < 1) ≥ Ex

( n∏
i=1

(1 −Wi)+
)

≥ Ex

( n−1∏
i=1

(1 −Wi)+(1 − qrWn−1)+
)

≥ Ex

( n−2∏
i=1

(1 −Wi)+(1 − qrWn−2)+(1 − q2rWn−2)+
)

≥ · · · ≥
n∏

i=1

(1 − qir).

Hence, for V (x) > M ,

Px(qnV (Xn) → ∞) ≥ lim
n→∞Px (W1 < 1, . . . ,Wn < 1) ≥

∞∏
n=1

(1 − qnr) > 0.

Since ψ({x : V (x) > M}) > 0 and {Xt} is ψ-irreducible, we conclude Px(qtV (
Xt) → ∞) > 0 for all x ∈ X.

Proof of Theorem 2.1. Let r > 0 and λ ∈ Λ be such that (2.3) and (2.4) hold,
and define Vλ(x) = 1 + λ(x)V (x)1{x∈D}. Also ψ({x : Vλ(x) > M}) > 0 for all
M <∞. By (2.3) and (2.4),

lim sup
Vλ(x)→∞

Ex

(( Vλ(x)
Vλ(X1)

)r)

≤ lim sup
V (x)→∞

x∈D

(
Ex

(( λ(x)V (x)
λ(X1)V (X1)

)r
1{X1∈D}

)
+ Ex

(
(1 + λ(x)V (x))r1{X1 /∈D}

))

< qr < 1.

So, by Lemma 4.1, {Xt} is transient and Px(qtVλ(Xt) → ∞) > 0 for all x ∈ X.
Since λ(x) is bounded, Px(qtV (Xt)1{Xt∈D} → ∞) > 0 as well.
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Proof of Theorem 2.2. By Jensen’s inequality, (2.7) implies (2.6). Now we
show that (2.6) implies (2.4). Fix m, n and r such that the inequalities in (2.5)
and (2.6) hold. By (2.5), Jensen’s inequality and conditioning,

sup
x
Ex

(
log

(V (Xj−1)
V (Xj)

)
1{Xj∈D}

)
<∞, for every j.

Thus, (2.6) implies that there exists δ > 0 such that

lim sup
V (x))→∞

x∈D

Ex

( n∑
j=m

log
(
δ +

V (Xj−1)
qV (Xj)

)
1{Xj∈D}

)
< 0. (4.4)

By the proof of Lemma 4.1(i) of CP, (4.4) implies that for some r1 > 0 and
λ ∈ Λ,

lim sup
V (x))→∞

x∈D

Ex

(( λ(x)
λ(X1)

V (x)
qV (X1)

)r11{X1∈D})
< 1.

Then (2.4) follows.

Proof of Theorem 3.2. Let α(x) = β1(x)x and γ(e1;x) = β0(x) + e1. Clearly
{Xt} is µ-irreducible. Choose q ∈ (1/ρ, 1). In the proof of Theorem 3.4 of CP, we
showed that frac(X2/τ) is asymptotically uniform in distribution as |α(x)| → ∞.
As a result of that fact and the boundedness of Ex(|β1(X1)|−r),

lim
|α(x)|→∞

Ex(log(|qβ1(X2)|−1)) = −1
τ

∫ τ

0
log(q|β1(u)|)du < 0. (4.5)

By (4.5) and a result contained in the proof of Lemma 4.1(i) of CP, there
exists r1 ∈ (0, r) and a nonnegative function λ(x), bounded and bounded away
from 0, such that

lim sup
|α(x)|→∞

Ex

(λ(X1)
λ(x)

|qβ1(X1)|−r1

)
< 1. (4.6)

Now let D = R and V (x) = (1 + |α(x)|r1)/λ(x). Then (2.2) and (2.3) hold
trivially. Choose ε ∈ (0, 1 − q) and L so that 1/L < λ(x) < L. By (4.6) and the
fact E(|e1|r) <∞,

lim sup
V (x)→∞

Ex

( V (x)
V (X1)

)
≤ lim sup

|α(x)|→∞
L2|α(x)|r1Px(|β0(x) + e1| > ε|α(x)|)

+ lim sup
|α(x)|→∞

(1 − ε)−r1Ex

(λ(X1)
λ(x)

|β1(X1)|−r11{|β0(x)+e1|≤ε|α(x)|}
)

<
( q

1 − ε

)r1
< 1.
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By Theorem 2.1, {Xt} is transient and, since q and ε are arbitrary, Px(qt|α(
Xt)| → ∞) for all q > 1/ρ and all x. Furthermore, since β1 is bounded, we
conclude Px(qt|Xt| → ∞) for all q > 1/ρ and all x.

Proof of Theorem 3.4. This argument parallels that for CP (Theorem 3.5)
and is a sophisticated use of the generalized m-step approach. In the interest of
space the proof is sketched and the reader is referred to the authors’ complete
technical version.

Choose q ∈ (1/ρ, 1). By Meyn and Tweedie (1993, Theorem 15.0.1), there
exists V1 : R

p1 → [1,∞) satisfying
∫
V1(x1)G1(dx1) < ∞ and the drift condition

for geometric ergodicity. We can then find δ > 0, ε ∈ (0, 1) and s = (1 − ε)r
and define h(x1) = Ex1 ((δ + 1/ϕ(X1,1))s) (V1(x1))ε so that supx1

Ex1(h(Xn,1))/
(V1(x1))ε < qs, for some n ≥ 1, again by Meyn and Tweedie (1993, Theorem
15.0.1). Next, define

V (x) =
(

(δ+|ν′A(x1)x2|)s∏n−1

j=0
Ex1(h(Xj,1))

) 1
n+2 ,

R1(x,X1)=
(

δ+|ν′A(x1)x2|
(δ+|ν′A(X1,1)X1,2|)(δ+1/ϕ(X1,1))

)s
and R2(x,X1)=

(δ+1/ϕ(X1,1))s

Ex1((δ+1/ϕ(X1,1))s) .

Using (2.1) we can show lim supV (x)→∞Ex (R1(x,X1)) ≤ 1. By Hölder’s inequal-
ity and the fact that {Xt,1} is Markov, we conclude

lim sup
V (x)→∞

Ex

( V (x)
V (X1)

)

= lim sup
V (x)→∞

Ex

((
R1(x,X1)R2(x,X1)

EX1,1(h(Xn,1))
(V1(x1))ε

n−1∏
j=1

EX1,1(h(Xj,1))
Ex1(h(Xj,1))

) 1
n+2
)

≤ lim sup
V (x)→∞

(
Ex(R1(x,X1))

) 1
n+2 sup

x1

(Ex1(h(Xn,1))
(V1(x1))ε

) 1
n+2

< q
s

n+2 .

This verifies (4.1).
Assumption 3.3 ensures that ψ({x : V (x) > M}) > 0 for any M < ∞. By

Lemma 4.1, {Xt} is transient and Px(qst/(n+2)V (Xt) → ∞) > 0 for all x. From
this, it follows that Px(qt|ν ′Xt| → ∞) > 0 for all x and all q > 1/ρ.

Proof of Theorem 3.5. Here we have an expedient use of the directional
method. Let

B =



b1 b2 · · · bp
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0




and assume (i). Since bp �= 0, B is irreducible. Also, the elements of B are
nonnegative. Thus B has a real eigenvalue equal to ρ, the maximal root of
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zp − b1z
p−1 − · · · − bp = 0, and there corresponds a left eigenvector v′ with

positive components (Rao (1973, p.46)). It is easy to show that in this case
ρ > 1 since σ =

∑p
i=1 bi > 1. Let m = min(b1, . . . , bp) > 0. There exists ε > 0

such that (1 − ε
m)σ > 1 and ρ− ε > 1. Let a(x) = β1(x)x1 + · · · + βp(x)xp. Let

D = {x : min1≤i≤p xi > M}. Then for x ∈ D, we have

a(x) ≥ b1x1 + · · · + bpxp ≥ max(σM,m‖x‖). (4.7)

We may assume that ||v|| = 1. Now define V (x) = |v′x|. Then (2.2) is sat-
isfied. Recall that γ(e1;x) = (c(e1;x), 0, . . . , 0)′. If X0 = x ∈ D and |c(e1;x)| ≤
εV (x) then |c(e1;x)| ≤ ε‖x‖ and, by (4.7), a(x) + c(e1;x) ≥ (

1 − ε
m

)
a(x) ≥(

1 − ε
m

)
σM > M . Hence X1 ∈ D when X0 ∈ D and |c(e1;x)| ≤ εV (x). Also,

V (X1) ≥ |v′A(x)x| − ||γ(e1;x)|| ≥ v′Bx− |c(e1;x)| ≥ (ρ− ε)V (x), (4.8)

where A(x) is the matrix obtained from B by substituting βi(x) for bi. Take
r1 ∈ (0, r). We see from (3.11) and (4.8) that (2.3) holds with r replaced by r1,
and that

lim sup
V (x)→∞

x∈D

Ex

(( 1 + V (x)
1 + V (X1)

)r1

1{X1∈D}
)

≤ lim sup
V (x)→∞

x∈D

Ex

(( V (x)
V (X1)

)r1
1{|c(e1;x)|≤εV (x)}

)
+ lim sup

|v′x|→∞
|v′x|r1P(|c(e1;x)| > ε|v′x|)

= (ρ− ε)−r1 < 1. (4.9)

Hence (2.4) is also satisfied (with λ(x) = 1). By Theorem 2.1 and the arbitrary
choice of ε, the process is transient and Px(qt|v′Xt| → ∞) > 0 for all x and all
q > 1/ρ. Since the components of v are positive and (4.7) holds, we also have
Px(qt|a(Xt)| → ∞) > 0 for all x and all q > 1/ρ. By (3.11), Px(|ξ1| > |a(x)|/2) >
1/2 for |a(x)| large enough and thus Px(qt|ξt| → ∞) > 0 for all q > 1/ρ and all x,
proving the sufficiency of (i). The sufficiency of (ii) can be proved analogously.

To prove that (iii) is sufficient, we first defineD1 = {x : min1≤i≤p((−1)ixi) >
M} and D2 = {x : min1≤i≤p((−1)i+1xi) > M}. Note that for x ∈ D1, we have
|xi| = (−1)ixi and βi(x)xi > bi|xi| for each i = 1, . . . , p, and hence a(x) > σM >

M and α(x) ∈ D2. Similarly, if x ∈ D2 then βi(x)xi < −bi|xi| a(x) < −σM <

−M and α(x) ∈ D1. Consequently, if x ∈ D = D1∪D2, then |a(x)| >∑p
i=1 bi|xi|.

Let |x| = (|x1|, . . . , |xp|)′ for x = (x1, . . . , xp)′. Define V (x) = v′|x|. Therefore,
x ∈ D implies

V (α(x)) = v′|α(x)| > v1
( p∑

i=1

bi|xi|
)

+
p∑

i=2

vi|xi−1| = v′B|x| = ρv′|x| = ρV (x).
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The rest of the proof is the same as the proof for (i).

Proof of Theorem 3.6. Fix M and ρ to satisfy the assumptions. Choose δ
so that d > ρ + δ > ρ − δ > b and let D = DM and V (x) = δ|x1|. Then (2.2)
holds. If X0 = x ∈ D and |c(e1;x)| ≤ V (x), then from (3.13) and (3.14) we have
a(x) + c(e1;x) > b|x1|,
a(α(x) + γ(e1;x)) ≥ d a(x) > (ρ+ δ)a(x) > ρa(x) + δρx1 ≥ ρ(a(x) + c(e1;x)),

(4.10)
and hence X1 = α(x) + γ(e1;x) ∈ D. Therefore, if r1 ∈ (0, r), (3.11) and (4.10)
imply (2.3) and, as in the proof of (4.9),

lim sup
V (x)→∞

x∈D

Ex

(( 1 + V (x)
1 + V (X1)

)r1

1{X1∈D}
)
≤ 1

(ρ− δ)r1
< 1.

Hence, (2.4) is satisfied and the conclusion holds by Theorem 2.1.
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