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Confidence intervals are an important tool. Realistic confidence intervals account for both random errors and systematic errors 
(bias). We improve the usual method for combining random and systematic errors. The new methods are simple and often result in 

increased accuracy for confidence interval levels. 

INTRODUCTION 

An important problem in science is to de- 
termine when individual measurements taken un- 
der different conditions are measurements of a 
nearly common property. When they are, the 
proper and common practice is to combine these 
measurements into a single estimate. For example, 
when certifying standard reference materials 
(SRMs) several different types of measurement 
devices are commonly used. Each device has its 
own systematic error (bias) and it is not clear 
whether these devices are measuring nearly the 
same property. We say that devices are measuring 
nearly the same property if the population means 
from these devices are within the stated bounds on 
systematic error. It is assumed that each bias can 

be quantified so that a known bound on bias error 
can be calculated. 

This paper provides methods for testing whether 
these devices are measuring nearly the same prop- 
erty. The first method is based upon the usual bias 
correction to t-confidence intervals while the sec- 
ond, more powerful, method relies on a sophisti- 
cated bias correction to t-confidence intervals. 

If we do not reject the null hypothesis that the 
methods measure nearly the same property then 
techniques found in refs. l-3 can and should be 
applied to produce a single estimate as well as an 
uncertainty statement for the estimate of this 
nearly common property. We formulate the null 
hypothesis as stating that the means of the differ- 
ent measurements do not differ from a common 
value by more than the stated bounds on bias. 
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NOTATION 

We follow the notation in ref. 1. Let: 

Xij=p+ri+ci,, i,=l,..., I 

J, = . 1 ,...,ni>,2 

Here ‘; represent the bias (or ‘systematic error’) 
for group i, p represents the value of the common 
property, and the measurement variables, eij, are 
all independent with Var(rij) = u: and mean 0. 
Under the additional assumption of Gaussian er- 
ror distribution the best estimator of p + ri is 
3, = Cl_, X,/n,. As in ref. 1 we assume that 
known bounds can be placed upon the biases 
‘;, 1 ri 1 6 M,. These bounds are usually based upon 
judgement, experimental calculations, and/or the- 
oretical calculations. (See ref. 1 for a discussion of 
the bounds.) 

The use of bounds for systematic error is routine 
practice in standards laboratories [1,4,5]. The ef- 
fect of bias on confidence intervals is a topic of 
current interest to statisticians who work on non- 
parametric regression and calibration (smoothing), 
see ref. 7 for example. The topic of this paper 
would be a very simple case of nonparametric 
regression. 

We assume symmetric bounds on the biases. If 
the bounds are asymmetric Li =G ri G iJ then re- 
place xi with gi - (LJ + Lt)/2 and replace M, 
with (v, - Li)/2. 

This allows us to state the hypotheses to be 
tested as: 

Ho: jr,] G”i 

W,:atleastoneIq] >Mi. 

METHODS 

The tests use a simple graph and probability 
calculations. We consider two cases: 

The first case that we consider is when the 
bounds, M,, are small. In this case we form the 
standard bias corrected confidence intervals for p, 
see ref. 4, Xi i: (tl-n~,2,n,_1Si/& + Mi)* The 
constant t, -rr~,2,n,-l is the 1 - (u//2 percentile of 
the t distribution with ni - 1 degrees of freedom, 
and S,’ is the usual unbiased estimate of ui2. 

If any of these confidence intervals fail to over- 
lap then the set of means are judged different at 
the 1 - (1 - CY’)~ level, and indi~dual (or group) 
estimates must be used. Alternatively Bonferonni’s 
in~uality can be used to give a conservative level 
of the test to be ka’. 

Our alternative approaches are useful for cases 
when at least one bias bound is big. One method 
is a procedure found in ref. 7 to shorten the length 
of the bias corrected confidence intervals. Assum- 
ing that r; is within the stated bound, it follows 
that the minimum probability that xi f (kS,/ 
&+Mi) contains p is P(-Mi-kSi/&6ii 

d Mi + kSi/ 6) which is greater than or equal to 

P( -2it4, - kSi/ fi G C Q k&/K). This lower 
bound is attained when ‘; equals either M, or 
-M,. Now if Si = a, (or the degrees of freedom 
are extremely large) then we can solve for the k 
such that 

P(-2Mi-k.Si/1/;;;<~i~kSi,‘~)=1-a’ (1) 

(This was done in ref. 7 where the probability was 
calculated from a normaI dist~bution). Note that 
for any (Y’ > 0 and Mi > 0, k is less than the 
1 - a/2 percentile of the relevant t or standard 
normal distribution. Our first method simply as- 
sumes that S, can be used as an estimator of ui 
and that in the last probability calculation a t-dis- 
tribution can be used. For this reason we have 
called it the ‘plug-in’ method. We can see from 
Fig. 1 that the approximation is adequate for 
ranges of bias and accuracy requirements encoun- 
tered in practice. 

An alternative procedure, which is based on an 
analytic approximation, requires computing the 
quantile function of Student’s f dist~bution rather 
than solving eq. (1). We refer to it as the ‘tail-ap- 
proximation’ method. The algo~thm has three 
steps, executed once, and they are (for n = ni): 

nMz 
(1) let #2=4-$-. 

(2) let Q= 1 --p,(h), 

where p, is the x”, distribution. 

(3) let L= f,_,(l - --%=I, 
1+4 
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Fig. 1. Error rate for plug-in method with one standard error 
limit. The nominal rate is 0.10. 

where t, _ 1 is the Students’ t ( n - 1) 
quantile function. 

Then k is our new t-value. 
The justification for this algorithm is as fol- 

lows. We wish to solve 

(2) 

Letting T = &Z/S,, W = nC2/uf + (n - I)Si/Uf 

and m = 4nM,2/u,2, one may show that the right 
hand side of eq. (2) is equal to 

T’+n-1 

(T-k)’ 

For large k (such as the solution to the equation), 
the distribution of T/k, given T > k, is nearly 
Pareto and is nearly independent of k [8] (ap- 
parent from the density of T in its tails). We may 
define 

dP(W>m) (3) 

Hence 

(Y = P(T> k)(l + q(m)) 

Q P(T> k)(l + P(W> m)) 

After first estimating m, this is easily solved for 
k to give the stated algorithm. Note that for 
known m (and thus k), the method is guaranteed 
to be conservative since each term in the limit in 
(3) is bounded by P( W > m). The approximation 
would be improved by actually evaluating q(m) 
(with numerical integration) rather than by 
bounding it with P( W > m). 

EVALUATION 

Our conclusions (below) are based on Monte 
Carlo methods of integration. We determined, for 
each of the proposed methods, the error rate and 
the expected decrease (from t,,,) in the t-value. 
The integrations use a simple regression technique 
(see ref. 6, p. 66) relying on the fact that each 
expectation is the integral of a function of a 
cm-square (n - 1) random variable Y = (n - 
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Fig. 2. Error rates for tail method with one standard error 
limit. The nominal rate is 0.10. 



134 Chemometrics and Intelligent Laboratory Systems n 

---_-. n=20 

-.-.-.__.. “C,O 

________. “=5 

. . . . . . . . . . “=4 

-2 

LOG, t&Y 
0 

Fig. 3. Improvement in t values for plug-in method with one 

standard error limit. 
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Fig. 4. Improvement in t values for tail approximation method 

with one standard error limit. 

l)SF/crf. The error rates were estimated by re- 
gressing the conditional probability of error, given 
Y, for each method, on the corresponding condi- 
tional probability using t,,, as the t-value. The 
expected t-values were obtained by regressing the 
t values for each method on Y itself. We used 
1000 random variates to generate the results. 

Figs. l-4 illustrate these estimates, as functions 
of sample size (n) and relative bias (M/q). The 
relative bias was varied from 0.125 to 2.0 and the 
sample size was varied from 2 to 20. No substan- 
tial improvements were seen for samples of size 
greater than 20. Standard error bars are provided 
in the graphs, though in many instances they are 
too small to be seen. 

CONCLUSIONS 

The usual method of correcting for systematic 
error by adding the bias bound to both sides of 
the confidence interval is unduly conservative. It 
gives wider confidence intervals than desired as 
well as conservative coverage of the confidence 
intervals. We have given two methods that more 
accurately expand the standard textbook t-confi- 
dence intervals so as to account for systematic 
error. Both methods produce confidence intervals 
that are always shorter than the usual bias cor- 
rected confidence intervals. This can be seen in 
Figs. 3 and 4 where the improvement in the r-value 
used is as much as 3 (a 50% improvement). If the 
bias is large then both of our methods are more 
accurate than the usual method, as can be seen 
from Figs. 1 and 2. The standard corrections are 
very conservative. The values for the bias to sigma 
ratio were taken from extensive experience at the 
National Institute for Standards and Technology 
(formerly the NBS). Therefore, for many confi- 
dence intervals a substantial increase in accuracy 
and narrower confidence intervals can be obtained 
in practice. C. Eisenhart, a former President of the 
American Statistical Association, says that the 
power of a statistical method is its mathematical 
power (in this case related to the width of the 
confidence intervals) times the number of times 
that it is used. By this definition the two methods 



l Original Research Paper 135 

presented have the potential to be powerful statis- 
tical techniques. 

Most of the time the plug-in method and the 
t~l-appro~mation method are about equally ac- 
curate (see Figs. 1 and 2) and so we recommend 
the plug-in method except when the bias is large 
and the sample size is small. When the sample size 
is 2 or 3 (a common Occurrence in one of the 
authors’ experience) and the bias is large (M/u > 
0.5) then the tail-approximation method is more 
accurate and produces shorter intervals. 

An important feature of the usual 90% confi- 
dence intervals is that they are conservative in the 
presence of outliers. When extreme observations 
are present the multiple of the t percentile times 
the estimated standard deviation generally shifts 
more than the sample mean. Both of our confi- 
dence interval methods also appear to be robust. 
The effect of an extreme obse~ation also de- 
creases the estimate of n/r/o so that our intervals 
become more conservative. Small scale simula- 
tions have shown us that this heuristic argument is 
valid. It is possible to construct examples where 
the usual t-intervals are not conservative and 
therefore the same examples would also make out 
intervals non-robust. However, the user happy with 
t-interval performance would be happy with ours. 
In no case will either of our methods produce a t 
value smaller than the a: percent point from the 
t-distribution with the appropriate degrees of free- 
dom. 

In addition, we have provided several figures 
illustrating how the calculated t-values for the two 
methods will depend on the observed value of 
M/S. These figures can be used to obtain the 
approximate t-values in practice. More to the 
point, however, they illustrate the relationship be- 
tween the two methods. 

For example, Fig. 5 demonstrates that when 
n = 2 the plug-in t-value is larger and more con- 
servative than the tail-approximation. In fact, un- 
less the bias is very small, the tail-approximation 
method is clearly to be preferred. This relationship 
evolves as n increases until it is nearly reversed 
when n = 5 (Fig. 6). For n & 5, the tail-approxi- 
mation method appears to be much too conserva- 
tive except for very large bias, when the two 
methods are equivalent. 
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Fig. 5. i-Value vs. log, M/S. Comparing methods when n = 2. 

The figures thus substantiate the conclusions of 
our simulation: the tail-approximation method is 
preferred when n = 2 or 3, though less so in the 
latter case, and not otherwise. 
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Fig. 6. t-Value vs. log, M/S. Comparing methods when n = 5. 
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