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Abstract. We demonstrate a reliable and computationally feasible method for
determining whether a given threshold autoregression autoregressive conditional
heteroscedastic (AR-ARCH) model is ergodic, and for determining which moments exist
when it is ergodic. This method may be used to delineate the parameter space of the model.
We show (for an order 2 model) that the parameter space is much less constrained than
commonly is assumed.
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1. INTRODUCTION

Modelling the stochastic volatility of econometric and other time series with
autoregressive conditional heteroscedastic (ARCH) and generalized autoregressive
conditional heteroscedastic (GARCH)-type models has proved to be very
successful. This effort has been extended to include additional nonlinearity such
as threshold (G)ARCH models (e.g. Rabemananjara and Zakoı̈an, 1993;
Zakoı̈an, 1994), as well as the addition of autoregression components, which
also may be nonlinear (Li and Li, 1996; Liu et al., 1997; Lu, 1998; Ling, 1999;
Hwang and Woo, 2001; Lu and Jiang, 2001; Lanne and Saikkonen, 2005). ARCH
and GARCH models with regime switching also have been suggested and
analysed (see references in Francq et al., 2001; Francq and Zakoı̈an, 2005).

Although it is a standard practice to impose second-order stationarity when
modelling a (G)ARCH time series, this is not so easily done when the model
includes an autoregression component or is a threshold model. Standard
assumptions prove to be far too restrictive. As these more general models come
into use, theoreticians and analysts will need tools to help circumscribe each
model’s parameter space or, at the very least, to determine whether a given set of
parameters is within the parameter space. Unfortunately, the very shape of these
parameter spaces is unknown, and they are quite possibly complicated and
surprising. Indeed, as we will show, there are models for which a moderate
amount of stochastic volatility is required for stationarity.
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The condition for second-order stationarity can be somewhat stronger than
that for the existence of a stationary distribution (ergodicity). Since ergodicity is
required for most statistical limit theorems, verifying when it holds is of equal
interest. Indeed, the estimation of parameters usually depends on it, irrespective
of any moment requirements.

Still, the moment question itself is quite important. These models are known to
have heavy tails and so, beyond verifying that the model is stable, it is useful to
ascertain the nature of those tails. Ideally, this includes determining not only
which moments exist but also the relationships among consecutive extreme values
in the series.

As a general rule, it can be difficult to check for ergodicity, especially in the
context of stochastic volatility. This is both a statistical question for actual time
series and an analytical one for specific models. Although we direct our attention
only to the analytical question, statistical issues arise when simulating a model to
evaluate its properties. Ordinarily, testing ergodicity and the existence of moments
requires long series and multiple instances of the more �extraordinary� behaviour
possible. The latter requirement makes direct simulation of a model quite
unwieldy for these purposes.

Instead, our aim here is to provide a stable and efficient method for identifying
ergodicity of a given model and, if ergodic, for determining which moments exist
for the stationary distribution. Objectively, the problem is to check analytical
conditions which are implicit by necessity and, in doing so, to sidestep the
simulation of a stochastically volatile process. If workable, then this method could
ultimately be used statistically to appraise the properties of an actual time series.

This paper is organized as follows. First, in section 2, we describe the threshold
AR-ARCH models we study. These have natural, easily evaluated, sufficient
conditions for second-order stationarity or existence of a stationary distribution
which are well known but ultimately are too strong. An alternative approach,
motivated by the work of Bougerol and Picard (1992a,b) and Cline and Pu
(2004), is to determine the process’s Lyapounov exponent. The very useful result
is that this constant may be evaluated by simulating or numerically analysing a
simpler, bounded and uniformly ergodic process. These points we discuss in
sections 3 and 4. The question of moments is closely related as existence of a
moment also may be determined numerically from the simpler process.

In section 5, we discuss numerical computations and the issues involved and, in
section 6, we implement the methods for a threshold AR-ARCH model of order 2
and plot cross-sections of its parameter space. In section 7, we briefly discuss
extending the method to GARCH and related models.

2. THRESHOLD AR-ARCH MODELS

Throughout we assume e1, e2, . . . are independent and identically distributed
(i.i.d.) random errors with density f, symmetric about 0 and positive on the entire
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real line. We also presume that E(|et|
r) < 1 for r sufficiently large. These

assumptions allow us to focus on parameter values.
An ARCH model with autoregression is

nt ¼ a0 þ
Xp

i¼1
aint�i þ b2

0 þ
Xp

i¼1
b2

i n
2
t�i

 !1=2

et; ð1Þ

where b0 6¼ 0 and either ap 6¼ 0 or bp 6¼ 0. The first part, a0 þ
Pp

i¼1 aint�i is the
autoregression or AR component. The second part is the ARCH component. The
conditional �variance� or �volatility�, b2

0 þ Rp
i¼1b2

i n
2
t�i, is a regression on the squared

process.
The model (1) differs from an autoregression model with ARCH errors in that

the conditional variance of the latter is a regression on the past noise (the ARCH
component above). Another related model is one with GARCH errors. (Ling,
2004, calls (1) a �double autoregression model�). The main advantage of our
formulation here is the simplicity of the state vector Xt ¼ (nt, . . . , nt�pþ1).

This model is ergodic and has a stationary distribution if

Xp

i¼1
jaij

 !2

þ
Xp

i¼1
b2

i

 !
Eðe2t Þ < 1 ð2Þ

(cf. Lu, 1998). This is a standard assumption that ensures Eðn2t Þ < 1, but it also
is stronger than the condition for ergodicity. (See Masry and Tj�stheim, 1995 for
an alternative condition.). Precise conditions for ergodicity are known when p ¼ 1
(Borkovec and Klüppelberg, 2001) or when all AR coefficients are 0 (many
different authors such as Bougerol and Picard, 1992a,b).

The autoregression component need not be linear, however. For example, it can
be piecewise linear, as is the case with a threshold AR model. Tong (1990) called
this combination of threshold AR with ARCH, a second generation model. More
generally, both the autoregression and the conditional variance may be nonlinear,
including having piecewise characteristics. This is what we call the nonlinear AR-
ARCH model. Others who have investigated these or similar models include
Rabemanajara and Zakoian (1993), Li and Li (1996), Liu et al. (1997), Lu (1998),
Ling (1999), Hwang and Woo (2001), Lu and Jaing (2001) and Lanne and
Saikkonen (2005).

The state space (Markov chain) representation of the model is

nt ¼ aðXt�1Þ þ bðXt�1Þet þ cðXt�1; etÞ;
Xt�1 ¼ ðnt�1; . . . ; nt�pÞ:

ð3Þ

We will assume that a and b are piecewise continuous and homogeneous:

aðxÞ ¼ a
x
kxk

� �
kxk and bðxÞ ¼ b

x
kxk

� �
kxk; ð4Þ

and that c(x,u) ¼ o(kxk)O(|u|) as kxk,|u| ! 1.
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A special case is the threshold AR-ARCH model (TAR-ARCH) with order p
and delay lag k � p, expressed as follows.

nt ¼
a10 þ

Pp
i¼1

a1int�i þ b2
10 þ

Pp
i¼1 b2

1in
2
t�i

� �1=2
et; if nt�k � 0,

a20 þ
Pp
i¼1

a2int�i þ b2
20 þ

Pp
i¼1 b2

2in
2
t�i

� �1=2
et; if nt�k > 0.

8>><
>>: ð5Þ

Here, with x ¼ (x1, . . . , xp), we have

aðxÞ ¼
Xp

i¼1
ða1i1xk�0 þ a2i1xk>0Þxi

and

bðxÞ ¼
Xp

i¼1
ðb2

1i1xk�0 þ b2
2i1xk>0Þx2i

 !1=2

:

If we assume, for the general model in (3), that

jaðx1; . . . ;xpÞj� a1jx1jþ � � �þapjxpj and bðx1; . . . ;xpÞ� ðb2
1x

2
1þ�� �þb2

px2pÞ
1=2; ð6Þ

then a blanket application of the standard assumption (2) for an AR-ARCH
model gives this condition (Lu, 1998):

Xp

i¼1
ai

 !2

þ
Xp

i¼1
b2

i

 !
Eðe2t Þ < 1: ð7Þ

Lu and Jiang (2001) give a similar condition that guarantees existence of the first
moment:

Xp

i¼1
ai þ biEðjetjÞð Þ < 1: ð8Þ

(see also Cline and Pu, 2004). These conditions, however, are quite a bit stronger
than the necessary condition for second-order stationarity, and they are extremely
limiting conditions for ergodicity of even the simplest models. The exact condition
for ergodicity (see section 4), determined by Cline and Pu (2004), must be
computed numerically if p > 1.

The generalized ARCH (GARCH) model is

nt ¼ rtet;

rt ¼ b2
0 þ

Pp
i¼1

b2
i n

2
t�i þ

Pq
i¼1

c2i r
2
t�i

� �1=2

:
ð9Þ

The ARCH model is a special case with each cj ¼ 0. Assuming Eðe2t Þ ¼ 1, it is
possible to give an exact condition for second-order stationarity of the GARCH
model, namely
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Xp

i¼1
b2

i þ
Xq

i¼1
c2i < 1 ð10Þ

(Bollerslev, 1986). If, however, an autoregression component is included or
nonlinearity allowed or both then once again exact conditions are not so easily
computed (see section 7).

3. THE LYAPOUNOV EXPONENT

The results given in this section and the next are from Cline and Pu (2004), unless
otherwise attributed.

To express precise conditions for ergodicity, we turn to the Lyapounov
exponent, a concept well known by those studying stability of dynamical systems.
In the context of nonlinear time series, nonstability means explosive behaviour.
The Lyapounov exponent, as we define it for the state space model fXtg of a time
series, is

c ¼ lim inf
n!1

lim sup
jjxjj!1

1

n
E log

jjXnjj
jjX0jj

� � ��� X0 ¼ x
� �

; ð11Þ

which measures the drift of the process when large. When c < 0, a geometric drift
condition holds:

EðjjXnjjrjX0 ¼ xÞ � qjjxjjr þ K; ð12Þ

for some n � 1, r > 0, q < 1, K < 1. If the process is irreducible, this a
standard condition for geometric ergodicity (Meyn and Tweedie, 1993).
Geometric ergodicity implies mixing and the drift condition implies existence of
an rth moment for the stationary distribution. Consequently, statistical limit
theorems such as the strong law of large numbers and the central limit theorem
will hold if applied to averages of functions of the series with the required first or
second moments.

On the other hand, c > 0 (plus some regularity) implies

PðjjXnjj ! 1jX0 ¼ xÞ > 0 for any x, ð13Þ

and hence the process is transient. For the boundary case, c ¼ 0, the process can
be positive recurrent, null recurrent or transient, as is the case of threshold AR
models (Cline and Pu, 1999).

Because the squared GARCH process is effectively linear, it is possible to re-
express it as a random coefficients model. The stability properties of such a model
have been known for some time. The random coefficients embedding is as follows.
Let
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Yt ¼ ðn2t ; . . . ; n2t�pþ1; r
2
tþ1; . . . ; r2

t�qþ2Þ: ð14Þ

Then there exists a fixed matrix L and random matrices
Bt ¼ ð0; . . . ; 0; b2

0e2t ; 0; . . . ; 0Þ and

Ct ¼

0 � � � 0 e2t 0 � � � 0
L 0 0 � � � 0

b2
2 � � � b2

p b2
1e

2
t þ c21 c22 � � � c2q

0 � � � 0 1 0 � � � 0
0 � � � 0 0 I

0
BBBB@

1
CCCCA ð15Þ

such that

Yt ¼ Bt þ CtYt�1: ð16Þ

The random coefficients model (and hence fntg) is ergodic iff

2c ¼ lim
n!1

1

n
EðlogðjjCnCn�1 � � �C1jjÞÞ < 0 ð17Þ

(Bougerol and Picard, 1992a, b). The limit is the Lyapounov exponent of the
squared GARCH process and hence is twice that of the GARCH process itself.
Furthermore, the GARCH model has finite rth moment (and E(|nt|

r) < 1) if

qr ¼
def

lim
n!1

EðjjCnCn�1 � � �C1jjr=2Þ
� �1=n

< 1 ð18Þ

(Basrak et al., 2002). In fact, the stationary distribution of linear combinations of
the squared GARCH process have multivariate regularly varying tails (see also
Borkovec, 2000; Borkovec and Klüppelberg, 2001). Klüppelberg and Per-
gamenchtchikov (2004) have a similar result for random coefficient models.
Francq and Zakoı̈an (2005) have looked at GARCH models with Markov regime
switching, developing precise conditions for existence of moments.

The constants c and qr in eqns (17) and (18) are defined in terms of products of
random matrices which makes both, and especially the latter, difficult to estimate
efficiently by direct simulation. Nevertheless, these results show that the stability
features of the GARCH process can be expressed in terms of a somewhat simpler
process. The successful attainment of analytic results for the GARCH model
immediately suggests questions for the extended and nonlinear models under
study here.
� Are there similar results (and critical constants c and qr) if AR terms are

included, such as in the AR-ARCH model?
� What happens if the model is �nonlinear� in either the AR part or in the

conditional heteroscedasticity?
� Can c and qr be evaluated more easily than by direct simulation of the model?

Note that if the model either has an AR component or is a threshold model, then
it cannot be expressed as a random coefficients model; so, our approach must be
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more subtle than evaluating asymptotic behaviour of random matrices as in eqn
(17).

4. EXACT STABILITY CONDITIONS VIA THE PIGGYBACK METHOD

The now standard approach to proving geometric ergodicity of a Markov chain
fXtg involves verifying the Foster–Lyapounov drift condition: there is a test
function V(x) � 1, K < 1 and q < 1 such that

E V ðX1Þ
���X0 ¼ x

� �
� K þ qV ðxÞ: ð19Þ

(see Meyn and Tweedie, 1993). The difficult part is choosing the optimal test
function. This condition is equivalent to equation (12) when c1||x||

r�V(x) �
c2 þ c3||x||

r for finite positive c1,c2,c3. The difficulty in proving eqn (12) is that an
�optimal� n typically is too large to make analytic computation feasible for
nonlinear models. The piggyback method we developed, however, makes it
possible to choose an optimal, or near optimal, test function V to verify eqn (19).

To understand the piggyback method, recall eqn (3) and let

f x; etð Þ ¼ ðaðxÞ þ bðxÞet; x1; . . . ; xp�1Þ; ð20Þ

for x ¼ (x1, . . . , xp). Because of the homogeneity of a(x) and b(x) (see eqn 4),

f
x
kxk ; et

� �
¼ fðx; etÞ
kxk : ð21Þ

Thus, when ||Xt�1|| is very large [and c(Xt � 1,et) is negligible],

Xt

kXt�1k
¼: f

Xt�1
kXt�1k

; et

� �
: ð22Þ

Accordingly, if ht ¼ Xt/kXtk and ||Xt�1|| is large, then

ht¼
:

fðht�1; etÞ=kfðht�1; etÞk and kXtk=kXt�1k ¼
: kfðht�1; etÞk: ð23Þ

We introduce a new process as follows. Let Q ¼ f||x|| 2 Rp : ||x|| ¼ 1g be the
unit sphere in Rp and define the Markov chain on Q

h�t ¼
fðh�t�1; etÞ
kfðh�t�1; etÞk

: ð24Þ

Since this process mimics the first part of eqn (23), we call fh�t g the collapsed chain
associated with fXtg. Its utility lies in the fact that it is uniformly ergodic with
some stationary distribution, say p.

Also from the second part of eqn (23), we can see that it is the behaviour of
kfðh�t�1; etÞk under stationarity that is paramount in determining the drift of fXtg.
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The key to our method, therefore, is that we piggyback a drift condition on the
known ergodicity of the collapsed chain.

It is worth noting that this approach is both necessary for threshold models
and distinct from that of a Markov switching model such as those studied by
Francq and Zakoı̈an (2005). For such a model, the regime switching depends
directly on a hidden Markov chain and only indirectly on the current state of
the process itself.

We can now state the principal result.

Theorem 1 (Stability of the Threshold AR-ARCH Model). Let p be the
stationary distribution of the collapsed process fh�t g.
(a) The Lyapounov exponent for fXtg is

c ¼
Z

H
E log kfðh; etÞkð ÞpðdhÞ: ð25Þ

(b) If c < 0 then fXtg is geometrically ergodic.
(c) For any � > 0, there exists a piecewise continuous function m(h) that satisfies

the near equilibrium equation

sup
h2H
jEðmðh�1Þ � mðhÞ þ log kfðh; e1Þkjh�0 ¼ hÞ � c

��� < �: ð26Þ

(d) fXtg is geometrically ergodic if there exists bounded m(h) such that

sup
h2H

Eðmðh�1Þ � mðhÞ þ log kfðh; e1Þkjh�0 ¼ hÞ < 0: ð27Þ

Note that m plays the role of a test function and c is no longer defined as a
limit (as it was in the GARCH condition). Indeed, c is no longer computed in
terms of random matrices. One may think of kfðh�t�1; etÞk as playing the role of
kCtk in eqn (17).
A corollary to Theorem 4.1 yields the means to verify existence of

moments.

Corollary 1 (Moments of the Threshold AR-ARCH Model). The following are
equivalent conditions for fXtg to have a stationary distribution with finite rth
moment.

(a) There exists kr(h), bounded and bounded away from 0, such that

sup
h2H

E
krðh�1Þ
krðhÞ

kfðh; e1Þkrjh�0 ¼ h

� �
< 1: ð28Þ

(b)
qr ¼ lim sup

n!1
sup
h2H

E
Yn

t¼1
kfðh�t�1; etÞkr j h�0 ¼ h

 ! !1=n

< 1: ð29Þ
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Here, kr plays the role of a test function and its optimal choice is the
eigenfunction corresponding to a maximal eigenvalue (qr). The limit qr in (b)
corresponds to that given earlier for the GARCH model.

Note that (a) and (b) are not the same as
R

QE(||f(h,e1)||
r)p(dh)<1.

5. NUMERICAL EVALUATION OF THE CONDITIONS

When p ¼ 1, the conditions in both Theorem 1 and Corollary 1 can be determined
explicitly (Goldie, 1991; Cline, 2005), so we are concerned here only with the case
p > 1.

Simulating or numerically analysing a uniformly ergodic process has two very
crucial advantages over simulating the time-series model itself. First, the critical
questions we are studying concern the most extreme behaviour of the process and,
consequently, relatively rare behaviour if the model is stable. It is also a highly
variable behaviour. Second, a uniformly ergodic process will converge to
stationarity quite rapidly so that the properties we desire may be calculated
quickly and with confidence.

Evaluating the Lyapounov exponent c may be accomplished by either of two
straightforward schemes. The first is to estimate c as the mean in eqn (25). That is,
by simulating fðh�t ; etÞg, we obtain the estimator

ĉ ¼ 1

n

Xmþn

t¼m

log kfðh�t�1; etÞk; ð30Þ

where m is the �warm-up� time for the collapsed Markov chain. Statistical
properties for such an estimator are known (because we know the process is
ergodic) and our experience suggests that this approach is quite reliable, even
when accounting for correlation in the sequence. Because the collapsed process
converges to stationarity so fast, we found that a warm-up time of m ¼ 30 was
quite sufficient for our examples.

By regressing log kfðh�t� 1; etÞk on other simulated values with known means, the
method can easily be improved. For example, the first component of h�t is

h�t;1 ¼
aðh�t�1Þ þ bðh�t�1Þet

kfðh�t�1; etÞk
:

Since logðjh�t;1j=jh
�
t�1;1jÞ has mean 0 and is correlated with log kfðh�t�1; etÞk, it

proved to be a useful regressor. Likewise, for a reasonable function g,

gðaðh�t�1Þ þ bðh�t�1;1ÞetÞ �
Z 1
�1

gðaðh�t�1Þ þ bðh�t�1ÞzÞf ðzÞdz

has mean 0 and can be used if it may be computed precisely. In our simulations,
we chose f to be the normal density and we took g(z) to be a piecewise linear
approximation of log|z|. We also used
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hðjaðh�t�1Þ þ bðh�t�1Þetj=jh�t�1;1jÞ �
Z 1
�1

hðjaðh�t�1Þ þ bðh�t�1Þzj=jh�t�1jÞf ðzÞdz

where h(z) is a piecewise linear approximation to log (1 þ z2). With these as
regressors (and with an estimated covariance matrix), we obtained an estimator
that decreased the variance by a factor of 5–10.

The second scheme is to solve the near equilibrium equation eqn (26). Ideally,
one may even attempt to solve an exact equilibrium equation given by

mðhÞ ¼ E mðh�1Þ þ log kfðh; e1Þk
��� h�0 ¼ h

� �
� c s.t.

Z
H

mðhÞdh ¼ 0: ð31Þ

We cannot claim that the �optimal� function m(h) will be smooth, however, thereby
presenting possible difficulties in the numerical integration. Since eqn (26)
indicates we only need a piecewise continuous function to get close; an iterative
procedure can still lead to a satisfactory approximation for c.

This can proceed in either of two ways. One option is to evaluate the
expectation in eqn (31) using the transition kernel of the collapsed Markov chain.
But in addition to the intricacies of integrating on the unit sphere, the transition
kernel is singular in general. The second (and maybe more obvious) option is to
integrate with respect to the error distribution. This requires interpolating each
approximation of the test function, however, and avoiding interpolating across
discontinuities in particular. That our numerical solutions are somewhat �jittery�
looking is probably because of an interaction between the quadrature (numerical
integration) and the interpolation.

For the TAR-ARCH model (5) of order p ¼ 2 (see section 6), we found that
the latter method works well if one makes educated guesses about the
discontinuity points of the optimal function. In fact, it may suffice to use a test
function discontinuous only at the threshold, but we cannot rule out the existence
of other discontinuities.

Let f be the error density and let g(h, u) ¼ f(h, u)/||f(h, u)|| so that

h�t ¼ gðh�t�1; etÞ: ð32Þ

A numerical integration method obtains c by iterating the following:

~mjðhÞ ¼
Z

mj�1ðgðh; uÞÞ þ log kfðh; uÞk
� �

f ðuÞdu;

cj ¼ suph2H ~mjðhÞ � mj�1ðhÞ
� �

;

mjðhÞ ¼ ~mjðhÞ �
Z

H
~mjð~hÞd~h:

ð33Þ

The sequence fcjg is decreasing, and to confirm stability one may stop as soon as
cj < 0, even without knowing all the possible discontinuities of the optimal m. It
may be shown mathematically in fact that

inf
h2H

~mjðhÞ � mj�1ðhÞ
� �

� c � sup
h2H

~mjðhÞ � mj�1ðhÞ
� �

; ð34Þ
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assuming the integration is correct. Therefore, the principle source of error here is
the quadrature. If the trapezoid method is used then the quadrature error is
known to be bounded by 0.25d2

R
|g00(u)|du where g is the function being integrated

and d is the increment used for the integration variable. Since convergence is
monotone and (in our experience) does not fail, the initial function is not critical.
We used m0(h) � 0.

Applying either scheme with estimated parameters enables one to determine if
the estimates correspond to a valid (stable) model. A possible hypothesis
test procedure might be to vary the estimates according to their estimated
sampling behaviour and to check stability accordingly. We leave this question to
others.

To check for existence of the rth moment in the stationary distribution of fntg,
one needs to estimate qr. To do this by simulation is, at best, a delicate operation.
In principle, the estimator

q̂r ¼
1

N

XN�1
k¼0

Yn�1
i¼0
kfðh�knþi; eknþiþ1Þkr

 !1=n

ð35Þ

is consistent for qr as n, N ! 1 (see eqn 4.11). Just how to balance n and N is
uncertain, and the sampling properties of the estimator are equally cumbersome
to estimate. Because we found the next approach very suitable, we did not
consider simulation any further.

Like the second scheme for evaluating c, the approach is to solve a criterion
involving a test function, namely eqn (28). In fact, solving eqn (28) is tantamount
to solving an eigenvalue problem:

qrkrðhÞ ¼ E krðh�1Þkfðh; e1Þk
r
���h�0 ¼ h

� �
s.t.

Z
H

krðhÞdh ¼ 1; ð36Þ

and checking if qr < 1. For quadrature purposes, we express eqn (36) as

qrkrðhÞ ¼
Z

krðgðh; uÞÞkfðh; uÞkrf ðuÞdu s.t.

Z
H

krðhÞdh ¼ 1: ð37Þ

This may also be solved iteratively. The procedure is

~kjðhÞ ¼
Z

kj�1ðgðh; uÞÞkfðh; uÞkrf ðuÞdu;

qr;j ¼ suph2H
~kjðhÞ=kj�1ðhÞ
� �

;

kjðhÞ ¼
~kjðhÞR

H
~kjð~hÞ d~h

ð38Þ

Again, to verify qr < 1 one may stop as soon as the estimate is less than 1. It
suffices to initialize the procedure with a constant function k0(h).

See Figure 1 for an example of computed test functions m, k1 and k2.
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6. AN EXAMPLE

We implemented these methods to help delineate the parameter space for the
threshold AR-ARCH model of order 2 and delay 1. This model is expressed as

nt ¼
a10 þ a11nt�1 þ a12nt�2 þ b2

10 þ b2
11n

2
t�1 þ b2

12n
2
t�2

� �1=2
et; if nt�1 � 0,

a20 þ a21nt�1 þ a22nt�2 þ b2
20 þ b2

21n
2
t�1 þ b2

22n
2
t�2

� �1=2
et; if nt�1 > 0.

(

ð39Þ

We may assume that the errors have variance equal to 1. The state vector is Xt ¼
(nt, nt � 1) and the collapsed Markov chain fh�t g �lives� on the unit circle in R2. The
thresholds on the unit circle are at arc(h) ¼ ±p/2 and are probable points of
discontinuity for the test functions (as confirmed in Figure 1).

The eight parameters critical for the stability of fntg are
a11, a12, a21, a22, b11, b12, b21 and b22. The criterion commonly used for second-
order stationarity (which we call �naive�) is

ðmaxðja11j; ja21jÞ þmaxðja12j; ja22jÞÞ2 þmaxðb2
11; b

2
21Þ þmaxðb2

12; b
2
22Þ < 1: ð40Þ

Clearly, this requires all the parameters to be less than one in magnitude and most
of them to be quite small. Although sufficient, this condition is unduly harsh.

With proper programming [using R (R Development Core Team, 2004) on a
standard desktop computer], either scheme for evaluating c was reliable and

Figure 1. Test functions for the TAR-ARCH(2) model with a11 ¼ 0.3, a12 ¼ 0.2, a21 ¼ �0.4, a22 ¼
0.1, b11 ¼ 0.7, b12 ¼ 0.2, b21 ¼ 0.3, b22 ¼ 0.1. Functions shown are unique up to an additive constant.

252 D. B. H. CLINE

� 2006 The Author
Journal compilation � 2006 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 2



reasonably fast. Solving the equilibrium equation appears to be more efficient, by
a factor of 5 or more. Table 1 shows, for a few randomly chosen parameter
values, estimates of c by simulation (using sequences of length 50,000) and by
solving the equilibrium equation (evaluating m at 200 points on the unit circle and
using 200 points between �5 and 5 for the quadrature). The error shown for the
latter is an estimate of the quadrature error. CPU time is in seconds.

With 200 such trials, we found that the average standard error of the simulation
method and the average quadrature error of the equilibrium method were both
0.001, but the simulation method averaged 9.1 seconds of CPU time while the
equilibrium method averaged 1.6 seconds of CPU time.

Using the equilibrium/eigenvalue methods to evaluate c, q1 and q2, while
varying two parameters at a time, we mapped out regions for ergodicity, finite first
moment and finite second moment respectively. These are shown in Figures 2–9.
The parameter region defined by the �naive� criterion (40) is also shown, and is
clearly much smaller even than the region for finite second moment. In particular,
some parameters may have magnitude much bigger than one and the second
moment still is finite.

As is quite common for threshold models, the parameter regions can be quite
asymmetric. For example, Figures 2 and 6 show parameter regions for the AR
coefficients that apply when nt � 1 < 0. The leading coefficient, a11 can be quite
negative because that causes the process to shift to the positive side where it very
likely will shrink dramatically. Figures 3 and 7 also demonstrate that one leading
coefficient may be large and negative as long as the other leading coefficient is not
too big. Similarly, Figures 4, 5, 8 and 9 illustrate that one volatility (ARCH)
parameter can be large because that presumably makes it more likely the process
will switch to a regime where it will quickly shrink.

Figures 8 and 9 are interesting because the parameter regions do not include a
neighborhood of the origin. Note that the AR parameters a11, a12 correspond to a
non-stationary AR(2) model. Consequently, a moderate amount of stochastic
volatility is required for the threshold AR-ARCHmodel to be stable in such a case.

TABLE 1

Example Results from the Two Schemes for Estimating the Lyapounov Exponent c

AR parameters
ARCH

parameters Simulation scheme Equilibrium scheme

a11 a12 a21 a22 b11 b12 b21 b22 ĉ SE CPU ĉ Quad. Err. CPU

�0.2 �1.0 0.0 �0.2 0.4 0.0 0.2 0.9 �0.09663 0.00082 9.3 �0.09773 0.00064 2.1
0.0 0.5 �0.4 �0.7 0.5 0.3 0.1 0.3 �0.25415 0.00080 9.2 �0.25358 0.00035 2.2
0.2 �0.2 �0.5 0.2 0.7 0.6 0.1 0.5 �0.27846 0.00057 9.0 �0.27780 0.00074 0.5
�0.2 0.3 0.1 0.6 0.5 0.8 0.7 0.3 �0.17624 0.00059 9.2 �0.17708 0.00045 1.3
�0.5 �0.7 0.3 �1.0 0.0 0.9 0.8 0.2 0.00963 0.00055 9.3 0.00966 0.00028 2.4
�0.8 0.0 0.5 0.7 0.0 1.1 0.3 0.7 0.02333 0.00082 9.1 0.02371 0.00031 1.2
0.2 �0.4 �0.5 �0.2 0.6 1.0 0.6 0.3 �0.20844 0.00117 8.9 �0.20816 0.00083 0.7
0.0 �0.2 0.4 0.6 0.5 0.3 0.0 0.2 �0.00852 0.00006 9.3 �0.00853 0.00306 2.9
0.3 �0.1 0.0 0.4 0.3 0.4 0.1 0.2 �0.52412 0.00074 9.2 �0.52411 0.00058 2.9
�0.4 0.0 �0.5 1.0 0.4 0.5 0.2 0.2 �0.01304 0.00147 9.1 �0.01108 0.00103 2.7
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Figure 2. Stability regions for the TAR-ARCH(2) model with a21 ¼ � 0.4, a22 ¼ 0.1, b11 ¼
0.7, b12 ¼ 0.2, b21 ¼ 0.3, b22 ¼ 0.1.

Figure 3. Stability regions for the TAR-ARCH(2) model with a12 ¼ 0.2, a22 ¼ 0.1, b11 ¼ 0.7, b12 ¼
0.2, b21 ¼ 0.3, b22 ¼ 0.1.
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Figure 4. Stability regions for the TAR-ARCH(2) model with a11 ¼ 0.3, a12 ¼ 0.2, a21 ¼
�0.4, a22 ¼ 0.1, b21 ¼ 0.3, b22 ¼ 0.1.

Figure 5. Stability regions for the TAR-ARCH(2) model with a11 ¼ 0.3, a12 ¼ 0.2, a21 ¼
�0.4, a22 ¼ 0.1, b12 ¼ 0.2, b22 ¼ 0.1.
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Figure 6. Stability regions for the TAR-ARCH(2) model with a21 ¼ �0.8, a22 ¼ 0.1, b11 ¼
0.3, b12 ¼ 0.2, b21 ¼ 0.3, b22 ¼ 0.1.

Figure 7. Stability regions for the TAR-ARCH(2) model with a12 ¼ �0.75, a22 ¼ 0.1, b11 ¼
0.3, b12 ¼ 0.2, b21 ¼ 0.3, b22 ¼ 0.1.
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Figure 8. Stability regions for the TAR-ARCH(2) model with a11 ¼ �0.27, a12 ¼ �0.75, a21 ¼
�0.8, a22 ¼ 0.1, b21 ¼ 0.3, b22 ¼ 0.1.

Figure 9. Stability regions for the TAR-ARCH(2) model with a11 ¼ �0.27, a12 ¼ �0.75, a21 ¼
�0.8, a22 ¼ 0.1, b12 ¼ 0.2, b22 ¼ 0.1.
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7. A THRESHOLD AR-GARCH MODEL

The theory in Cline and Pu (2004) did not cover nonlinear GARCH models,
strictly speaking, but the piggyback method should nevertheless be applicable. We
outline the concept here for an order 1 threshold AR-GARCH model and suggest
how its stability properties may be ascertained.

The model is defined by

nt ¼ a0j þ a1jnt�1 þ rtet; r2
t ¼ b2

0j þ b2
1jn

2
t�1 þ c21jr

2
t�1; if ð�1Þjnt�1 > 0; j ¼ 1; 2:

ð41Þ

If we define the homogeneous functions on R 	 Rþ

aðx; sÞ ¼ a11x1x<0 þ a12x1x>0

ðx2 þ s2Þ1=2
ð42Þ

and

bðx; sÞ ¼ ðb2
11x2 þ c211s2Þ1x<0 þ ðb2

12x2 þ c212s2Þ1x>0

x2 þ s2

� �1=2

ð43Þ

then we have

Xt ¼def
nt

rt

� �
¼ aðnt�1;rt�1Þ þ bðnt�1; rt�1Þet

bðnt�1;rt�1Þ

� �
ðn2t þ r2

t Þ
1=2 þ hðnt�1; rt�1Þ

et

1

� �
;

ð44Þ

where 0 � h(x,s) � max(b01, b02). Analogous to the approach in section 4, we
now let h ¼ (x, s) be in the half unit circle Q ¼ f(x, s) : x2 þ s2 ¼ 1, s > 0g and
define

fðh; uÞ ¼ aðhÞ þ bðhÞu
bðhÞ

� �
ð45Þ

and g(h,u) ¼ f(h, u)/||f(h, u)||. The collapsed Markov chain will again be

h�t ¼ gðh�t�1; etÞ; ð46Þ

and the results and methods of sections 4 and 5 will follow exactly as described
there.
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