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Abstract

In this paper we note that while the results of a 1981 paper of H. Tong’s are generally valid and can
be strengthened, there is a special case that behaves di3erently. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Following Tong (1981), we adopt the name “simple Markov bilinear stochastic process” for a
Markov process {Xn} de;ned by

Xn = aXn−1 + benXn−1 + en; (1.1)

where {en} is a sequence of i.i.d. random variables with a density function that is positive and lower
semicontinuous on the real line R, a and b are constants. It is an AR(1) process with ARCH(1)-type
errors. This model is useful for modeling ;nancial time series in which the current volatility depends
on the past value, including on its sign. This asymmetry has been pointed out to be a characteristic
feature of ;nancial time series. (See Rabemanajara and Zakoian, 1993 and the references therein.)

Tong (1981) studies this process and concludes that a suAcient condition for ergodicity is E(|a+
ben|)¡ 1. This conclusion was proved by assuming that {en} is a Gaussian white noise process and
using the ergodic drift criterion with the test function V (x)= |x| (see Section 3). Tong remarks at the
end of his paper that the normality assumption of en can be replaced by an assumption of absolutely
continuous distribution with ;nite mean. At ;rst glance, the proof can go through with the weaker
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assumption with no problem. The conclusion only holds, however, when a �=1. The story is di3erent
if a= 1. Of course, if E(en) = 0 then E(|a+ ben|)¿ |E(a+ ben)|= |a|, and hence E(|a+ ben|)¡ 1
implies |a|¡ 1. But if a = 1 and E(en) �=0 then there can exist b∈R such that E(|1 + ben|)¡ 1
and yet {Xn} is not ergodic. Why does the drift criterion fail in case a= 1?
We will investigate the case a= 1 in Section 2, answer the above question and show a stronger

result, namely geometric ergodicity, for the case a �=1 in Section 3. Finally, in Section 4, we mention
some other AR(1) processes with ARCH(1)-type errors that have been studied recently.

2. Ergodicity, stationary distribution and limiting distribution

It is well known that there is a unique stationary distribution � for an ergodic Markov process
and, for every initial state x,

Pn(x; A) → �(A) as n → ∞ for all measurable sets A; (2.1)

where Pn(· ; ·) is the nth transition probability for the Markov process. On the other hand, a Markov
process may have a stationary distribution � without being ergodic and (2.1) may fail for some x.
We shall see that {Xn} de;ned by (1.1) is not ergodic when a = 1 even if E(|1 + ben|r)¡ 1 for
some r ∈ (0; 1], but in this case, {Xn} has a unique stationary distribution which is the weak limit
of Pn(x; ·) as n → ∞ for every x∈R.

Theorem 2.1. If a = 1; the process {Xn} on R is not  -irreducible for any measure  on B(R)
and hence cannot be ergodic.

Proof. It is clear that if Xj =−1=b for some j; then Xn =−1=b for all n¿ j. Also; if x �=− 1=b then

P
(
x;
{
−1

b

})
= P

(
x + (bx + 1)en =−1

b

)
= 0:

Thus; both {−1=b} and R\{−1=b} are absorbing for {Xn} and the conclusion follows.

For x∈R, let �x denote the degenerate distribution concentrated at x.

Theorem 2.2. Suppose a = 1 and E(log(|1 + ben|))¡ 0. Then �−1=b is the unique stationary dis-
tribution for {Xn} and (2:1) holds only when x =−1=b. Nevertheless; Pn(x; ·) converges weakly to
�−1=b (in notation; Pn(x; ·) ⇒ �−1=b) for every x∈R.

Proof. It is trivial to see that �−1=b is a stationary distribution for {Xn} and (2.1) holds only when
x=−1=b. To show the weak convergence; let �=E(log(|1+ben|)) and Yn=Xn+(1=b). Now assume
y �=0 and Y0 = y. Then

Yn = (1 + ben)Yn−1 = (1 + ben)(1 + ben−1)Yn−2 = · · ·=
n∏

j=1

(1 + bej)y

and Y 1=n
n → e� ¡ 1 by the strong law of large numbers. Hence;

P(|Yn | ¿�|Y0 = y) → 0 as n → ∞; (2.2)
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Trivially; (2.2) also holds for y = 0. It is easy to see from (2.2) that; for every x∈R;
Pn(x; ·) ⇒ �−1=b as n → ∞: (2.3)

Now, suppose that � is a stationary distribution for {Xn}, then for every A∈B(R) and every
n¿ 1,

�(A) =
∫

Pn(x; A)�(dx):

This and (2.3) imply �= �−1=b. Hence �−1=b is the only stationary distribution.

3. The drift criteria

Suppose {Xn} is a Markov process on a normed space X and B(X) is the Borel �-;eld on X
with topology generated by the norm. Here, we mention two drift criteria, namely, the ergodicity
drift criterion and the geometric ergodicity drift criterion.
The (geometric) ergodicity drift criterion. There exist a nonnegative B(X)-measurable function

V on X (with V (·)¿ 1), a small set K ⊂ X, ;nite positive constants c(c¡ 1) and B such that

E(V (X1)− V (x)|X0 = x)6− c for every x �∈ K; (3.1)

(E(V (X1)− V (x)|X0 = x)6− cV (x) for every x �∈ K) (3.1g)

and

E(V (X1)− V (x)|X0 = x)6B for every x∈K; (3.2)

where the extra conditions needed for the geometric ergodicity are put in the parentheses.
If the process {Xn} is aperiodic and  -irreducible for some nontrivial �-;nite measure  on B(X),

then the drift criteria imply ergodicity and geometric ergodicity, respectively. In practice, K is often
chosen to be a compact set and {Xn} is in a “certain class of chains” which guarantees that every
compact set is small. The “certain class” originally meant strong Feller chains (Tweedie, 1975) but
now can be taken to mean T -chains (Meyn and Tweedie, 1992 or 1993).

In Tong (1981), it is asserted that {Xn} de;ned by (1.1) is strong Feller and the ergodicity drift
criterion is applied with V (x) = |x|, c¿ 0, B = E(|en|) and K = {x∈ � : |x|6 (c + B)(1 − �)−1},
where � = E(|a + ben|)¡ 1, but the notation � is not explained. Since {Xn} is strong Feller on
R\{−1=b}, not on R, it is reasonable to assume that � = R\{−1=b}. Clearly (3.1) and (3.2) are
satis;ed and ergodicity is claimed. Note that in this proof, E(en) = 0 is not used. Also, (3.1) and
(3.2) are satis;ed no matter a=1 or not. However, as we pointed out in the introduction, if E(en) �=0
then there exists b∈R such that E(|1 + ben|)¡ 1. In case a= 1, {Xn} restricted to �=R\{−1=b}
is aperiodic and  -irreducible (see Cline and Pu, 1998) and strong Feller, but Theorem 2.2 im-
plies that this restricted process has no stationary distribution and hence cannot be ergodic even if
E(|1+ ben|)¡ 1. What could be going wrong here? The answer is: K is not compact (Theorem 3.1
below) and may not be small and hence we cannot say that the ergodicity drift criterion is satis;ed
even though (3.1) and (3.2) hold. (In fact, this together with Theorem 2.2 shows that K is not small
for {Xn}.)
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Theorem 3.1. Let �=R\{−1=b}. If �= E(|1 + ben|)¡ 1 and B= E(|en|); then K = {x∈� : |x|6
(c + B)(1− �)−1} is not compact for any c¿ 0.

Proof. First; we note that E(|1 + ben|)¡ 1 implies b �=0. Clearly; −1=b �∈ K and K cannot be
compact unless (c+B)(1−�)−1 ¡ |b|−1. Now; �=E(|1+ben|)¿ 1−|b|B and hence (1−�)6 |b|B.
Thus; for any c¿ 0; (c + B)(1− �)−1¿B(1− �)−1¿ |b|−1 and K is not compact.

Remark. If the underlying space is R; then K is relatively compact since it is bounded. In the case
a=1; however; we cannot apply the drift criteria to {Xn} on R; since it is not  -irreducible for any
 (Theorem 2.1).

Now assume a �=1. Then {Xn} de;ned by (1.1) is weak Feller on R, aperiodic and �-irreducible,
where � is the Lebesgue measure on B(R) since the density function of en is positive everywhere on
R. Clearly, the support of � is R which has nonempty interior. This implies that {Xn} is a T-chain
(Meyn and Tweedie, 1993) and hence the use of the drift criteria with compact set K is secured.
Since the set K = {x∈R: |x|6C} is compact for every C ¿ 0, we can easily get (3.1g) and (3.2)
by taking V (x) = 1 + |x|r . Hence, we have the following theorem which may be considered known
by now, but we provide it here for completeness.

Theorem 3.2. Suppose {Xn} is de:ned by (1:1) with a �=1. If there exists r ¿ 0 such that E(|en|r)¡
∞ and E(|a+ ben|r)¡ 1 then {Xn} is geometrically ergodic.

Corollary 3.3. Suppose {Xn} is de:ned by (1:1) with a �=1 and there exists r ¿ 0 such that
E(|en|r)¡∞. Let f denote the density function of en.

(i) If supu∈R f(u) =M ¡∞, then E(|log(|a+ ben|)|)¡∞.
(ii) If E(|log(|a+ ben|)|)¡∞ and E(log(|a+ ben|))¡ 0; then {Xn} is geometrically ergodic.
Proof. Both conclusions are obvious if b = 0. Assume b �=0. Note that if supu∈R f(u) = M ¡∞;
then

E((log|a+ ben|)1|a+ben|61) =
∫

(log(|a+ bu|)1|a+bu|61f(u) du

=
∫ 1

−1
log |v|f

(
v− a
b

)
b−1 dv¿ 2Mb−1

∫ 1

0
log(v) dv¿−∞:

It follows from the above and the assumption E(|en|r)¡∞ for some r ¿ 0 that (i) is proved.
Since

log(|a+ ben|)6 |a+ ben|s − 1
s

6
|a+ ben|r − 1

r
for all s∈ (0; r];

we can use the dominated convergence theorem to conclude that

lim
s↓0

E
( |a+ ben|s − 1

s

)
= E(log(|a+ ben|))¡ 0:

Thus, there exists s¿ 0 such that E(|a+ ben|s)¡ 1 for some s¿ 0 and (ii) follows from Theorem
3.2 immediately.
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Remarks. (i) As Quinn (1982) points out; it is interesting to note that there are combinations of a;
b and the distribution of en that allow ergodicity even if |a|¿ 1.

(ii) Suppose E(|log(|x+en|)|)¡∞ for all x∈R. Quinn (1982) shows that if E(log(|a+ben|))¡ 0,
then (1.1) admits a strictly stationary solution:

Xn = en +
∞∑
j=1

{
j−1∏
i=0

(a+ ben−i)

}
en−j:

In fact, the series
∑∞

j=1 {
∏j−1

i=0 (a+ ben−i)} is almost surely absolutely summable. Hence,

Xn = en +
1
b

∞∑
j=1

{
j∏

i=0

(a+ ben−i)− a
j−1∏
i=0

(a+ ben−i)

}

=
−a
b

+
1− a
b

∞∑
j=1

j−1∏
i=0

(a+ ben−i):

In particular, if a= 1 then Xn =−1=b almost surely, as predicted by Theorem 2.2.

4. Other AR(1) processes with ARCH(1)-type errors

The process {Xn} de;ned by

Xn = aXn−1 +
√

1 + b2X 2
n−1en; (4.1)

with b¿ 0 is an AR(1) process with ARCH(1) errors, the simplest AR-ARCH model in which the
current volatility depends on the past value only through its magnitude. Borkovec and KlPuppelberg
(2001) mention that E(log(|a + ben|))¡ 0 is a suAcient condition for geometric ergodicity, under
general assumptions on en. This may be proved by an argument similar to our Corollary 3.3.
An AR(1) process with general ARCH(1)-type errors de;ned by

Xn = aXn−1 + (&(Xn−1)Xn−1 + �)en (4.2)

is studied by Ferrant et al. (2000), where {en} is the same as stated at the beginning of this paper,
a and � are real numbers, and the function &(·) satis;es some regularity condition so that {Xn} is
an aperiodic,  -irreducible T-chain. A suAcient condition for geometric ergodicity is found to be

|a|+ sup
x∈R

|&(x)|E(|en|)¡ 1 (4.3)

by using the geometric ergodicity drift criterion with V (x) = 1 + |x|. This model can handle the
asymmetry in volatility and includes model (1.1), but |a| has to be less than 1 if (4.3) is satis;ed.

Pu and Cline (2001) study nonlinear AR(p) processes with ARCH(p)-type errors with aAne
threshold. Included there is the example (case p= 1)

Xn = a∗(Xn−1) + b∗(Xn−1)en + a0(Xn−1) + b0(Xn−1)en; (4.4)
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where a∗(x)=a11x¡0+a21x¿0, b∗(x)=b11x¡0+b21x¿0 and a0(x)=o(|x|), b0(x)=o(|x|) as |x| → ∞
and b∗(x)+ b0(x) �=0 for x∈R. Also, {en} is the same as in the above with E(|en|r)¡∞ for some
r ¿ 0 and supu∈R f(u)¡∞ as in Corollary 3.3(i). A suAcient condition for geometric ergodicity
in case |ai|+ |bi| �=0, i = 1; 2, is

P(a2 + b2e16 0)E(log|a1 + b1e1|) + P(a1 + b1e16 0)E(log|a2 + b2e1|)¡ 0:

If a1=b1=0 and b2 �=0 (or a2=b2=0 and b1 �=0) then {Xn} is geometrically ergodic. This result is
obtained by using a new approach called the piggyback method (Cline and Pu, 2001). The condition
is sharp, but the model does not include (1.1) since it requires that b∗(x) + b0(x) �=0 for all x∈R.
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