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The state-space representations of certain nonlinear autoregressive time series are general
state Markov chains. The transitions of a general state Markov chain among regions in
its state-space can be modeled with the transitions among states of a finite state Markov
chain. Stability of the time series is then informed by the stationary distributions of the
finite state Markov chain. This approach generalizes some previous results.
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1. Introduction

Threshold processes are some of the simplest nonlinear time series, yet they can
possess very complicated behavior. Though much effort has been spent in delineat-
ing the stable and unstable parameter spaces for these processes, their behavior is
fully understood for only the very simplest models. Conditions sufficient for large
classes of models are often too restrictive when applied in specific cases, and it is in
the more specialized cases that the utility of these time series models in explaining
features found in data is fully realized.

The threshold autoregressive (TAR) process of order p and l regimes is the
piecewise linear autoregression

Yt = φ
(i)
0 + φ

(i)
1 Yt−1 + · · · + φ(i)

pi
Yt−pi + σiet,

if (Yt−1, . . . , Yt−p)′ ∈ Ri, i = 1, . . . , l, (1)

where the state-space X := R
p is partitioned into regionsRi, i = 1, . . . , l, the bound-

aries of which are called the thresholds of the process. The autoregression coeffi-
cients are φ(i)

0 , . . . , φ
(i)
pi , with pi ≤ p, and the σi are positive scalars, i = 1, . . . , l.
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The {et} are mean zero i.i.d. random variables with Var(et) = 1. We assume
throughout that the error distribution possesses an everywhere positive density
which is lower semi-continuous.

The TAR process in (1) has the state-space representation Xt = (Yt,

Yt−1, . . . , Yt−p+1)′, where

Xt :=
l∑

i=1

(φ(i)
0 +AiXt−1 + ν

(i)
t )IXt−1∈Ri , (2)

with ν
(i)
t = σi(et, 0, . . . , 0)′. The Ai are called the companion matrices and are

defined using the autoregression coefficients.
We can extend (2) a bit and define as TAR-like any process of the form

X ′
t =

l∑
i=1

(AiX
′
t−1 + g(X ′

t−1) + ν
(i)
t )IX′

t−1∈Ri
, (3)

where g(·) is locally bounded, measurable, and lim sup‖x‖→∞ ‖g(x)‖/‖x‖ = 0.
One method for analyzing the behavior of a time series is piggybacking [3], which

involves modeling the behavior of the time series with that of a simpler embedded
process. Traditionally, the embedded process has been a deterministic system known
as the homogeneous skeleton ( [2, 6–8]) of the state-space process

xt :=
l∑

i=1

Aixt−1Ixt−1∈Ri . (4)

Conditions for stability of the time series are then “piggybacked” upon those for
the embedded process, i.e. they are derived through analysis of this more tractable
embedded process.

Example 1. Consider the TAR process analyzed by Petrucelli and Woolford [5]

Yt =

{
a1Yt−1 + et, if Yt−1 ≥ 0,

a2Yt−1 + et, if Yt−1 < 0.

Suppose a1 < 0, a2 < 0 and E|et|r < ∞ for some r > 0. The skeleton is yt =
a1yt−1Iyt−1≥0 + a2yt−1Iyt−1<0. Let R1 := {y : y < 0} and R2 := {y : y ≥ 0}, and
let Ri → Rj indicate all y in Ri which are mapped by the skeleton to Rj . Then for
y �= 0 we have R1 → R2, R2 → R1. By picking Yt−1 = y with |y| large enough, the
transition probabilities of Yt between regions R1 and R2 can be bounded arbitrarily
closely to zero or one for all such y. Thus, the skeleton {yt} accurately models the
behavior of {Yt} for large values of the processes, making appropriate the piggyback
method using the skeleton {yt} as the embedded process. Stability of the time series
is then inferred from stability of the skeleton, resulting in the well-known constraint
on the parameters a1a2 < 1.

However, the skeleton-piggyback requires that the skeleton and the time series
share similar growth behaviors, in the sense that the probabilities of the transitions
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among regions in the state-space for both the time series and the skeleton converge
as the two grow larger in magnitude. This means that the time series is essentially
a well-behaved dynamical system when it is large in magnitude.

Example 2. Now consider the second order TAR process

Yt =

{
a0 + a1Yt−1 + a2Yt−2 + σ1et, if Yt−1 ≥ b1Yt−2,

b0 + b1Yt−1 + σ2et, if Yt−1 < b1Yt−2.
(5)

Assume E|et|r <∞ for some r > 0 and the parameters satisfy

a1 > 0, a2 > 0, b1 < 0, a1b1 + a2 < 0. (6)

The state vector for the time series is Xt = (Yt, Yt−1)′. The state-space representa-
tion is given in (2) with order p = 2, number of regimes l = 2, the regions given by

R1 = {(y1, y2)′ : y1 ≥ b1y2}, R2 = {(y1, y2)′ : y1 < b1y2},

and companion matrices

A1 =
(
a1 a2

1 0

)
, A2 =

(
b1 0
1 0

)
.

The skeleton {xt} = {(yt, yt−1)′}, defined in (4), maps all x ∈ R2 onto the
threshold y1 = b1y2. However, {Xt} can move to either side of the threshold accord-
ing to the probability distribution of et. When the errors are taken into account,
therefore, the transition probabilities between R1 and R2 cannot be bounded arbi-
trarily closely to zero or one no matter how large the process is. Thus, the skeleton-
piggyback will not work here.

Example 2 suggests the piggyback should be extended through the use of a
stochastic, rather than a deterministic, embedded process. In the next section we
apply the piggyback method more generally using a finite state Markov chain as
the embedded process, yielding stability conditions for a wider class of processes
than is achieved using the skeleton-piggyback. Examples 1 and 2 are continued in
the next section. They are admittedly simple and are intended to be illustrative;
more substantial examples are dealt with in Sec. 3.

2. Results

2.1. Piggybacking with a finite state chain

Since the state-space of {Xt} for a TAR or TAR-like process can be partitioned
into a finite number of regions, the transitions of {Xt} among these regions can be
modeled more generally with the transitions of a finite state Markov chain, rather
than those of a deterministic system. In the case of Example 1, note a (trivial) finite
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state chain {Jt} on state-space {1, 2} with transition probability matrix

P :=
(

0 1
1 0

)

will approximate the transition probabilities of {Xt} between R1 and R2 to within
an arbitrary degree of accuracy when {Xt} is large. Further extension of the piggy-
back method uses nontrivial finite state chains as models for the transitions among
regions. In fact, the full utility of the finite state chain-piggyback is in accounting
for cases with multiple and/or nontrivial stationary distributions for the finite state
chain. Some examples of this more complex situation are in Sec. 3.

First, the details. The finite state chain-piggyback makes use of a finite state
Markov chain {Jt} on a collection of states {1, . . . , l} corresponding to a collection
of regions {R1, . . . , Rl} that forms a partition of the state-space of {Xt}.

Assumption 1 (A1). Suppose {Jt} is a finite state Markov chain on the states
S = {1, . . . , l}. Decompose the state space S = (

⋃k
u=1 Su) ∪ T , for some finite

integer k, where each Su is irreducible and recurrent and T is the set of all transient
states. Let G :=

⋃k
u=1 Su. Let π(u) be the stationary distribution for Su, so that

π
(u)
j > 0 for j ∈ Su and π(u)

j = 0 for j �∈ Su.

Note that {Jt} is not necessarily ergodic since it is not assumed to be irreducible,
but since {Jt} is a finite state chain, it must have at least one collection of recurrent
states, and therefore at least one stationary distribution is always guaranteed to
exist. Next, sufficient conditions under which the finite state chain-piggyback will
succeed. Let Pi, Px denote probabilities conditioned upon initial states i ∈ {1, . . . , l}
and x ∈ X , respectively, and let ‖ · ‖ be the Euclidean norm.

Assumption 2 (A2). Suppose {Xt} is a general state Markov chain on state-space
X := R

p which can be partitioned into regions {R1, . . . , Rl}, and these regions can
be grouped by their indices according to the sets G and T in (A1), in the sense that

max
i,j∈G

lim sup
x∈Ri

‖x‖→∞

|Px(X1 ∈ Rj) − Pi(J1 = j)| = 0, (7)

and given ε > 0 there exists t∗ <∞ so that for t ≥ t∗

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

Px

(
Xt ∈

⋃
k∈T

Rk

)
< ε. (8)

In words, for regions in the state-space of {Xt} corresponding to the recurrent
states of {Jt}, the transition probabilities of {Jt} from state i to state j must be
within an arbitrarily small amount of the “transition” probabilities of {Xt} from
region Ri to region Rj when {Xt} is large enough. This is condition (7). Since {Jt}
is a finite state chain, the collection of transient states is uniformly transient, and
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the similar condition (8) on the regions in the state-space of {Xt} corresponding to
the transient states of {Jt} is required.

A word about application: verifying (A2) can require an artful partitioning of
the state-space. The regimes specified by the original model definition (4) often need
to be refined, that is, partitioned further so that (A2) holds. For example, as the
behavior of the skeleton can depend on the signs of the variables, the axes become
de facto thresholds. Additionally, regions that cannot be given precise transition
probabilities, but ultimately are transient, may be separated from artificial thresh-
olds. Each time another threshold is created, however, the transition probabilities
must be considered anew, especially for situations where the skeleton either hits or
is attracted to a threshold.

Example 2 (Cont’d). Returning to the process (5) with parameters satisfying
(6), we first refine R1 and R2 by splitting each into two regions:

R+
1 = {(y1, y2)′ : y1 ≥ max(0, b1y2)}, R−

1 = {(y1, y2)′ : b1y2 ≤ y1 < 0},
R+

2 = {(y1, y2)′ : 0 < y1 < b1y2}, R−
2 = {(y1, y2)′ : y1 < min(0, b1y2)}.

Essentially, we are making the vertical axis into another threshold. See Fig. 1.
The skeleton maps x = (y1, y2) ∈ R+

1 into the first quadrant; in fact,

a1y1 + a2y2 ≥ −a1b1 + a2√
1 + b21

‖x‖ > 0.

Thus, as ‖x‖ → ∞,

Px(X1 �∈ R+
1 ) ≤ P

(
A0 +

|a1b1 + a2|√
1 + b21

‖x‖ + σ1e1 ≤ 0

)
= o(‖x‖−r),

w1

w2

R1
+R1

-

R2
+R2

-

Fig. 1. Regions of the state-space in Example 2.
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by Markov’s inequality and the fact that E|e1|r < ∞. For the finite state chain,
then R+

1 → R+
1 w.p. 1. On the other hand, R−

1 is mapped into any of the other
three regions (but not itself) with probabilities α+

1 (x), α+
2 (x), α−

2 (x), respectively,
that converge as ‖x‖ → ∞ and x/‖x‖ → θ but not uniformly in θ.

The skeleton maps x = (y1, y2) ∈ R+
2 onto the threshold in the second quadrant.

If b0 + σ2e1 < 0, then X1 will be below the threshold and X1 ∈ R−
2 . If 0 ≤

b0 +σ2e1 < −(a1y1 +a2y2) then X1 ∈ R−
1 , and if b0 +σ2e1 ≥ −(a1y1 +a2y2), which

has probability approaching zero as ‖x‖ → ∞, then X1 ∈ R+
1 . For x ∈ R−

2 , a similar
transition is possible but x is mapped to the threshold in the fourth quadrant and
the choice, asymptotically, is between R+

2 and R+
1 .

Let γ2 = P (b0 +σ2et < 0). With a slight abuse of notation, order the finite state
space of {Jt} as {R+

1 , R
−
1 , R

+
2 , R

−
2 }, and we now have the transition matrix

P =




1 0 0 0
α+

1 (x) 0 α+
2 (x) α−

2 (x)
0 1 − γ2 0 γ2

1 − γ2 0 γ2 0


 . (9)

Examination of P reveals that R+
1 is the only recurrent state; thus the stationary

distribution for Jt is π = (1, 0, 0, 0)′. Moreover, R−
1 is escaped immediately each

time it is hit. Set γ̄ = max(γ2, 1−γ2) < 1 and so the verification of (A2) is completed
by observing

lim sup
x/∈R+

1
‖x‖→∞

Px(Xt /∈ R+
1 ) ≤ γ̄t/2−1, for all t ≥ 1.

2.2. Stability using the finite state chain-piggyback

For the vector norm ‖ · ‖ on the state-space and a companion matrix Ai define

ρi,I := lim inf
x∈Ri

‖x‖→∞

‖Aix‖
‖x‖ , ρi,S := lim sup

x∈Ri

‖x‖→∞

‖Aix‖
‖x‖ . (10)

The stability results in Theorem 1 rely upon ρi,I and ρi,S , rather than the operator
norm, since stability is a question of the behavior of the process when the process
is large. In many cases the three coincide. Naturally, it is assumed throughout that
each ‖Ai‖ is finite, and clearly ρi,I ≤ ρi,S ≤ ‖Ai‖ for each i.

Heuristically, when the process {Xt} is large, the expected log-change in {Xt}
is (at worst) approximately E[

∑
log(ρi,S)IXt−1∈Ri ]. Under (A2), the transitions of

{Xt} among regions are similar to those of {Jt} among states. Since {Jt} has a finite
number of states, then E[log(ρJt,z)] will converge to

∑
u qu(i)Eπ(u) [log(ρJt,z)], for

z = I or z = S where qu(i) is the probability that Jt ends up in Su given that J0 = i

and π(u) is the corresponding stationary distribution. Then
∑
πi log(ρi,S) < 0 will

guarantee stability of {Xt}, while
∑
πi log(ρi,I) > 0 will guarantee the transience

of {Xt}. We define stability in terms of the V -uniform ergodicity of the chain. The
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various types of ergodicity or the transience of Markov chains are demonstrated by
constructing a test function of the chain that satisfies an appropriate drift condition.
Full details are in Meyn and Tweedie [4], and a brief summary precedes the proofs
in Sec. 5.

Theorem 1. Suppose (A1) and (A2) hold. Consider {Xt} as in (3). Assume there
exists r > 0 for which E|et|r <∞.

(i) Suppose for every stationary distribution π
(u)
j of {Jt}, u ∈ {1, . . . , k}, that

l∑
i=1

π
(u)
i log(ρi,S) < 0. (11)

Then there exists a bounded function λ(x) such that {Xt} is V -uniformly
ergodic with test function V (x) = 1 + λ(x)‖x‖s, s < r.

(ii) Suppose for some stationary distribution π
(u)
j of {Jt}, u ∈ {1, . . . , k}, that

l∑
i=1

π
(u)
i log(ρi,I) > 0, (12)

and that lim sup‖x‖→∞
x∈Q

‖x‖rPx(X1 �∈ Q) = 0, where Q = ∪j∈SuRj. Then there

exists a bounded function λ(x) such that {Xt} is transient with test function
V (x) = 1 + λ(x)‖x‖s, s < r.

Example 2 (Cont’d). It was noted that R+
1 is the only recurrent state. Since the

regions are all cones, ‖Ai‖, ρi,I , and ρi,S all coincide for all i where the eigenvector
corresponding to the maximal eigenvalue of Ai is contained in region Ri. Thus,
by Theorem 1, under the conditions ‖A1‖ < 1, or equivalently a1 + a2 < 1, and
E|et|r <∞ for some r > 0, it holds that {Xt} is V -uniformly ergodic, with V as in
Theorem 1. Conversely, {Xt} is transient if a1 + a2 > 1 since the error distribution
satisfies the additional condition ‖x‖rPx(X1 �∈ R+

1 ) → 0 as previously shown.
Interestingly, for stability the assumptions b1 < 0, a1b1 + a2 < 0 and b21 >

a1b1 + a2 place no upper bounds on |b1| if b1 < 0. In particular, |b1| < 1, which
would be the condition generalizing from the linear case, is far too restrictive. In
fact, there is a positive probability of temporary “explosions” if |b1| 	 1. Capturing
such behavior would be one of the real advantages of this model and is lost if relying
on conditions analogous to the linear case.

As Example 2 shows, a simpler formulation of Theorem 1, in terms of ‖Ai‖, has
the advantage that the regions can be defined somewhat crudely. This may make
it possible to provide a sufficient, if not sharp, condition for ergodicity without
a detailed analysis of the dynamics. On the other hand, one can often improve
the stability condition by successively refining the regions and using Theorem 1 as
expressed here to analyze these more complex dynamics. Examples of this will be
delayed until Sec. 3.



May 30, 2009 11:41 WSPC/168-SD 00262

194 T. R. Boucher & D. B. H. Cline

2.3. TAR-like processes

Neither (A1) nor (A2) require the time series to be a TAR process, and Theorem 1
permits some generalization. Piggybacking with a finite state Markov chain can be
extended to TAR-like processes

X ′
t =

l∑
i=1

(AiX
′
t−1 + g(X ′

t−1) + ν
(i)
t )IX′

t−1∈Ri
,

via an iterated piggyback using a TAR skeleton

Xt =
l∑

i=1

(φ(i)
0 +AiXt−1 + ν

(i)
t )IXt−1∈Ri .

If the TAR skeleton satisfies (A2) and the conditions of Theorem 1, then {X ′
t}

can be piggybacked with {Xt} and {Xt} can be piggybacked with the finite state
Markov chain {Jt}. Note that Theorem 1 could also be expressed more generally as
there being a measurable set B such that the assumptions hold on the set B with

lim sup
‖x‖→∞

x∈B

‖g(x)‖/‖x‖ = 0, lim sup
‖x‖→∞

Px(X1 �∈ B) = 0,

but we restrict our attention to the case B = X .
Certain smooth threshold autoregressive (STAR) processes and the amplitude-

dependent exponential autoregressive (EXPAR) processes [7] are TAR-like time
series.

Example 2 (Cont’d). Consider the TAR-like EXPAR/TAR hybrid [7] process
which generalizes Example 2

Yt =




(a1 + c1e
−[Y 2

t−1+Y 2
t−2])Yt−1

+ (a2 + c2e
−[Y 2

t−1+Y 2
t−2])Yt−2 + σ1et, if Yt−2 ≥ 1

b1
Yt−1

(b1 + d1e
−[Y 2

t−1+Y 2
t−2])Yt−1 + σ2et, if Yt−2 <

1
b1
Yt−1.

This has clear representations in the forms {X ′
t} as in (3) and {Xt} as in (2), with

Xt = (Yt, Yt−1)′. Suppose b1 < 0, a1, a2 > 0, a1b1 + a2 < 0 and b21 > a1b1 + a2.
Example 2 showed {Xt} satisfies the assumptions of Theorem 1. Thus, so does
(3). The conditions for stability follow from those found in Example 2, that is,
a1 + a2 < 1 and no restrictions on |b1| if b1 < 0. Conversely, {Xt} is transient if
a1 + a2 > 1 since ‖x‖rPx(X1 �∈ Q) → 0 by the argument previously mentioned.

3. Applications

The full power of the finite state chain piggyback as compared to the skeleton
piggyback becomes obvious in cases where the finite state Markov chain piggyback
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will not have a trivial stationary distribution. As previously mentioned, partitioning
the state-space so that (A2) is satisfied may require some cleverness.

Example 3. Consider

Yt =



a0 + a1Yt−1 + a2Yt−2 + σ1et if Yt−1 ≤ c1Yt−2, Yt−2 > 0,

b0 + b1Yt−1 + b2Yt−2 + σ2et if Yt−1 > c1|Yt−2|,
c0 + c1|Yt−1| + σ3et if Yt−1 ≤ −c1Yt−2, Yt−2 ≤ 0.

The state-space for Xt = (Yt, Yt−1) is obviously R2. The relevant thresholds are
both axes and the rays containing (c1,−1), (c1, 1) and (− b2

b1
, 1), resulting in seven

basic regions.
We consider the subset of the parameter space for which

a1 > 0, b1 < 0, c1 > 0, a2 < −a1c1, −b1c1 < b2 < c21 − b1c1.

Note a2 < 0 and b2 > 0. Then

w1 < 0, w2 > 0 ⇒ a1w1 + a2w2 < 0,
0 < w1 < c1w2, w2 > 0 ⇒ a1w1 + a2w2 < (a1c1 + a2)w2 < 0,

w1 > c1|w2|, w1 > −b2
b1
w2 ⇒ b1w1 + b2w2 < 0,

c1w2 < w1 < −b2
b1
w2, w2 > 0 ⇒ 0 < b1w1 + b2w2 <

(
b1 +

b2
c1

)
w1 < c1w1.

From this it may be seen that the simpler version of Theorem 1 alluded to after
Example 2 applies to the seven regions mentioned above.

Here, however, we will apply Theorem 1 in its full generality by refining the
regions optimally. With high probability (as ‖x‖ → ∞) the third quadrant in R2

is reached with four steps or fewer from anywhere. From the third quadrant, the
process (when large) leads immediately to a narrow cone containing the ray (c1,−1).
Depending on which side of that ray the process falls (which is a consequence of
the random error), it will successively hit a sequence of other narrow cones until it
returns to the third quadrant once again.

We therefore set up a scheme of regions as follows. Let n > c−1
1 be arbitrarily

large. Define

Rn,1 =
{

(w1, w2) : 0 <
(
−c1 +

1
n

)
w2 < w1 < −c1w2

}

and

Rn,2 =
{

(w1, w2) : 0 < −c1w2 ≤ w1 <

(
−c1 − 1

n

)
w2

}
.
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Note that points in the third quadrant map into Rn,1 ∪ Rn,2 with probability
approaching 1, uniformly as ‖x‖ → ∞. Now define additional regions

Rn,3 =
{

(w1, w2) : 0 < c1w2 ≤ w1 <

(
c1 +

1
n

)
w2

}
,

Rn,4 =
{

(w1, w2) : 0 <
(
c1 − 1

n

)
w2 ≤ w1 < c1w2

}
,

Rn,5 = {(b1w1 + b2w2, w1) : (w1, w2) ∈ Rn,3},
Rn,6 = {(b1w1 + b2w2, w1) : (w1, w2) ∈ Rn,2},
Rn,7 = {(a1w1 + a2w2, w1) : (w1, w2) ∈ Rn,4},
Rn,8 = {(a1w1 + a2w2, w1) : (w1, w2) ∈ Rn,5},
Rn,9 = {(a1w1 + a2w2, w1) : (w1, w2) ∈ Rn,6},
Rn,10 = {(a1w1 + a2w2, w1) : (w1, w2) ∈ Rn,7},
Rn,11 = {(a1w1 + a2w2, w1) : (w1, w2) ∈ Rn,8}.

See Fig. 2. The corresponding companion matrices are

A1 =
(
c1 0
1 0

)
,

A2 = A3 =
(
b1 b2
1 0

)
,

A4 = A5 = A6 = A7 = A8 =

(
a1 a2

1 0

)
,

A9 = A10 = A11 =
(−c1 0

1 0

)
.

Everything else is designated Rn,0, which is transient (and has varying companion
matrices).

Let γ = P (c0 + σ3e1 < 0). This gives us 11 recurrent regions (assuming n is
sufficiently large) with the dynamics

Rn,1 →
{
Rn,3 w.p. 1 − γ,

Rn,4 w.p. γ,

Rn,2 → Rn,6 → Rn,9,

Rn,3 → Rn,5 → Rn,8 → Rn,11,

Rn,4 → Rn,7 → Rn,10,

Rn,j →
{
Rn,1 w.p. γ,

Rn,2 w.p. 1 − γ,
j = 9, 10, 11.
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w1

w2

R1

R2

R3

R4

R5R6R7

R8

R9
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Fig. 2. Regions of the state-space in Example 3.

The path of the finite state chain consists of iid excursions leaving either Rn,1 or
Rn,2, namely

Rn,1 → Rn,3 → Rn,5 → Rn,8 → Rn,11 w.p. γ(1 − γ),
Rn,1 → Rn,4 → Rn,7 → Rn,10 w.p. γ2,

Rn,2 → Rn,6 → Rn,9 w.p. 1 − γ.

Each of these occurs independently of previous excursions, and is followed by
another. The expected excursion length is 5γ(1−γ)+4γ2+3(1−γ) = (1+γ)(3−γ).
By considering the expected time spent in each state during an excursion, we find
that the stationary distribution is

[γ 1 − γ γ(1 − γ) γ2 γ(1 − γ) 1 − γ γ2 γ(1 − γ) 1 − γ γ2 γ(1 − γ)]
(1 + γ)(3 − γ)

.

As n→ ∞, Rn,1 and Rn,2 each shrink to the ray containing (c1,−1). Thus, each
excursion may be associated with a limiting growth factor which is the product of
growth factors for its steps. Letting

θ =

(
c1√

1 + c21
,

−1√
1 + c21

)

and optimizing with n→ ∞, we find that the critical constant is

ρ = ((‖A11A8A5A3A1θ‖)γ(1−γ)(‖A10A7A4A1θ‖)1−γ(‖A9A4A2θ‖)γ2
)1/(1+γ)(3−γ)

= ((‖A9A
2
4A2A1θ‖)γ(1−γ)(‖A9A

2
4A1θ‖)1−γ(‖A9A4A2θ‖)γ2

)1/(1+γ)(3−γ).
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That is, if ρ < 1 then {Xt} is ergodic while since ‖x‖rPx(X1 �∈ ∪11
i=1Rn,i) → 0, if

ρ > 1 then {Xt} is transient.
Classification is much more subtle in case ρ = 1. In this case Xt can be ergodic,

null recurrent or transient. Precise classification will depend on the intercepts
a0, b0, c0 and the variances σ2

1 , σ
2
2 , σ

2
3 .

Example 4. Consider the TAR(3) model

Zt =

{
a0 + a1Yt−1 + a2Yt−2 + σ1et if Yt−1 ≥ a1Yt−2 + a2Yt−3,

b0 + b1Yt−1 + b2Yt−2 + b3Yt−3 + σ2et if Yt−1 < a1Yt−2 + a2Yt−3,

Yt = |Zt|.
The state vector is Xt = (Yt, Yt−1, Yt−2) and the state space is (0,∞)3. Suppose

a1 > 0, a2 > 0, b1a1 + b2 > a2
1 + a2, b1a2 + b3 > a1a2.

The two regions are

R1 = {(w1, w2, w3) : w1 ≥ a1w2 + a2w3, w2 > 0, w3 > 0},
R2 = {(w1, w2, w3) : 0 < w1 < a1w2 + a2w3, w2 > 0, w3 > 0}.

Since a1 and a2 are positive and, for positive w2, w3,

b1(a1w2 + a2w3) + b2w2 + b3w3 > a1(a1w2 + a2w3) + a2w2,

we see that Yt = Zt with high probability if the process is large. So, for the sake of
studying stability, the dynamics will assume Yt and Zt are the same. (What follows
is applicable even if we had defined Yt = Zt, but it would cover only one part of
the dynamics needed to study stability.)

The companion matrices are

A1 =


a1 a2 0

1 0 0
0 1 0


 and A2 =


 b1 b2 b3

1 0 0
0 1 0


 .

Let λ1 = a1+
√

a2
1+4a2

2 which is the positive (and maximal) eigenvalue of A1 and is

associated with eigenvector θ1 =

(
λ1

1

1/λ1

)
. We make the additional assumption that

θ1 is not an eigenvector for A2.
Note that (when ‖x‖ is large) points in R1 map to a narrow cone containing the

semi-plane U defined by

U = {(w1, w2, w3) : w1 = a1w2 + a2w3, w2 > 0, w3 > 0}.
Anything in R2 maps back into R1, due to the parameter assumptions, Moreover,
R1 maps into R2 with probability γ = P (a0+σ1e1 < 0) and into R1 with probability
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1 − γ. We now define refined regions

Rn,1 =
{

(w1, w2, w3) : 0 ≤ w1 − a1w2 + a2w3 <
1
n

(w2 + w3), w2 > 0, w3 > 0
}
,

Rn,2 =
{

(w1, w2, w3) : − 1
n

(w2 + w3) < w1 − a1w2 + a2w3 < 0, w2 > 0, w3 > 0
}
,

Rn,3 = {(b1w1 + b2w2, b3w3, w1, w2) : (w1, w2, w3) ∈ Rn,2}.
Asymptotically, as ‖x‖ → ∞, we thus have the dynamics

Rn,1 →
{
Rn,1 w.p. 1 − γ,

Rn,2 w.p. γ,

Rn,2 → Rn,3,

Rn,3 →
{
Rn,1 w.p. 1 − γ,

Rn,2 w.p. γ.

The stationary distribution for the 3-state chain is 1
1+γ (1 − γ, γ, γ). Now observe

that

λ1 = sup
x∈U

‖A1x‖
‖x‖ and λ2 = sup

x∈U

‖A1A2x‖
‖x‖ ,

are eigenvalues of A1 and A1A2, respectively (since both A1 and A1A2 have eigen-
vectors in U). Applying Theorem 1, it easily follows that

ρi,S = (λ1−γ
1 λγ

2 )1/(1+γ)

and a sufficient condition for ergodicity is ρi,S < 1.
By assumption, λ1 �= λ2. Therefore, we conjecture that the condition above is

not sharp. It is, however, apparent that a deeper analysis would be required to
improve it substantially. At best one must consider the random process on all of U
with the dynamics

x→
{
A1x w.p. 1 − γ,

A1A2x w.p. γ.

4. Discussion

In cases where some of the regions that do not allow approximation by a finite
state chain as in (7) are “recurrent” in the sense that (8) fails, the finite state chain
approximation is of no use. This could happen when an eigenvector of a companion
matrix lies near to and parallel to a threshold, for example, or when the action of
a companion matrix in a “recurrent” region rotates points towards a threshold.

The TAR and TAR-like processes benefit from the fact that the errors become
inconsequential as the process grows large. Some threshold processes do not possess
these properties, TAR-GARCH processes being an example. The results in this
paper are not general enough to handle these cases.
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5. Proofs

We direct the interested reader to Meyn and Tweedie [4] for details and definitions.
Considering the state-space/general state Markov chain representation of the time
series allows the use of well-known techniques for determining stability of the pro-
cess (see [4]). One common technique is to demonstrate that the process satisfies a
drift criterion for stability. This usually entails constructing a test function designed
expressly for the purpose.

These drift criteria all depend upon the Markov chain being ψ-irreducible and
aperiodic. The TAR process leads to a ψ-irreducible, aperiodic Markov chain under
reasonable conditions, such as if the error distribution possesses an everywhere
positive density which is lower semi-continuous [9]. In this case the maximal irre-
ducibility measure ψ is absolutely continuous with respect to Lebesgue measure,
and compact sets are petite.

There are different drift criteria for the different forms of Markov chain stability.
From Lemma 2(i) in [1], {Xt} is V -uniformly ergodic if {Xt} is a ψ-irreducible,
aperiodic general state Markov chain, V ≥ 1 is an unbounded, locally bounded and
measurable test function, if for some integer k ≥ 1 and all M <∞

lim sup
V (x)→∞

Ex[V (Xk)]
V (x)

< 1, sup
V (x)≤M

Ex[V (Xk)] <∞, sup
x

Ex[V (X1)]
V (x)

<∞, (13)

and if the sublevel sets C(V )
M := {x : V (x) ≤ M} are petite. Under certain condi-

tions, pre-compact sets are petite, so if the topology of the state-space is determined
by the norm ‖ · ‖ and V → ∞ as ‖x‖ → ∞, then the sublevel sets {x : V (x) ≤ c}
are petite.

Similarly, demonstrating instability of Markov chains is equivalent to construct-
ing a test function of the chain which satisfies a drift criterion for transience. From
Lemma 2(ii) in [1], {Xt} is transient if {Xt} is a ψ-irreducible, aperiodic general
state Markov chain, V ≥ 0 is an unbounded function with ψ({x : V (x) > M}) > 0
for all M <∞ and if for some positive integer k

lim sup
V (x)→∞

Ex

[
V (x)
V (Xk)

]
< 1. (14)

To prove V -uniform ergodicity or transience we construct a test function which
satisfies the appropriate drift criterion (13) or (14). In the interest of readability, we
first present two lemmas. This first lemma demonstrates the expected log change in
{Xt} when piggybacked upon a stationary distribution of {Jt} is negative in the case
of stability and positive in the case of transience, demonstrates that convergence
of the expected log change, conditioned upon an arbitrary initial value x, to these
expected values occurs in a finite time. This is used to derive a function hn which
tracks the log-drift of {Xt} among regions when moving according to the stationary
distribution of {Jt} and which satisfies conditions similar to the drift conditions for
stability and transience. The test functions for {Xt} will then be piggybacked upon
hn. Recall the definitions of ρi,I , ρi,S in Eq. (10).
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Lemma 1. Suppose (A1) holds. Define h(i, z) := log(ρi,z) and hn(i, z) :=∑n−1
t=0

n−t
n Ei[h(Jt, z)], for z = I, S.

(i) If (11) in Theorem 1 holds, then there exists n∗ <∞ such that for n ≥ n∗

max
1≤i≤l

Ei[hn(J1, S)] + h(i, S) − hn(i, S) < 0. (15)

(ii) If (12) in Theorem 1 holds, then there exists n∗ <∞ such that for n ≥ n∗

max
i∈Su∗

hn(i, I) − Ei[hn(J1, I)] − h(i, I) < 0. (16)

Proof. By item,

(i) The assumptions imply π(u)h(S) :=
∑

j π
(u)
j h(j, S) < 0 for each u ∈ {1, . . . , k}.

If i ∈ Su for some u ∈ {1, . . . , k}, then Ei[h(Jt, S)] → π(u)h(S). Since the num-
ber of states is finite, the transient states T are uniformly transient, and since h
is bounded, there exists n∗ <∞ so that n ≥ n∗ implies 1

n

∑n
t=1Ei[h(Jt, S)] < 0,

for all i in {1, . . . , l}, and thus that

Ei[hn(J1, S)] + h(i, S) − hn(i, S)

= Ei

(
n∑

t=0

n− t+ 1
n

EJ1 [h(Jt, S)] −
n−1∑
t=0

n− t

n
Ei[h(Jt, S)]

)

=
1
n

n∑
t=0

Ei[h(Jt, S)] < 0.

(ii) Suppose (12) in Theorem 1 holds for u = u∗. By reasoning similar to the proof
of item (i) above, with (12) implying π(u∗)h(I) :=

∑
j π

(u∗)
j h(j, I) > 0, then

(16) follows.

This next lemma introduces a counterpart h′n to the function hn introduced
in Lemma 1, a function that tracks the log-drift among regions for {Xt}. It is
demonstrated that the expectation of h′n will be arbitrarily close to the expectation
of the function hn, averaged over a sufficiently long time, when the process {Xt} is
large. Let h′(x, z) =

∑l
j=1 h(j, z)Ix∈Rj , and let h′n(x, z) =

∑n−1
t=0

n−t
n Ex[h′(Xt, z)],

for n <∞.

Lemma 2. Suppose (A1), (A2) and either (11) or (12) hold. Then for arbitrary
γ > 0, there exists n = n(γ) with

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

|Ex[h′n(X1, z) − h′n(x, z)] − Ei[hn(J1, z) − hn(i, z)]| < γ,

z ∈ {I, S}. (17)

Proof. Let N = maxj |h(j, S)|. Given γ > 0 pick ε > 0 so that ε < γ/4N . The
transient states T being uniformly transient implies there exists a t∗∗ < ∞ with
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Pi(Jt ∈ T ) < ε for i ∈ T and t ≥ t∗∗. Using t∗ from (8) set t′ = max(t∗, t∗∗). Get
n∗ from Lemma 1 and pick n ≥ max(n∗, t′) so that 2N((t′ − 1)/n) + 2ε) < γ.

Applying the Markov property, and since x ∈ Ri implies h′(x, z) = h(i, z)

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

|Ex[h′n(X1, z) − h′n(x, z)] − Ei[hn(J1, z) − hn(i, z)]|

≤ N

n

n∑
t=1

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

|Px(Xt ∈ Rj) − Pi(Jt = j)| . (18)

Now for t ≥ t′, by (8)

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

max
j∈T

|Px(Xt ∈ Rj) − Pi(Jt = j)| < 2ε. (19)

Let BG(t,M) = {[Xt ∈ G] ∩ [‖Xt‖ > M ]}. Then from (7) given ε > 0 there exists
M <∞ so that

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

max
j∈G

|Px(Xt ∈ Rj) − Pi(Jt = j)|

≤ ε+ max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

Px([BG(t− 1,M)]C). (20)

Since the number of regions/states is finite, suppose w.l.o.g. that there exists η > 0
so that ‖Ai‖S > η for i ∈ {1, . . . , l}. It then follows that lim sup‖x‖→∞ Px(‖Xt‖ ≤
M) = 0. Then from this and (8), for t > t′

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

Px([BG(t− 1,M)]C) < ε. (21)

The conclusion follows from (18)–(21), and 1/n
∑t′−1

t=1 |Ex[h′n(Xt, z)] −
Ei[hn(Jt, z)]| ≤ 2N(t′ − 1)/n.

What remains is to use the knowledge that the functions h′n, hn are close in
expectation to build the test functions for {Xt} which satisfy the drift criteria for
ergodicity and transience.

Proof of Theorem 1. For an integer n and scalar s define Hn(s, x, z) :=
exp[sh′n(x, z)]. By item,

(i) Since the number of states is finite, from (15) there exists γ > 0 so that
Ei[hn(J1, S)] + h(i, S) − hn(i, S) < −γ for each i, for n ≥ n∗. Combining this
with (17) implies Ex[h′n(X1, S)]−h′n(x, S)+h(i, S) < 0 for each x ∈ Ri and each
i, and n ≥ max(n(γ), n∗). Now apply the fact that for y > 0, ys−1

s → log(y), as
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s → 0. This limit is only locally uniform in y, but since the random variables
are bounded, for n ≥ max(n(γ), n∗), for s small

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

Ex

(
Hn(s,X1, S)(ρi,S)s

Hn(s, x, S)

)
< 1. (22)

Since E|et|r <∞ and lim sup‖x‖→∞ ‖g(x)‖/‖x‖ = 0, then for s < min(r/2, 1)

max
1≤i≤l

lim sup
x∈Ri

‖x‖→∞

Ex

( ‖X1‖s

(ρi,S)s‖x‖s

)
= 1. (23)

For these choices of n ≥ max(n(γ), n∗) and s < min(r/2, 1) small enough so
that (22) holds, let V (x) = 1 + [Hn(s, x, S)‖x‖s]1/2. Then V ≥ 1 is norm-like,
measurable, bounded on compact sets and thus locally bounded, and by (22),
(23) and Cauchy–Schwarz,

lim sup
V (x)→∞

Ex

(
V (X1)
V (x)

)
< 1.

Since E|et|r < ∞ and each of the ‖Ai‖ are finite, then Ex[V (X1)] is bounded
for each M < ∞ on {x : V (x) ≤ M} and also supx 	=0Ex[V (X1)]/V (x) < ∞,
while E|et|r < ∞ implies Ex=0[V (X1)]/V (0) < ∞. Thus {Xt} is V -uniformly
ergodic by (13) with k = 1.

(ii) Suppose (12) holds for u = u∗. Arguments like those leading to (22) will show
by (16) from Lemma 1 that for small s, for n ≥ n∗ there exists ε1 > 0 so that

max
i∈Su∗

lim sup
x∈Ri

‖x‖→∞

Ex

(
Hn(s, x, I)

Hn(s,X1, I)(ρi,I)s

)
< 1 − ε1. (24)

Pick ε2 > 0 so that maxi∈Su∗ (1− ε1)[ρi,I/(ρi,I − ε2)]s < 1. Let C = maxi∈Su σi.
Now ‖g(x)‖+C|e1| ≤ ε2‖x‖ implies ‖X1‖ ≥ (ρi,I−ε2)‖x‖. Since Hn is bounded
away from zero, choose m1,m2 such that m1 ≤ Hn(s, x, I)−1 ≤ m2 for all s, x.
Also assume ‖x‖ is so large that ‖g(x)‖/‖x‖ ≤ ε2/2. Then

Hn(s, x, I)−1 + ‖x‖s

Hn(s,X1, I)−1 + ‖X1‖s
≤ m2 + ‖x‖s

m1 + (ρi,I − ε2)s‖x‖s
I{‖g(x)‖+C|e1|≤ε2‖x‖}

+
m2 + (2C|e1|/ε2)s

m1
I{‖g(x)‖+C|e1|>ε2‖x‖},

so that since E|e1|s <∞ for s < r, by Markov’s inequality

max
i∈Su∗

lim sup
x∈Ri

‖x‖→∞

Ex

(
(Hn(s, x, I)−1 + ‖x‖s)(ρi,I)s

Hn(s,X1, I)−1 + ‖X1‖s

)
≤
(

ρi,I

ρi,I − ε2

)s

. (25)
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Recall Q := ∪i∈Su∗Ri and observe that since Hn is bounded, for any x

Hn(s, x, I)−1 + ‖x‖s

Hn(s,X1, I)−1 + ‖X1‖sIX1∈Q
≤ m−1

1 [Hn(s, x, I)−1 + ‖x‖s]IX1 	∈Q

+
Hn(s, x, I)−1 + ‖x‖s

[Hn(s,X1, I)−1 + ‖X1‖s]
IX1∈Q.

(26)

For the chosen n and s < r let V (x) = (1 + ‖x‖sHn(s, x, I)Ix∈Q)1/2.
Then by (24)–(26), Cauchy–Schwarz, and since by assumption lim sup‖x‖→∞

x∈Q

×
‖x‖rPx(X1 �∈ Q) = 0,

lim sup
V (x)→∞

Ex

(
V (x)
V (X1)

)
= max

i∈Su∗
lim sup

x∈Ri

‖x‖→∞

Ex

(
V (x)
V (X1)

)
< 1 (27)

so that (14) is satisfied with k = 1 and therefore {Xt} is transient. �
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