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Abstract

The stability of generally de�ned nonlinear time series is of interest as nonparametric and other
nonlinear methods are used more and more to �t time series. We provide su�cient conditions
for stability or nonstability of general nonlinear AR(1) models having delay d¿1. Our results
include conditions for each of the following modes of the associated Markov chain: geometric
ergodicity, ergodicity, null recurrence, transience and geometric transience. The conditions are
sharp for threshold-like models and they characterize parametric threshold AR(1) models with
delay. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we are interested in the stability of the �rst-order nonlinear time series
model with delay lag d¿1. Speci�cally, the model is

�t = ’(�t−1; : : : ; �t−d)�t−1+#(�t−1; : : : ; �t−d)+c(et ; �t−1; : : : ; �t−d); t¿1; (1.1)

where ’ and # are bounded and measurable, c is measurable and {et} is an iid sequence
of random variables, independent of the initial values �1−d; : : : ; �0. Examples studied
in the literature include �rst-order threshold models with ’ depending only on the
sign of �t−d (Chen and Tsay, 1991; Lim, 1992) and �rst-order amplitude-dependent
exponential autoregressive (EXPAR) processes where ’(�t−1; : : : ; �t−d) = �+ �e−��2t−d

(cf. for example, Tong, 1990). However, ’ could be de�ned more generally than either
of these.
As models such as (1.1) are being �t to nonlinear autoregressive time series, under-

standing their stability has become increasingly important. (cf. Chen and Tsay, 1993a,b;
TjHstheim and Auestad, 1994a,b; H�ardle et al., 1997). In a series of work, Chan
(1990,1993) and Chan and Tong (1985,1994) pioneered the study of the stability of
general nonlinear time series, applying well known drift conditions for Markov chains.
(See also Tong, 1990). In particular, they identi�ed stability conditions for models
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in which the autoregression function is Lipschitz continuous. Others (Chan and Tong,
1986; Chen and Tsay, 1993a; Gu�egan and Diebolt, 1994; An and Huang, 1996; Lu,
1996) have identi�ed conditions without the continuity assumptions but the conditions
can be fairly strong when either the autoregression order p or the delay lag d is greater
than 1.
These e�orts either do not include or do not characterize models with discontinu-

ous regression functions, such as parametric threshold models for which either p or
d is greater than 1. The only threshold models which have been characterized are the
self-exciting threshold autoregression (SETAR) model of order 1 and no delay (Petru-
celli and Woolford, 1984; Chan et al., 1985; Guo and Petrucelli, 1991) and the simplest
threshold models of order 1 and delay d¿ 1 (Chen and Tsay, 1991; Lim, 1992). This
paper will characterize the stability of more general threshold models with order 1 and
delay d¿ 1.
The “coe�cient function” ’(x) in (1.1) and the “intercept function” #(x) can be

construed either nonparametrically or parametrically. For example, the otherwise non-
parametric model (1.1) can be a partially parameterized “threshold-like” model as fol-
lows. Let x = (x1; : : : ; xd) ∈ Rd and u= (u1; : : : ; ud) ∈ U= {1;−1}d and suppose there
exist

�u = lim
miniuixi →∞

’(x); �u = lim
miniuixi →∞

#(x) for all u ∈ U: (1.2)

The EXPAR models, for example, are threshold like. A fully parametric threshold
model would have

’(x) = �u; #(x) = �u for uixi ¿ 0; u ∈ U: (1.3)

The partially parametric model (1.2) is quite general because it makes no assumptions
about ’(x) near the thresholds (i.e., when one component of x is “small”). In this
paper we provide sharp conditions for stability of the partially parameterized model,
the characterization being complete for the fully parameterized model. These results
are simple consequences of our conditions for stability and nonstability of the non-
parametric model.
The results are presented in Sections 2 and 3. In Section 2 we provide conditions

for the Markov chain associated with {�t} to be geometrically ergodic and conditions
for it to be geometrically transient. Such conditions do not rely heavily on the intercept
term #(x) or on the error term c(e1; x). In Section 3 we look at more re�ned conditions
for ergodicity and transience, as well as for null recurrence. These conditions are much
more sensitive to #(x) and c(e1; x). Examples are provided and the proofs are given
in Section 4.

2. Conditions for geometric ergodicity and geometric transience

The Markov chain associated with the autoregression process in (1.1) is

Xt = (�t; �t−1; : : : ; �t−d+1): (2.1)
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Stability of the time series (1.1) is determined in terms of Harris recurrence of (2.1).
By ergodicity we mean positive Harris recurrence, as we will assume aperiodicity and
irreducibility throughout. Conditional probability and expectation, given the initial state
of the chain are denoted as Px(·) = P(·|X0 = x) and Ex(·) = E(·|X0 = x), respectively.
In this section we provide conditions for {Xt} to be geometrically ergodic or geo-

metrically transient. By the latter we mean there is a positive probability the process
will grow geometrically fast, for any initial state. The conditions are stronger than
those for simply proving ergodicity or transience but much less can be assumed
about the error term. In particular, the results in this section can be applied to the
�-ARCH models of Gu�egan and Diebolt (1994). These models are characterized by
|c(v; x)|6K(1 + ||x||�|v|) for some K ¡∞ and 0¡�¡ 1.
We �rst identify conditions applicable to general nonlinear models satisfying (1.1)

and then adapt them to nonparametric models exhibiting cyclic behavior. We will apply
the results to obtain sharp conditions for the partially parametric model given by (1.2)
and compare our results to those for similar cyclical models in the literature. The last
result of the section does not assume the cyclic behavior but it does assume more
smoothness.
De�ne a(x) = ’(x)x1 for x = (x1; : : : ; xd) ∈ Rd. We will assume throughout that

’(x) and #(x) are bounded and that, for each x ∈ Rd, c(et ; x1; : : : ; xd) has a lower
semicontinuous density positive everywhere on R. These conditions ensure that {Xt} is
aperiodic and  -irreducible with Lebesgue measure (�d) as the irreducibility measure
(Cline and Pu, 1998b; cf. Meyn and Tweedie, 1993 for de�nitions and related condi-
tions). We also assume {Xt} is a T -chain (again, cf. Meyn and Tweedie, 1993). This
is so, for example, if c(e1; x) = b(x)e1 where both b and the density of e1 are locally
bounded away from 0 (Cline and Pu, 1998b).
In addition, our results in this section will refer to the following assumptions about

the error term c(e1; x). Note that the assumptions hold trivially for additive errors or
even when {|c(e1; x)|r} is uniformly integrable for some r ¿ 0. The assumptions also
hold for the �-ARCH models of Gu�egan and Diebolt (1994) when �¡ 1.

Assumptions. Let r ¿ 0 and let || · || be a norm de�ned on Rd.
(A.1) For each M ¡∞; sup||x||6M E(|c(e1; x)|r)¡∞ and

lim sup
||x||→∞

E(|c(e1; x)|r)
||x||r = 0:

(A.2) The function s(x) = min(|a(x)|; |x1|; : : : ; |xd|) is unbounded on Rd and for
each �¿ 0,

lim sup
s(x)→∞

sr(x)P(|c(e1; x)|¿�|a(x)|) = 0:

(A.3) |c(e1; x)|=|a(x)|→ 0 in probability, as |a(x)|→∞;mini |xi|→∞.

Our results rely on well-known drift conditions for Markov chains, involving care-
fully crafted test functions. We start by establishing a general condition for geometric
ergodicity of the Markov chain (2.1). Note that by de�nition X1 = (�1; x1; : : : ; xd−1)
when X0 = x = (x1; : : : ; xd). De�ne s(x) = min(|a(x)|; |x1|; : : : ; |xd|).
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Theorem 2.1. Assume (A:1). If s(x) is bounded or if there exists �: Rd → (0;∞);
bounded and bounded away from 0; and M ¡∞ such that

lim sup
|a(x)|→∞
mini|xi|→∞

Ex

(
�(X1)
�(x)

|’(X1)|r1|�1|¿M; sgn(�1)=sgn(a(x))

)
¡ 1; (2.2)

then {Xt} is geometrically ergodic.

Remark. An obvious condition for geometric ergodicity is lim sup||x||→∞|’(x)|¡ 1,
which ensures the process shrinks anytime it becomes too large. This, in fact, is the
condition one gets when applying known results for general autoregressive models
of order p to the order 1 model with delay d (e.g., Chan and Tong, 1986; Chen
and Tsay, 1993a; Gu�egan and Diebolt, 1994; An and Huang, 1996). Many stable
nonlinear time series do not have this trait, however, and instead one need only have
that |’(Xt+m) · · ·’(Xt+1)| is small, in some average sense and for some m, when �t is
large. In fact, by Cline and Pu (1999, Lemma 4.1), (2.2) is equivalent to

lim sup
|a(x)|→∞
mini|xi|→∞

Ex


 m∏

j=1

|’(Xj)|r1|�j|¿M


¡ 1 for some m¿1:

The indicator 1|�1|¿M; sgn(�1)=sgn(a(x)) within the expectation in (2.2) looks a bit cum-
bersome but it makes it possible to restrict consideration of the behavior of ’ to a
suitable subset of Rd.

Next, we have a general condition for geometric transience of the process (2.1).

Theorem 2.2. Assume (A:2). If there exists �: Rd → [0;∞); bounded; and R⊂Rd such
that �d({x ∈ R: �(x)|a(x)|r ¿M;mini|xi|¿M})¿ 0 for every M ¡∞ and

lim sup
s(x)→∞; x∈R

sr(x)Px(X1 6∈ R) = 0 (2.3)

and if there exists M ¡∞ and q¡ 1 such that

lim sup
�(x)|a(x)|r →∞
mini|xi|→∞; x∈R

Ex

(
�(x)|a(x)|r

1 + �(X1)|’(X1)a(x)|r 1|�1|¿M; sgn(�1)=sgn(a(x)); X1∈R

)
¡qr;

(2.4)

then {Xt} is transient and Px(limt →∞ qt |�t |→∞)¿ 0 for all x ∈ Rd.

Remark. Again, the indicator variable in (2.4) is designed to make application of the
theorem easier, despite appearances to the contrary.
The assumption that �d({x ∈ R: �(x)|a(x)|r ¿M;mini|xi|¿M})¿ 0 for every

M ¡∞ is valid, for example, if �d(R)¿ 0 and inf x∈R;mini|xi|¿M�(x)|a(x)|r →∞ as
M →∞. In particular, the latter will hold if R and � are chosen so that �(x)|’(x)|r is
bounded away from 0 on R.

We now turn our attention to models with cyclic behavior, of which the fully para-
metric model (1.3) is an example: If �t; : : : ; �t−d+1 are large then sgn(�t+1) is nearly
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certain to be the same as sgn(�sgn(Xt)�t) (where sgn(x) is taken componentwise). Thus,
the process sgn(�t) will tend to follow cycles determined by the signs of the parame-
ters �u, at least as long as �t remains large. In fact the partially parameterized model
(1.2) has this characteristic as well and it takes only a little imagination to see that
many nonparametric models do also. We therefore identify this kind of cyclic behavior
for a general process.
Recall we have de�ned U= {−1; 1}d. For each u ∈ U and M ¡∞ we also de�ne

Qu;M = {x ∈ Rd: uixi ¿M; i = 1; : : : ; d}:

Assumption
(A.4) For some M ¡∞ and each u ∈ U, either ’(x)¿0 for all x ∈ Qu;M or ’(x)60

for all x ∈ Qu;M .

Suppose Assumption (A.4) is valid and let

Q∗
u;M = {x ∈ Qu;M : |’(x)x1|¿M}:

If Q∗
u;M is not empty then there exists u∗ ∈ U such that (’(x)x1; x1; : : : ; xd−1) ∈ Qu∗ ;M

for all x ∈ Q∗
u;M . We call u

∗ the successor of u if Q∗
u;M is nonempty for all M ¡∞.

If |’(x)x1| is bounded on x ∈ Qu;M for some M ¡∞ then we say u has no successor.
Therefore, every u ∈ U satis�es exactly one of the following:

(i) u has no successor,
(ii) u is in a cycle C={u(1); : : : ; u(k)} where u( j) succeeds u( j−1) for j=2; : : : ; k and

u(1) succeeds u(k),
(iii) u has a successor but u is not in a cycle.

Example 2.1. Consider the case d= 2; U= {−1; 1}2 and

’(x) =

(∑
u∈U

�u1sgn(x)=u

)
p(x);

where p(x) is nonnegative and sgn(x) = (sgn(x1); sgn(x2)). If �1;−1¿ 0; �1;1¡ 0;
�−1;−1¡ 0 and �−1;1¿ 0 then there is only one cycle, {(1; 1); (−1; 1); (−1;−1);
(1;−1)}. If �1;−1¡ 0; �1;1¿ 0; �−1;−1 = 0 and �−1;1¡ 0 then there are two cycles,
{(1; 1)} and {(1;−1); (−1; 1)}, and (−1;−1) has no successor. Several other cases are
discussed in examples below and the rest are left to the reader.

We denote the class of cycles with C. When large, the time series {�t} behaves
as if sgn(Xt) follows the rules of succession outlined above. The time series will be
unstable (i.e., grow in magnitude) only if there is a cycle for which the e�ect on �t

in a complete circuit of that cycle is to make �t grow. With this in mind we have the
following de�nitions and theorem.
For u ∈ U with successor u∗ and �xed r ¿ 0 de�ne

�u = lim sup
|a(x)|→∞
miniuixi →∞

Ex(|’(X1)|r1X1∈Qu∗ ; M )
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and

�′
u = lim inf

|a(x)|→∞
miniuixi →∞

(Ex(|’(X1)|−r1X1∈Qu∗ ; M ))
−1:

Remark. If u has successor u∗ = (u∗1 ; : : : ; u
∗
d) then

�u6 lim sup
miniu∗i xi →∞

|’(x)|r and �′
u¿ lim inf

miniu∗i xi →∞
|’(x)|r :

Bhattacharya and Lee (1995) use the limits on the right to prove results for general
�rst-order models with no delay. In practice, the bounds we use are generally better
but harder to compute. The bounds coincide in the partially parametrized model (1.2)
considered in Corollary 2.4 below.

We now provide conditions for a general �rst-order, cyclical model with delay.

Theorem 2.3. Let r ¿ 0. Assume (A:4) and de�ne the cycles C ∈ C and the limits
�u; �′

u according to the discussion following (A:4).
(i) Assume (A:1). If C is empty or

max
C∈C

∏
u∈C

�u ¡ 1;

then {Xt} is geometrically ergodic.
(ii) Assume Assumption (A:2). If there is a cycle C and q¡ 1 such that for

some u ∈ C;

�d

({
x: min

i
uixi ¿M; |a(x)|¿M

})
¿ 0 for all M ¡∞

and ∏
u∈C

�′
u ¿q−r ; (2.5)

then {Xt} is transient and Px(limt →∞qt |�t |=∞)¿ 0 for all x ∈ Rd.

Remark. For the proof of the geometric ergodicity result Theorem 2.3(i), #(x) need
not be bounded, but lim||x||→∞#(x)=||x||=0 is required. Also, we may weaken (A.4)
by assuming there exists ’∗ : Rd →R satisfying the condition given for ’ in (A.4)
and

lim sup
mini|xi|→∞

|’∗(x)− ’(x)|= 0:

This is possible since (’(x)− ’∗(x))x1 may be absorbed into #(x), without changing
the assumptions.
The proof of the geometric transience result, part (ii) of Theorem 2.3, requires ’(x)x1

to be locally bounded but it does not actually require ’(x) to be bounded.
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Corollary 2.4. Assume partially parametric model (1:2) (and hence (A:4)).
(i) Assume Assumption (A:1). If C is empty or

max
C∈C

∏
u∈C

�u ¡ 1;

then {Xt} is geometrically ergodic.
(ii) Assume Assumption (A:2). If there exists q¡ 1 such that

max
C∈C

∏
u∈C

�u ¿
1
q
;

then {Xt} is transient and Px(limt →∞qt |�t |=∞)¿ 0 for all x ∈ Rd.

Example 2.1 [cont.] Suppose p(x)→ 1 as min(|x1|; |x2|)→∞ in Example 2.1 above. It
is not di�cult to enumerate all the cases and to determine sharp conditions.
Speci�cally, let

�=max(�−1;−1; �1;1;min(�−1;1; �−1;1�−1;−1; 0)min(�1;−1; �1;−1�1;1; 0)):

Then geometric ergodicity occurs if �¡ 1 and geometric transience occurs if �¿ 1.

Example 2.2 (cf. Chen and Tsay, 1991; Lim, 1992). Consider the simple two-
parameter TAR(1) model with delay d¿ 1 de�ned by

�t =

{
�1�t−1 + et if �t−d60;

�2�t−1 + et if �t−d ¿ 0:

Using di�erent algebraic methods, the above-mentioned authors have shown that the
precise stability conditions are as we have described in Corollary 2.4(i). Speci�cally,
if �1�2¿0 the condition is the same as the well-known condition for a TAR(1)
model with no delay (d=1): max(�1; �2; �1�2)¡ 1. But if �1�2¡ 0 the condition is
max(�sd

1 �
td
2 ; �

td
1 �

sd
2 )¡ 1 where sd and td are integers (respectively, odd and even) that

the authors have computed and tabulated for d = 1; : : : ; 27 by �nding all the possible
cycles.
By our results, the same conditions apply for partially parametrized models as well.

This would include order 1 models similar to EXPAR models where, for example,
’(x) = �1 + (�2 − �1)G(xd) and G is a univariate distribution function. Also, our
results show that the model may include an intercept term and nonadditive errors.

Remark. TjHstheim (1990, Theorem 4:5)) considers parametric d-dimensional thresh-
old processes with coe�cients constrained so that the process, when large, follows a
single cycle from one region to another. Our methods could be used to generalize his
results to cases with multiple cycles.

Not all models have the cyclical behavior of Assumption (A.4). The �nal result for
this section provides an alternative condition for geometric ergodicity. For x ∈ Rd, let
�1(x) = (a(x); x1; : : : ; xd−1) and �j(x) = �1(�j−1(x)) for j¿2. Also, let ’1(x) = ’(x)
and ’j(x) = ’(�j−1(x)) = ’j−1(�1(x)) for j¿2. A number of results (e.g., Chan and
Tong (1985,1994)) state that geometric ergodicity holds when the dynamical system
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{�n(x)} is exponentially stable. The results usually also require smoothness of �1 such
as Lipschitz continuity. As our result shows, it su�ces to consider the behavior of ’
on a more restricted set. We also de�ne, for x; y ∈ Rd,

s(x) = min(|a(x)|; |x1|; : : : ; |xd|) and �(x; y) = max
i

( |xi − yi|
|xi|

)
:

Theorem 2.5. Assume (A:1) and (A:3). If ’ is such that

lim
s(x)→∞
�(x;y)→ 0

|’(x)− ’(y)|= 0 (2.6)

and

lim sup
mini|xi|→∞

n∏
j=1

|’j(x)|1|’j(x)x1|¿M ¡ 1 for some n¿1; M ¡∞; (2.7)

then {Xt} is geometrically ergodic.

Remark. Essentially, (2.7) is exponential stability of the dynamical system de�ned by
xt = a(xt−1)1s(xt−1)¿M , while (2.6) weakens the continuity assumption. Both conditions
depend on the values of ’(x) only for x such that s(x) is arbitrarily large.

3. Conditions for ergodicity, transience and null recurrence

Weaker conditions are possible for both ergodicity and transience but they do not
necessarily ensure geometric behavior of the process. Bhattacharya and Lee (1995)
have provided such conditions for fairly general �rst order models with no delay. In
this section we investigate conditions for ergodicity and transience of the model (1.1),
as well as conditions for null recurrence. The behavior of #(x) is crucial and stronger
assumptions are required for c(e1; x). We continue to assume that the Markov chain
{Xt} is an aperiodic, �d-irreducible T -chain. The results also assume some form of the
following:

Assumption
(A.5) E(c(e1; x)) = 0 and for some r¿1; {|c(e1; x)|r}x∈Rd is uniformly integrable.

Recall the cyclic behavior described in Assumption (A.4) and the de�nitions which
follow it. Given a cycle, say C = {u(1); u(2); : : : ; u(k)}, and associated constants,
�u(1) ; : : : ; �u(k) , we de�ne

�u( j) =
k∏

i=j

|�u(i) |
(

k∏
i=1

|�u(i) |
)j=k

: (3.1)

Note that for all u ∈ C with successor u∗,

�u∗ |�u|
�u

=

(∏
v∈C

|�v|
)1=k

: (3.2)
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The constants �u play important roles both in the proofs of our results and in deter-
mining the part of the drift of the time series which is inuenced by #(x).
We �rst give conditions for stability and then, in Theorem 3.3, conditions for non-

stability.

Theorem 3.1. Assume Assumption (A:4) and make use of the de�nitions which follow
it. Let �u; �u be constants satisfying �u’(x)¿0 for x ∈ Qu;M ; u ∈ C; C ∈ C; and

0¡
∏
u∈C

�u61 and
∑
u∈C

�u∗�u�u60 for all C ∈ C; (3.3)

where the �u’s are given by (3:1); �u = sgn(�uu1) and u∗ is the successor to u.
(i) Assume Assumption (A:5) holds for some r¿1. If

lim sup
|a(x)|→∞
miniuixi →∞

(|’(x)x1 + #(x)| − |�ux1 + �u|)|x1|s ¡ 0 for all u ∈ C; C ∈ C (3.4)

for s= 0 or for some s ∈ (0;min(1; r − 1)); then {Xt} is ergodic.
(ii) Assume Assumption (A:5) holds with r = 2 and

lim inf
|a(x)|→∞
miniuixi →∞

E(c2(e1; x))¿ 0 for all u ∈ C; C ∈ C: (3.5)

If

lim sup
|a(x)|→∞
miniuixi →∞

(|’(x)x1 + #(x)| − |�ux1 + �u|)|x1|60 for all u ∈ C; C ∈ C; (3.6)

then {Xt} is Harris recurrent.

Example 3.1. Suppose d=2; �1;1 =1; �−1;−1¡ 0¡�−1;1 and �−1;1�−1;−1�1;−1 =1.
Then there are two cycles, {(1; 1)} and {(−1; 1); (−1;−1); (1;−1)}, and the condi-
tion in Corollary 2.4 for geometric ergodicity is not met. However, if there exist
M ¡∞; �¿ 0 and either s= 0 or s ∈ (0;min(1; r − 1)) such that

’(x)x1 + #(x)




6x1 − �|x1|−s if x1¿M and x2¿M;

¿�−1;1x1 + �−1;1 + �|x1|−s if x1¡−M and x2¿M;

6�−1;−1x1 + �−1;−1 − �|x1|−s if x1¡−M and x2¡−M;

¿�1;−1x1 + �1;−1 + �|x1|−s if x1¿M and x2¡−M;

where −�−1;−1�1;−1�−1;1 −�1;−1�−1;−1 − �1;−160 then (3.3) and (3.4) are valid and
the process is ergodic.

Example 3.2. (cf. Bhattacharya and Lee, 1995; Pu, 1995, Chapter V.) Suppose d=1 so
the model has no delay. Suppose also #(x)=0; c(e1; x)=b(x)e1 where b(x) is bounded
and bounded away from 0, and E(e1)=0. Under these assumptions, it is possible to get
slightly weaker conditions for ergodicity and sometimes to dispense with the cyclical
assumption. For example, Pu shows that if b(x) = 1 and |x|2(1 − |’(x)|)¿E(e21)=2
for all large |x| then the process is ergodic. Without assuming a second moment,
Bhattacharya and Lee show that if |x|(1 − |’(x)|)¿�¿ 0 for all large |x| then the
process is ergodic. Bhattacharya and Lee also show if �6’(’(x)x)’(x)|x|6|x|− c for
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some �¿ 0 and a certain constant c (de�ned by them but depending on ’(x); b(x)
and the error distribution) and for all large |x| then the process is ergodic. In this case,
if ’(x)¡ 0, the time series cycles from positive to negative and back again, at least
while it is large.
Such conditions are also possible for models with d¿ 1 if the error is additive, but

they would involve the coe�cients �u and �u and the error distribution in a complicated
way.

Remark. Theorem 3.1(ii) shows, as did Lamperti (1960) for random walks, that a
Markov chain may have a small drift away from the origin and still be recurrent.

Also, in certain cases the condition for ergodicity may in fact imply geometric
ergodicity, even if

∏
u∈C �u = 1 for some cycle C. We state this next. (See also

Spieksma and Tweedie, 1994.)

Corollary 3.2. Assume there exists �¿ 0 such that supx E(e
�|c(e1; x)|)¡∞. If the

conditions of Theorem 3:1(i) hold with s= 0 then {Xt} is geometrically ergodic.

Now we turn to nonstability.

Theorem 3.3. Assume Assumption (A:4) and make use of the de�nitions which follow
it. For some cycle C; let �u; �u be constants satisfying �u’(x)¿0 for x ∈ Qu;M ;
u ∈ C; and∏

u∈C

�u¿1 and
∑
u∈C

�u∗�u�u¿0; (3.7)

where the �u’s are given by (3:1); �u = sgn(�uu1) and u∗ is the successor to u.
(i) Assume Assumption (A:5) holds for some r ¿ 1. If

lim inf
miniuixi →∞

(|’(x)x1 + #(x)| − |�ux1 + �u|)|x1|s ¿ 0 for all u ∈ C (3.8)

for some s ∈ (0;min(1; r − 1)), then {Xt} is transient.
(ii) Assume Assumption (A:5) holds with r=1. If there exists L1; L2; M ¡∞; such

that

|’(x)x1 + #(x)| − |�ux1 + �u|¿−�(x) for all x ∈ Qu;M ; u ∈ C; (3.9)

where

�(x) =
∫ ∞

|’(x)x1+#(x)|
(1− Fx(y)) dy + L1(1− Fx(|’(x)x1 + #(x)| − L2))

and Fx is the distribution of −�uc(e1; x); then {Xt} is not positive recurrent.

Remark. The condition in (3.9) allows nonpositive processes to have a slight negative
drift but even for additive errors, and depending on the error distribution, �(x) may
converge rapidly to 0 as |x1|→∞. Either term in the de�nition of �(x) can dominate.
Pu (1995, Chapter V) obtained similar results for TAR(1) models with no delay and
additive errors.
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The proof of Theorem 3.3 requires that we improve the drift condition for a Markov
chain to be nonpositive (cf. Meyn and Tweedie, 1993, Theorem 11:5:1). The new
condition is stated here.

Lemma 3.4. Suppose {Xt} is a homogeneous  -irreducible Markov chain on Rd and
suppose V :Rd → [0;∞) vanishes on Rc. Assume there exist K1¡∞; K2¡∞ and
function w(x; y) such that

(i) V (X1)− V (x)¿w(x; X1)− K11X1 6∈R; if X0 = x ∈ R;
(ii) E(|w(x; X1)| |X0 = x)¡K2 and E(w(x; X1)|X0 = x)¿0 for all x ∈ R; and
(iii)  ({x ∈ R: V (x)¿K1})¿ 0 and  (Rc)¿ 0.
Then {Xt} is not positive recurrent.

The conditions in Theorems 3.1 and 3.3 are sharp for the partially parametric model
of (1.2). With stronger assumptions they fully classify the model, as well as the fully
parametric model (1.3).

Corollary 3.5. Assume Assumption (A:5) holds with r = 2. Assume there exists con-
stants �u; �u and s¿ 0 such that

lim
miniuixi →∞

(’(x)− �u)|x1|1+s = 0 for all u in a cycle: (3.10)

and

lim
miniuixi →∞

(#(x)− �u)|x1|s = 0 for all u in a cycle: (3.11)

De�ne �u by (3:1) and �u = sgn(�uu1) for each u in a cycle.

(i) If for every C ∈ C either
∏

u∈C �u ¡ 1 or both
∏

u∈C �u=1 and
∑

u∈C �u∗�u�u

¡ 0 then {Xt} is ergodic.
(ii) Assume (3:10) and (3:11) hold with s=1 and assume (3:5) holds. If for every

C ∈ C both
∏

u∈C �u61 and
∑

u∈C �u∗�u�u60, and for some C ∈ C (3:9) holds and
both

∏
u∈C �u = 1 and

∑
u∈C �u∗�u�u = 0, then {Xt} is null Harris recurrent.

(iii) If for some C ∈ C either
∏

u∈C �u ¿ 1 or both
∏

u∈C �u=1 and
∑

u∈C �u∗�u�u

¿ 0 then {Xt} is transient.

Example 3.3. Consider the model with d = 2 and ’ as de�ned in Example 2.1 but
suppose we also have

#(x) =

(∑
u∈U

�u1sgn(x)=u

)
q(x):

Assume p(x)→ 1 and q(x)→ 1 as min(x1; x2)→∞ su�ciently fast to satisfy Corol-
lary 3.5. Enumerating all the possibilities would be lengthy but, for example, suppose
�1;1¡ 0; �−1;1¡ 0; �1;−1¿ 0 and �−1;−1¡ 0 so that there is one cycle {(1;1); (−1;1);
(1;−1)}. If �=�1;1�−1;1�1;−1¡ 1 the process {(�t ; �t−1)} is geometrically ergodic and
it is geometrically transient if �¿ 1. If, instead, �=1 then the process is ergodic, null
recurrent or transient as �−1;1�1;−1�1;1+�1;−1�−1;1+�1;−1 is negative, zero or positive.
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In practice, constructing the parameter space for ergodic models can be complicated.
But checking the conditions is fairly straightforward once one has estimated values for
the parameters. Even �nding all the cycles is easily automated.

4. Proofs

Proof of Theorem 2.1. The proof consists of demonstrating the existence of a test
function V1 :Rd → [0;∞) with which we may apply the drift condition of Meyn and
Tweedie (1993, Theorem 15:0:1). (See (4.12) and (4.13) below.) There is no loss
here in assuming that # is identically 0 as the mean of the error term c(et ; x) is
inconsequential for this argument. Assume �rst that s(x) is unbounded. Without any
loss we assume r61 and is small enough that {|c(e1; x)|r=1 + ||x||r} is uniformly
integrable. Let V (x) = �(x)|a(x)|r +∑d

i=1 �
i|xi|r ; � ∈ (0; 1) to be �xed later. Thus,

given X0 = x,

V (X1) = (�(X1)|’(X1)|r + �)|a(x) + c(e1; x)|r +
d−1∑
i=1

�i+1|xi|r :

Choose L¡∞ so that 1=L¡�(x)¡L and |’(x)|¡L for all x. Then, by substituting
in the de�nitions for V (x) and V (X1) and using (A.1),

lim sup
|a(x)|→∞
mini|xi|→∞

Ex

(
V (X1)
V (x)

1|�1|¿M; sgn(�1)=sgn(a(x))

)

6 lim sup
|a(x)|→∞
mini|xi|→∞

Ex

(
�(X1)
�(x)

|’(X1)|r1|�1|¿M; sgn(�1)=sgn(a(x))

)
+ �L (4.1)

and

lim sup
||x||→∞

Ex

(
V (X1)
V (x)

)
6L(L1+r + �)¡ 2L2+r : (4.2)

We now �x �; M; K and �, in that order, so that according to (2.2), (4.1) and (4.2),

sup
|a(x)|¿M
mini|xi|¿M

Ex

(
V (X1)
V (x)

1|�1|¿M; sgn(�1)=sgn(a(x))

)
¡ 1− �; (4.3)

sup
|a(x)|¿M

Ex

(
V (X1)
V (x)

)
62(1− �)L2+r (4.4)

and

K ¿ 2L2+r ; (L1+r + 1)�Kd ¡�: (4.5)

De�ne

�(x) =



1 if |x1|6M;

K−i if |xj|¿M for j6i and |xi+1|6M; i = 1; : : : ; d− 1;
K−d if |xj|¿M for j6d;

(4.6)
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so that

�(X1)
�(x)

6



1 if |�1|¿M; mini |xi|¿M;
1
K if |�1|¿M; mini |xi|6M;

Kd if |�1|6M:

Now de�ne V1(x) = �(x)V (x). This is our test function. Note that by our choice of
r; {V1(X1)=(1 + V1(x))} is uniformly integrable and by Assumption (A.1),

lim sup
||x||→∞
|a(x)|6M

Px(|�1|r ¿ �V (x))6 lim sup
||x||→∞

P(|c(e1; x)|r ¿ �V (x)−Mr) = 0:

Thus (V1(X1)=V1(x))1|�1|r¿�V (x)→ 0 in probability, as ||x||→∞; |a(x)|6M , and

lim sup
||x||→∞
|a(x)|6M

Ex

(
V1(X1)
V1(x)

1|�1|r¿max(Mr; �V (x))

)
= 0: (4.7)

Likewise, (V1(X1)=V1(x))1|c(e1; x)|r¿�V (x)→ 0 in probability, as ||x||→∞, and

lim sup
||x||→∞

Ex

(
V1(X1)
V1(x)

1|c(e1;x)|r¿�V (x)

)
= 0: (4.8)

Next, we note |�1|r = |a(x)+ c(e1; x)|r ¿ �V (x) implies that either sgn(�1)= sgn(a(x))
or |c(e1; x)|r ¿ �V (x). Thus, by (4.3) and (4.8),

lim sup
||x||→∞

|a(x)|¿M;mini|xi|¿M

Ex

(
V1(X1)
V1(x)

1|�1|r¿max(Mr; �V (x))

)

6 sup
|a(x)|¿M
mini|xi|¿M

Ex

(
V (X1)
V (x)

1|�1|¿M; sgn(�1)=sgn(a(x))

)

+ lim sup
||x||→∞

Ex

(
V1(X1)
V1(x)

1|c(e1;x)|r¿�V (x)

)

¡ 1− �: (4.9)

Also, by (4.4) and (4.5),

sup
|a(x)|¿M
mini|xi|6M

Ex

(
V1(X1)
V1(x)

1|�1|¿M

)
6
2(1− �)L2+r

K
¡ 1− �: (4.10)

Additionally, we may compute

lim sup
||x||→∞

Ex

(
V1(X1)
V1(x)

1|�1|r6max(Mr; �V (x))

)
6(L1+r + 1)�Kd ¡�: (4.11)

Therefore, combining (4.7) and (4.9)–(4.11),

lim sup
||x||→∞

Ex

(
V1(X1)
V1(x)

)
¡ 1: (4.12)

Clearly, by Assumption (A.1) and the fact K ¿ 1,

sup
||x||6M1

Ex(V1(X1))6 sup
||x||6M1

Ex(V (X1))¡∞ for all M1¡∞: (4.13)
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Since compact sets are petite (Meyn and Tweedie, 1993, Theorem 6:2:5) and (4.12)
and (4.13) hold, geometric ergodicity follows from the drift condition of Meyn and
Tweedie (1993, Theorem 15:0:1).
If s(x) is bounded, the above argument is valid provided M is chosen larger than

sup s(x) and we use the convention that any supremum over the empty set has
value 0.

Proof of Theorem 2.2. We demonstrate that there exists a test function V : Rd → [0;∞)
with which we may apply the drift condition for geometric transience. That is, we will
verify (4.18) below. As in the previous proof, we may assume # is identically 0.
Choose L¡∞ such that �(x)6L for all x and choose M ¡∞ and �¿ 0 such that,
according to (2.4),

sup
�(x)|a(x)|r¿M∗

mini|xi|¿M;x∈R

Ex

(
�(x)|a(x)|r

1 + �(X1)|’(X1)a(x)|r 1|�1|¿M; sgn(�1)=sgn(a(x)); X1∈R

)

¡ (1− �)1+rqr; (4.14)

where M∗ = (1− �)−rLMr . Now choose K ¿ (1 + (1− �)−rL)=�qr and de�ne QM =
{x ∈ Rd: min16i6d|xi|¿M}. The test function we use is

V (x) = min(�(x)|a(x)|r ; K |x1|r ; : : : ; Kd|xd|r)1QM (x)1R(x):

By the de�nition of V and Assumption (A.2),

lim sup
V (x)→∞

Ex

(
V (x)

1 + V (X1)
1|c(e1; x)|¿�|a(x)|

)

6 lim sup
s(x)→∞

Kdsr(x)Px(|c(e1; x)|¿�|a(x)|) = 0: (4.15)

Likewise, by (2.3),

lim sup
V (x)→∞

Ex

(
V (x)

1 + V (X1)
1X1 6∈R

)
6 lim sup

s(x)→∞
Kdsr(x)Px(X1 6∈ R) = 0: (4.16)

If x ∈ R; �(x)|a(x)|r ¿M∗ and mini|xi|¿M then, given X0 = x; |c(e1; x)|6�|a(x)|
implies |�1|¿M; X1 ∈ QM and

V (x)
1 + V (X1)

1|c(e1; x)|6�|a(x)|; X1∈R

=
V (x)

1 + V (X1)
1|c(e1; x)|6�|a(x)|; X1∈QM ;X1∈R

6
1
K
+

�(x)|a(x)|r
1 + min(�(X1)|’(X1)|r ; K)|�1|r 1|c(e1; x)|6�|a(x)|; X1∈QM ;X1∈R

6
1
K
+ (1− �)−r

(
L
K
+

�(x)|a(x)|r
1 + �(X1)|’(X1)a(x)|r 1|�1|¿M; sgn(�1)=sgn(a(x)); X1∈R

)
:
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Therefore, by (4.14) and the choice of K ,

lim sup
V (x)→∞

Ex

(
V (x)

1 + V (X1)
1|c(e1; x)|6�|a(x)|; X1∈R

)

6
1
K
+ (1− �)−r L

K
+ (1− �)qr ¡qr: (4.17)

Combining (4.15)–(4.17),

lim sup
V (x)→∞

Ex

(
1 + V (x)
1 + V (X1)

)
= lim sup

V (x)→∞
Ex

(
V (x)

1 + V (X1)

)
¡qr ¡ 1: (4.18)

Also, by assumption we have �d({x: V (x)¿M})¿ 0 for every M ¡∞. Transience
follows from Meyn and Tweedie (1993, Theorem 8:4:2). The conclusion of geometric
transience follows from Cline and Pu (1998a, Lemma 4.1).

Proof of Theorem 2.3. (i) The objective is to identify a function �(x) in order to
apply Theorem 2.1. If s(x) = min(|a(x)|; |x1|; : : : ; |xd|) is bounded then the conclusion
follows immediately from Theorem 2.1. So we assume s is not bounded. Let �(x) =
(a(x); x1; : : : ; xd−1).
For some �¿ 0,

max
C∈C

∏
u∈C

(�u + �)¡ 1: (4.19)

(This is vaccuous if there are no cycles.) It su�ces to choose M large enough so that
both Assumption (A.4) is valid and

�u;M = sup
x∈Q∗

u; M

Ex(|’(X1)|r1X1∈Qu∗ ; M )6�u + �;

where u∗ is the successor of u and Q∗
u;M is de�ned following Assumption (A.4). Note

that x ∈ Q∗
u;M implies �(x) ∈ Qu∗ ;M . For any u which has no successor, de�ne

�u;M = sup
x∈Qu; M

Ex(|’(X1)|r);

which is bounded by assumption. Now for x ∈ Rd, let

�(x) =




∏k
i=j �u(i) ;M(∏k

i=1 �u(i) ;M

)−j=k if x ∈ Qu( j) ;M and u( j) is in the cycle

{u(1); : : : ; u(k)};
1 if mini |xi|6M or x ∈ Qu;M and u has no

successor;

�(�(x))(�u;M + �) if x ∈ Qu;M and u has a successor but u is
not in a cycle:
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Note that the third part of the de�nition is recursive in that �(x) must �rst be de�ned
for the cycle cases and for the cases with no successor and then in reverse order of
succession for the cases where a successor exists but u is not in a cycle. For u in a
cycle C; � is de�ned so that it is constant on Qu;M and if kC is the length of C then

�(�(x))�u;M

�(x)
=

(∏
v∈C

�v;M

)1=kC
¡ 1 for all x ∈ Q∗

u;M :

Indeed, from the de�nitions of �(x) and �u;M and (4.19), it is now a simple matter to
determine that for each u ∈ U,

sup
x∈Q∗

u; M

�(�(x))
�(x)

Ex(|’(X1)|r1X1∈Qu∗ ; M )¡ 1:

We have, therefore,

lim sup
|a(x)|→∞
mini|xi|→∞

Ex

(
�(X1)
�(x)

|’(X1)|r1|�1|¿M; sgn(�1)=sgn(a(x))

)

= sup
u∈U

lim sup
|a(x)|→∞
miniuixi →∞

Ex

(
�(X1)
�(x)

|’(X1)|r1X1∈Qu∗ ; M

)

6 sup
u∈U

sup
x∈Q∗

u; M

�(�(x))
�(x)

Ex(|’(X1)|r1X1∈Qu∗ ; M )¡ 1: (4.20)

So geometric ergodicity holds by Theorem 2.1.
(ii) Here we will �nd �(x) and R to satisfy (2.4). Identify the cycle in (2.5) as

C = {u(1); : : : ; u(k)}. De�ne
�′

u;M = inf
x∈Q∗

u; M

(Ex(|’(X1)|−r1X1∈Qu∗ ; M ))
−1;

where it su�ces to choose M large enough so that
∏k

j=1 �
′
u( j) ;M ¿q−r . Let R =⋃k

j=1 Qu( j) ;M . From Assumption (A.2) it is easy to see that if u has successor u∗ then

lim sup
s(x)→∞; x∈Qu; M

sr(x)Px(X1 6∈ Qu∗ ; M ) = 0

and therefore (2.3) holds.
Now de�ne

�(x) =




k∏
i=j

�′
u(i) ; M

(
k∏

i=1

�′
u(i) ;M

)j=k

if x ∈ Qu( j) ;M ; j = 1; : : : ; k;

0 if x 6∈ R:

Thus, for each u ∈ C; � is constant on Qu;M and

�(�(x))�′
u;M

�(x)
=

(∏
v∈C

�′
v;M

)1=k
for all x ∈ Q∗

u;M :
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Since x ∈ Qu;M ; |�1|¿M and sgn(�1) = sgn(a(x)) imply X1 ∈ Qu∗ ;M , it is simple to
verify that (2.4) holds, analogous to verifying (4.20) above.
By (2.3) and the assumption �d({x: miniuixi ¿M; |a(x)|¿M})¿ 0 for all M ¡∞

and some u ∈ C we also have

�d({x ∈ R: �(x)|a(x)|r ¿M;mini|xi|¿M})¿ 0

for every M ¡∞. The conclusion thus follows from Theorem 2.2.

Proof of Corollary 2.4. (i) Assumption (A.4) follows from (1.2). We note that
�u6|�u∗ |r . Since the number of sign changes in a cycle must be even, the condi-
tion in Theorem 2.3(i) is satis�ed.
(ii) This follows from Theorem 2.3(ii) in the same way that part (i) follows from

Theorem 2.3(i). Note that

�d

({
x: min

i
uixi ¿M; |a(x)|¿M

})
¿ 0

for each u ∈ C and each M ¡∞.

Proof of Theorem 2.5. This is also a corollary to Theorem 2.1 and again the objective
is to �nd an appropriate �(x). Let �0(x) = x and hM (x) = |’(x)|r1s(x)¿M where r ¿ 0
satis�es Assumption (A.1). Condition (2.7) implies there exists K ¡∞; M ¡∞ and
�¡ 1 such that

n∏
j=0

hM (�j(x))6K�n for all n and all x: (4.21)

Let �1 ∈ (�; 1) and � ∈ (0; �−1
1 − 1) and de�ne

�(x) = sup
n¿1

�−n
1

n∏
j=1

hM (�j(x)) + �: (4.22)

Note that (4.21) implies there exists n0¿1 such that

�(x) = max
16n6n0

�−n
1

n∏
j=1

hM (�j(x)) + � for all x: (4.23)

Condition (2.6) implies, by way of induction,

lim
mini|xi|→∞
�(x;y)→ 0

min
(
min
16j6n

|’j(x)|; max
16j6n

|’j(x)− ’j(y)|
)
= 0 for all n¿1

and thus,

lim
mini|xi|→∞
�(x;y)→ 0

min


 n∏

j=0

hM (�j(x));

∣∣∣∣∣∣
n∏

j=0

hM (�j(x))−
n∏

j=0

hM (�j(y))

∣∣∣∣∣∣

= 0

for all n¿0. By Assumption (A.3), it follows that

min


 n∏

j=0

hM (�j(X1));

∣∣∣∣∣∣
n∏

j=0

hM (�j(X1))−
n∏

j=0

hM (�j+1(x))

∣∣∣∣∣∣

 → 0

in probability, as s(x)→∞, for all n¿0.
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Next, we note that by (4.23)

�(x)hM (x)6(1 + �) max
06n6n0

�−n
1

n∏
j=0

hM (�j(x))

and by (4.22)

max
06n6n0

�−n
1

n∏
j=0

hM (�j+1(x))6�1�(x):

Therefore,

lim sup
|a(x)|→∞
mini|xi|→∞

Ex

(
�(X1)
�(x)

|’(X1)|r1|�1|¿M

)

6 lim sup
|a(x)|→∞
mini|xi|→∞

Ex


 (1 + �)

�(x)
max
06n6n0

�−n
1

n∏
j=0

hM (�j(X1)) +
�(X1)|M=�1|r

�(x)
1|�1|¿M




6 lim sup
|a(x)|→∞
mini|xi|→∞

(1 + �)
�(x)

max
06n6n0

�−n
1

n∏
j=0

hM (�j+1(x))

6(1 + �)�1¡ 1:

The conclusion holds by Theorem 2.1.

Before we prove Theorem 3.1 we need the next two lemmas. A nonnegative function
v on Rd is said to be unbounded o� petite sets if {x: v(x)6K} is petite for all K ¡∞
(cf. Meyn and Tweedie, 1993).

Lemma 4.1. Suppose {Xt} is a Markov chain with representation
Xt = �(Xt−1) + (et ;Xt−1): (4.24)

Suppose also s0; s1 and w are nonnegative functions on Rd such that for all �nite
M1; M2;

s1(x)6M1 and w((e1; x))6M2 ⇒ s0(�(x) + (e1; x))6K for some K ¡∞
(4.25)

and

sup
s1(x)6M1

E(wr((e1; x)))¡∞ for some r ¿ 0:

If s0 is unbounded o� petite sets then s1 is unbounded o� petite sets.

Proof. Given M1¡∞, choose M2 large enough so that

sup
s1(x)6M1

E(wr((e1; x)))¡Mr
2 :
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Then choose K large enough so that the implication in (4.25) holds. Using Markov’s
inequality,

inf
s1(x)6M1

Px(s0(X1)6K)¿ inf
s1(x)6M1

P(w((e1; x))6M2)¿ 0:

Since {x: s0(x)6K} is petite, it follows that {x : s1(x)6M1} is also petite (Meyn and
Tweedie, 1993, Proposition 5:5:4(i)).

For x ∈ Rd, let a0(x)= x1; �0(x)= x and �(x)=(a(x); x1; : : : ; xd−1). Also, let �j(x)=
�(�j−1(x)) and aj(x) = a(�j−1(x)) for j¿1. Note that

�j(x) =

{
(aj(x); aj−1(x); : : : ; a(x); x1; : : : ; xd−j) if j¡d;

(aj(x); aj−1(x); : : : ; aj−d+1(x)) if j¿d:

Now let || · || be any norm on Rd. If {Xt} is a �d-irreducible T -chain then compact
sets are petite (Meyn and Tweedie, 1993, Theorem 6:2:5). In particular, {x: ||x||6K}
is petite for each �nite K . Using the previous lemma, we now bootstrap from this to
show that a(x) = ’(x)x1 is unbounded o� petite sets.

Lemma 4.2. Assume {Xt} is a �d-irreducible T -chain de�ned by (1:1) and (2:1) and
let r ¿ 0. If

sup
|a(x)|6M

E(|c(e1; x)|r)¡∞ for each M ¡∞; (4.26)

then sj(x)=||�j(x)|| is unbounded o� petite sets for j=1; : : : ; d and |a(x)| is unbounded
o� petite sets.

Proof. Let �(x) = (a(x); x1; : : : ; xd−1) and (e1; x) = (c(e1; x) + #(x); 0; : : : ; 0) so that
{Xt} satis�es (4.24). Without loss of generality, we assume the norm is such that
||(x1; 0; : : : ; 0)||= |x1|. Choose L so that |’(x)|6L for all x. Clearly |aj(x)|6Lj|x1| for
all x. Hence it is easily shown that, for some Lj ¡∞ and for each j = 1; : : : ; d,

sj−1(X1) = ||�j−1(X1)||6Lj(||�j(x)||+ ||(e1; x)||)
= Lj(sj(x) + |c(e1; x)|+ L):

Also |a(x)|6Kjsj(x) for some �nite Kj, each j=1; : : : ; d. Now let s0(x)=w(x)= ||x||.
Since compact sets are petite, s0 is unbounded o� petite sets. By (4.26), Lemma 4:1,
and induction, sj(x) is unbounded o� petite sets for j = 1; : : : ; d. Since ||�d(x)||→∞
if and only if |a(x)|→∞ it also follows that |a(x)| is unbounded o� petite sets.

Proof of Theorem 3.1. As in earlier results, the proof of each part consists of de�ning
an appropriate test function and checking a drift condition. Because the intercept func-
tion #(x) plays a critical role, however, the computations are more intricate. Throughout
we rely the simple observation that if |a|¿ |b| then |a+ b|= |a|+ sgn(a)b.

(i) We may assume without loss that r62. Choose M ¡∞ and �¿ 0 to satisfy
Assumption (A:4) and, by (3.4), to satisfy ��u∗ =�u ¡ 1,

|’(x)x1 + #(x)|¡ |�ux1 + �u| − �|x1|−s;

|’(x)x1|¿ 4|#(x)| and |�ux1|¿ |�u| (4.27)
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if |a(x)|¿M and x ∈ Qu;M , for each u ∈ C; C ∈ C. Let �u = supx∈Qu; M
|’(x)| for all

u not in a cycle.
Let kC be the length of cycle C. It is possible to determine constants �u¿0 satisfying

�u∗ + �u∗�u�u − �u =
1
kC

∑
v∈C

�v∗�v�v for u ∈ C; C ∈ C; (4.28)

where �u = sgn(�uu1) and u∗ is the successor to u. Note that the number of negative
�u in each cycle must be even. By (3.2), (3.3) and (4.28),

�u∗ |�u|6�u and �u∗ + �u∗�u�u6�u for u ∈ C; C ∈ C: (4.29)

As before, let �(x) = (a(x); x1; : : : ; xd−1). Next, de�ne

�(x) =




�u if x ∈ Qu;M and u is in a cycle;

1 if mini |xi|6M or x∈Qu;M and u has no successor;

�(�(x))(|�u|+ �) if x ∈ Qu;M and u has a successor but u is not in
a cycle;

the third part of the de�nition being recursive (similar to that in the proof of Theorem
2.3). Also de�ne

�(x) =

{
�u if x ∈ Qu;M and u is in a cycle;

0 otherwise:

Let L be such that |’(x)|6L and 1=L6�(x)6L for all x. De�ne �(x) as in (4.6) (with
K ¿L2) and

V (x) = Kd�(x)(�(x)|x1|+ �(x)):

Now suppose X0 = x ∈ Qu;M where u ∈ C; C ∈ C. If |a(x)|¿ 2M and |c(e1; x)|6
|a(x)|=3 then X1 ∈ Qu∗ ;M ; |c(e1; x)|¡ |’(x)x1 + #(x)| and sgn(�1) = sgn(’(x)x1 +
#(x)) = �u. Also, by (4.27),

|�1|= |’(x)x1 + #(x)|+ �uc(e1; x)6|�ux1 + �u|+ �uc(e1; x)− �|x1|−s

= |�ux1|+ �u�u + �uc(e1; x)− �|x1|−s:

Hence, by (4.29),

�(X1)|�1|+ �(X1)− �(x)|x1| − �(x)

6�u∗(|�ux1|+ �u�u + �uc(e1; x)− �|x1|−s) + �u∗ − �u|x1| − �u

6�u∗(�uc(e1; x)− �|x1|−s): (4.30)

Furthermore, if |a(x)| is large enough and |c(e1; x)|6|a(x)|=3, then (4.27) and (4.29)
imply

�u∗ |�uc(e1; x)− �|x1|−s|6 �u∗(|a(x)|=3 + �|x1|−s)

6 �u∗(4|’(x)x1 + #(x)|=9 + �|x1|−s)

6 �u∗(4|�ux1 + �u|=9 + �|x1|−s)6V (x)=2: (4.31)
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Therefore, by (4.30), if x ∈ Qu;M then

V (X1)− V (x)

6(�(X1)|�1|+ �(X1)− �(x)|x1| − �(x))1|c(e1; x)|6|a(x)|=3 + V (X1)1|c(e1; x)|¿|a(x)|=3

6�u∗(�uc(e1; x)− �|x1|−s)1|c(e1; x)|6|a(x)|=3 + 5KdL|c(e1; x)|1|c(e1; x)|¿|a(x)|=3;

when |a(x)| is large. Let H (y) = y1+s. Then, for |z|6y=2 and r62,

H (y + z)− H (y)6(1 + s)ysz + s|z|r(y=2)1+s−r :

Applying this inequality with y=V (x) and z=�u∗(�uc(e1; x)−�|x1|−s) and noting that
by (4.31), |z| is no more than y=2 if |c(e1; x)|6|a(x)|=3 and |a(x)| is large enough,

H (V (X1))− H (V (x))

6(H (y + z)− H (y))1|c(e1; x)|6|a(x)|=3 + H (V (X1))1|c(e1; x)|¿|a(x)|=3

6(1 + s)V s(x)�u∗(�uc(e1; x)− �|x1|−s)1|c(e1; x)|6|a(x)|=3

+ s�r
u∗ |�uc(e1; x)− �|x1|−s|r(V (x)=2)1+s−r

+(5KdL|c(e1; x)|)1+s1|c(e1; x)|¿|a(x)|=3: (4.32)

Since either s= 0 and r¿1 or r ¿ 1 + s, Assumption (A:5) and (4.32) imply

lim sup
|a(x)|→∞

x∈Qu; M ;|’(x)|¿�

Ex(H (V (X1))− H (V (x)))

6− (1 + s)��u∗�s
u ¡ 0 for u ∈ C; C ∈ C: (4.33)

Requiring |’(x)|¿� in (4.33) ensures that V s(x)E(|c(e1; x)|1|c(e1; x)|¿|a(x)|=3) vanishes.
However,

lim sup
|a(x)|→∞

x∈Qu; M ;|’(x)|6�

Ex

(
H (V (X1))− H (V (x))

H (V (x))

)
6(��u∗ =�u)1+s − 1¡ 0: (4.34)

Using the de�nitions of �; �; � and V and the choice for K , it is easily shown that

lim sup
|a(x)|→∞
mini|xi|6M

Ex

(
H (V (X1))− H (V (x))

H (V (x))

)
6(L2=K)1+s − 1¡ 0 (4.35)

and, for u not in any cycle,

lim sup
|a(x)|→∞
x∈Qu; M

Ex

(
H (V (X1))− H (V (x))

H (V (x))

)
6(|�u|=(|�u|+ �))1+s − 1¡ 0: (4.36)
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From (4.33)–(4.36), we conclude there exists M∗ ¡∞ such that

sup
|a(x)|¿M∗

Ex(H (V (X1))− H (V (x)))¡ 0:

Clearly, also,

sup
|a(x)|6M∗

Ex(H (V (X1)))¡∞: (4.37)

By Lemma 4.2, {x: |a(x)|6M∗} is petite. From Meyn and Tweedie (1993, Theorem
13.0.1), therefore, {Xt} is ergodic.
(ii) Using (3.5) and (3.6), choose M large enough and �¿ 0 small enough so that

inf
|a(x)|¿M
x∈Qu; M

E(c2(e1; x))¿ 6��u=�u∗ and ��u∗ =�u ¡ 1 (4.38)

for each u ∈ C; C ∈ C, and if |a(x)|¿M and x ∈ Qu;M then

|’(x)x1+#(x)|¡|�ux1+�u|+�|x1|−1; |’(x)x1|¿ 4|#(x)| and |�ux1|¿|�u|:
The proof is similar to part (i), de�ning �; �, � and V as before.
Note that log(1 + z)6z− z2=3 if |z|6 1

2 . Using inequalities analogous to (4.30) and
(4.31) and using z = (�u∗(�uc(e1; x) + �|x1|−1))=(1 + V (x)), an argument similar to
(4.32) above gives, for X0 = x ∈ Qu;M ; u ∈ C; C ∈ C and |a(x)| large enough,

(1 + V (x))2log
(
1 +

V (X1)− V (x)
1 + V (x)

)

6
(
�u∗�u

(
1 + V (x)− 2�

3|x1|
)

c(e1; x)

−�2u∗c
2(e1; x)
3

+ 2�u∗�u�
)
1|c(e1; x)|6|a(x)|=3

+ 5KdL(1 + V (x))|c(e1; x)|1|c(e1; x)|¿|a(x)|=3: (4.39)

Since Assumption (A:5) holds with r = 2, therefore, (4.38) and (4.39) imply

lim sup
|a(x)|→∞

x∈Qu; M ;|’(x)|¿�

V 2(x)Ex(log(1 + V (X1))− log(1 + V (x)))

62�u∗�u�− �2u∗
3

inf
|a(x)|¿M
x∈Qu; M

E(c2(e1; x))¡ 0 for u ∈ C; C ∈ C: (4.40)

It is easy to show that (4.34)–(4.36) hold with H (y) = y and s=0 as well. By these
three results and (4.40), it follows that

lim sup
|a(x)|→∞

V 2(x)Ex(log(1 + V (X1))− log(1 + V (x)))¡ 0:

Along with (4.37) and Lemma 4.2, as in (i) above, this su�ces to prove Harris recur-
rence (cf. Meyn and Tweedie, (1993, Theorem 9.1.8).
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Proof of Corollary 3.2. Fix the constants M; �; K and L as in the proof of Theorem
3.1. De�ne V (x) as in that proof. Suppose x ∈ Qu;M where u is in some cycle C. From
the argument for Theorem 3.1 we have, for large enough |a(x)|,

V (X1)− V (x)6W (x) def= �u∗(�uc(e1; x)− �) + 6KdL|c(e1; x)|1|c(e1; x)|¿|a(x)|=3:

Note that lim sup|a(x)|→∞ E(W (x))6 − �=L¡ 0; {W (x)} is uniformly integrable and
there exists �1¿ 0 such that {e�1W (x)} is uniformly integrable. It follows that, for some
�2¿ 0 and all u in a cycle,

lim sup
|a(x)|→∞
x∈Qu; M

Ex(e�2(V (X1)−V (x)))6 lim sup
|a(x)|→∞
x∈Qu; M

E(e�2W (x))¡ 1: (4.41)

(See Cline and Pu, 1999, Lemma 4.2.)
We can also show that there exists K1¡∞; K2¡∞ and �3¿ 0 such that, for u

not in a cycle,

lim sup
|a(x)|→∞
x∈Qu; M

Ex(e�3(V (X1)−V (x)))6 lim sup
|a(x)|→∞
x∈Qu; M

E(e−�3[��u∗ |x1|+K1+K2|c(e1; x)|]) = 0 (4.42)

and such that

lim sup
|a(x)|→∞
mini|xi|6M

Ex(e�3(V (X1)−V (x)))6 lim sup
|a(x)|→∞
mini|xi|6M

E(e−�3[(K−L2)|x1|+K1+K2|c(e1; x)|]) = 0: (4.43)

Furthermore, for some �4¿ 0 and all M∗ ¡∞,
sup

|a(x)|6M∗
Ex(e�4(V (X1)−V (x)))¡∞: (4.44)

Let �∗ = min(�2; �3; �4). Geometric ergodicity follows from (4.41)–(4.44), Lemma
4.2 and the drift condition in Meyn and Tweedie (1993, Theorem 15:0:1) applied with
the test function V1(x) = e�

∗V (x).

Proof of Theorem 3.3. Again, each proof consists of verifying a drift condition. Also,
we again observe that if |a|¿ |b| then |a+ b|= |a|+ sgn(a)b.

(i) We can assume without loss that 0¡s¡r− 161. According to (3.8), choose
M ¡∞ large enough and � ∈ (0; r − s− 1) small enough that

|’(x)x1+#(x)|¿ |�ux1+�u|+ �|x1|−s; |’(x)x1|¿ |#(x)| and |�ux1|¿ 4|�u|
for x ∈ Qu;M ; u ∈ C. De�ne constants �u¿0 to satisfy (4.28). Then by (3.2) and
(3.7), for each u ∈ C,

�u∗ |�u|¿�u and �u∗ + �u∗�u�u¿�u: (4.45)

De�ne

V (x) =
{

�u|x1|+ �u if x ∈ Qu;M ; u ∈ C;
0 otherwise:
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Also let R=
⋃

u∈C Qu;M . Similar to that which gave (4.30), if X0 = x ∈ Qu;M ; u ∈ C,
|c(e1; x)|6|�ux1|=3 and |x1| is large enough, then

V (X1)− V (x)¿�u∗(�uc(e1; x) + �|x1|−s): (4.46)

Let H (y) = 1− (1 + y)−� and note that for |z|6y=2,

H (y + z)− H (y)¿
�z

(1 + y)1+� −
�(1 + �)|z|r
2(1 + y=2)r+� : (4.47)

Analogous to (4.31), z = �u∗(�uc(e1; x) + �|x1|−s) is no more than V (x)=2 in absolute
value if |c(e1; x)|6|�ux1|=3 and |x1| is large enough. Thus, we apply (4.46) and (4.47)
with this z and with y = V (x) to obtain

H (V (X1))− H (V (x))

¿(H (y + z)− H (y))1|c(e1; x)|6|�ux1|=3 − 1|c(e1; x)|¿|�ux1|=3

¿
(
�(�uc(e1; x)+�|x1|−s)

(1+V (x))1+� − �(1+�)|�u∗(�uc(e1; x)+�|x1|−s)|r
2(1+V (x)=2)r+�

)
1|c(e1; x)|6|�ux1|=3

−1|c(e1; x)|¿|�ux1|=3:

Therefore, since Assumption (A:5) holds with r ¿ 1 + s+ �,

lim sup
|x1|→∞
x∈Qu; M

|x1|1+s+�Ex(H (V (X1))− H (V (x)))¿�2�−1−�
u ¿ 0 for u ∈ C:

Also, for any M∗; �d({x ∈ R: V (x)¿M∗})¿ 0. By (Meyn and Tweedie, 1993,
Theorem 8:0:2) this shows that {Xt} is transient.
(ii) In choosing �u’s to satisfy (4.28), the choice is unique up to an additive constant.

We choose them here to so that �u=�u6− L1 for all u ∈ C. By (3.9) we may choose
M ¿L2 large enough that �uM + �u¿0 for all u ∈ C and

|’(x)x1 + #(x)|¿|�ux1 + �u| −�(x); |’(x)x1|¿#(x)| and |�ux1|¿ |�u|
(4.48)

for x ∈ Qu;M ; u ∈ C. Let K1 = maxu∈C (�uM + �u). Now de�ne

V (x) =

{
�u|x1|+ �u if x ∈ Qu;M ; u ∈ C;

0 otherwise

and R=
⋃

u∈C Qu;M . By (4.45) and (4.48), for x ∈ Qu;M ,

V (x)6�u∗ |�ux1 + �u|+ �u∗6�u∗(|’(x)x1 + #(x)|+�(x)) + �u∗ :



D.B.H. Cline, Huay-min H. Pu / Stochastic Processes and their Applications 82 (1999) 307–333 331

Recall that if X0=x ∈ Qu;M , then X1 ∈ Qu∗ ;M if and only if |�1|¿M and sgn(�1)=�u.
Also, if x ∈ Qu;M ,

|�1|=
{

�uc(e1; x) + |’(x)x1 + #(x)| if sgn(�1) = �u;

−�uc(e1; x)− |’(x)x1 + #(x)| if sgn(�1) 6= �u:

Therefore we obtain, for x ∈ Qu;M ; u ∈ C,

V (X1)− V (x)¿ (�u∗ |�1|+ �u∗)1X1∈Qu∗ ; M − V (x)1X1 6∈Qu∗ ; M

¿ �u∗(�uc(e1; x)−�(x))− (�u∗ |�1|+ �u∗)1|�1|6M; sgn(�1)=�u

+(�u∗ |�1| − �u∗)1sgn(�1)6=�u

¿ �u∗(�uc(e1; x)−�(x) + |�1|1sgn(�1)6=�u) + �u∗1|�1|6M; sgn(�1)=�u

−K11X1 6∈R: (4.49)

Note that �u∗ and �u are �xed, given X0 = x ∈ Qu;M . By Assumption (A:5), the
de�nition of �(x) and the choice of �u∗ and M , it is easily seen that

w(x; X1)
def= �u∗(�uc(e1; x)−�(x) + |�1|1sgn(�1)6=�u) + �u∗1|�1|6M; sgn(�1)=�u

is uniformly bounded in absolute mean and has nonnegative mean. Also,

�d({x ∈ R: V (x)¿K1})¿ 0: (4.50)

By (4.49), (4.50) and Lemma 3.4, {Xt} is not positive recurrent.

Proof of Lemma 3.4. Let Ft be the �-�eld generated by (X0; X1; : : : ; Xt). De�ne the
random variables Yt = w(Xt−1; Xt). De�ne � = inf{t¿1: Xt 6∈ R} and suppose x ∈ R
and Ex(�)¡∞. Then, by (i),

−V (x) = V (X�)− V (x) =
∞∑
t=1

(V (Xt)− V (Xt−1))1�¿t

¿
∞∑
t=1

(Yt − K11Xt 6∈R)1�¿t :

Applying Fubini’s theorem and (ii), we obtain

−V (x)¿
∞∑
t=1

Ex(E(Yt1�¿t − K11�=t |Ft−1))

¿
∞∑
t=1

Ex(−K11�=t) =−K1:
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We have shown x ∈ R and Ex(�)¡∞ implies V (x)6K1. But if {Xt} is positive
recurrent and  (Rc)¿ 0 then Ex(�)¡∞ almost everywhere ( ) and

 ({x ∈ R: V (x)¿K1})6 ({x ∈ R: Ex(�) =∞}) = 0;
contradicting (iii). So {Xt} must not be positive recurrent.

Proof of Corollary 3.5. Note that (3.10) and (3.11) imply (1.2). The result follows
from Theorems 3.1 and 3.3 except that the constants �u and �u, while being the limits in
(1.2), do not necessarily satisfy the conditions in Theorem 3.1 or 3.3. So, for example,
assume case (i) and let C be any cycle. If

∏
u∈C �u ¡ 1, there is � small enough that

(3.3) and (3.4) both hold with �u replaced by �′
u=�u+sgn(�u)�; �u replaced by �′u=0

and �u recalculated accordingly. If
∏

u∈C �u = 1 and
∑

u∈C �u∗�u�u ¡ 0 then a small
adjustment to the �u’s is all that is needed. Cases (ii) and (iii) are dealt with likewise.
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