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GEOMETRIC ERGODICITY OF NONLINEAR TIME SERIES

Daren B. H. Cline and Huay-min H. Pu

Texas A & M University

Abstract: We identify conditions for geometric ergodicity of general, and possibly
nonparametric, nonlinear autoregressive time series. We also indicate how a con-
dition for ergodicity, with minimal side assumptions, may in fact imply geometric
ergodicity. Our examples include models for which exponential stability of the
associated (noiseless) dynamical system is not sufficient or not necessary, or both.

Key words and phrases: Ergodicity, Markov chain, nonlinear time series.

1. Introduction

We assume {Xt} is a nonlinear time series with state dependent errors, de-
fined on R

p by
Xt = α(Xt−1) + γ(et;Xt−1), t ≥ 1, (1.1)

where {et} is an i.i.d. sequence of random variables, independent of the initial
state X0. The process may be a R

p-valued nonlinear autoregression of order
1, or it may be the state space vector Xt = (ξt, . . . , ξt−p+1) for a nonlinear
autoregression {ξt} of order p. Either way, (1.1) ensures that {Xt} is a time
homogeneous Markov chain. We intend α and γ to be somewhat general and not
necessarily parametric.

Knowing when such a time series is geometrically ergodic is very useful for
analyzing the series. This is so first because it clarifies the parameter space for es-
timation purposes when the model is parametric and second, because it validates
useful limit theorems such as the asymptotic normality of various estimators (Cf.
Meyn and Tweedie (1993), Thm. 17.0.1). Sharp conditions for geometric ergod-
icity are known for some parametric (and near-parametric) models. For example,
the stability of the self-exciting threshold autoregression (SETAR) model of or-
der 1 has been completely characterized (Petrucelli and Woolford (1984), Chan,
Petrucelli, Tong and Woolford (1985), Guo and Petrucelli (1991)). More recently,
Cline and Pu (1999) characterize the stability of order 1 threshold models with
coefficients depending on the signs of the most recent d values of the time series.
(See also Chen and Tsay (1991) and Lim (1992) for special cases.)

It may be difficult, however, to obtain more than sufficient conditions for
general (including nonparametric) models. Yet such models are increasingly be-
ing used (Chen and Tsay (1993a,b), Tjøstheim and Auestad (1994a,b)). See also
the review by Härdle, Lütkepohl and Chen (1997).
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In pioneering work, Chan and Tong (1985, 1994) and Chan (1990) have
shown that {Xt} is geometrically ergodic when the (noiseless) dynamical system
given by

xt = α(xt−1) (1.2)

is exponentially stable, if α(x) is sufficiently smooth and γ(e;x) is appropriately
bounded. Under the stated conditions on α and γ, exponential stability of the
dynamical system appears to be a sharp condition. Yet the conditions do not
include many higher order or multidimensional threshold models. In addition,
they do not include many nonparametric models. Furthermore, as we will show,
exponential stability of the associated dynamical system is neither adequate for,
nor required by, geometric stability of the time series. Interestingly, this is so
even for some parametric threshold models.

Our objective, therefore, is to determine sufficient conditions for geometric
ergodicity which are useful for generally defined models. In particular, we provide
conditions for examples where the results of Chan and Tong either do not apply
or are limited. Like other authors, we will apply the so-called Foster-Lyapounov
drift conditions as developed by Foster (1953), Tweedie (1975, 1976), Nummelin
(1984), Meyn and Tweedie (1992) and others, and collected together in Meyn and
Tweedie (1993). We will extend their use, however, and suggest new applications.
This allows us to improve the results of Chan and Tong and also to analyze new
examples for which understanding the stability of (1.2) does not suffice.

In Section 2 we identify the assumptions we will be working under. Section
3 explores conditions for geometric ergodicity and provides examples. The final
section contains proofs and useful lemmas.

2. Assumptions

When conditioning on the initial state we will denote probabilities and ex-
pectations as Px(·) = P(·|X0 = x) and Ex(·) = E(·|X0 = x). Also we define

θ(x) =
α(x)

1 + ||x|| ,

where || · || denotes any norm on R
p. In addition we will require {Xt} to satisfy

the following. (For the definition of a T -chain, which generalizes the strong Feller
property of Markov chains, see Meyn and Tweedie (1993), p.127.)

Assumption 2.1. Assume {Xt} is an aperiodic, ψ-irreducible T -chain satisfying
(1.1). Let r > 0. Assume also that

(i) α is unbounded on R
p and θ is bounded on R

p,
(ii) sup||x||≤M E(||γ(e1;x)||r) <∞ for all M <∞,

(iii) lim||x||→∞ E
( ||γ(e1;x)||r

||x||r
)

= 0.
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There is no loss in generality in assuming α is unbounded; otherwise, it is
easy to show the chain is geometrically ergodic. Models with additive errors
satisfy the assumption if the errors have a finite rth moment and a density
which is locally bounded away from 0. Even if the error term γ(et;x) is state
dependent, (1.1) defines an aperiodic, ψ-irreducible T -chain under fairly mild
conditions (Cline and Pu (1998b)). Parametric examples include the SETAR
models and the β-ARCH model of Guégan and Diebolt (1994).

3. Geometric Ergodicity

In the context of Markov chains, ergodic means aperiodic, ψ-irreducible and
positive Harris recurrent. Geometric ergodicity refers to the rate of convergence
to the invariant distribution. Processes which are ergodic but not geometrically
ergodic often require a more subtle treatment than we provide here.

In some of the earliest work on general time series, Chan and Tong (1985,
1994) and Chan (1990) demonstrate that the chain (1.1) is geometrically ergodic
if the dynamical system (1.2) is “exponentially stable” and α(x) is sufficiently
smooth (e.g., Lipschitz continuous). (See also An and Huang (1996).) Tong
(1990) devotes a significant part of his book to exploiting this result. We start
by strengthening the results of Chan and Tong.

Let αt : R
p → R

p be recursively defined by α1(x) = α(x) and αt+1(x) =
α(αt(x)). The process defined by xt = αt(x0) satisfies (1.2). Tong (1990) calls it
the skeleton of the time series (1.1).

Theorem 3.1. Suppose Assumption 2.1 holds and, in addition, suppose

lim
||α(x)||→∞

||x−y||/||x||→0

||θ(x) − θ(y)|| = 0. (3.1)

If, for some n ≥ 1

lim sup
||x||→∞

||αn(x)||
||x|| < 1, (3.2)

then {Xt} is geometrically ergodic.

Both conditions (3.1) and (3.2) depend on α(·) only for ||α(x)|| arbitrarily
large. Condition (3.2) is essentially exponential stability of the dynamical system
xt = α(xt−1)1||α(xt−1)||>M , where M is finite but arbitrary. Theorem 3.1 also
generalizes the work of Chan and Tong by weakening the smoothness of α and
by allowing the rth moment of γ(e1;x) to be o(||x||r), as ||x|| → ∞, rather than
to be uniformly bounded.

However, even as strengthened, Theorem 3.1 presents an incomplete picture.
It fails to include models in which α is not “close” to Lipschitz continuous.
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In particular, even fairly simple threshold models with delay (or in multiple
dimensions) cannot be handled with the theorem. More importantly, perhaps,
Theorem 3.1 suggests that exponential stability of the deterministic sequence is
the essential condition for geometric ergodicity (assuming appropriate behavior
of the error term, as in Assumption 2.1). In some parametric models, it is, as in
the threshold AR(1) models with delay (Cline and Pu (1999)). More generally,
as we shall see, it is neither sufficient nor necessary.

Our objective henceforth is two-fold. First, we provide general methodolo-
gies for determining geometric ergodicity of a time series in Theorem 3.2 below.
This theorem is intended to be flexible enough so that it may be used for a wide
variety of nonlinear models. Theorems 3.1 and 3.3 are consequences of Theorem
3.2. The argument for Theorem 3.5 is inspired by the proof of Theorem 3.2(ii).
Second, we illustrate the theorems’ use for two types of models and simultane-
ously demonstrate that stability of a time series does not have to agree with
stability of its skeleton.

Theorem 3.2. Suppose {Xt} satisfies (1.1) and Assumption 2.1 for some r > 0.
The following are equivalent conditions, each sufficient for {Xt} to be geometri-
cally ergodic.

(i) For some λ : R
p → (0,∞) bounded and bounded away from 0,

lim sup
||α(x)||→∞

Ex

(
λ(X1)
λ(x)

||θ(X1)||r
)
< 1. (3.3)

(ii) For some r′ > 0 and some n ≥ m ≥ 1,

lim sup
||α(x)||→∞

Ex


 n∏

j=m

||θ(Xj)||r′

 < 1.

(iii) For some δ > 0 and some n ≥ m ≥ 1,

lim sup
||α(x)||→∞

Ex


 n∑

j=m

log(δ + ||θ(Xj)||)

 < 0.

Choosing λ appropriately is of course the key to applying Theorem 3.2(i).
Parts (ii) and (iii) of the theorem demonstrate that optimal choices for λ may be
identified, though actual computation can be difficult. The condition in part (iii)
may be interpreted as a condition for ergodicity strengthened sufficiently (along
with Assumption 2.1) to imply geometric ergodicity, thus generalizing Spieksma
and Tweedie (1994).

The proof of Theorem 3.2 uses the well known drift condition for geometric
ergodicity (cf. Meyn and Tweedie (1993), Thm. 15.0.1). Use of drift conditions
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involve a carefully chosen “test” function. It may be shown that using the test
function ||x||r leads to the following condition for geometric ergodicity:

lim sup
||x||→∞

||θ(x)|| < 1. (3.4)

Tjøstheim (1990), An and Huang (1996) and Lu (1996), among others, prove spe-
cial cases of this result. Under Assumption 2.1, however, a simple argument using
Fatou’s Lemma shows (3.4) is at least as strong as the conditions in Theorem
3.2 and, unless θ(x) converges as ||x|| → ∞, Theorem 3.2 is generally preferable.
This is very clearly demonstrated in Example 3.1 below.

Handpicked variations of the function ||x||r have also often been used in spe-
cific cases. The hope is that our results illustrate some generality and coherency
to identifying appropriate test functions. In particular we have found that using
||α(x)||r in combination with ||x||r, first suggested by Pu (1995), can lead to
superior (that is, weaker) conditions. The choice of test function also has statis-
tical consequences because it regulates the order of sample moments for which
the Law of Large Numbers and the Central Limit Theorem apply (Meyn and
Tweedie (1993), Thm. 17.0.1).

Tjøstheim (1990) notes that geometric ergodicity of the n-step process {Xnt}
is both necessary and sufficient for geometric ergodicity of {Xt} (based on results
from Nummelin (1984)). Applying drift conditions to the n-step process results
in special cases of the condition in Theorem 3.2(ii).

For threshold models of order 1 the function θ(x) is essentially piecewise
constant. This includes SETAR models of order 1. Sometimes θ(x) is only
asymptotic to a piecewise constant function as in amplitude dependent exponen-
tial autoregressive (EXPAR) models (see Jones (1978), Ozaki and Oda (1978)).
In such cases an explicit, optimal choice for λ is often possible, giving rise to
sharp conditions. See, for example, Cline and Pu (1999).

Optimal choices for λ(x) can be very difficult for more general models, which
is why conditions (ii) and (iii) in Theorem 3.2 can be useful. For example, when
θ is essentially periodic and sufficiently smooth we are able to apply Theorem
3.2(iii) quite explicitly and obtain sharp conditions for geometric ergodicity. To
understand this interesting result, suppose Xt is real valued and satisfies

Xt = β0(Xt−1) + β1(Xt−1)Xt−1 + et, (3.5)

where β1 is periodic. (The sunspot example analyzed by Chen and Tsay (1993a)
hints at the possibility of such periodicity.) Note that Ex(log(|β1(X1)|)) =
E(log(|β1(α(x) + e1)|)) is a periodic function of α(x). It follows that any condi-
tion based on this (such as that in Theorem 3.2(iii) with m = n = 1) will not
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be very sharp. The next simplest condition (Theorem 3.2(iii) with m = n = 2)
is essentially based on an asymptotic bound for Ex(log(|β1(X2)|)). Surprisingly,
this converges as |α(x)| → ∞ and therefore provides a sharp condition. This is
shown next.

Assumption 3.3. Let β : R → R be periodic with period τ . For each ε > 0,
there is an open set Aε ⊂ [0, τ ] having Lebesgue measure at least τ − ε and such
that β is continuously differentiable on Aε and its derivative is bounded away
from 0 on Aε.

Theorem 3.4. Suppose Xt is real valued and satisfies (3.5). Assume β0 and β1

are bounded, β = β1 satisfies Assumption 3.3, et has density f on R which is
locally bounded away from 0 and locally Riemann integrable, and E(|et|r) < ∞
for some r > 0. If

1
τ

∫ τ

0
log(|β1(u)|)du < 0 (3.6)

then {Xt} is geometrically ergodic.

Example 3.1. Suppose β1(x) = a + b cos(x). Using Gradshteyn and Ryzhik
(1980, eq. 4.226.1, p.528) one may show

1
2π

∫ 2π

0
log(|a+ b cos(u)|)du =

{
log( |b|2 ), if |a| ≤ |b|,
log( |a|+

√
a2−b2

2 ), if |a| > |b|.
Thus by Theorem 3.4, a sufficient condition for geometric ergodicity is |b| < 2 if
|a| ≤ |b| and |a| + √

a2 − b2 < 2 if |a| > |b|. In a separate paper on transience of
time series (Cline and Pu (1998a)) we show that this condition is sharp.

Note that with |a| + |b| > 1 this model does not satisfy the assumptions of
Chan and Tong (1985). This may be seen as follows. It suffices to let α(x) =
β1(x)x. Suppose a = k1/m and b = k2/m > 1 − a where k1, k2 and m are non-
negative integers. Then for all integers j and n, |αn(2jmnπ)| = (a+ b)n|2jmnπ|.
Since αn is continuous, it follows that there exists an unbounded set An with
positive Lebesgue measure such that

inf
x∈An

|αn(x)|
|x| > 1 for each n ≥ 1.

Therefore, the skeleton process is not exponentially stable and (3.2) fails to hold
as well. With slight adjustments in the argument, this is also correct for arbitrary
a and b.

Having shown that exponential stability of the skeleton is not necessary for
geometric ergodicity of the time series, one might naturally wonder if it is suf-
ficient. It is not, as we now proceed to show. To motivate the idea, consider a
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bivariate threshold model where the threshold depends only on the first coordi-
nate. That is, suppose et = (et,1, et,2) and

Xt =

(
Xt,1

Xt,2

)
=




(
φ1Xt−1,1 + et,1
Φ1Xt−1,2 + et,2

)
, if Xt−1,1 < 0,(

φ2Xt−1,1 + et,1
Φ2Xt−1,2 + et,2

)
, if Xt−1,1 > 0.

(3.7)

The sub-process {Xt,1} is itself an ordinary threshold model of order 1 and it
drives the nonlinearity of {Xt,2}. Conditions for the entire process to be stable
are going to depend not only on whether {Xt,1} is stable but also on what its
invariant distribution is, since the second component gets multiplied by Φ1 or Φ2

according to how often the first component is negative or positive.
We consider somewhat more general models for our next result and return

to the example at (3.7) afterward. For the following, write x = (x1, x2) where
xi ∈ R

pi and p1 + p2 = p. Also, let ||x|| = ||x1||1 + ||x2||2 where || · ||i is a norm
on R

pi , i = 1, 2. For each norm || · ||i we have a corresponding matrix norm, also
denoted || · ||i, and defined by

||A||i = sup
xi �=0

||Axi||i
||xi||i .

We are interested in the Markov chain

Xt =

(
Xt,1

Xt,2

)
=

(
A1(Xt−1,1)Xt−1,1 + γ1(et;Xt−1,1)
A2(Xt−1,1)Xt−1,2 + γ2(et;Xt−1)

)
, (3.8)

where A1 and A2 are bounded matrix valued functions depending only on x1.
Note that {Xt,1} is also a Markov chain. Assuming {Xt,1} is geometrically er-
godic, we ask what additional assumptions imply the stability of {Xt}.
Theorem 3.5. Suppose {Xt} satisfies (3.8) and Assumption 2.1. Assume also
there exists locally bounded V1 R

p1 → [0,∞), such that V1(x1) → ∞ as ||x1||1 →
∞,

lim sup
||x1||1→∞

Ex

(
V1(X1,1)
V1(x1)

)
< 1, (3.9)

and
sup

||x1||1≤M
Ex(V1(X1,1)) <∞ for all M <∞, (3.10)

thus verifying {Xt,1} is geometrically ergodic with invariant distribution, say G1.
If ∫

log(||A2(x1)||2)G1(dx1) < 0, (3.11)
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{Xt} is geometrically ergodic.

Example 3.2. Let p1 = p2 = 1 and suppose {Xt} is given by (3.7). Then (3.8)
is satisfied with

A1(x1) = φ11x1<0 + φ21x1>0 and A2(x1) = Φ11x1<0 + Φ21x1>0.

Note that this defines a threshold model on R
2 with two matrices, diag(φ1,Φ1)

and diag(φ2,Φ2), as “coefficients”, depending only on the first component of the
series. Thus {Xt,1} is the univariate TAR(1) model which is well known to be
geometrically ergodic precisely when

max(φ1, φ2, φ1φ2) < 1. (3.12)

Conditions (3.9) and (3.10) hold with V1(x1) = |λ(x1)x1|r and a two-valued
function λ. By Theorem 3.5 a sufficient condition for geometric ergodicity is
(3.12) and

|Φ1|G1(0)|Φ2|1−G1(0) < 1, (3.13)

where G1 is the invariant distribution for {Xt,1}. This condition is shown to be
sharp in Cline and Pu (1998a).

Exponential stability of the deterministic sequence {αn(x)} is, however, dif-
ferent. By considering how the second component of the skeleton process behaves
for fixed φ1 and φ2, it is easily seen that {αn(x)} is exponentially stable if and
only if (3.12) holds and

max(|Φ1|1φ1>0, |Φ2|1φ2>0, |Φ1Φ2|1φ1φ2>0) < 1. (3.14)

To see that (3.13) and (3.14) differ, suppose et,1 has distribution F1 such
that 0 < F1(u) < 1 for all u ∈ R. Then it must be that 0 < G1(0) < 1
and G1(0) depends only on φ1, φ2 and F1. If, for example, φ1 < 0 < φ2 < 1
then (3.12) holds and |Φ1| < |Φ2|1−1/G1(0) ≤ 1 implies (3.13) holds but not
(3.14), while |Φ1| ≥ |Φ2|1−1/G1(0) > 1 implies (3.14) holds but not (3.13). Thus,
geometric ergodicity of {Xt} and exponential stability of its skeleton are different
and neither implies the other.

For a discussion on how one might actually evaluate G1(0), see Jones (1978)
or Tong (1990, Ch. 4).

The examples we have presented are first order time series models. Sharp
sufficient conditions for higher order models is still very much an open ques-
tion. Known results include those in Chan and Tong (1986), Brockwell, Liu and
Tweedie (1992), Chen and Tsay (1993a), An and Huang (1996) and Cline and
Pu (1999).
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4. Proofs

Proof of Theorem 3.1. This is a corollary to Theorem 3.2. The argument
is completely analagous to that of Theorem 2.3 in Cline and Pu (1999), with
s(x) = min(||α(x)||, ||x||) and hM (x) = ||θ(x)||1||s(x)||>M . It helps to note that
||αj(x)|| → ∞ implies ||x|| → ∞ and ||αi(x)|| → ∞ for each i ≤ j.

Proof of Theorem 3.2. (i) The proof involves demonstrating the drift con-
dition of Meyn and Tweedie (1993, Thm. 15.0.1), with test function V (x) =
λ(x)||α(x)||r + ε||x||r. Given X0 = x, we have

V (X1) = λ(X1)||θ(X1)||r(1 + ||α(x) + γ(e1;x)||)r + ε||α(x) + γ(e1;x)||r
≤ (λ(X1)||θ(X1)||r + ε)(1 + ||α(x)|| + ||γ(e1;x)||)r.

It is easily seen that, under Assumption 2.1,

lim sup
||x||→∞

||α(x)||≤M

Ex

(
V (X1)
V (x)

)
= 0

for any M <∞. Furthermore, Assumption 2.1 and (3.3) imply

lim sup
||x||→∞

||α(x)||>M

Ex

(
V (X1)
V (x)

)
≤ lim sup

||x||→∞
||α(x)||>M

Ex

(
λ(X1)||θ(X1)||r + ε

λ(x)

)
< 1,

if M is chosen large enough and ε is chosen small enough. Hence, for some
M1 <∞,

sup
||x||>M1

Ex

(
V (X1)
V (x)

)
< 1.

Also, by Assumption 2.1, sup||x||≤M1
Ex (V (X1)) < ∞, and since compact

sets are petite (cf. Meyn and Tweedie (1993), Thm. 6.2.5), geometric ergodicity
holds by the drift condition of Meyn and Tweedie (1993, Thm. 15.0.1).

The equivalency of (ii) to (i) is a corollary of the following more general
result, with b(x, y) = ||θ(x)|| and s(x) = ||α(x)||, and part (iii) is implicit in the
proof.

Lemma 4.1. Let {Xt} be a Markov chain on X and assume b : X
2 → R+ such

that supxEx(b(X1, x)) <∞ and s : X → R+ is unbounded.
i) If there exists r > 0, m ≥ 1 and n ≥ m such that

lim sup
s(x)→∞

Ex


 n∏

j=m

br(Xj ,Xj−1)


 < 1,
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then there exists r′ > 0 and λ : X → R+, bounded and bounded away from
zero, such that

lim sup
s(x)→∞

Ex

(
λ(X1)
λ(x)

br
′
(X1, x)

)
< 1. (4.1)

ii) The converse is true if s(x) → ∞ implies min(1/s(X1), b(X1, x)) → 0 in
probability.

Proof.
(i) We may assume r ≤ 1. By induction, it is easy to see that

sup
x
Ex


 n∏

j=m

(δ + b(Xj ,Xj−1))


 <∞

for any δ > 0, and thus there exists δ > 0 such that

lim sup
s(x)→∞

Ex


 n∏

j=m

(δ + b(Xj ,Xj−1))r

 < 1.

It follows that

lim sup
s(x)→∞

Ex


 n∑

j=m

log(δ + b(Xj ,Xj−1))


 < 0. (4.2)

Let

ν(x) =
n−1∑
j=1

min(1 − j+1−m
n+1−m , 1)Ex(log(δ + b(Xj ,Xj−1))).

Hence ν is bounded and, by (4.2),

lim sup
s(x)→∞

Ex(ν(X1) + log(δ + b(X1, x)) − ν(x)) < 0.

By Lemma 4.2 below, there exists r′ > 0 such that

lim sup
s(x)→∞

Ex


(eν(X1)

eν(x)
(δ + b(X1, x))

)r′

 < 1.

From this we see it suffices to take λ(x) = er
′ν(x).

(ii) Let r = r′ < 1 and let c < 1 be the limit in the lefthand side of (4.1). Define

Bn(x) = Ex


λ(Xn)
λ(x)

n∏
j=1

br(Xj ,Xj−1)
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and note that Bn(x) = Ex

(
λ(X1)
λ(x) b

r(X1, x)Bn−1(X1)
)
. Choose L < ∞ so that

1/L < λ(x) < L and Ex(br(X1, x)) < L for all x. Note that Bn(x) < L3n for all
x and n. Now suppose

lim sup
s(x)→∞

Bj(x) ≤ cj , j = 1, . . . , n− 1,

for some n ≥ 2. Given ε > 0, fix M < ∞ so that sups(x)>M Bj(x) ≤ (c+ ε)j for
j = 1, . . . , n− 1. Since by assumption,

lim sup
s(x)→∞

Px(s(X1) ≤M, b(X1, x) > ε) = 0,

we have

lim sup
s(x)→∞

Bn(x) = lim sup
s(x)→∞

Ex

(
λ(X1)
λ(x)

br(X1, x)Bn−1(X1)(1s(X1)>M + 1b(X1,x)≤ε)
)

≤ εrL3n−1 + (c+ ε)n.

By induction we conclude that

lim sup
s(x)→∞

Ex


λ(Xn)
λ(x)

n∏
j=1

br(Xj ,Xj−1)


 ≤ cn for all n ≥ 1.

Since λ is bounded and bounded away from zero,

lim sup
s(x)→∞

Ex


 n∏

j=1

br(Xj ,Xj−1)


 ≤ cnL2 < 1

for all n large enough.

Lemma 4.2. Suppose {Yx} is a collection of nonnegative random variables in-
dexed by x. Then supx E(Y r

x ) < 1 for some r > 0 if and only if

sup
x

E(Y r
x ) <∞ for some r > 0, and sup

x
E(log(δ + Yx)) < 0 for some δ > 0.

If log(Yx) ≥ T for each x, where E(|T |) <∞, it suffices to let δ = 0.

Proof. This follows by standard arguments.

For what follows �x	 is the largest integer not greater than x and frac(x) is
that portion of x which exceeds �x	.
Lemma 4.3. Suppose β is bounded, periodic with period τ = 1, and satisfies
Assumption 3.3. Suppose Y has a density g on R which is locally Riemann
integrable. Then for any y ∈ R,

frac((n + Y )β(n + Y ) + y) =⇒ Uniform(0, 1) as |n| → ∞.
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Proof. The idea behind this proof is that xβ(x) spreads its values so thinly for
large x, that the fractional part of (x+ Y )β(x + Y ) can be anything essentially
with uniform probability.

Given ε > 0 let Aε be as in Assumption 3.3. We may assume without loss
that Aε is a finite union of disjoint open intervals, say I1, . . . , IM . Now fix j and
k ∈ Z and define

h(u) = g(k + u)1Ij (u), u ∈ [0, 1].

Define βj on [0, 1] in such a way that βj agrees with β on Ij, is linear off Ij and
is continously differentiable. It is thus strictly monotone and β′j is bounded away
from 0. Let b∗ = max[0,1] βj(u)/β′j(u).

Now fix 0 < a < b < 1. For n > |k| and integer m, let

Jn,m = {u : 0 ≤ u ≤ 1, m+a
n+k+u ≤ βj(u) ≤ m+b

n+k+u},

hn,m = min
u∈Jn,m

h(u), bn,m = max
u∈Jn,m

|β′(u)|.

Note that for large n and all m, Jn,m is an interval with length at least
b−a

(n+k+1+b∗)bn,m
. Let Wn = frac((n + Y )β(n + Y )) = frac((n + Y )β(Y )) and

compute

lim inf
n→∞ P (Wn ∈ (a, b), frac(Y ) ∈ Ij , �Y 	 = k)

= lim inf
n→∞

∑
m

∫
Ij

1( m+a
n+k+u

, m+b
n+k+u)(β(u))g(k + u)du

= lim inf
n→∞

∑
m

∫
Jn,m

h(u)du

≥ lim inf
n→∞

∑
m

hn,m
b− a

(n+ k + 1 + b∗)bn,m

= (b− a)
∫ 1

0
h(u)du

= (b− a)P (frac(Y ) ∈ Ij, �Y 	 = k).

The penultimate equality follows from the fact that h is Riemann integrable and
β′ is continuous on Ij and bounded away from 0. By Fatou’s Lemma and then
monotone convergence,

lim inf
n→∞ P (Wn ∈ (a, b)) ≥ b− a for all 0 < a < b < 1,

from which it follows that Wn =⇒ U∼Uniform(0,1) as n→ ∞.
Applying the same to β(−x) and noting that 1 − U

d= U , the above holds
as n → −∞. Furthermore, since the limit is uniform, we also have frac((n +
Y )β(n+ Y ) + y) =⇒ Uniform(0,1), as |n| → ∞, for any y ∈ R.
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Proof of Theorem 3.4. The proof applies Lemma 4.3 to show that frac(X2/τ)
is effectively uniform in distribution when α(x) is large. Assumption 2.1 is met
since the errors are additive, have finite rth moment and have density locally
bounded away from 0. (See Chan (1993) or Cline and Pu (1998b).) Let α(x) =
β1(x)x and γ(e1;x) = β0(x) + e1.

Fix w ∈ [0, τ) and apply Lemma 4.3 with β(x) = β1(τx) and Y = (w+e1)/τ
to get

frac(nτ+w+e1
τ β1(nτ + w + e1) + y) =⇒ U∼Uniform(0,1) as |n| → ∞.

Since the limit is independent of w and y,

frac(α(x)+β0(x)+e1

τ β1(α(x) + β0(x) + e1) + e2) =⇒ U as |α(x)| → ∞.

Given X0 = x, we have X2 = (α(x) + β0(x) + e1)β1(α(x) + β0(x) + e1) + e2.
Hence by bounded convergence, for each δ > 0,

lim sup
|α(x)|→∞

Ex(log(δ + |β1(X2)|)) =
1
τ

∫ τ

0
log(δ + |β1(u)|)du.

Then by (3.6) and monotone convergence,

lim sup
|α(x)|→∞

Ex(log(δ + |β1(X2)|)) < 0

for some δ > 0 small enough. By Theorem 3.2(iii), the process is geometrically
ergodic.

Proof of Theorem 3.5. Throughout the proof, Ex1(·) will refer to expectations
for the process {Xt,1} conditioned on X0,1 = x1. Likewise, EX1,1(·) will refer to
expectations conditioned on X1,1. The proof consists of finding a somewhat
complicated test function to verify the drift condition for geometric ergodicity.

There is no loss in assuming V1(x1) ≥ 1 for all X1; if not, replace V1 with
1+V1. That {Xt,1} is geometrically ergodic is immediate by the drift conditions
(3.9)–(3.10) and the fact that compact sets are petite (Meyn and Tweedie (1993),
Thm. 15.0.1 and Thm. 6.2.5). Furthermore,

K1 =
∫
V1(x1)G1(dx1) <∞.

By (3.11) and the invariance of G1, there exists δ > 0 and r > 0 such that
the conditions in Assumption 2.1(ii,iii) hold and

ρ1 =
∫
Ex1 ((δ + ||A2(X1,1)||2))r)G1(dx1) =

∫
(δ + ||A2(x1)||2)r G1(dx1) < 1.
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Choose ε ∈ (0, 1) so that ρ1−ε
1 Kε

1 < 1 and let s = (1− ε)r. By Hölder’s inequality,

ρ2 =
∫
Ex1 ((δ + ||A2(X1,1)||2))s)V ε

1 (x1)G1(dx1) ≤ ρ1−ε
1 Kε

1 < 1.

Note that Ex1 ((δ + ||A2(X1,1)||2))s) is bounded. Define

h(x1) = Ex1 ((δ + ||A2(X1,1)||2))s)V ε
1 (x1).

Since V ε
1 (x1) also satisfies the drift condition for geometric ergodicity, there are

K2 <∞ and q < 1 such that

Ex1(h(Xn,1)) ≤ ρ2 +K2q
nV ε

1 (x1) for all n ≥ 1, x1 ∈ R
p1, (4.3)

by Meyn and Tweedie (1993, Thm. 15.0.1).
Let b1 = supx1

||A1(x1)||1 and b2 = supx1
||A2(x1)||2. Choose M1 < ∞ and

n ≥ 1 so that ρ2 +K2q
n < 1 and (ρ2M

−ε
1 +K2q

n)(1 + b1/δ)s < 1. By (4.3), we
have

sup
V1(x1)≤M1

Ex1(h(Xn,1))
V ε

1 (x1)
< 1 and sup

V1(x1)>M1

Ex1(h(Xn,1))
V ε

1 (x1)
<

(
1 +

b1
δ

)−s

.

(4.4)
By some careful algebra,

R1(x,X1)
def=

δ + ||A2(X1,1)X1,2||2 + δ||X1||
(δ + ||A2(x1)x2||2 + δ||x||)(δ + ||A2(X1,1)||2)

≤ 1 +
1 + b1||x1||1 + (1 + b2/δ)||γ(e1 ;x)||

δ + δ||x|| .

From this, Assumption 2.1, and the fact that V1(x1) → ∞ as ||x1||1 → ∞,

lim sup
||x||→∞

V1(x1)≤M1

Ex(Rs
1(x,X1)) ≤ 1 and lim sup

||x||→∞
V1(x1)>M1

Ex(Rs
1(x,X1)) ≤ (1 +

b1
δ

)s. (4.5)

Hence, by (4.4) and (4.5),

lim sup
||x||→∞

Ex1(h(Xn,1))
V ε

1 (x1)
Ex(Rs

1(x,X1)) < 1. (4.6)

Now let
R2(x,X1) =

(δ + ||A2(X1,1)||2)s
Ex1((δ + ||A2(X1,1)||2)s)

and

V (x) =


(δ + ||A2(x1)x2||2 + δ||x||)s

n−1∏
j=0

Ex1(h(Xj,1))




1
n+2

.
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Then, by Hölder’s inequality, the fact that {Xt,1} is Markov, and (4.6),

lim sup
||x||→∞

Ex

(
V (X1)
V (x)

)

= lim sup
||x||→∞

Ex




Rs

1(x,X1)R2(x,X1)
EX1,1(h(Xn,1))

V ε
1 (x1)

n−1∏
j=1

EX1,1(h(Xj,1))
Ex1(h(Xj,1))




1
n+2




≤ lim sup
||x||→∞

(Ex(Rs
1(x,X1)))

1
n+2

(
Ex1(h(Xn,1))

V ε
1 (x1)

) 1
n+2

< 1.

In a similar manner it is easy to see, by (3.10), (4.3), and the fact that V1 is
locally bounded, that sup||x||≤M Ex(V (X1)) <∞ for all M <∞. Thus, by Meyn
and Tweedie (1993, Thm. 15.0.1), the process is geometrically ergodic.
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