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Preface

Let’s say you commit to 2 hours per day and you’re able to write 3 pages per
hour. To write an average length book of 300 pages will take 50 days. (300 pages
per book/6 pages per day = 50 days).

A posting on Life Learning Today: How to Write a Book in 60 Days or Less.

By not following the recommendations from the above quote the writing
of this book took much longer. The book is a result of many semesters of
teaching various statistical courses to engineering students at Duke Univer-
sity and the Georgia Institute of Technology. Through its scope and depth of
coverage, the book addresses the needs of the vibrant and rapidly growing
engineering fields while implementing software that engineers are familiar
with.

This book is substantially revised version of the text originally published
by Springer in 2011 (ISBN 978-1-4614-0394-4). In addition to providing
many new examples and exercises, a number of new sections is added.
The original edition served as a primary textbook for the course Introduc-
tion to Bioengineering Statistics, at The Wallace H. Coulter Department of
Biomedical Engineering at Georgia Tech for 6 consecutive semesters. I no-
ticed that it was used not only as a textbook but students found it useful as
a repository of techniques for data analysis in other courses, class projects,
senior design projects, and day-to-day laboratory data analysis. So by its
scope this book is both: a textbook for introductory-to-intermediate applied
biostatistics courses and a reference book with a coverage of a number of
rather specialized techniques.

This book is heavily oriented to computation and hands-on approaches.
The approach enforced avoids the use of mainstream statistical packages
in which the procedures are often black-boxed. Rather, the students are
expected to code the procedures on their own. The results may not be as
flashy as they would be if the specialized packages were used, but the stu-
dent will go through the process and understand each step of the program.
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The computational support for this text is the MATLAB c© programming
environment since this software is predominant in the engineering com-
munities.

Another dimension of this book is in the substantial coverage of Bayesian
approaches to statistical inference. I avoided taking sides on the traditional
(classical, frequentist) vs. Bayesian approach; it was my goal to expose stu-
dents to both approaches. It is undeniable that classical statistics is over-
whelmingly used in conducting and reporting inference among practition-
ers, and that Bayesian statistics is gaining in popularity, acceptance, and
usage (FDA, Guidance for the Use of Bayesian Statistics in Medical Device
Clinical Trials, 5 February 2010). Many examples in this book are solved
using both the traditional and Bayesian methods, and the results are com-
pared and commented upon.

This diversification is made possible by advances in Bayesian compu-
tation and the availability of the free software WinBUGS/OpenBUGS that
provides painless computational support for Bayesian solutions. WinBUGS
and MATLAB communicate well due to the interface software MATBUGS,
written by Kevin P. Murphy and coauthors. The book also relies on stat

toolbox within MATLAB.
The World Wide Web (WWW) facilitates the book. All custom-made

MATLAB and WinBUGS programs (compatible with MATLAB R2017a and
WinBUGS 1.4.3 or OpenBUGS 3.2.3) as well as data sets used in this book
are available on the Web:

http://statbook.gatech.edu/

With the size of this book in mind the solutions and hints to some exercises
can be found on the book’s Web site. The computer scripts and examples
are an integral part of the book, and all MATLAB codes and outputs are
shown in blue typewriter font while all WinBUGS programs are given in
red-brown typewriter font. The comments in MATLAB and WinBUGS codes
are presented in green typewriter font.

The three icons , , and are used to point to data sets, MATLAB
codes, and WinBUGS codes, respectively.

The difficulty of the material covered necessarily varies. More difficult
sections that may be omitted in the basic coverage are denoted by a star, ∗.
However, it is my experience that advanced undergraduate bioengineering
students affiliated with school research labs need and use the “starred”
material, such as functional ANOVA, variance stabilizing transforms, and
nested experimental designs, to name just a few. Tricky or difficult places

are marked with Donald Knut’s “bend”
�

.
Each chapter starts with a box titled WHAT IS COVERED IN THIS

CHAPTER and ends with chapter exercises, a box called MATLAB AND
WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER, and chap-
ter references.

http://statbook.gatech.edu/
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The examples are numbered and the end of each example is marked
with�.

I am aware that this work could be improved with respect to both ex-
position and coverage. Thus, I would welcome any criticism and pointers
from readers as to how this book could be improved.

Acknowledgments. I am indebted to many students and colleagues who
commented on various drafts of the book. In particular I am grateful to
colleagues from the Department of Biomedical Engineering at the Georgia
Institute of Technology and Emory University and their undergraduate and
graduate advisees/researchers who contributed many examples and data
sets from their research labs.
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to Giuseppe Cardillo (MeriGen Research) for their excellent contributions.

The book benefited from the input of many diligent students when it
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neering Statistics. A complete list of students who provided useful feed-
back would be quite long, but the most diligent ones were Erin Hamil-
ton, Kiersten Petersen, David Dreyfus, Jessica Kanter, Radu Reit, Amoreth
Gozo, Nader Aboujamous, and Allison Chan. Special thanks go to Brett Jor-
dan, who, as multiple-time Teaching Assistant for Bioengineering Statistics
course, pointed out numerous places for text improvement.

Wiley’s team kindly helped along the way. I am grateful to Jon Gurstelle,
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Chapter 1

Introduction

Many people were at first surprised at my using the new words “Statistics” and “Statis-
tical,” as it was supposed that some term in our own language might have expressed the
same meaning. But in the course of a very extensive tour through the northern parts of
Europe, which I happened to take in 1786, I found that in Germany they were engaged in a
species of political inquiry to which they had given the name of “Statistics”. . . . I resolved
on adopting it, and I hope that it is now completely naturalised and incorporated with our
language.

– Sinclair, 1791; Vol XX

WHAT IS COVERED IN THIS CHAPTER

•What is the subject of statistics?
• Population, sample, data
• Appetizer examples

The problems confronting health professionals today often involve fun-
damental aspects of device and system analysis, and their design and appli-
cation. As such they are of extreme importance to engineers and scientists.

Due to many aspects of engineering and scientific practice involving
nondeterministic outcomes, understanding and knowledge of statistics is
important to any engineer and scientist. Statistics is a guide to the unknown.
It is a science that deals with designing experimental protocols; collect-
ing, summarizing, and presenting data; and, most important, making in-
ferences and aiding decisions in the presence of variability and uncertainty.

1
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For example, R. A. Fisher’s 1943 elucidation of the human blood-group sys-
tem Rhesus in terms of the three linked loci C, D, and E, as described in
Fisher (1947) or Edwards (2007), is a brilliant example of building a coher-
ent structure of new knowledge guided by a statistical analysis of available
experimental data.

The uncertainty that statistical science addresses derives mainly from
two sources: (1) from observing only a part of an existing, fixed, but large
population or (2) from having a process that results in nondeterministic
outcomes. At least a part of the process needs to be either a black box or
inherently stochastic, so the outcomes cannot be predicted with certainty.

A population is a statistical universe. It is defined as a collection of exist-
ing attributes of some natural phenomenon or a collection of potential at-
tributes when a process is involved. In the case of a process, the underlying
population is called hypothetical, for obvious reasons. Thus, populations
can be either finite or infinite. A subset of a population selected by some
relevant criteria is called a subpopulation.

Often we think about a population as an assembly of people, animals,
items, events, times, etc., in which the attribute of interest is measurable.
For example, the population of all US citizens older than 21 is an example
of a population for which many attributes can be assessed. Attributes might
be a history of heart disease, weight, political affiliation, level of blood sugar, etc.

A sample is an observed part of a population. Selection of a sample is
a rich methodology in itself, but, unless otherwise specified, it is assumed
that the sample is selected at random. The randomness ensures that the
sample is representative of its population.

The sampling process depends on the nature of the problem and the
population. For example, a sample may be obtained via a retrospective
study (usually existing historical outcomes over some period of time), an
observational study (an observer monitors the process or population in real
time), a sample survey (a researcher administers a questionnaire to mea-
sure the characteristics and/or attitudes of subjects), or a designed study
(a researcher makes deliberate changes in controllable variables to induce
a cause/effect relationship), to name just a few.

Example 1.1. Ohm’s Law Measurements. A student constructed a simple
electric circuit in which the resistance R and voltage E were controllable.
The output of interest is current I, and according to Ohm’s law it is

I =
E

R
.

This is a mechanistic, theoretical model. In a finite number of measure-
ments under an identical R, E setting, the measured current varies. The
population here is hypothetical – an infinite collection of all potentially ob-
tainable measurements of its attribute, current I. The observed sample is
finite. In the presence of sample variability, one establishes an empirical
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(statistical) model for currents from the population as either

I =
E

R
+ ǫ or I = ǫ

E

R
.

On the basis of a sample, one may first select the model and then proceed
with the inference about the nature of the discrepancy, ǫ.
�

Example 1.2. Cell Counts. In a quantitative engineering physiology labora-
tory, a team of four students was asked to make a LabVIEW c© program to
automatically count MC3T3-E1 cells in a hemocytometer (Fig. 1.1). This au-
tomatic count was to be compared with the manual count collected through
an inverted bright field microscope. The manual count is considered the
gold standard.

The experiment consisted of placing 10 µL of cell solutions at two levels
of cell confluency: 20% and 70%. There were n1 = 12 pairs of measurements
(automatic and manual counts) at 20% and n2 = 10 pairs at 70%, as in the
table below.

Fig. 1.1 Cells on a hemocytometer plate.

20% confluency
Automated 34 44 40 62 53 51 30 33 38 51 26 48
Manual 30 43 34 53 49 39 37 42 30 50 35 54

70% confluency
Automated 72 82 100 94 83 94 73 87 107 102
Manual 76 51 92 77 74 81 72 87 100 104

The students wish to answer the following questions:
(a) Are the automated and manual counts significantly different for a

fixed confluency level? What are the confidence intervals for the population
differences if normality of the measurements is assumed?

(b) If the difference between automated and manual counts constitutes
an error, are the errors comparable for the two confluency levels?

We will revisit this example later in the book (Exercise 10.20) and see
that for the 20% confluency level there is no significant difference between
the automated and manual counts, whereas for the 70% level the difference
is significant. We will also see that the errors for the two confluency levels
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significantly differ. The statistical design for comparison of errors is called
a difference in differences (DiD) and is quite common in biomedical data
analysis.
�

Example 1.3. Rana Pipiens. Students in a quantitative engineering phys-
iology laboratory were asked to expose the gastrocnemius muscle of the
northern leopard frog (Rana pipiens, and stimulate the sciatic nerve to ob-
serve contractions in the skeletal muscle. Students were interested in mod-
eling the length–tension relationship. The force used was the active force,
calculated by subtracting the measured passive force (no stimulation) from
the total force (with stimulation).

The active force represents the dependent variable. The length of the
muscle begins at 35 mm and stretches in increments of 0.5 mm, until a max-
imum length of 42.5 mm is achieved. The velocity at which the muscle was
stretched was held constant at 0.5 mm/s.

Reading Change in Length (in %) Passive force Total force
1 1.4 0.012 0.366
2 2.9 0.031 0.498
3 4.3 0.040 0.560
4 5.7 0.050 0.653
5 7.1 0.061 0.656
6 8.6 0.072 0.740
7 10.0 0.085 0.865
8 11.4 0.100 0.898
9 12.9 0.128 0.959

10 14.3 0.164 0.994
11 15.7 0.223 0.955
12 17.1 0.315 1.019
13 18.6 0.411 0.895
14 20.0 0.569 0.900
15 21.4 0.751 0.905

The correlation between the active force and the percent change in length
from 35 mm is –0.0941. Why is this correlation so low?

For example, one possible model can be found using linear regression
(least squares):

F̂ = 0.0618+ 0.2084 · δ− 0.0163 · δ2 + 0.0003 · δ3

− 0.1732 · sin
(

δ

3

)
+ 0.1242 · cos

(
δ

3

)
,

where F̂ is the fitted active force and δ is the percent change. This model is
nonlinear in variables but linear in coefficients, and standard linear regres-
sion methodology is applicable (Chapter 14). The model achieves a coeffi-
cient of determination of R2 = 87.16%.

A plot of the original data with superimposed model fit is shown in
Figure 1.2a. Figure 1.2b shows the residuals F− F̂ plotted against δ.
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Fig. 1.2 (a) Regression fit for active force. Observations are shown as yellow circles,
while the smaller blue circles represent the model fits. Dotted (blue) lines are 95% model
confidence bounds. (b) Model residuals plotted against the percent change in length δ.

Suppose that students are interested in estimating the active force for
a change of 12%. The model prediction for δ = 12 is 0.8183, with a 95%
confidence interval of [0.7867,0.8498].
�

Example 1.4. The 1954 Polio Vaccine Trial. One of the largest and most
publicized public health experiments was performed in 1954 when the ben-
efits of the Salk vaccine for preventing paralytic poliomyelitis was assessed.
To ensure that there was no bias in conducting and reporting, the trial was
blind to doctors and patients. In boxes of 50 vials, 25 had active vaccines
and 25 were placebo. Only the numerical code known to researchers distin-
guished the well-mixed vials in the box. The clinical trial involved a large
number of first-, second-, and third-graders in the United States.

The results were convincing. While the numbers of children assigned to
active vaccine and placebo were approximately equal, the incidence of polio
in the active group was almost four times lower than that in the placebo
group.

Inoculated with Inoculated with
vaccine placebo

Total number of children inoculated 200,745 201,229
Number of cases of paralytic polio 33 115

On the basis of this trial, health officials recommended that every child
be vaccinated. Since the time of this clinical trial, the vaccine has improved;
Salk’s vaccine was replaced by the superior Sabin preparation and polio is
now virtually unknown in the United States. A complete account of this
clinical trial can be found in Francis et al.’s (1955) article or Paul Meier’s
essay in a popular book by Tanur et al. (1972).
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The numbers are convincing, but was it possible that an ineffective vac-
cine produced such a result by chance?

In this example there are two hypothetical populations. The first consists
of all first-, second-, and third-graders in the United States who would be
inoculated with the active vaccine. The second population consists of US
children of the same age who would receive the placebo. The attribute of
interest is the presence/absence of paralytic polio. There are two samples
from the two populations. Randomness of the samples was ensured by
randomization of vials in the boxes and random selection of geographic
regions for schools. Further analysis of this data can be found in Examples
10.17 and 18.11.
�

The term statistics has a plural form but is used in the singular when
it relates to methodology. To avoid confusion, we note that statistics has
another meaning and use. Any sample summary will be called a statistic.
For example, a sample mean is a statistic, and sample mean and sample
range are statistics. In this context, statistics is used in the plural.

The ultimate summary for quantifying a population attribute is a sta-
tistical model. The statistical model term is used in a broad sense here,
but a component quantifying inherent uncertainty is always present. For
example, random variables, discussed in Chapter 5, can be interpreted as
basic statistical models when they model realizations of the attributes in
a sample. The model is often indexed by one, several, or sometimes even
an infinite number of unknown parameters. An inference about the model
translates to an inference about its parameters.

Data are the specific values pertaining to a population attribute recorded
from a sample. Often, the terms sample and data are used interchangeably.
The term data is used as both singular and plural. The singular mode relates
to a set, a collection of observations, while the plural is used when referring
to the observations. A single observation is called a datum.

The following table summarizes the fundamental statistical notions that
we discussed:

attribute Quantitative or qualitative property, feature(s) of inter-
est

population Statistical universe; an existing or hypothetical totality
of attributes

sample A subset of a population
data Recorded values/realizations of an attribute in a sample

statistical model Mathematical description of a population attribute that
incorporates incomplete information, variability, and
the nondeterministic nature of the population

population parameter A component (possibly multidimensional) in a statisti-
cal model; the models are typically specified up to a
parameter that is left unknown
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Chapter 2

The Sample and Its Properties

When you’re dealing with data, you have to look past the numbers.

– Nathan Yau

WHAT IS COVERED IN THIS CHAPTER

• MATLAB Session with Basic Univariate Statistics
• Numerical Characteristics of a Sample
• Multivariate Numerical and Graphical Sample Summaries
• Exploratory Principal Components
• Typology of Data

2.1 Introduction

The famous American statistician John Tukey once said, “Exploratory data
analysis can never be the whole story, but nothing else can serve as the
foundation stone – as the first step.” The term exploratory data analysis
is self-defining. Its simplest branch, descriptive statistics, is the methodol-
ogy behind approaching and summarizing experimental data. No formal
statistical training is needed for its use. Basic data manipulations such
as calculating averages of experimental responses, translating data to pie
charts or histograms, or assessing the variability and inspection for un-
usual measurements are all examples of descriptive statistics. Rather than

9
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focusing on the population using information from a sample, which is a
staple of statistics, descriptive statistics is concerned with the description,
summary, and presentation of the sample itself. For example, numerical
summaries of a sample could be measures of location (mean, median, per-
centiles, mode, extrema), measures of variability (sample standard devi-
ation/variance, robust versions of the variance, range of data, interquar-
tile range, etc.), higher-order statistics (kth moments, kth central moments,
skewness, kurtosis), and functions of descriptors (coefficient of variation).
Graphical summaries of samples involve various visual presentations such
as box-and-whisker plots, pie charts, histograms, empirical cumulative dis-
tribution functions, etc. Many basic data descriptors are used in everyday
data manipulation.

Ultimately, exploratory data analysis and descriptive statistics con-
tribute to the principal goal of statistics – inference about population de-
scriptors – by guiding how the statistical models should be set.

It is important to note that descriptive statistics and exploratory data
analysis have recently regained importance due to ever increasing sizes of
data sets. Some complex data structures require several terabytes of mem-
ory just to be stored. Thus, preprocessing, summarizing, and dimension-
reduction steps are needed to prepare such data for inferential tasks such as
classification, estimation, and testing. Consequently, the inference is placed
on data summaries (descriptors, features) rather than the raw data them-
selves.

Many data-managing software programs have elaborate numerical and
graphical capabilities. MATLAB provides an excellent environment for data
manipulation and presentation with superb handling of data structures and
graphics. In this chapter we intertwine some basic descriptive statistics with
MATLAB programming using data obtained from real-life research labora-
tories. Most of the statistics are already built in; for some we will make a
custom code in the form of m-functions or m-scripts.

This chapter has two goals: (i) to help you gently relearn and refresh
your MATLAB programming skills through annotated sessions, and (ii)
introduce some basic statistical measures, many of which should already
be familiar to you. Many of the statistical summaries will be revisited later
in the book in the context of inference. You are encouraged to continuously
consult MATLAB’s online help pages since details and command options
are not fully covered in this text.

2.2 A MATLAB Session on Univariate Descriptive Statistics

In this section we will analyze data derived from an experiment, step
by step with a brief explanation of the MATLAB commands used. The
whole session can be found in a single annotated file cellarea.m available
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at the book’s Web page, http://statbook.gatech.edu/Ch2.Descriptive/.
The data can be found in the file cellarea.dat|mat|xlsx, which features
measurements from the lab of Professor Todd McDevitt at Georgia Tech.

This experiment on cell growth involved several time durations and two
motion conditions. Here is a brief description:

Embryonic stem cells (ESCs) have the ability to differentiate into all somatic cell
types, making ESCs useful for studying developmental biology, in vitro drug
screening, and as a cell source for regenerative medicine and cell-based therapies.
A common method to induce differentiation of ESCs is through the formation of
multicellular spheroids termed embryoid bodies (EBs). ESCs spontaneously ag-
gregate into EBs when cultured on a nonadherent substrate; however, under static
conditions, this aggregation is uncontrolled and EBs form in various sizes and
shapes, which may lead to variability in cell differentiation patterns. When rotary
motion is applied during EB formation, the resulting population of EBs appears
more uniform in size and shape.

After 2, 4, and 7 days of culture, images of EBs were acquired using phase-contrast
microscopy. Image analysis software was used to determine the area of each EB
imaged. At least 100 EBs were analyzed from three separate plates for both static
and rotary cultures at the three time points studied.

Here we focus only on the measurements of visible surface areas of cells
(in µm2) after growth time of 2 days, t = 2, under the static condition. The
data are recorded as an ASCII file cellarea.dat. Importing the data set
into MATLAB is done using the command

load(’cellarea.dat’);

provided that the data set is on the MATLAB path. If this is not the case,
use addpath(’foldername’) to add the path foldername in which the file resides.
A glimpse at the data is obtained by histogram command, hist:

hist(cellarea, 100)

On inspecting the histogram (Fig. 2.1), we find that one quite unusual
observation that is inconsistent with the remaining experimental measure-
ments. We can assume that the unusual observation is an outlier and omit
it from the data set:

car = cellarea(cellarea ~= max(cellarea));

(Some formal diagnostic tests for outliers will be discussed later in the text.)
Next, the data are rescaled to more moderate values, so that the area is

expressed in thousands of µm2 and the measurements have a convenient
order of magnitude:

car = car/1000;

n = length(car); %n is sample size

%n=462

Thus, we obtain a sample of size n = 462 that we can further explore by
descriptive statistics. The histogram we have plotted has already given us

http://statbook.gatech.edu/Ch2.Descriptive/.
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Fig. 2.1 Histogram of the raw data. Notice the unusual measurement beyond the point
12× 105.

a sense of the distribution within the sample, and we have an idea of the
shape, location, spread, symmetry, etc., of the observations.

Yet we need to find the numerical characteristics of the sample. First we
will discuss its location measures, which, as the name indicates, evaluate
the relative location of the sample.

2.3 Location Measures

Means. The three averages – arithmetic, geometric, and harmonic – are
known as Pythagorean means.

The arithmetic mean (mean),

X =
X1 + · · ·+ Xn

n
=

1
n

n

∑
i=1

Xi,

is a fundamental summary statistic. The geometric mean (geomean) is
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n
√

X1 × X2 × · · · × Xn =

(
n

∏
i=1

Xi

)1/n

,

and the harmonic mean (harmmean) is

n

1/X1 + 1/X2 + · · ·1/Xn
=

n

∑
n
i=1 1/Xi

.

For the data set {1,2,3} the mean is 2, the geometric mean is 3
√

6 =
1.8171, and the harmonic mean is 3/(1/1 + 1/2 + 1/3) = 1.6364. In standard
statistical practice geometric and harmonic means are not used as often as
arithmetic means. To illustrate the contexts in which they should be used,
consider several simple examples.

Example 2.1. Use of Geometric Mean. You visit the bank to deposit a long-
term monetary investment in the hope that it will accumulate interest over
a three year span. Suppose that the investment earns 10% the first year, 50%
the second year, and 30% the third year. What is its average rate of return?
In this instance it is not the arithmetic mean, because in the first year the
investment was multiplied by 1.10, in the second year it was multiplied by
1.50, and in the third year it was multiplied by 1.30. The correct measure
is the geometric mean of these three numbers, which is about 1.29, or 29%
of the annual interest. If, for example, the ratios are averaged (i.e., ratio
= new method/old method) over many experiments, the geometric mean
should be used. This is evident by considering an example. If one exper-
iment yields a ratio of 10 and the next yields a ratio of 0.1, an arithmetic
mean would misleadingly report that the average ratio was near 5. Taking
a geometric mean will report a more meaningful average ratio of 1.
�

Example 2.2. Use of Harmonic Mean. Consider now two scenarios in which
the harmonic mean should be used.

(i) If for half the distance of a trip one travels at 40 miles per hour and
for the other half of the distance one travels at 60 miles per hour, then
the average speed of the trip is given by the harmonic mean of 40 and 60,
which is 48; that is, the total amount of time for the trip is the same as if
one traveled the entire trip at 48 miles per hour. Note, however, that if one
had traveled for half the time at one speed and then half time at another
speed, the arithmetic mean, in this case 50 miles per hour, would be the
correct average.

(ii) In financial calculations, the harmonic mean is used to express the
average cost of shares purchased over a period of time. For example, an
investor purchases $1000 worth of stock every month for 3 months. If the
three spot prices at execution time are $8, $9, and $10, then the average price
the investor paid is $8.926 per share. However, if the investor purchased
1000 shares per month, then the arithmetic mean should be used.
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�

Order Statistic. If the sample X1, . . . , Xn is ordered as X(1) ≤ X(2) ≤
· · · ≤ X(n) so that X(1) is the minimum and X(n) is the maximum, then
X(1), X(2), . . . , X(n) is called the order statistic. For example, if X1 = 2, X2 =
−1, X3 = 10, X4 = 0, and X5 = 4, then the order statistic is X(1) = −1,
X(2) = 0, X(3) = 2, X(4) = 4, and X(5) = 10.

Median. The median1 is the middle of the sample sorted in numerical
order. In terms of the order statistic, the median is defined as

Me =

{
X((n+1)/2), if n is odd,

(X(n/2) + X(n/2+1))/2, if n is even.

If the sample size is odd, then there is a single observation in the middle
of the ordered sample at the position (n + 1)/2. For even sample sizes,
the ordered sample has two elements in the middle at positions n/2 and
n/2 + 1, and the median is their average. The median is a robust estima-
tor of location, that is, not easily affected by extremes and outliers. For
instance, in both data sets, {−1,0,4,7,20} and {−1,0,4,7,200}, the median
is 4. However, the means are 6 and 42, respectively.

Mode. The most frequent (fashionable2) observation in the sample (if such
exists) is the mode of the sample. If the sample is composite, the observa-
tion xi corresponding to the largest frequency fi is the mode. Composite
samples consist of realizations xi and their frequencies fi, as in

(
x1 x2 . . . xk

f1 f2 . . . fk

)
.

Mode may not be unique. If there are two modes, the sample is bimodal,
three modes make it trimodal, etc.

Trimmed Mean. As mentioned earlier, the mean is a location measure
sensitive to extreme observations and possible outliers. To make this mea-
sure more robust, one may trim α · 100% of the data symmetrically from
both sides of the ordered sample (trim α/2 · 100% smallest and α/2 · 100%
largest observations, Figure 2.2b).

If your sample, for instance, is {1,2, 3,4, 5,6,7, 8,9,100}, then a 20%
trimmed mean is a mean of {2,3, 4,5, 6,7, 8,9}.

Here is the command in MATLAB that determines the discussed loca-
tions for the cell data:

location = [geomean(car) harmmean(car) mean(car) ...

median(car) mode(car) trimmean(car,20)]

%location = 18.8485 15.4211 24.8701 17 10 20.0892

1 Latin: medianus = middle
2 Mode (fr) = fashion
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By applying α× 100% trimming, we end up with a sample of reduced
size [(1− α)× 100%]. Sometimes the sample size is important to preserve.

(a) (b) (c)

Fig. 2.2 (a) Schematic graph of an ordered sample; (b) Part of the sample from which an
α-trimmed mean is calculated; (c) Modified sample for the winsorized mean.

Winsorized Mean. A robust location measure that preserves sample size
is the winsorized mean. Similar to a trimmed mean, a winsorized mean
identifies outlying observations, but instead of being excluded, these out-
lying observations are replaced by either the minimum or maximum of
the trimmed sample, depending on whether the trimming was done from
below or above (Fig. 2.2c).

The winsorized mean is not a built-in MATLAB function. However, it
can be calculated easily by the following code:

alpha=20;

sa = sort(car);

sa(1:floor( n*alpha/200 )) = sa(floor( n*alpha/200 ) + 1);

sa(end-floor( n*alpha/200 ):end) = ...

sa(end-floor( n*alpha/200 ) - 1);

winsmean = mean(sa) % winsmean = 21.9632

Figure 2.2 shows schematic graphs of an ordered sample, part of the
sample from which an α-trimmed mean is calculated, and the modified
sample for the winsorized mean.

2.4 Variability Measures

Location measures are intuitive, but they give a minimal glimpse at the
nature of a sample. An important set of sample descriptors are dispersion
measures, or measures of spread. There are many measures of variability
in a sample. In the early nineteenth century, Karl Friedrich Gauss already
used several variability measures on a set of 48 astronomical measurements
concerning relative positions of Jupiter and its satellite Pallas (Gauss, 1816).

Sample Variance and Sample Standard Deviation. The variance of a sam-
ple, or sample variance, is defined as
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s2 =
1

n− 1

n

∑
i=1

(Xi − X)2.

Note that we use 1
n−1 instead of 1

n as one would expect. The reasons for
this will be discussed later. An alternative expression for s2 that is more
suitable for calculation (by hand) is

s2 =
1

n− 1

(
n

∑
i=1

(X2
i )− n(X)2

)
;

see Exercises 2.5 and 2.7.
In MATLAB, the sample variance of a data vector x is var(x) or var(x,0)

Flag 0 in the argument list indicates that the ratio 1/(n − 1) is used to
calculate the sample variance. If the flag is 1, then var(x,1) stands for

s2
∗ =

1
n

n

∑
i=1

(Xi − X)2,

which is sometimes used instead of s2. We will see later that both estima-
tors have good properties: s2 is an unbiased estimator of the population
variance while s2∗ is the maximum likelihood estimator. The square root of
the sample variance is the sample standard deviation:

s =

√
1

n− 1

n

∑
i=1

(Xi − X)2 .

In MATLAB the standard deviation can be calculated by std(x)=std(x,0)

or std(x,1), depending on whether the sum of squares is divided by n− 1
or by n.

%Variability Measures

var(car) % standard sample variance, also var(car,0)

%ans = 588.9592

var(car,1) % sample variance with sum of squares

% divided by n

%ans = 587.6844

std(car) % sample standard deviation, sum of squares

% divided by (n-1), also std(car,0)

%ans = 24.2685
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std(car,1) % sample standard deviation, sum of squares

% divided by n

%ans = 24.2422

sqrt(var(car)) %should be equal to std(car)

%ans = 24.2685

sqrt(var(car,1)) %should be equal to std(car,1)

%ans = 24.2422

Remark. When a new observation is obtained, one can update the sample
variance without having to recalculate it. If xn and s2

n are the sample mean
and variance based on x1, x2, . . . , xn and a new observation xn+1 is obtained,
then

s2
n+1 =

(n− 1)s2
n + (xn+1− xn)(xn+1 − xn+1)

n
,

where xn+1 = (nxn + xn+1)/(n + 1).

MAD-Type Estimators. Another group of estimators of variability involves
absolute values of deviations from the center of a sample. These estimators,
known as MAD estimators, are less sensitive to extreme observations and
outliers compared to the sample standard deviation. They belong to the
class of so-called robust estimators. The acronym MAD stands for either
mean absolute difference from the mean or, more commonly, median absolute
difference from the median. According to statistics historians (David, 1998),
both MADs were already used by Gauss at the beginning of the nineteenth
century.

MATLAB uses mad(car) or mad(a,0) for the first and mad(car,1) for the
second definition:

MAD0 =
1
n

n

∑
i=1
|Xi − X|, MAD1 = median{|Xi −median{Xi}|}.

A typical convention is to multiply the MAD1 estimator mad(car,1) by
1/norminv(3/4)=1.4826, to make it comparable in magnitude to the sample
standard deviation.

mad(car) % mean absolute deviation from the mean;

% MAD is usually referring to

% median absolute deviation from the median

%ans = 15.3328

realmad = 1.4826 * median( abs(car - median(car)))

%real mad in MATLAB is 1.4826 * mad(car,1)

%realmad = 10.3781
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Sample Range and IQR. Two simple measures of variability, or rather
the spread of a sample, are the range R and interquartile range (IQR). In
MATLAB these are range and iqr respectively. They are defined by the order
statistic of the sample. The range is the maximum minus the minimum of
the sample, R = X(n) − X(1), while IQR is defined by sample quantiles, to
be explained later.

range(car) %Range, span of data, Max - Min

%ans = 212

iqr(car) %inter-quartile range, Q3-Q1

%ans = 19

If the sample is bell-shape distributed, a robust estimator of variance is
σ̂2 = (IQR/1.349)2 , and this summary was used by Adolphe Quetelet in
the first part of the nineteenth century. It is a simple estimator, not affected
by outliers (it ignores 25% of observations in each tail), but its variability is
large.

Sample Quantiles/Percentiles. Sample quantiles (in units between 0 and
1) or sample percentiles (in units between 0 and 100) are very important
summaries that reveal both the location and the spread of a sample. For
example, we may be interested in a point xp that partitions the ordered
sample into two parts, one with p · 100% of observations smaller than xp

and another with (1− p)100% observations greater than xp. In MATLAB,
we use the commands quantile or prctile, depending on how we express
the proportion of the sample. For example, for the 5, 10, 25, 50, 75, 90, and
95 percentiles we have

%5%, 10%, 25%, 50%, 75%, 90%, 95% percentiles are:

prctile(car, 100*[0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95] )

%ans = 7 8 11 17 30 51 67

The same results can be obtained using the command

qts = quantile(car,[0.05 0.1 0.25 0.5 0.75 0.9 0.95])

%qts = 7 8 11 17 30 51 67

In our data set, 5% of the observations are less than 7, and 90% of the
observations are less than 51.

Some percentiles/quantiles are special. For example, the median of the
sample is the 50th percentile. Quartiles divide an ordered sample into four
parts; the 25th percentile is known as the first quartile, Q1, and the 75th
percentile is known as the third quartile, Q3. The median is Q2, of course.3

In MATLAB, Q1=prctile(car,25); Q3=prctile(car,75). Now we can define the
IQR as Q3 − Q1:

3 The range is equipartitioned by a single median, two terciles, three quartiles, four
quintiles, five sextiles, six septiles, seven octiles, eight naniles, or nine deciles.
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prctile(car, 75)- prctile(car, 25) %should be equal to iqr(car).

%ans = 19

The five-number summary for univariate data is defined as (Min, Q1,
Me, Q3, Max).

z-Scores. For a sample x1, x2, . . . , xn the z-score is the standardized sample
z1,z2, . . . ,zn, where zi = (xi − x)/s. In the standardized sample, the mean is
0 and the sample variance (and standard deviation) is 1. The basic reason
why standardization may be needed is to assess extreme values, or compare
samples taken at different scales. Some other reasons will be discussed in
subsequent chapters.

zcar = zscore(car);

mean(zcar)

%ans = -5.8155e-017

var(zcar)

%ans = 1

Moments of Higher Order. The term sample moments is drawn from me-
chanics. If the observations are interpreted as unit masses at positions
X1, . . . , Xn, then the sample mean is the first moment in the mechanical
sense – it represents the balance point for the system of all points. The mo-
ments of higher order have their corresponding mechanical interpretation.
The formula for the kth moment is

mk =
1
n
(Xk

1 + · · ·+ Xk
n) =

1
n

n

∑
i=1

Xk
i .

The moments mk are sometimes called raw sample moments. The power k
mean is (mk)

1/k, that is,

(
1
n

n

∑
i=1

Xk
i

)1/k

.

For example, the sample mean is the first moment and power 1 mean,
m1 = X. The central moments of order k are defined as

µk =
1
n

n

∑
i=1

(Xi −m1)
k.
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Notice that µ1 = 0 and that µ2 is the sample variance (calculated by var(.,1)

with the sum of squares divided by n). MATLAB has a built-in function
moment for calculating the central moments.

%Moments of Higher Orders

%kth (row) moment: mean(car.^k)

mean(car.^3) %third

%ans = 1.1161e+005

%kth central moment mean((car-mean(car)).^k)

mean( (car-mean(car)).^3 ) %ans=5.2383e+004

%is the same as

moment(car,3) %ans=5.2383e+004

Skewness and Kurtosis. There are many uses of higher moments in de-
scribing a sample. Two important sample measures involving higher-order
moments are skewness and kurtosis.

Skewness is defined as

γn = µ3/µ3/2
2 = µ3/s3

∗

and measures the degree of asymmetry in a sample distribution. Positively
skewed distributions have longer right tails, and their sample mean is larger
than the median. Negatively skewed sample distributions have longer left
tails, and their mean is smaller than the median.

Kurtosis is defined as

κn = µ4/µ2
2 = µ4/s4

∗.

It represents the measure of “peakedness” or flatness of a sample distribu-
tion. In fact, there is no consensus on the precise interpretation of kurtosis
since flat but fat-tailed distributions would also have high kurtosis. Dis-
tributions that have a kurtosis of <3 are called platykurtic and those with
a kurtosis of >3 are called leptokurtic. Kurtosis is sometimes defined as
µ4/µ2

2 − 3 and termed excess kurtosis, or simply excess.

%sample skewness mean(car.^3)/std(car,1)^3

mean( (car-mean(car)).^3 )/std(car,1)^3 %ans = 3.6769

skewness(car) %ans = 3.6769

%sample kurtosis

mean( (car-mean(car)).^4 )/std(car,1)^4 % ans = 22.8297

kurtosis(car)% ans = 22.8297
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A robust version of the skewness measure was proposed by Bowley
(1920) as

γn
∗ =

(Q3 −Me)− (Me−Q1)

Q3 −Q1
,

and ranges between –1 and 1. Moors (1988) proposed a robust measure of
kurtosis based on sample octiles:

κn
∗ =

(O7−O5) + (O3 −O1)

O6 −O2
,

where Oi is the i/8 × 100 percentile (ith octile) of the sample for i =
1,2, . . . ,7. If the sample is large, one can take Oi as X(⌊i/8×n⌋). The con-
stant 1.766 is sometimes added to κ∗n as a calibration adjustment so that it
becomes comparable with the traditional measure of kurtosis for samples
from Gaussian populations, which will be discussed extensively later in
Chapter 6.

%robust skewness

(prctile(car, 75)+prctile(car, 25) - ...

2 * median(car))/(prctile(car, 75) - prctile(car, 25))

%0.3684

%robust kurtosis

(prctile(car,7/8*100)-prctile(car,5/8*100)+prctile(car,3/8*100)- ...

prctile(car,1/8*100))/(prctile(car,6/8*100)-prctile(car,2/8*100))

%1.4211

Coefficient of Variation. The coefficient of variation, CV, is the ratio

CV =
s

X
.

The CV expresses the variability of a sample in the units of its mean. In
other words, a CV equal to 2 would mean that the standard deviation is
equal to 2X. The assumption is that the mean is positive. The CV is used
when comparing the variability of data reported on different scales. For
example, instructors A and B teach different sections of the same class but
design their final exams individually. To compare the effectiveness of their
respective exam designs at creating a maximum variance in exam scores
(a tacit goal of exam designs), they calculate CVs. It is important to note
that the CVs would not be related to the exam grading scale, to the relative
performance of the students, or to the difficulty of the exam.
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%sample CV [coefficient of variation]

std(car)/mean(car)

%ans = 0.9758

The reciprocal of CV, X/s, is sometimes called the signal-to-noise ratio,
and it is often used in engineering quality control.

Composite Sample. When a sample is large and many observations are
repetitive, data are often recorded as grouped. For example, the data set

4 5 6 3 4 3 6 4 5 4 3
7 3 5 2 5 6 4 2 4 3 4
7 7 4 2 2 5 4 2 5 3 8

is called a simple sample, or raw sample, as it lists explicitly all observa-
tions. It can be presented in a more compact form, as grouped or composite
sample:

Xi 2 3 4 5 6 7 8
fi 5 6 9 6 3 3 1

,

where Xi are distinctive values in the data set with frequencies fi, and the
number of groups is k = 7. Notice that Xi = 5 appears six times in the simple
sample, so its frequency is fi = 6.

The function [xi fi]=simple2comp(a) provides frequencies fi for a list
xi of distinctive values in a.

a=[ 4 5 6 3 4 3 6 4 5 4 3 ...

7 3 5 2 5 6 4 2 4 3 4 ...

7 7 4 2 2 5 4 2 5 3 8];

[xi fi] = simple2comp( a )

% xi =

% 2 3 4 5 6 7 8

% fi =

% 5 6 9 6 3 3 1

Here, n = ∑i fi = 33.
When a sample is composite, the sample mean and variance are calcu-

lated as

X =
∑

k
i=1 fiXi

n
, s2 =

∑
k
i=1 fi(Xi − X)2

n− 1

for n = ∑i fi. By defining the mth raw and central sample moments as

Xm =
∑

k
i=1 fiX

m
i

n
and µm =

∑
k
i=1 fi(Xi − X)m

n− 1
,
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one can express skewness, kurtosis, CV, and other sample statistics that are
functions of moments.

Diversity Indices for Categorical Data. If the data are categorical and nu-
merical characteristics such as moments and percentiles cannot be defined,
but the frequencies fi of classes/categories are given, one can define Shan-
non’s diversity index:

H =
n log n−∑

k
i=1 fi log fi

n
, (2.1)

where n is total sample size and k is the number of categories.
If some frequency is 0, then 0 × log0 = 0. The maximum of H is

log k; it is achieved when all fi are equal. The normalized diversity index,
EH = H/log k, is called Shannon’s homogeneity (equitability) index of the
sample.

Neither H nor EH depends directly on the sample size but on relative
class-frequencies fi/n since H can be expressed as −∑

k
i=1( fi/n) log( fi/n).

Example 2.3. Homogeneity of Blood Types. Suppose that samples from
Brazilian, Indian, Norwegian, and US populations are taken and the fre-
quencies of blood types (ABO/Rh) are obtained.

Population O+ A+ B+ AB+ O– A– B– AB– Total
Brazil 115 108 25 6 28 25 6 1 314
India 220 134 183 39 12 6 6 12 612
Norway 83 104 16 8 14 18 2 1 246
US 99 94 21 8 18 18 5 2 265

Which country’s sample is most homogeneous with respect to the blood
type attribute?

br = [115 108 25 6 28 25 6 1];

in = [220 134 183 39 12 6 6 12];

no = [ 83 104 16 8 14 18 2 1];

us = [ 99 94 21 8 18 18 5 2];

Eh = @(f) (sum(f)*log(sum(f)) - ...

sum( f.*log(f)))/(sum(f)*log(length(f)))

Eh(br) % 0.7324

Eh(in) % 0.7125

Eh(no) % 0.6904

Eh(us) % 0.7306
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Among the four samples, the sample from Brazil is the most homoge-
neous with respect to the blood types of its population, as it maximizes
the statistic EH . See also Exercise 2.14 for an alternative definition of diver-
sity/homogeneity indexes.
�

2.5 Ranks

Let X1, X2, . . . , Xn be a sample. The ranks of a sample X1, X2, . . . , Xn are de-
fined as indices of ordered sample

r(X1),r(X2), . . . ,r(Xn).

For example,

ranks([10 20 25 7])

%ans = 2 3 4 1

The function ranks.m is

function r = ranks(data, glob)

%--------------------------------------

if nargin < 2

glob = 1;

end

shape = size(data);

if glob == 1

data=data(:);

end

% Ties ranked from UptoDown

[ irrelevant , indud ] = sort(data);

[ irrelevant , rUD ] = sort(indud);

% Ties ranked from RtoL

[ irrelevant , inddu ] = sort(flipud(data));

[ irrelevant , rDU ] = sort(inddu);

% Averages ranks of ties, keeping ranks

% of no-tie-observations the same

r = (rUD + flipud(rDU))./2;

r = reshape(r,shape);

For example, when the input is a matrix, the optional parameter glob = 1

produces global ranking, while for glob not equal to 1, columnwise ranking
is performed.

%a =

% 0.8147 0.9134 0.2785 0.9649

% 0.9058 0.6324 0.5469 0.1576

% 0.1270 0.0975 0.9575 0.9706
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ranks(a)

% ans =

% 7 9 4 11

% 8 6 5 3

% 2 1 10 12

ranks(a,2)

% ans =

% 2 3 1 2

% 3 2 2 1

% 1 1 3 3

In the case of ties, it is customary to average the tied rank values. The
script ranks.m does just that:

ranks([2 1 7 1 15 9])

%ans = 3.0000 1.5000 4.0000 1.5000 6.0000 5.0000

Here r(2) = 3, r(1) = 1.5, r(7) = 4, and so on. Note that 1 appears twice
and ranks 1 and 2 are averaged. In the case

ranks([9 1 7 1 9 9])

%ans = 5.0000 1.5000 3.0000 1.5000 5.0000 5.0000

the ranks of three 9s are 4, 5, and 6, which are averaged to 5.

2.6 Displaying Data

Besides being represented by their numerical descriptors, samples are often
presented in a graphical manner. In this section, we discuss some basic
graphical summaries.

Box-and-Whiskers Plot. The top and bottom of the “box” are the 25th
and 75th percentile of the data, respectively, with the distances between
them representing the IQR. The line inside the box represents the sample
median. If the median is not centered in the box, it indicates sample skew-
ness. Whiskers extend from the lower and upper sides of the box to the
data’s most extreme values within 1.5 times the IQR. Potential outliers are
displayed with red “+” beyond the endpoints of the whiskers.

The MATLAB command boxplot(X) produces a box-and-whisker plot
for X. If X is a matrix, the boxes are calculated and plotted for each column.
Figure 2.3a is produced by
%Some Graphical Summaries of the Sample

figure;

boxplot(car)

Histogram. As illustrated previously in this chapter, the histogram (Greek:
histos, a web or tissue; gramma, a thing written or drawn) is a rough
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approximation of the population distribution based on a sample. Plot-
ted in a histogram are frequencies (or relative frequencies for normal-
ized histograms) for interval-grouped data. Graphically, the histogram is
a barplot over contiguous intervals or bins spanning the range of data
(Fig. 2.3b). In MATLAB, the typical command for a histogram is [fre,xout]

= hist(data,nbins), where nbins is the number of bins and the outputs fre

and xout are the frequency counts and the bin locations, respectively. Given
the output, one can use bar(xout,n) to plot the histogram. When the output
is not requested, MATLAB produces the plot by default.

figure;

hist(car, 80)
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Fig. 2.3 (a) Box plot and (b) histogram of cell data car.

Histogram is only an approximation of the distribution of measure-
ments in the population from which the sample is obtained.

There are several rules on how to automatically determine the number
of bins or, equivalently, bin sizes, none of them superior to the others on
all possible data sets. A commonly used proposal is Sturges’ rule (Sturges,
1926), where the number of bins k is given as

k = 1 + log2 n,

where n is the size of the sample. Sturges’ rule was intended for bell-
shaped distributions of data and may oversmooth data that are skewed,
multimodal, or have some other features. Other suggestions specify the
bin size as h = 2 · IQR/n1/3 (Diaconis–Freedman rule) or, alternatively,
h = (7s)/(2n1/3) (Scott’s rule; s is the sample standard deviation). The num-
ber of bins is found by dividing the range of the data by h.
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For example, for cell-area data car, Sturges’ rule suggests 10 bins, Scott’s
19 bins, and the Diaconis–Freedman rule 43 bins. The default nbins in MAT-
LAB is 10 for any sample size.

The histogram is a crude estimator of probability densities discussed
in detail later in Chapter 5. A more esthetic estimator of the population
distribution is given by the kernel smoother density estimate, or ksdensity.
We will not go into the details of kernel smoothing at this point in the
text; however, note that the spread of a kernel function (such as a Gaussian
kernel) regulates the degree of smoothing and in some sense is equivalent
to the choice of bin size in histograms.

Command [f,xi,u]=ksdensity(x) computes a density estimate based on
data x. Output f is the vector of density values evaluated at the points in
xi. The estimate is based on a normal kernel function, using a window
parameter width that depends on the number of points in x. The default
width u is returned as an output and can be used to tune the smoothness
of the estimate, as is done in the example below. The density is evaluated
at 100 equally spaced points that cover the range of the data in x:

figure;

[f,x,u] = ksdensity(car);

plot(x,f)

hold on

[f,x] = ksdensity(car,’width’,u/3);

plot(x,f,’r’);

[f,x] = ksdensity(car,’width’,u*3);

plot(x,f,’g’);

legend(’default width’,’default/3’,’3 * default’)

hold off

Empirical Cumulative Distribution Function. The empirical cumulative
distribution function (ECDF) Fn(x) for a sample X1, . . . , Xn is defined as

Fn(x) =
1
n

n

∑
i=1

1(Xi ≤ x) (2.2)

and represents the proportion of sample values smaller than x. Here 1(Xi ≤
x) is either 0 or 1. It is equal to 1 if {Xi ≤ x} is true, 0 otherwise.

The function empiricalcdf(x,sample) will calculate the ECDF based on
the observations in sample at a value x.

xx = min(car)-1:0.01:max(car)+1;

yy = empiricalcdf(xx, car);

plot(xx, yy, ’k-’,’linewidth’,2)

xlabel(’x’); ylabel(’F_n(x)’)
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In MATLAB, [f xf]=ecdf(x) is used to calculate the proportion f of the
sample x that is smaller than xf. Figure 2.4b shows the ECDF for the cell
area data, car.
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Fig. 2.4 (a) Smoothed histogram (density estimator) for different widths of smoothing
kernel; (b) Empirical CDF.

Q–Q Plots. Q–Q plots, short for quantile–quantile plots, compare the dis-
tribution of a sample with some standard theoretical distribution, such as
normal distribution, or with a distribution of another sample. This is done
by plotting the sample quantiles of one distribution against the correspond-
ing quantiles of the other. If the plot is approximately linear, then the dis-
tributions are close (up to a scale and shift). If the plot is close to the 45◦

line, then the compared distributions are approximately equal. In MATLAB
the command qqplot(X,Y) produces an empirical Q–Q plot of the quantiles
of the data set X versus the quantiles of the data set Y. If the data set Y
is omitted, then qqplot(X) plots the quantiles of X against standard normal
quantiles and essentially checks the normality of the sample.

Figure 2.5 gives us the Q–Q plot of the cell area data set against the
normal distribution. Note the deviation from linearity suggesting that the
distribution is skewed. A line joining the first and third sample quartiles is
superimposed in the plot. This line is extrapolated out to the ends of the
sample to help visually assess the linearity of the Q–Q display. Q–Q plots
will be discussed in more detail in Chapter 17.

Pie Charts. If we are interested in visualizing proportions or frequencies, a
pie chart is appropriate. A pie chart (pie in MATLAB) is a graphical display
in the form of a circle in which particular sample proportions are assigned
segments.
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Fig. 2.5 Quantiles of data plotted against corresponding normal quantiles, via qqplot.

Suppose that in the cell area data set we are interested in comparing
proportions of cells with areas in three regions: smaller than or equal to
15, between 15 and 30, and larger than 30. We would like to emphasize the
proportion of cells with areas between 15 and 30. The following MATLAB
code plots the pie charts (Fig. 2.6).

n1 = sum( car <= 15 ); %n1=213

n2 = sum( (car > 15 ) & (car <= 30) ); %n2=139

n3 = sum( car > 30 ); %n3=110

% n=n1+n2+n3 = 462

% proportions n1/n, n2/n, and n3/n are

% 0.4610,0.3009 and 0.2381

explode = [0 1 0]

pie([n1, n2, n3], explode)

pie3([n1, n2, n3], explode)

Note that option explode=[0 1 0] separates the second segment from the
circle. The command pie3 plots a 3D version of a pie chart (Fig. 2.6b).

2.7 Multidimensional Samples: Fisher’s Iris Data and Body
Fat Data

In the cell area example, the sample was univariate, that is, each measure-
ment was a scalar. If a measurement is a vector of data, then descriptive
statistics and graphical methods increase in importance, but they are much
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Fig. 2.6 Pie charts for frequencies 213, 139, and 110 of cell areas smaller than or equal to
15, between 15 and 30, and larger than 30. The proportion of cells with the area between
15 and 30 is emphasized.

more complex than in the univariate case. The methods for understanding
multivariate data range from the simple rearrangements of tables in which
raw data are tabulated to quite sophisticated computer-intensive methods
in which exploration of the data is reminiscent of futuristic movies of space
explorations.

Multivariate data from an experiment are first recorded in the form of
tables, by either a researcher or a computer. In some cases, such tables may
appear uninformative simply because of their format of presentation. By
simple rules, such tables can be rearranged in more useful formats. There
are several guidelines for successful presentation of multivariate data in the
form of tables. (i) Numbers should be maximally simplified by rounding as
long as it does not affect the analysis. For example, the vector (2.1314757,
4.9956301, 6.1912772) could probably be simplified to (2.14, 5, 6.19); (ii) Or-
ganize the numbers to compare columns rather than rows; and (iii) The
user’s cognitive load should be minimized by spacing and table layout so
that the eye does not travel long in making comparisons.

Fisher’s Iris Data. An example of multivariate data is provided by the cel-
ebrated Fisher’s iris data. Plants of the family Iridaceae grow on every con-
tinent except Antarctica. With a wealth of species, identification is not sim-
ple. Even iris experts sometimes disagree about how some flowers should
be classified. Fisher’s (Anderson, 1935; Fisher, 1936) data set contains mea-
surements on three North American species of iris: Iris setosa canadensis, Iris
versicolor, and Iris virginica. The 4-dimensional measurements on each of the
species consist of sepal length, sepal width, petal length, and petal width.

The data set fisheriris is part of the MATLAB distribution and con-
tains two fields: meas and species. The meas field, shown in Figure 2.7a,
is a 150× 4 matrix and contains 150 entries, 50 for each species. Each row
in the matrix meas contains four elements: sepal length, sepal width, petal
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length, and petal width. Note that the convention in MATLAB is to store
variables as columns and observations as rows.
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Fig. 2.7 (a) Matrix meas in fisheriris; (b) Box plots of sepal length (the first column in
matrix meas) versus species.

The data set species contains names of species for the 150 measure-
ments. The following MATLAB commands plot the data and compare sepal
lengths among the three species.

load fisheriris

s1 = meas(1:50, 1); %setosa, sepal length

s2 = meas(51:100, 1); %versicolor, sepal length

s3 = meas(101:150, 1); %virginica, sepal length

s = [s1 s2 s3];

figure;

imagesc(meas)

figure;

boxplot(s,’notch’,’on’,...

’labels’,{’setosa’,’versicolor’,’virginica’})

Correlation in Paired Samples. We will briefly describe how to find the
correlation between two aligned vectors, leaving detailed coverage of cor-
relation theory to Chapter 13.

Sample correlation coefficient r measures the strength and direction of
the linear relationship between two paired samples X = (X1, X2, . . . , Xn) and
Y = (Y1,Y2, . . . ,Yn). Note that the order of components is important and the
samples cannot be independently permuted if the correlation is of inter-
est. Thus the two samples can be thought of as a single bivariate sample
(Xi,Yi), i = 1, . . . ,n.
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The correlation coefficient between samples X = (X1, X2, . . . , Xn) and
Y = (Y1,Y2, . . . ,Yn) is

r =
∑

n
i=1(Xi − X)(Yi − Y)√

∑
n
i=1(Xi − X)2 ·∑n

i=1(Yi − Y)2
.

The summary sXY = 1
n−1 ∑

n
i=1(Xi − X)(Yi − Y) =

1
n−1

(
∑

n
i=1 XiYi − nX Y

)
is called the sample covariance. The cor-

relation coefficient can be expressed as a ratio:

r =
sXY

sX sY
,

where sX and sY are sample standard deviations of samples X and Y.

Covariances and correlations are basic exploratory summaries for paired
samples and multivariate data. Typically, they are assessed in data screen-
ing before building a statistical model and conducting an inference. The
correlation ranges between –1 and 1, which are the two ideal cases of de-
creasing and increasing linear trends. Zero correlation does not, in general,
imply independence but signifies the lack of any linear relationship be-
tween samples.

To illustrate the preceding principles, we find covariance and correlation
between sepal and petal lengths in Fisher’s iris data. These two variables
correspond to the first and third columns in the data matrix. The conclu-
sion is that these two lengths exhibit a high degree of linear dependence as
evident in Figure 2.8. The covariance of 1.2743 by itself is not a good indi-
cator of this relationship since it is scale (magnitude) dependent. However,
the correlation coefficient is scale independent and, in this case, shows a
strong positive relationship between the variables:

load fisheriris

X = meas(:, 1); %sepal length

Y = meas(:, 3); %petal length

cv = cov(X, Y); cv(1,2) %1.2743

r = corr(X, Y) %0.8718

In the next section we will describe an interesting multivariate data set
and, using MATLAB, find some numerical and graphical summaries.

Example 2.4. Body Fat Data. We now discuss a multivariate data set ana-
lyzed in Johnson (1996) that was submitted to http://www.amstat.org/publications/jse/datasets/fat.txt

and featured in Penrose et al. (1985). This data set can be found on the
book’s Web page as well, as fat.dat.

http://www.amstat.org/publications/jse/datasets/fat.txt
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Fig. 2.8 Correlation between petal and sepal lengths (columns 1 and 3) in iris data set.
Note the strong linear dependence with a positive trend. This is reflected by a covariance
of 1.2743 and a correlation coefficient of 0.8718.

Fig. 2.9 Water test to determine body density. It is based on underwater weighing
(Archimedes’ principle) and is regarded as the gold standard for body composition as-
sessment.

Percentage of body fat, age, weight, height, and ten body circumference
measurements (e.g., abdomen) were recorded for 252 men. The percent-
age of body fat was estimated through an underwater weighing technique
(Fig. 2.9).

The data set has 252 observations and 19 variables. The Brozek and Siri
indexes (Brozek et al., 1963; Siri, 1961) and fat-free weight are obtained by
underwater weighing, while other anthropometric variables are obtained
using scales and a measuring tape. The anthropometric variables are less
intrusive but also less reliable in assessing the body fat index.

Remark. There are a few erroneous recordings. The body densities for
cases 48, 76, and 96, for instance, each seem to have one digit in error
as seen from the two body fat percentage values. You will also note the
presence of a man (case 42) over 200 lb. in weight who is less than 3 ft. tall
(the height should presumably be 69.5 in., not 29.5 in.)! The percent body
fat estimates are truncated to zero when negative (case 182).

load(’\your path\fat.dat’)
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Column Name Variable description
1 casen Case number
2 broz Percent body fat using Brozek’s equation: 457/density – 414.2
3 siri Percent body fat using Siri’s equation: 495/density – 450
4 densi Density (g/cm3)
5 age Age (years)
6 weight Weight (lb)
7 height Height (in)
8 adiposi Adiposity index = weight/(height2) (kg/m2)
9 ffwei Fat-free weight = (1 – fraction of body fat) × weight, using Brozek’s

formula (lb)
10 neck Neck circumference (cm)
11 chest Chest circumference (cm)
12 abdomen Abdomen circumference (cm)
13 hip Hip circumference (cm)
14 thigh Thigh circumference (cm)
15 knee Knee circumference (cm)
16 ankle Ankle circumference (cm)
17 biceps Extended biceps circumference (cm)
18 forearm Forearm circumference (cm)
19 wrist Wrist circumference (cm) “distal to the styloid processes”

Table 2.1 Structure of file fat.dat

casen = fat(:,1);

broz = fat(:,2);

siri = fat(:,3);

densi = fat(:,4);

age = fat(:,5);

weight = fat(:,6);

height = fat(:,7);

adiposi = fat(:,8);

ffwei = fat(:,9);

neck = fat(:,10);

chest = fat(:,11);

abdomen = fat(:,12);

hip = fat(:,13);

thigh = fat(:,14);

knee = fat(:,15);

ankle = fat(:,16);

biceps = fat(:,17);

forearm = fat(:,18);

wrist = fat(:,19);

We will analyze this data set again in this chapter, and later in Chapter 14,
in the context of multiple regression.
�
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2.8 Multivariate Samples and Their Summaries*

Multivariate samples are organized as a data matrix, where the rows are
observations and the columns are variables or components. One such data
matrix of size n× p is shown in Figure 2.10.

Fig. 2.10 Data matrix X. In the multivariate sample the rows are observations and the
columns are variables.

The measurement xij denotes the jth component of the ith observation.
There are n row vectors x1

′, x2
′,. . . , xn

′ and p columns x(1), x(2),. . . , x(p), so
that

X =




x1
′

x2
′

...
xn
′


 =

[
x(1), x(2), . . . , x(p)

]
.

Note that xi = (xi1, xi2, . . . , xip)
′ is a p-vector denoting the ith observation,

while x(j) = (x1j, x2j, . . . , xnj)
′ is an n-vector denoting values of the jth vari-

able/component.
The mean of data matrix X is a vector x, which is a p-vector of column

means

x =




1
n ∑

n
i=1 xi1

1
n ∑

n
i=1 xi2
...

1
n ∑

n
i=1 xip


 =




x1
x2
...

xp


 .

By denoting a vector of ones of size n× 1 as 1, the mean can be written
as x = 1

n X ′ · 1, where X ′ is the transpose of X.
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Note that x is a column vector, but MATLAB’s command mean(X) will
produce a row vector. It is instructive to take a simple data matrix and
inspect step by step how MATLAB calculates the multivariate summaries.
For instance,

X = [1 2 3; 4 0 1; -1 1 2; 3 6 9];

[n p]=size(X) %[4 3]: four 3-dimensional observations

meanX = mean(X)’ %or mean(X,1), along dimension 1

%transpose of meanX needed to be a column vector

meanX = 1/n * X’ * ones(n,1)

For any two variables (columns) in X, x(i) and x(j), one can find the
sample covariance:

sij =
1

n− 1

(
n

∑
k=1

xkixkj − nxix j

)
.

All sijs form a p× p matrix, called a sample covariance matrix and de-
noted by S.

A simple representation for S uses matrix notation: .

S =
1

n− 1

(
X ′X − 1

n
X ′ JX

)
.

Here J is a standard notation for a matrix consisting of ones. If one defines a
centering matrix H as H = I− 1

n J, then S = 1
n−1 X ′HX. Here I is the identity

matrix.

X = [1 2 3; 4 0 1; -1 1 2; 3 6 9];

[n p]=size(X);

H = eye(n) - 1/n * ones(n); %centering matrix

S = 1/(n-1) * X’ * H * X %the same as

S = cov(X) %built-in command

An alternative definition of the covariance matrix, S∗ = 1
n X ′HX, is

coded in MATLAB as cov(X,1). Note that the diagonal of S contains sample
variances of variables, since sii =

1
n−1

(
∑

n
k=1 x2

ki − nxi
2) = s2

i .
Matrix S describes scattering in data matrix X. Sometimes it is conve-

nient to have scalars as measures of scatter, and for that purpose two sum-
maries of S are typically used: (i) the determinant of S, |S|, as a generalized
variance and (ii) the trace of S, trS, as the total variation.

The sample correlation coefficient between the ith and jth variables is

rij =
sij

si sj
,
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where si =
√

s2
i =
√

sii is the sample standard deviation. Matrix R with
elements rij is called a sample correlation matrix. If R = I, the variables are
uncorrelated. If D = diag(si) is a diagonal matrix with (s1, s2, . . . , sp) on its
diagonal, then

S = DRD, R = D−1SD−1.

Next we show how to standardize multivariate data. Data matrix Y is a
standardized version of X if its rows y′i are standardized rows of X,

Y =




y1
′

y2
′

...
yn
′


 , where yi = D−1(xi − x), i = 1, . . . ,n.

Y has a covariance matrix equal to the correlation matrix. This is a multi-
variate version of the z-score. For the two-column vectors from Y , y(i) and
y(j), the correlation rij can be interpreted geometrically as the cosine of the
angle ϕij between the vectors. This shows that correlation is a measure of
similarity because close vectors (with a small angle between them) will be
strongly positively correlated, whereas the vectors orthogonal in the ge-
ometric sense will be uncorrelated. This is why uncorrelated vectors are
sometimes called orthogonal.

Another useful transformation of multivariate data is the Mahalanobis
transformation. When data vector is subjected to the Mahalanobis transfor-
mation, its components become decorrelated. For this reason, such trans-
formed data are sometimes called “sphericized.”

Z =




z1
′

z2
′

...
zn
′


 , where zi = S−1/2(xi − x), i = 1, . . . ,n.

Because the Mahalanobis transform decorrelates the components, the
covariance matrix Cov(Z) is an identity matrix. The Mahalanobis trans-
formation is useful in defining the distances between multivariate obser-
vations. For further discussion on the multivariate aspects of statistics, we
direct the student to the excellent classical book by Morrison (2004).

Example 2.5.
�

The iris data set was a data matrix of size 150× 4, while the
size of the body fat data was 252× 19. To illustrate some of the multivariate
summaries just discussed, we construct a new, 5-dimensional data matrix
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from the body fat data set. The selected columns are broz, densi, weight,
adiposi, and biceps. All 252 rows are retained.

% From multifatstat.m

X = [broz densi weight adiposi biceps];

varNames = {’broz’; ’densi’; ’weight’; ’adiposi’; ’biceps’};

varNames =

’broz’ ’densi’ ’weight’ ’adiposi’ ’biceps’

Xbar = mean(X)

Xbar = 18.9385 1.0556 178.9244 25.4369 32.2734

S = cov(X)

S =

60.0758 -0.1458 139.6715 20.5847 11.5455

-0.1458 0.0004 -0.3323 -0.0496 -0.0280

139.6715 -0.3323 863.7227 95.1374 71.0711

20.5847 -0.0496 95.1374 13.3087 8.2266

11.5455 -0.0280 71.0711 8.2266 9.1281

R = corr(X)

R =

1.0000 -0.9881 0.6132 0.7280 0.4930

-0.9881 1.0000 -0.5941 -0.7147 -0.4871

0.6132 -0.5941 1.0000 0.8874 0.8004

0.7280 -0.7147 0.8874 1.0000 0.7464

0.4930 -0.4871 0.8004 0.7464 1.0000

% By ‘‘hand’’

[n p]=size(X);

H = eye(n) - 1/n * ones(n,1)*ones(1,n);

S = 1/(n-1) * X’ * H * X;

stds = sqrt(diag(S));

D = diag(stds);

R = inv(D) * S * inv(D);

%S and R here coincide with S and R

%calculated by built-in functions cov and cor.

Xc= X - repmat(mean(X),n,1); %center X

%subtract component means

%from variables in each observation.

%standardization

Y = Xc * inv(D); %for Y, S=R

%Mahalanobis transformation

M = sqrtm(inv(S)) %sqrtm is a square root of matrix

%M =
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% 0.1739 0.8423 -0.0151 -0.0788 0.0046

% 0.8423 345.2191 -0.0114 0.0329 0.0527

% -0.0151 -0.0114 0.0452 -0.0557 -0.0385

% -0.0788 0.0329 -0.0557 0.6881 -0.0480

% 0.0046 0.0527 -0.0385 -0.0480 0.5550

Z = Xc * M; %Z has uncorrelated components

cov(Z) %should be identity matrix

Figure 2.11 shows data plots for a subset of five variables and the two
transformations, standardizing and Mahalanobis. Panel (a) shows compo-
nents broz, densi, weight, adiposi, and biceps over all 252 measurements.
Note that the scales are different and that weight has much larger magni-
tudes than the other variables.

Panel (b) shows the standardized data. All column vectors are centered
and divided by their respective standard deviations. Note that the data
plot here shows the correlation across the variables. The variable density

is negatively correlated with the other variables.
Panel (c) shows the decorrelated data. Decorrelation is done by center-

ing and multiplying by the Mahalanobis matrix, which is the matrix square
root of the inverse of the covariance matrix. The correlations visible in panel
(b) disappeared.
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Fig. 2.11 Data plots for (a) 252 five-dimensional observations from Body Fat data where
the variables are broz, densi, weight, adiposi, and biceps. (b) Y is standardized X , and
(c) Z is a decorrelated X .

�

2.9 Principal Components of Data

Principal components were introduced by Pearson (1901) and fully devel-
oped by Hotelling (1933). Without insisting on their theoretical properties,
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we will apply this methodology as algebraic transformations of multivari-
ate data sets. Our goal is to better understand the multivariate data and
reduce its dimensionality.

Let X1, . . . , Xn be a sample consisting of n of p-dimensional observations
Xi = (Xi1, . . . , Xip). The sample is organized as a (n× p) data matrix X, in
which, as before, the observations are rows while the components within
the observations form columns:

X =




X11 X12 . . . X1p

X21 X22 . . . X2p
...

Xn1 Xn2 . . . Xnp




n×p

.

Operationally, the principal component analysis is an algebraic decom-
position on the sample covariance matrix S. As a background, we will
briefly review notions of eigenvectors and eigenvalues.

When multiplied by a matrix A, vectors generally change their direction.
However, certain vectors Ax remain in the same direction as the original x.
Such vectors x are called eigenvectors. Thus, the vector Ax is λ times the
original x. In this case, λ is an eigenvalue corresponding to eigenvector x.
When A is a full rank covariance matrix of size p× p, it has p eigenvectors
with nonnegative eigenvalues.

The sample covariance matrix S can be decomposed as

S = V DV ′,

where V is an orthogonal matrix consisting of eigenvectors (as columns) of
S, and D is a diagonal p× p matrix with eigenvalues λ1 ≥ . . . λp ≥ 0 on the
diagonal. In algebra, this is called spectral decomposition.

After multiplying S = V DV ′ by V ′ from the left and V from the right,
we see that V diagonalizes S,

D = V ′SV .

In MATLAB,

S = cov(X);

[V D] = eigs(S)

Matrix V in the output consists of coefficients defining the principal
axes. The columns of V are called principal components. The principal
components form an orthonormal basis of p-dimensional space to which
the data form X are transformed.

The scores, organized as data matrix Y ,
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Y = XV , (2.3)

consist of p-tuples, which are observations from X represented in this new
coordinate system. Geometrically, each row of X represents a point in a
p-dimensional space. The space is rotated (V is an orthogonal matrix) and
the scores Y represent coordinates of the points in this rotated coordinate
system. Note that transformation in (2.3) is linear; each component of ith
score Yi (ith row of Y) is a linear combination of all components of ith
observation Xi where coefficients are the elements of the corresponding
eigenvectors.

The diagonal matrix D contains eigenvalues of S ordered from the
largest to the smallest. This matrix is a covariance matrix of the transformed
data, and it is diagonal. This means that principal components are uncor-
related and the total variance trace(S) = trace(D) is preserved.

When the coordinates have different magnitudes and scales, it is ad-
visable to use sample correlation matrix R instead of covariance matrix S.
This is equivalent to applying the previous transformations on the z-scores
of X. In this case trace(R) = trace(D) = p, since we have p components,
each with variance one.

MATLAB’s built-in function is [V, Y, d] = pca(X); where V , Y are as
above and diag(d) = D.

In its most rudimentary form, the principal components can be found
by applying the singular value decomposition directly on the centered data
matrix:

cX = X - repmat(mean(X), n,1); %centered data matrix

[U lam V]=svd(cX);

%v=coeffs

D = lam.^2/(n-1) %variances

Y = cX * V; %scores

Example 2.6. Principal Components of Fisher’s Iris Data. Fisher’s iris data
matrix (150× 4) was described on page 30. We will find principal com-
ponents for this data set and explore how they behave for different iris
species. The following MATLAB script imports the data, finds principal
components, scores, and variances, and plots the results:

load fisheriris % meas (150 x 4), species cell(150)

[coefs,vars] = eigs(cov(meas));

scores=meas*coefs;

variances=diag(vars);

% species is cell array

gse = ismember(species,’setosa’);

gvi = ismember(species,’virginica’);

gve = ismember(species,’versicolor’);
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% gse, gvi, gve are logical arrays

figure;

plot( meas(find(gse),1), meas(find(gse),2), ’ro’)

hold on

plot( meas(find(gvi),1), meas(find(gvi),2), ’go’)

plot( meas(find(gve),1), meas(find(gve),2), ’ko’)

legend(’Setosa’,’Virginica’,’Versicolor’,0)

xlabel(’1st Coordinate’)

ylabel(’2nd Coordinate’)

figure;

plot( scores(find(gse),1), scores(find(gse),2), ’ro’)

hold on

plot( scores(find(gvi),1), scores(find(gvi),2), ’go’)

plot( scores(find(gve),1), scores(find(gve),2), ’ko’)

legend(’Setosa’,’Virginica’,’Versicolor’,0)

xlabel(’1st Principal Component’)

ylabel(’2nd Principal Component’)

variances(1)/sum(variances) % 92.46% (explained by 1st PC)
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Fig. 2.12 (a) First vs second component in the original data; (b) First vs second principal
component in scores.

Note that in the domain of original measurements the first two compo-
nents do not separate species as well as in the domain of principal com-
ponents (Fig 2.12). Here the principal components help identify features
in the data that discriminate between the species. Also, the first principal
component is responsible for 92.46% of the variability in this data set.

Example 2.7. Wisconsin Diagnostic Breast Cancer (WDBC). Wolberg, Street,
and Mangasarian (1994) were interested in applying machine learning to
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diagnosing breast cancer from fine-needle aspirates (FNA). The data set
wdbc.mat contains a matrix wdbc with 569 rows (subjects) of which 357

correspond to controls and 212 to cancer. The matrix has 31 columns: col-
umn 1 is diagnosis (0 = control, 1 = cancer), and columns 2–31 contain 30
features. The features are computed from a digitized image of a FNA of a
breast mass, as shown in Figure 2.13. The characteristics of the cell nuclei
present in the image are listed as follows:

Variable Mean S.Error Extreme
Radius (average distance from the center) Col 2 Col 12 Col 22
Texture (standard deviation of gray-scale values) Col 3 Col 13 Col 23
Perimeter Col 4 Col 14 Col 24
Area Col 5 Col 15 Col 25
Smoothness (local variation in radius lengths) Col 6 Col 16 Col 26
Compactness (perimeter2 / area - 1.0) Col 7 Col 17 Col 27
Concavity (severity of concave portions of the contour) Col 8 Col 18 Col 28
Concave points (number of concave portions of the contour) Col 9 Col 19 Col 29
Symmetry Col 10 Col 20 Col 30
Fractal dimension (“coastline approximation” - 1) Col 11 Col 21 Col 31

The mean, standard error, and extreme (largest) of nuclei measures were
computed for each image, resulting in 30 features. For instance, column 2
is Mean Radius, column 12 is Radius Standard Error, column 22 is Extreme
Radius.

Fig. 2.13 FNA: A digitized image of a fine-needle aspirate of a breast mass.

Below is MATLAB code that finds PCs for this data set and plots the
Pareto graph.

load(’wdbc.mat’)

Y = wdbc(:,1);

X = wdbc(:,2:31);

[n p]=size(X);

%

Z=zscore(X); % components of matrix X are on very different scales,
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% so a zscored matrix is used.

C=cov(Z) % cov(Z) is the same as corr(X)

% pca is MATLAB built in. Gives PC (coeffs), transformed data (scores),

% and vecyor of variances (latent). When Z is used sum(variances)= p= 14.

[coeffs1, scores1, latent1] = pca(Z);

%

%Equivalent task using eig or eigs. Note that eigenvectors

%(columns of V) are PCs, and variances are on the diagonal of D.

% Scores are recovered as Z*V

[V D]=eigs(C,30);

coeffs2=V;

scores2=Z*V;

latent2=diag(D);

%

figure;

pareto(latent2) % Pareto plot of variance balance

xlabel(’PC’)

ylabel(’Variance’)

%

figure;

plot(scores1(Y==0, 1), scores1(Y==0, 2),’b.’)

hold on

plot(scores1(Y==1, 1), scores1(Y==1, 2),’r.’)

legend(’No cancer’,’Cancer’,2)

xlabel(’1st PC’); ylabel(’2nd PC’)
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Fig. 2.14 (a) Pareto plot for principal components of wdbc data; (b) Scatterplot of scores
for the first two principal components.

The dimension reduction in this context means that most of the variance
in data is explained by only a few components. Total variance is 30, equal to
p, since we used z-scores, or equivalently, the correlation matrix. The first
two components explain 63.24% of variance, (sum(latent1(1:2))/30 = 0.6324).
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The first 5 components contain roughly 85% of information (variability)
and the applicability of this methodology in data compression is obvious.

Often a scatterplot of the leading components of scores may reveal pat-
terns (as in Example 2.6) that are useful in data mining. In this example
the first two components are not discriminatory of cancer because their
scatterplot is well mixed (Fig. 2.14(b)).
�

2.10 Visualizing Multivariate Data

The need for graphical representation is much greater for multivariate data
than for univariate data, especially if the number of dimensions exceeds
three.

For data given in matrix form (observations in rows, components in
columns), we have already seen an illuminating graphical representation,
which we called a data matrix.

It is straightforward to extend the histogram to bivariate data. An ex-
ample of a 2D histogram obtained by m-file hist2d is given in Figure 2.15a.
The histogram (in the form of an image) shows the sepal and petal lengths
from the fisheriris data set. A scatterplot of the 2D measurements is su-
perimposed.
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Fig. 2.15 (a) Two-dimensional histogram of Fisher’s iris sepal (X) and petal (Y) lengths.
The plot is obtained by hist2d.m; (b) Scattercloud plot – smoothed histogram with super-
imposed scatterplot, obtained by scattercloud.m; (c) Kernel-smoothed and normalized
histogram obtained by smoothhist2d.m.

Panels (b) and (c) in Figures 2.15 show the smoothed histograms. The
histogram in panel (c) is normalized so that the area below the sur-
face is 1. The smoothed histograms are plotted by scattercloud.m and

smoothhist2d.m (S. Simon and E. Ronchi, MATLAB Central).
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If the dimension of the data is three or more, one can gain additional
insight by plotting pairwise scatterplots. This is accomplished by the MAT-
LAB command gplotmatrix(X,Y,group), which creates a matrix arrangement
of scatterplots. Each subplot in the graphical output contains a scatterplot
of one column from data set X against a column from data set Y. For a
single data set (as in body fat and Fisher iris examples), Y is omitted or set
at Y=[ ], and the scatterplots contrast the columns of X. The plots can be
grouped by the grouping variable group. This variable can be a categorical
variable, vector, string array, or cell array of strings.

The variable group must have the same number of rows as X. Points with
the same value of group appear on the scatterplot with the same marker
and color. Other arguments in gplotmatrix(x,y,group,clr,sym,siz) specify the
color, marker type, and size for each group. An example of the gplotmatrix

command is given in the code below. The output is shown in Figure 2.16a.

% From multifat.m

X = [broz densi weight adiposi biceps];

varNames = {’broz’; ’densi’; ’weight’; ’adiposi’; ’biceps’};

agegr = age > 55;

gplotmatrix(X,[],agegr,[’b’,’r’],[’x’,’o’],[],’false’);

text([.08 .24 .43 .66 .83], repmat(-.1,1,5), varNames, ...

’FontSize’,8);

text(repmat(-.12,1,5), [.86 .62 .41 .25 .02], varNames, ...

’FontSize’,8, ’Rotation’,90);

Parallel Coordinates Plots. In a parallel coordinates plot, the components of
the data are plotted on uniformly spaced vertical lines called component
axes. A p-dimensional data vector is represented as a broken line connect-
ing a set of points, one on each component axis. Data represented as lines
create readily perceived structures. A command for parallel coordinates
plot parallelcoords is given below with the output shown in Figure 2.16b.

parallelcoords(X, ’group’, age>55, ...

’standardize’,’on’, ’labels’,varNames)

set(gcf,’color’,’white’);

Figure 2.17a shows parallel coords for the groups age > 55 and age <=

55 with 0.25 and 0.75 quantiles.

parallelcoords(X, ’group’, age>55, ...

’standardize’,’on’, ’labels’,varNames,’quantile’,0.25)

set(gcf,’color’,’white’);

Andrews’ Plots. An Andrews plot (Andrews, 1972) is a graphical repre-
sentation that utilizes Fourier series to visualize multivariate data. With an
observation (X1, . . . , Xp), one associates the function
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Fig. 2.16 (a) gplotmatrix for broz, densi, weight, adiposi, and biceps; (b)
parallelcoords plot for X, by age>55.

F(t) = X1/
√

2 + X2 sin(2πt) + X3 cos(2πt)

+ X4 sin(2 · 2πt) + X5 cos(2 · 2πt) + . . . ,

where t ranges from −1 to 1. One Andrews’ curve is generated for each
multivariate datum – a row of the data matrix. Andrews’ curves preserve
the distances between observations. Observations close in the Euclidian dis-
tance sense are represented by close Andrews’ curves. Hence, it is easy to
determine which observations (i.e., rows when multivariate data are repre-
sented as a matrix) are most alike by using these curves. Due to the defi-
nition, this representation is not robust with respect to the permutation of
coordinates. The first few variables tend to dominate, so it is a good idea
when using Andrews’ plots to put the most important variables first. Some
analysts recommend running a principal components analysis first, then
generating Andrews’ curves for principal components.

An example of Andrews’ plots is given in the code below with the out-
put in Figure 2.17b.

andrewsplot(X, ’group’, age>55, ’standardize’,’on’)

set(gcf,’color’,’white’);

Star Plots. The star plot is one of the earliest multivariate visualization ob-
jects. Its rudiments can be found in the literature from the early nineteenth
century. Similar plots (rose diagrams) are used in Florence Nightingale’s
Notes on Matters Affecting the Health, Efficiency and Hospital Adminis-
tration of the British Army (Nightingale, 1858).
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Fig. 2.17 (a) X by age>55 with quantiles; (b) andrewsplot for X by age>55.

The star glyph consists of a number of spokes (rays) emanating from
the center of the star plot and connected at the ends. The number of spokes
in the star plot is equal to the number of variables (components) in the cor-
responding multivariate datum. The length of each spoke is proportional
to the magnitude of the component it represents. The angle between two
neighboring spokes is 2π/p, where p is the number of components. The
star glyph connects the ends of the spokes.

An example of the use of star plots is given in the code below with the
output in Figure 2.18a.

ind = find(age>67);

strind = num2str(ind);

h = glyphplot(X(ind,:), ’glyph’,’star’, ’varLabels’,...

varNames,’obslabels’, strind);

set(h(:,3),’FontSize’,8); set(gcf,’color’,’white’);

Chernoff Faces. People grow up continuously studying faces. Minute and
barely measurable differences are easily detected and linked to a vast cata-
log stored in memory. The human mind subconsciously operates as a super
computer, filtering out insignificant phenomena and focusing on the poten-
tially important. Such mundane characters as :), :(, :O, and >:p are
readily linked in our minds to joy, dissatisfaction, shock, or affection.

Face representation is an interesting approach to taking a first look at
multivariate data and is effective in revealing complex relations that are not
visible in simple displays that use the magnitudes of components. It can be
used to aid in cluster analysis and discrimination analysis and to detect
substantial changes in time series.
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Each variable in a multivariate datum is connected to a feature of a
face. The variable-feature links in MATLAB are as follows: variable 1 – size
of face; variable 2 – forehead/jaw relative arc length; variable 3 – shape
of forehead; variable 4 – shape of jaw; variable 5 – width between eyes;
variable 6 – vertical position of eyes; variables 7–13 – features connected
with location, separation, angle, shape, and width of eyes and eyebrows;
and so on. An example of the use of Chernoff faces is given in the code
below with the output in Figure 2.18b.

ind = find(height > 74.5);

strind = num2str(ind);

h = glyphplot(X(ind,:), ’glyph’,’face’, ’varLabels’,...

varNames,’obslabels’, strind);

set(h(:,3),’FontSize’,10); set(gcf,’color’,’white’);

 78  79  84  85

 87 246 247 248

249 250 251 252

  6  12  96

109 140 145

156 192 194

(a) (b)

Fig. 2.18 (a) Star plots for X; (b) Chernoff faces plot for X.

2.11 Observations as Time Series

Observations that have a time index, that is, if they are taken at equally
spaced instances in time, are called time series. EKG and EEG signals, high-
frequency bioresponses, sound signals, economic indexes, and astronomic
and geophysical measurements are all examples of time series. The follow-
ing example illustrates a time series.
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Example 2.8. Blowflies Time Series. The data set blowflies.dat con-
sists of the total number of blowflies (Lucilia cuprina) in a population under
controlled laboratory conditions. The data represent counts for every other
day. The developmental delay (from egg to adult) is between 14 and 15
days for insects under the conditions employed. Nicholson (1954) made
361 bi-daily recordings over a 2-year period (722 days), see Figure 2.19a.
�

In addition to analyzing basic location, spread, and graphical sum-
maries, we are also interested in evaluating the degree of autocorrelation
in time series. Autocorrelation measures the level of correlation of the time
series with a time-shifted version of itself. For example, autocorrelation at
lag 2 would be a correlation between X1, X2, X3, . . . , Xn−3, Xn−2 and X3, X4,
. . . , Xn−1, Xn. When the shift (lag) is 0, the autocorrelation is just a cor-
relation. The concept of autocorrelation is introduced next, and then the
autocorrelation is calculated for the blowflies data.

Let X1, X2, . . . , Xn be a sample where the order of observations is im-
portant. The indices 1,2, . . . ,n may correspond to measurements taken at
time points t, t+ ∆t, t + 2∆t, . . . , t+ (n− 1)∆t, for some start time t and time
increments ∆t. The autocovariance at lag 0≤ k ≤ n− 1 is defined as

γ̂(k) =
1
n

n−k

∑
i=1

(Xi+k − X)(Xi − X).

Note that the sum is normalized by a factor 1
n and not by 1

n−k , as one may
expect.

The autocorrelation is defined as normalized autocovariance,

ρ̂(k) =
γ̂(k)

γ̂(0)
.

Autocorrelation is a measure of self-affinity of the time series with its own
shifts and is an important summary statistic. MATLAB has the built-in
functions autocov and autocorr. The following two functions are simpli-
fied versions illustrating how the autocovariances and autocorrelations are
calculated:

function acv = acov(ts, maxlag)

%acov.m: computes the sample autocovariance function

% ts = 1-D time series

% maxlag = maximum lag ( < length(ts))

%usage: z = autocov (a,maxlag);

n = length(ts);

ts = ts(:) - mean(ts); %note overall mean

suma = zeros(n,maxlag+1);

suma(:,1) = ts.^2;

for h = 2:maxlag+1
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suma(1:(n-h+1), h) = ts(h:n);

suma(:,h) = suma(:,h) .* ts;

end

acv = sum(suma)/n; %note the division by n

%and not by expected (n-h)

function [acrr] = acorr(ts , maxlag)

acr = acov(ts, maxlag);

acrr = acr ./ acr(1);
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Fig. 2.19 (a) Bi-daily measures of size of the blowfly population over a 722-day period,
(b) The autocorrelation function of the time series. Note the peak at lag 19 corresponds
to the periodicity of 38 days.

Figure 2.19a shows the time series illustrating the size of the population
of blowflies over 722 days. Note the periodicity in the time series. In the
autocorrelation plot (Fig. 2.19b) the peak at lag 19 corresponds to a time
shift of 38 days. This indicates a periodicity with an approximate length of
38 days in the dynamic of this population. A more precise assessment of
the periodicity and related inference can be done in the frequency domain
of a time series, but this theory is beyond the scope of this course. Good
follow-up references are Brillinger (2001), Brockwell and Davis (2009), and
Shumway and Stoffer (2005). Also, see Exercises 2.30 and 2.31.

2.12 About Data Types

The cell data elaborated in this chapter are numerical. When measure-
ments are involved, the observations are typically numerical. Other types
of data encountered in statistical analysis are categorical. Stevens (1946),
who was influenced by his background in psychology, classified data as
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nominal, ordinal, interval, and ratio. This typology is loosely accepted in
other scientific circles. However, there are vibrant and ongoing discussions
and disagreements (e.g., Veleman and Wilkinson, 1993). Nominal data, such
as race, gender, political affiliation, and names, cannot be sensibly ordered.
For example, the counties in northern Georgia, Cherokee, Clayton, Cobb,
DeCalb, Douglas, Fulton, and Gwinnett, cannot be ordered, though there
is a nonessential alphabetical order of their names. Of course, numerical
attributes of these counties, such as size, area, and revenue, can be ordered.

Ordinal data could be ordered and sometimes assigned numbers that do
not convey their relative standing. For example, data on the five-point Lik-
ert scale have five levels of agreement: (1) Strongly Disagree, (2) Disagree,
(3) Neutral, (4) Agree, and (5) Strongly Agree; the numbers 1 to 5 are as-
signed to the degree of agreement and have no quantitative meaning. The
difference between Agree and Neutral is not equal to the difference between
Disagree and Strongly Disagree. Other examples are the attributes “Low”
and “High” or student grades A, B, C, D, and F. It is an error to treat ordi-
nal data as numerical. Unfortunately this is a common practice (e.g., GPA).
Sometimes T-shirt-size attributes, such as “small,” “medium,” “large,” and
“X-large,” may falsely enter the model as if they were measurements 1, 2,
3, and 4.

Nominal and ordinal data are examples of categorical data, since the
values fall into categories.

Interval data refers to numerical data for which the differences can be
well interpreted. However, for this type of data, the origin is not defined in
a natural way, so the ratios would not make sense. Temperature is a good
example. We cannot say that a day in July with a temperature of 100◦F is
twice as hot as a day in November with a temperature of 50◦F. Test scores
are another example of interval data as a student who scores 100 on a
midterm may not be twice as good as a student who scores 50.

Ratio data are at the highest level; these are usually standard numeri-
cal values for which ratios make sense and the origin is absolute. Length,
weight, and age are all examples of ratio data.

Interval and ratio data are examples of numerical data.
MATLAB provides a way to keep such heterogeneous data in a single

structure array with a syntax resembling C language.
Structures are arrays comprised of structure elements and are accessed

by named fields. The fields (data containers) can contain any type of data.
Storage in the structure is allocated dynamically. The general syntax for a
structure format in MATLAB is structurename(recordnumber).fieldname=data

For example,

patient.name = ’John Doe’;

patient.agegroup = 3;

patient.billing = 127.00;

patient.test = [79 75 73; 180 178 177.5; 220 210 205];
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patient

%To expand the structure array, add subscripts.

patient(2).name = ’Ann Lane’;

patient(2).agegroup = 2;

patient(2).billing = 208.50;

patient(2).test = [68 70 68; 118 118 119; 172 170 169];

patient

2.13 Big Data Paradigm

The phrase Big Data usually refers to massive, heterogeneous, longitudi-
nal, complex, and/or distributed data sets generated by devices, sensors,
scanners, Internet, or other sources of digital information.

The bioengineering research community is undergoing a profound
transformation with the use of large-scale and diverse data sets that allow
for data-guided decision-making. New statistical models, prediction proce-
dures, and multiscale domains for data analysis are enabling this paradigm
shift in biomedical research.

In simplistic terms, Big Data initiative aims to accelerate the progress of
scientific discovery and innovation. Under the umbrella of Big Data new
fields of inquiry that would not otherwise be possible to discover can be
formulated, analyzed, and utilized. The development of new data analytic
tools would lead to more efficient and less expensive healthcare. In addi-
tion, it would lead to increased quality of life by enabling breakthrough
discoveries and innovations in health and medical sciences. Big Data pro-
vides a platform to support cross-disciplinary collaborations necessary to
make advances in complex grand challenges in bioengineering.

In data science, the term meta analysis describes the methodology that
puts together isolated studies in order to improve overall inferential power.
In a simplified way the Big Data paradigm can be thought as meta-analytic
approach to fusion of distributed and massive data sets. Typically, for a data
to be classified as “big,” the conditions from popular “Four Vee” definition
need to be satisfied: volume, velocity, variety, and veracity.

Volume. The data is massive, often measured in tera-, peta-, even exa-byte
units. A commonsense understanding is that if storage and manipulation of
data are not routine due to their size, such data can be classified as massive.

Size of data needs to be understood in relative terms, since for some
complex inferential models, even moderate-sized data sets are “big.” So in
addition to their sheer volume posing storage and handling challenges, the
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data become big when the scalability of methodologies traditionally used
for their processing breaks.

Velocity. Speed at which the data is created, recorded, stored, transmitted,
and analyzed is data’s Velocity. The speed at which data is created and
processed nowadays is unimaginable. For example, every minute millions
of email and Google quarries are conducted. Unlike the batch-processing
approach, where data are static and processed in batches, in the Big Data
era, information needs to be stored and analyzed dynamically, that is in
real time or near real time.

Variety. In addition to classical text book data-type classes such as numeric,
ordinal, nominal, etc., Big Data encompasses a range of heterogenous for-
mats and structures. In fact, most of the data obtained today is nontra-
ditional, unstructured, and distributed (video clips, images, data gener-
ated by biomedical devices, sensory data, incomplete data, preferences and
sentiments, satellite data, click streams, etc). Such a variety of types and
sources poses new challenges for data analysis and fusion. The concept of
variability often attributed to Big Data differs form the concept of variety. It
represents the a degree of variability for a repeated single attribute.

Veracity. Increasing the volume, speed, and variety of data is worthless
if data are incorrect or irrelevant. Biased data can cause a lot of problems
in decision making. Therefore, it is important to have safeguards for data
quality, to eliminate or minimize the human-error factors, and to have ro-
bust data analytic procedures that are less sensitive to variation form the
postulated data models.

Although this text is not about Big Data methodology, the concepts and
procedures covered in this and subsequent chapters are critical for under-
standing and utilizing the Big Data. Many of the procedures covered here
are directly scalable to massive data sets; however, most are prohibitively
computationally expensive and require the interplay of statistics, computer
science, and problem content science, to be tackled. To this end, this book
may provide the first inferential step.

2.14 Exercises

2.1. Auditory Cortex Spikes. This data set comes from experiments in the
lab of Dr. Robert Liu of Emory University4 and concerns single-unit elec-
trophysiological recordings in the auditory cortex of nonanesthetized fe-
male mice. The motivating question is the exploration of auditory neural

4 http://www.biology.emory.edu/research/Liu/index.html

 http://www.biology.emory.edu/research/Liu/index.html
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differences between female parents and female virgins and their relation-
ship to cortical response.
Researchers in Liu’s lab developed a restrained awake setup to collect
single neuron activity from both female types. Multiple trials are per-
formed on the neurons from one maternal and one naïve animal.
The recordings are made from a region in the auditory cortex of the
mouse with a single tungsten electrode. A sound stimulus is presented
at a time of 200 ms during each sweep (time shown is 0–611 and 200 is
the point at which a stimulus is presented). Each sweep is 611 ms long
and the duration of the stimulus tone is 10 to 70 ms. The firing times for
maternal and naïve mice are provided in the data set spikes.dat, in
columns 2 and 3. Column 1 is the numbering from 1 to 611.
(a) Using MATLAB’s diff command, find the inter-firing times. Plot a
histogram for both sets of inter-firing times. Use biplot.m to plot the his-
tograms back to back.
(b) For inter-firing times in the maternal mouse’s response find descrip-
tive statistics similar to those in the cell area example.

2.2. On Average. It is an anecdotal truth that an average Australian has
less than two legs! Because some Australians have lost their leg(s), the
number of legs is less than twice the number of people.
Here is the exercise in which several averages are calculated and com-
pared.. A small company reports the following salaries: 4 employees at
20K, 3 employees at 30K, the vice-president at 200K, and the president at
400K. Calculate the arithmetic mean, geometric mean, median, harmonic
mean, and mode. If the company is now hiring, would an advertising
strategy in which the mean salary is quoted be fair? If not, suggest an
alternative.

2.3. Contraharmonic Mean and f -Mean. The contraharmonic mean for
X1, X2, . . . , Xn is defined as

C(X1, . . . , Xn) =
∑

n
i=1 X2

i

∑
n
i=1 Xi

.

(a) Show that C(X1, X2) is twice the sample mean minus the harmonic
mean of X1, X2.
(b) Show that C(x, x, x, . . . , x) = x.
The generalized f -mean of X1, . . . , Xn is defined as

X f = f−1

(
1
n

n

∑
i=1

f (Xi)

)
,

where f is suitably chosen such that f (Xi) and f−1 are well defined.
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(c) Show that f (x) = x, 1
x , xk, log x gives the mean, harmonic mean, power

k mean, and geometric mean.

2.4. Mushrooms. The unhappy outcome of uninformed mushroom picking
is poisoning. In many such cases, the poisoning is due to ignorance or
a superficial approach to identification. The most dangerous fungi are
Death Cap (Amanita phalloides) and two species akin to it, A. verna and
Destroying Angel (A. virosa). These three toadstools cause the majority
of fatal poisoning.
One of the keys to mushroom identification is the spore deposit. Spores
of Amanita phalloides are colorless, nearly spherical, and smooth. Mea-
surements in microns of 28 spores are given below:

9.2 8.8 9.1 10.1 8.5 8.4 9.3
8.7 9.7 9.9 8.4 8.6 8.0 9.5
8.8 8.1 8.3 9.0 8.2 8.6 9.0
8.7 9.1 9.2 7.9 8.6 9.0 9.1

(a) Find the five-number summary (Min, Q1, Me, Q3, Max) for the spore
measurement data.
(b) Find the mean and the mode.
(c) Find and plot the histogram of z-scores, zi = (Xi − X)/s.

2.5. Manipulations with Sums. Prove the following algebraic identities in-
volving sums, which are useful in demonstrating properties of some
sample summaries:

(a) ∑
n
i=1(xi − x) = 0 (b) If y1 = x1 + a,y2 = x2 + a, . . . ,yn =

xn + a, then ∑
n
i=1(yi− y)2 =∑

n
i=1(xi−

x)2

(c) If y1 = c · x1,y2 =
c · x2, . . . ,yn = c · xn, then
∑

n
i=1(yi − y)2 = c2 ∑

n
i=1(xi − x)2

(d) If y1 = c · x1 + a,y2 = c · x2 +
a, . . . ,yn = c · xn + a, then ∑

n
i=1(yi −

y)2 = c2 ∑
n
i=1(xi − x)2.

(e) ∑
n
i=1(xi − x)2 = ∑

n
i=1 x2

i −
n()2

(f) ∑
n
i=1(xi − x)(yi − y) = ∑

n
i=1 xiyi −

n(x)(y)

(g) ∑
n
i=1(xi − a)2 = ∑

n
i=1(xi −

x)2 + n(x− a)2
(h) For any constant a, ∑

n
i=1(xi −

x)2 ≤ ∑
n
i=1(xi − a)2

2.6. Emergency Calculation. Graduate student Rosa Juliusdottir reported
the results of an experiment to her advisor who wanted to include these
results in his grant proposal. Before leaving to Reykjavik for a short va-
cation, she left the following data in her advisor’s mailbox: sample size
n = 12, sample mean X = 15, and sample variance s2 = 34.
The advisor noted with horror that the last measurement X12 was
wrongly recorded. It should have been 16 instead of 4. It would be easy
to fix X and s2, but the advisor did not have the previous 11 measure-
ments nor the statistics training necessary to make the correction. Rosa
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was in Iceland, and the grant proposal was due the next day. The advisor
was desperate, but luckily you came along. Can you update X and s2?

2.7. Sample Mean and Standard Deviation after a Change. It is known that
y = 11.6, sy = 4.4045, and n = 15. The observation y12 = 7 is removed and
observation y13 was misreported; it was not 10, but 20. Find ynew and
sy(new) after the changes.

2.8. Aspirin Weights. Stoodley (1984) provides 100 weights of aspirin
tablets determined using a laboratory balance and rounded to the near-
est mg. The data in aspirin.dat are given as a simple sample.
(a) Form a composite sample using frequencies of the measurements.
(b) From the composite sample find location and spread measures, skew-
ness, and kurtosis.

2.9. Surveys on Different Scales. We are interested in determining whether
UK voters (whose parties have somewhat more distinct policy positions
than those in the United States) have a wider variation in their eval-
uations of the parties than US voters. The problem is that the British
election survey takes evaluations scored 0–10, whereas the US National
Election Survey gets evaluations scored 0–100. Here are two surveys:

UK 6 7 5 10 3 9 9 6 8 2 7 5
US 67 65 95 86 44 100 85 92 91 65

Using CV, compare the degree of variation without worrying about the
different scales.

2.10. Merging Two Samples. Suppose that X and s2
X are the mean and vari-

ance of the sample X1, . . . , Xm and Y and s2
Y of the sample Y1, . . . ,Yn. If

the two samples are merged into a single sample, show that its mean
and variance are

mX + nY

m + n
and

1
m + n− 1

[
(m− 1)s2

X + (n− 1)s2
Y +

mn

m + n
(X−Y)2

]
.

2.11. Fitting the Histogram. The following is a demonstration of MATLAB’s
built-in function histfit on a simulated data set:

dat = normrnd(4, 1,[1 500]) + normrnd(2, 3,[1 500]);

figure; histfit(dat(:));

The function histfit plots the histogram of data and overlays it with the
best-fitting Gaussian curve. As an exercise, take Brozek index broz from
the data set fat.dat (second column) and apply the histfit command.
Comment on how the Gaussian curve fits the histogram.
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2.12. Orientation of Stem Cells. Human mesenchymal stem cells were
seeded into synthetic poly(ethylene glycol)-based hydrogels. Two types
of hydrogels were used – one hydrogel type that would degrade slowly,
and one hydrogel type that would degrade quickly. Then, hydrogels
were stretched repeatedly in a single direction. Cells in slow-degrading
gels would be limited in changing their orientation, while cells in fast-
degrading gels would be much more able to change their orientation. It
was hypothesized that cells in fast-degrading gels would reorient in the
direction of strain after 14 days of culture.
To measure orientation, pictures of gels were taken using a confocal mi-
croscope and calcein staining of cells. The data provided (courtesy of Dr.
Peter Young from Temenoff Lab at Georgia Tech) describe the distribu-
tion of particle orientation angles of the longer axis of the ellipse relative
to the positive direction of the x-axis. This angle is measured in absolute
value and ranges between 0 and 90 degrees.
The data set gel.mat reads in as a structure gel, where the fields
gel.static14 are angles for slow degrading gel, and gel.dynamic14 are an-
gles for fast degrading gel.
For both static and dynamic data
(a) Plot histograms with 30 bins. Use back-to-back histogram code
bihist.m.
(b) Plot box-and-whiskers summaries of the samples.
(c) Calculate location measures (mean, median, mode, 20% trimmed
mean, 20% winsorized mean).
(d) Calculate measures of spread (variance, standard deviation, real-
MAD).
(e) Find skewness and kurtosis.
(f) Find 20th percentile or 0.2-quantile of the sample.
Organize all tasks in a single m-file. MATLAB-publish the file as PDF
report.

2.13. QT Syndrome. The QT interval is a time interval between the start
of the Q wave and the end of the T wave in a heart’s electrical cycle
(Fig. 2.20). It measures the time required for depolarization and repolar-
ization to occur. In a long QT syndrome, the duration of repolarization
is longer than normal, which results in an extended QT interval. An in-
terval above 440 ms is considered prolonged. Although the mechanical
function of the heart could be normal, the electrical defects predispose
affected subjects to arrhythmia, which may lead to sudden loss of con-
sciousness (syncope) and, in some cases, to a sudden cardiac death.
The data set QT.dat|mat was compiled by Christov et al. (2006) and is
described in http://www.biomedical-engineering-online.com/content/5/1/31.
It provides 548 QT times taken from 293 subjects. The subjects include

http://www.biomedical-engineering-online.com/content/5/1/31
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Fig. 2.20 Schematic plot of ECG, with QT time between the red bars.

healthy controls (about 20%) and patients with various diagnoses, such
as myocardial infarction, cardiomyopathy/heart failure, bundle branch
block, dysrhythmia, and myocardial hypertrophy. Prolonged QT (> 440
ms) is a risk factor for abnormality of heart’s electric system. The Q-
onsets and T-wave ends are evaluated by five independent experts, and
medians of their estimates are used in calculations of the QT for a sub-
ject.
Plot the histogram of this data set and argue that the data are reason-
ably “bell-shaped.” Find the location (mean, median, mode) and spread
measures (s2, MAD, iqr) of the sample. What proportion of this sample
has prolonged QT?

2.14. Simpson’s Diversity Index. An alternative diversity measure to Shan-
non’s in (2.1) is the Simpson diversity index defined as

D =
n2

∑
k
i=1 f 2

i

.

This measure achieves its maximum k when all frequencies are equal;
thus Simpson’s homogeneity (equitability) index is defined as ED = D/k.
Repeat the calculations from Example 2.3 with Simpson’s diversity and
homogeneity indexes in place of Shannon’s. Is the Brazilian sample still
the most homogeneous, as it was according to Shannon’s EH index?

2.15. Speed of Light. Light travels very fast. It takes about 8 minutes to reach
Earth from the Sun and over 4 years to reach Earth from the closest star
outside the solar system. Radio and radar waves also travel at the speed
of light, and an accurate value of that speed is important to commu-
nicate with astronauts and orbiting satellites. Because of the nature of
light, it is very hard to measure its speed. The first reasonably accurate
measurements of the speed of light were made by A. Michelson and
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S. Newcomb. The table below contains 66 transformed measurements
made by Newcomb between July and September 1882. Entry 28, for in-
stance, corresponds to the actual measurement of 0.000024828 seconds.
This was the amount of time needed for light to travel approximately
4.65 miles.

28 22 36 26 28 28 26 24 32 30 27
24 33 21 36 32 31 25 24 25 28 36
27 32 34 30 25 26 26 25 –44 23 21
30 33 29 27 29 28 22 26 27 16 31
29 36 32 28 40 19 37 23 32 29 –2
24 25 27 24 16 29 20 28 27 39 23

You can download light.data|mat and read it in MATLAB.
If we agree that outlier measurements are outside the interval [Q1 −
2.5 IQR, Q3 + 2.5 IQR], what observations qualify as outliers? Make the
data “clean” by excluding outlier(s). For the cleaned data, find the mean,
20% trimmed mean, real MAD, std, and variance.
Plot the histogram and kernel density estimator for an appropriately
selected bandwidth.

2.16. Spatial Distribution of Weed. Collecting exact counts of weed in an
agricultural field is trivial but extremely time-consuming task. Instead,
image analysis algorithms for object extraction applied to pictures of
agricultural fields are used to estimate the weed content. High resolu-
tion (about 1 m2), pictures that are acquired at a large number of sites
can be used to obtain maps of weed content over a whole field at a rea-
sonably low cost. However, these image-based estimates are not perfect,
and acquiring exact weed counts is in fact highly useful both for assess-
ing the accuracy of the image-based algorithms and for improving the
estimates by use of the combined data.
The data file weed.dat|xlsx|mat has 100 rows, where each row consists
of two spatial coordinates, exact weed counts, and image estimate of
weed counts.
(a) Using function bihist.m plot back-to-back histograms of exact and
image counts.
(b) Find correlation between the two types of counts.
(c) Using MATLAB’s scatter, plot a scatterplot of circles with centers
at location coordinates, of size proportional to the exact count, and with
color mapped to the difference between exact and image counts. Consult
the help for scatter.

2.17. AFM. The AFM is a type of scanned probe microscopy (SPM) that can
measure the adhesion strength between two materials at the nanonew-
ton scale. In AFM, a cantilever beam is adjusted until it bonds with the
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surface of a sample, and then the force required to separate the beam
and sample is measured from the beam deflection. Beam vibration can
be caused by factors such as thermal energy of the surrounding air or
the footsteps of someone outside the laboratory. The vibration of a beam
acts as noise on the deflection signal.
The AFM data from the adhesion measurements between carbohydrate
and the cell adhesion molecule (CAM) E-Selectin was collected by Bryan
Marshal at Georgia Institute of Technology. The technical description is
provided in Marshall et al. (2003)
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Fig. 2.21 The AFM measurements.

(a) Read data set afm.dat into MATLAB. The array afm has 3000 mea-
surements. Form data vector force by taking measurements with index
greater or equal to 335, (force=afm(335:3000);), thus avoiding the “ramp”
artifact, Figure 2.21.
(b) For vector force find mean, standard deviation, median, IQR, 0.95-
quantile, skewness, and kurtosis.
(c) To visually check for normality of force, find qqplot. Is it linear?
(d) Use function acorr to find autocorrelations up to 20 lags to check
whether the observations are autocorrelated. Plot the autocorrelations
by MATLAB’s stem plot. The autocorrelation at lag 0 is always 1, but
what about other lags?

2.18. Limestone Formations in Jamaica. This data set contains 18 observa-
tions of nummulite specimens from the Eocene yellow limestone forma-
tion in northwestern Jamaica ( limestone.dat). The use of faces to repre-
sent points in k-dimensional space graphically was originally illustrated
on this data set (Chernoff, 1973). Represent this data set graphically us-
ing Chernoff faces.
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ID Z1 Z2 Z3 Z4 Z5 Z6 ID Z1 Z2 Z3 Z4 Z5 Z6
1 160 51 10 28 70 450 45 195 32 9 19 110 1010
2 155 52 8 27 85 400 46 220 33 10 24 95 1205
3 141 49 11 25 72 380 81 55 50 10 27 128 205
4 130 50 10 26 75 560 82 70 53 7 28 118 204
6 135 50 12 27 88 570 83 85 49 11 19 117 206

41 85 55 13 33 81 355 84 115 50 10 21 112 198
42 200 34 10 24 98 1210 85 110 57 9 26 125 230
43 260 31 8 21 110 1220 86 95 48 8 27 114 228
44 195 30 9 20 105 1130 87 95 49 8 29 118 240

2.19. Duchenne Muscular Dystrophy. Duchenne muscular dystrophy (DMD),
or Meryon’s disease, is a genetically transmitted disease, passed from
a mother to her children (Fig. 2.22). Affected female offspring usually
suffer no apparent symptoms and may unknowingly carry the disease.
Male offspring with the disease die at a young age. Not all cases of the
disease come from an affected mother. A fraction, perhaps one-third, of
the cases arise spontaneously, to be genetically transmitted by an affected
female. This is the most widely held view at present. The incidence of
DMD is about 1 in 10,000 male births. The population risk (prevalence)
that a woman is a DMD carrier is about 3 in 10,000.

Fig. 2.22 Each son of a carrier has a 50% chance of having DMD and each daughter has
a 50% chance of being a carrier.

Download data set dmd.dat|mat|xls from the text page. This data set is
modified data from Percy et al. (1981) (entries containing missing values
excluded). It consists of 194 observations corresponding to blood sam-
ples collected in a project to develop a screening program for female
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relatives of boys with DMD. The program was implemented in Canada,
and its goal was to inform a woman of her chances of being a carrier
based on serum markers as well as her family pedigree. Another ques-
tion of interest was whether age should be taken into account. Enzyme
levels were measured in known carriers (67 samples) and in a group of
noncarriers (127 samples).
The first two serum markers, creatine kinase and hemopexin (ck,h), are
inexpensive to obtain, while the last two, pyruvate kinase and lactate
dehydroginase (pk,ld), are expensive.
The variables (columns) in the data set are:

Column Variable Description

1 age Age of a woman in the study
2 ck Creatine kinase level
3 h Hemopexin
4 pk Pyruvate kinase
5 ld Lactate dehydroginase
6 carrier Indicator if a woman is a DMD carrier

(a) Find the mean, median, standard deviation, and real MAD of pyru-
vate kinase level, pk, for all cases (carrier=1).
(b) Find the mean, median, standard deviation, and real MAD of pyru-
vate kinase level, pk, for all controls (carrier=0).
(c) Find the correlation between variables pk and carrier.

(d) Use MATLAB’s gplotmatrix to visualize pairwise dependencies be-
tween the six variables.
(e) Plot the histogram with 30 bins and smoothed normalized histogram
(density estimator) for pk. Use ksdensity.

2.20. Ashton’s Dental Data. The evolutionary status of fossils (Australo-
pithecinae, Proconsul, etc.) stimulated considerable discussion in the
1950s. Particular attention was paid to the teeth of the fossils, compar-
ing their overall dimensions with those of human beings and of the ex-
tant great apes. As “controls,” measurements were taken on the teeth of
three types of the modern man (British, West African native, Australian
aboriginal) and of the three living great apes (gorilla, orangutan, and
chimpanzee).
The data in the table below are taken from Ashton et al. (1957, p. 565),
who used 2D projections to compare the measurements. Andrews (1972)
used an excerpt of these data to illustrate his methodology. The values
in the table are not the original measurements, but the first eight canon-
ical variables produced from the data in order to maximize the sum of
distances between different pairs of populations.
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A. West African –8.09 0.49 0.18 0.75 –0.06 –0.04 0.04 0.03
B. British –9.37 –0.68 –0.44 –0.37 0.37 0.02 –0.01 0.05
C. Au. aboriginal –8.87 1.44 0.36 –0.34 –0.29 –0.02 –0.01 –0.05
D. Gorilla: male 6.28 2.89 0.43 –0.03 0.10 –0.14 0.07 0.08
E. Female 4.82 1.52 0.71 –0.06 0.25 0.15 –0.07 –0.10
F. Orangutan: Male 5.11 1.61 –0.72 0.04 –0.17 0.13 0.03 0.05
G. Female 3.60 0.28 –1.05 0.01 –0.03 –0.11 –0.11 –0.08
H. Chimpanzee: male 3.46 –3.37 0.33 –0.32 –0.19 –0.04 0.09 0.09
I. Female 3.05 –4.21 0.17 0.28 0.04 0.02 –0.06 –0.06
J. Pithecanthropus –6.73 3.63 1.14 2.11 –1.90 0.24 1.23 –0.55
K. pekinensis –5.90 3.95 0.89 1.58 –1.56 1.10 1.53 0.58
L. Paranthropus robustus –7.56 6.34 1.66 0.10 –2.23 –1.01 0.68 –0.23
M. Paranthropus crassidens –7.79 4.33 1.42 0.01 –1.80 –0.25 0.04 –0.87
N. Meganthropus paleojavanicus –8.23 5.03 1.13 –0.02 –1.41 –0.13 –0.28 –0.13
O. Proconsul africanus 1.86 –4.28 –2.14 –1.73 2.06 1.80 2.61 2.48

Andrews (1972) plotted curves over the range −π < t < π and con-
cluded that the graphs clearly distinguished humans, the gorillas and
orangutans, the chimpanzees, and the fossils. Andrews noted, for exam-
ple, that the curve for the fossil Proconsul africanus corresponds to a plot
inconsistent with that of all other fossils as well as those of humans and
apes.
Graphically present this data using (a) star plots, (b) Andrews plots, and
(c) Chernoff faces.

2.21. Andrews Plots of Iris Data. Fisher iris data are 4D, and Andrews plots
can be used to explore clustering of the three species (Setosa, Versicolor,
and Virginica). Discuss the output from the code below:

load fisheriris

andrewsplot(meas,’group’,species);

What species clearly separate? What species are more difficult to sepa-
rate?

2.22. Leptoconops – Biting Flies. Atchley (1974) collected morphological
characteristics of two species of biting flies Leptoconops torrens and Lep-
toconops carteri. They are morphologically so similar that for many years
they have been considered to be the same species.
The data set, as reported by Johnson and Whichern (1988), contains 35
multivariate observations of each species. An observation is composed of
7 dependent taxonomic responses: wing length, wing width, third palp
length, third palp width, fourth palp length, length of antennal segment
12, and length of antennal segment 14.
This data set is given as a structure field leptoconops.morpho in MAT-
LAB’s structure file leptoconops.mat. The field leptoconops.names con-
tains names of seven recorded morphological measures: winglen, wingwid,
papl3len, palp3wid, palp4len, ant12len, and ant14len. The two species are
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identified in the field leptoconops.spec where 0’s correspond to L.torrens
and 1’s to L.carteri.
(a) Find the sample means and covariance matrices for L.torrens and
L.carteri.
(b) Using MATLAB’s built-in command gplotmatrix create a matrix of
scatter plots where each figure (i, j) contains a scatter plot of a column
i against a column j of leptoconops.morpho. The plots should use markers
defined by the grouping variable leptoconops.spec.
(c) Explore whether it is possible to visually delimit 2 phenetic clusters
within the torrens-carteri complex?
(d) Experiment with MATLAB’s graphical tools imagesc, parallelcoords,
andrewsplot, glyphplot with options star and face. Submit only your rec-
ommended method with discussion (an open-ended question). Check
the MATLAB Help for the syntax options for the commands above.

2.23. Cork Boring Data. Cork is the bark of the cork oak (Quercus suber L),
a noble tree with very special characteristics that grows in the Mediter-
ranean. This natural tissue has unique qualities: light weight, elasticity,
insulation and impermeability, fire retardancy, resistance to abrasion, etc.
The data measuring cork boring of trees given in Rao (1948) consist of
the weights (in centigrams) of cork boring in four directions (north, east,
south, and west) for 28 trees. Data given in Table 2.2 can also be found
in cork.dat|mat.

Table 2.2 Rao’s cork data. Weights of cork boring in four directions (north, east, south,
west) for 28 trees.

Tree N E S W Tree N E S W
1 72 66 76 77 15 91 79 100 75
2 60 53 66 63 16 56 68 47 50
3 56 57 64 58 17 79 65 70 61
4 41 29 36 38 18 81 80 68 58
5 32 32 35 36 19 78 55 67 60
6 30 35 34 26 20 46 38 37 38
7 39 39 31 27 21 39 35 34 37
8 42 43 31 25 22 32 30 30 32
9 37 40 31 25 23 60 50 67 54

10 33 29 27 36 24 35 37 48 39
11 32 30 34 28 25 39 36 39 31
12 63 45 74 63 26 50 34 37 40
13 54 46 60 52 27 43 37 39 50
14 47 51 52 43 28 48 54 57 43

(a) Graphically display the data as a data plot, pairwise scatterplots, an
Andrews plot, and Chernoff faces.
(b) Find the mean x and covariance matrix S for this data set. Find the
trace and determinant of S.
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(c) Find the Mahalanobis transformation for these data. Check that the
covariance matrix for the transformed data is the identity matrix.

2.24. Balance. When a human experiences a balance disturbance, muscles
throughout the body are activated in a coordinated fashion to main-
tain an upright stance. Researchers at Lena Ting Laboratory for Neu-
roengineering at Georgia Tech are interested in uncovering the sensori-
motor mechanisms responsible for coordinating this automatic postural
response (APR). Their approach was to perturb the balance of a human
subject standing upon a customized perturbation platform that trans-
lates in the horizontal plane.
Platform motion characteristics spanned a range of peak velocities (5 cm/s
steps between 25 and 40 cm/s) and accelerations (0.1 g steps between 0.2
and 0.4 g). Five replicates of each perturbation type were collected dur-
ing the experimental sessions. Surface electromyogram (EMG) signals,
which indicate the level of muscle activation, were collected at 1080 Hz
from 11 muscles in the legs and trunk.
The data in balance2.mat are processed EMG responses to backward-
directed perturbations in the medial gastrocnemius muscle (an ankle
plantar flexor located on the calf) for all experimental conditions. There
is 1 s of data, beginning at platform motion onset. There are 5 replicates
of length 1024, each collected at 12 experimental conditions (4 velocities
crossed with 3 accelerations), so the data set is 3D, 1024× 5× 12.
For example, data(:,1,4) is an array of 1024 observations correspond-
ing to first replicate, under the fourth experimental condition (30 cm/s,
0.2 g).
Consider a fixed acceleration of 0.2g and only the first replicate. Form
1024 4D observations (velocities 25, 30, 35, and 40 as variables) as a
data matrix. For the first 16 observations find multivariate graphical
summaries using MATLAB’s gplotmatrix, parallelcoords, andrewsplot, and
glyphplot.

2.25. Cats. Cats are often used in studies about locomotion and injury recov-
ery. In one such study, a bundle of nerves in a cat’s legs were cut and
then surgically repaired. This mimics the surgical correction of injury in
people. The recovery process of these cats was then monitored. It was
monitored quantitatively by walking a cat across a plank that has force
plates, as well as by monitoring various markers inside the leg. These
markers provided data for measures such as joint lengths and joint mo-
ments. A variety of data was collected from three different cats: Natasha,
Riga, and Korina. Natasha (cat = 1) has 47 data entries, Riga (cat = 2) has
39 entries, and Korina (cat = 3) has 35 entries.
The measurements taken are the number of steps for each trial, the
length of the stance phase (in milliseconds), the hip height (in meters),
and the velocity (in meters/second). The researchers observe these vari-
ables for different reasons. They want uniformity both within and be-
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tween samples (to prevent confounding variables) for steps and velocity.
The hip height helps monitor the recovery process. A detailed descrip-
tion can be found in Farrell et al. (2009).
The data set, courtesy of Dr. Boris Prilutsky, School of Applied Physiol-
ogy at, Georgia Tech, is given as the MATLAB structure file cats.mat.
Form a data matrix
X = [cat.nsteps cat.stancedur cat.hipheight cat.velocity cat.cat];

and find its mean and correlation matrix. Form matrix Z by standard-
izing the columns of X (use zscore). Plot the image of the standardized
data matrix.

2.26. BUPA Liver Data. The BUPA liver disorders database (courtesy of
Richard Forsyth, BUPA Medical Research Ltd.) consists of 345 records
of male individuals. Each record has 7 attributes:

Attribute Name Meaning
1 mcv Mean corpuscular volume
2 alkphos Alkaline phosphotase
3 sgpt Alamine aminotransferase
4 sgot Aspartate aminotransferase
5 gammagt Gamma-glutamyl transpeptidase
6 drinks Number of half-pint equivalents

of alcoholic beverages drunk per day
7 selector Field to split the database

The first five variables are all blood tests that are thought to be sensitive
to liver disorders that might arise from excessive alcohol consumption.
The variable selector was used to partition the data into two sets, very
likely into a training and validation part.
Using gplotmatrix, explore the relationship among variables 1 through
6 (exclude the selector).

2.27. Triazines. A common step in pharmaceutical development is the for-
mation of a quantitative structure-activity relationship (QSAR) to model
an exploratory series of compounds. A QSAR generalizes how the struc-
ture (shape) of a compound relates to its biological activity. The data set

triazines.mat involves variables/attributes potentially important for
the inhibition of ratlmouse tumor DHFR by triazines. This data set is
fully explained in Hirst et al. (1994), but here is the basic summary:
Number of instances: 186; Number of attributes: 60; Attribute names as
in the table below; Number of responses: 1 (activity).
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p1_polar p1_size p1_flex p1_h_doner

p1_h_acceptor p1_pi_doner p1_pi_acceptor p1_polarisable

p1_sigma p1_branch p2_polar p2_size

p2_flex p2_h_doner p2_h_acceptor p2_pi_doner

p2_pi_acceptor p2_polarisable p2_sigma p2_branch

p3_polar p3_size p3_flex p3_h_doner

p3_h_acceptor p3_pi_doner p3_pi_acceptor p3_polarisable

p3_sigma p3_branch p4_polar p4_size

p4_flex p4_h_doner p4_h_acceptor p4_pi_doner

p4_pi_acceptor p4_polarisable p4_sigma p4_branch

p5_polar p5_size p5_flex p5_h_doner

p5_h_acceptor p5_pi_doner p5_pi_acceptor p5_polarisable

p5_sigma p5_branch p6_polar p6_size

p6_flex p6_h_doner p6_h_acceptor p6_pi_doner

p6_pi_acceptor p6_polarisable p6_sigma p6_branch

activity

Read the data set into MATLAB. Form a vector activity from the 61st
column. Transform this vector as y = activity.ˆ 3;

(a) For y, find descriptive statistics: sample mean and variance, median,
interquartile range, 0.05- and 0.9-sample quantiles. Plot the histogram
with 20 bins for y.
(b) Plot data matrix triazines(:,1:60) using command imagesc.
(c) Conduct principal component analysis on triazines(:,1:60). How
much variability is contained in the first 5 principal components?
(d) Form vector x as the fourth coordinate of scores for triazines. Find
the correlation between x and y.

2.28. Principal Components for BUPA Liver Data. The BUPA liver disorders
database was discussed in Exercise 2.26.
(a) For the variables 1–6 conduct principal component analysis.
(b) What proportion of variance is contained in the first two principal
components? Show the Pareto plot.
(d) Plot the scatterplot of scores for the first two principal components.

2.29. Cell Circularity Data. In the lab of Dr. Todd McDevitt at Georgia Tech,
researchers wanted to elucidate differences between the “static” and “ro-
tary” culture of embrionic bodies (EBs) that were formed under both
conditions with equal starting cell densities. After 2, 4, and 7 days of
culture, images of EBs were acquired using phase-contrast microscopy.
Image analysis software was used to determine the circularity (defined
as 4π(Area/Perimeter2)) of each EB imaged. A total of n = 325 EBs were
analyzed from three separate plates for both static and rotary cultures at
the three time points studied. The circularity measures were used to ex-
amine differences in the shape of EBs formed under the two conditions
as well as differences in their variability.
The data set circ.dat|mat consists of six columns corresponding to six
treatments (2d, rotary), (4d, rotary), (7d, rotary), (2d, static), (4d, static),
and (7d, static). Note that this is not an example of multivariate data
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since the columns are freely permutable, but rather six univariate data
sets.
(a) For rotation and static 2d measurements, plot back-to-back his-
tograms ( bihist.m) as well as boxplots.
(b) For static 7d measurements, graph by pie chart (pie) the proportion
of EBs with circularity smaller than 0.75.

2.30. Blowfly Count Time Series. For the data in Example 2.8, it was postu-
lated that a major transition in the dynamics of blowfly population size
appeared to have occurred around day 400. This was attributed to bio-
logical evolution, and the whole series cannot be considered as represen-
tative of the same system. Divide the time series into two data segments
with indices 1–200 and 201–361. Calculate and compare the autocorrela-
tion functions for the two segments.

2.31. Canadian Lynx Time Series. The Canadian lynx data set is popular in
time series modeling. The data set lynx.mat|xlsx contains the annual
record of the number of the Canadian lynx trapped in the Mackenzie
River district of northwest Canada for the period 1821–1934.
(a) Plot this data. Find and plot autocorrelation function up to lag 40.
(b) Notice that autocorrelation function has local maximum every 9–10
years. What does this imply for the original time series?

MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch2.Descriptive/

acorr.m, acov.m, ashton.m, balances.m, balancespca.m, bat.m, bihist.m,

biomed.m, blowfliesTS.m, BUPAliver.m, carea.m, cats.m, cats1.m,

circular.m, corkrao.m, corkraopca.m, crouxrouss.m, crouxrouss2.m,

diversity.m, ecg.m, empiricalcdf.m, fisher1.m, fisheriris.m, grubbs.m,

hist2d.m, histn.m, lightrev.m, limestone.m, lynx.m, mahalanobis.m,

meanvarchange.m, multifat.m, multifatstat.m, mushrooms.m, myquantile.m,

mytrimmean.m, piecharts.m, scattercloud.m, simple2comp.m, smoothhist2D.m,

spikes.m, surveysUKUS.m, wdbcpca.m, weed.m

afm.dat|mat, amanita28.dat, ashton.dat, aspirin.dat, balance2.mat,

bat.dat, blowflies.dat|mat, BUPA.dat|mat|xlsx, cats.mat,

cellarea.dat|mat, circ.dat|mat, coburn.mat, cork.dat|mat, diabetes.xls,

dmd.dat|mat|xls, fat.dat, leptoconops.mat|xlsx, light.dat,

limestone.dat, lynx.mat|xlsx, QT.dat|mat, raman.dat|mat, spikes.dat,

triazines.dat|mat|xlsx, tsdata.mat, wdbc.mat, weed.dat|mat|xlsx

http://statbook.gatech.edu/Ch2.Descriptive/
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Chapter 3

Probability, Conditional Probability, and
Bayes’ Rule

Ultimately, in my extreme view, all reasoning reduces to probability calculations.

– Dennis Victor Lindley

WHAT IS COVERED IN THIS CHAPTER

• Events, Sample Spaces, and Classical Definition of Probability
• Probability of Unions and Intersections of Events
• Independence of Events and Conditional Probability
• Total Probability and Bayes’ Rule

3.1 Introduction

If statistics can be defined as the science that studies uncertainty, then
probability is the branch of mathematics that quantifies it. One’s intu-
ition of chance and probability develops at a very early age (Piaget and
Inhelder, 1976). However, the formal, precise definition of probability is
elusive. There are several competing definitions for the probability of an
event, but the most practical one uses its relative frequency in a potentially
infinite series of experiments.

Probability is a part of all introductory statistics programs for a good
reason: it is the theoretical foundation of statistics. The basic statistical con-
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cepts of random sample, sampling distributions, statistic, etc., require fa-
miliarity with probability to be understood, explained, and applied.

Probability is critical for the development of statistical concepts. Despite
this fact, it will not be a focal point of this text. There is a dangerous tempta-
tion to dwell on urns, black and white balls, and combinatorics for so long
that more important statistical concepts such as regression or ANOVA, fall
into a zeitnot (a term used in chess to describe the pressure felt from having
little remaining time).

Many students taking a university-level introductory statistics course
have already been exposed to probability and statistics in their previous
education. With this in mind, we will use this chapter as a survey of prob-
ability using a range of examples. The more important concepts of inde-
pendence, conditioning, and Bayes’ rule will be covered in more detail and
repeatedly used later in various contexts. Ross (2009) is recommended for
a review and comprehensive coverage.

3.2 Events and Probability

If an experiment has the potential to be repeated an infinite number of
times, then the probability of an outcome can be defined through its relative
frequency of appearing. For instance, if we rolled a die a number of times,
we could construct a table showing how many times each face came up.
These individual frequencies (ni) can be transformed into proportions or
relative frequencies, by dividing them by the total number of tosses n : fi =
ni/n. If we were to see the outcome




in 53 out of 300 tosses, then that
face’s proportion, or relative frequency, would be f6 = 53/300 = 0.1767. As
more tosses are made, we would “expect” the proportion of




to stabilize
around 1

6 . The “experiments” in the next example are often quoted in the
literature on elementary probability.

Example 3.1. Famous Coin Tosses. Buffon tossed a coin 4,040 times. Heads
appeared 2,048 times. K. Pearson tossed a coin 12,000 times and 24,000
times. The heads appeared 6,019 times and 12,012, respectively. For these
three tosses the relative frequencies of heads are 2048/4040 ≈ 0.5049,
6019/12000≈ 0.5016, and 12012/24000≈ 0.5005.
�

What if the experiments cannot be repeated? For example, what is the
probability that “Squiki” the guinea pig survives its first treatment by a
particular drug? Or in the “experiment” of taking a statistics course this
semester, what is the probability of getting an A? In such cases we can
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define probability subjectively as a measure of strength of belief. Here is
another example.

Example 3.2. Tutubalin’s Problem. In a desk drawer in the office of numis-
matist Mr. Jay Parrino there is a coin, a 1913 Liberty Head nickel, one of
only five known. What is the probability that the coin is heads up? This is
an example where equal levels of uncertainty for the two sides lead to the
subjective answer of 1/2.
�

The symmetry of the experiment led to the classical definition of proba-
bility. An ideal die is symmetric. All sides are “equiprobable.” When rolling
a fair die, the probability of outcome




is a ratio of the number of favorable
outcomes (in our example only one outcome is favorable) to the number of
all possible outcomes, 1/6.1

Among several possible ways to define probability, three are outlined
below.

Frequentist. An event’s probability is the proportion of times that
we would expect the event to occur if the experiment were repeated a
large number of times.

Subjectivist. A subjective probability is an individual’s degree of
belief in the occurrence of an event.

Classical. An event’s probability is the ratio of the number of favor-
able outcomes to possible outcomes in a (symmetric) experiment.

A formal definition of probability is axiomatic (Kolmogorov, 1933) and
is a special case of measure theory in mathematics.

The events that are assigned probabilities can be considered as sets of
outcomes. Table 3.1 uses a rolling die experiment to introduce the set nota-
tion among events:
To understand the probabilities in Table 3.1, consider a simple MATLAB
code that will simulate rolling a fair die. A random number from (0, 1) is
generated and multiplied by 6. This becomes a random number between
0 and 6. When this number is rounded up to the closest integer, the out-
comes

�

,
�

, . . . ,



are simulated. They are all equally likely. For example,
the outcome

�

comes from the original number, which is in the range
(3, 4), and this interval is one-sixth part of (0, 6). Formal justification of this
fact requires the concept of uniform distribution, which will be covered in
Chapter 5.

1 This definition is criticized by philosophers because of the fallacy called a vicious circle
in definition (circulus vitiosus in definiendo). One defines the notion of probability in terms
of equiprobable outcomes.
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Table 3.1 Notation in a rolling die experiment.

Term Description Example

Experiment
A phenomenon, action, or proce-
dure where the outcomes are un-
certain

A single roll of a balanced six-
sided die

Sample space
Set of all possible outcomes in an
experiment S = {

�

,
�

,
�

,
�

,
	

,



}

Event A collection of outcomes; a subset
of S

A = {
�

} (3 dots show), B =
{
�

,
�

,
	

,



} (at least three
dots show), C = {

�

,
�

}

Probability
A number between 0 and 1 as-
signed to an event

P(A) = 1
6 , P(B) = 4

6 = 2
3 , P(C) =

2
6 = 1

3

0 20 40 60 80 100
One
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O
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e

Fig. 3.1 MATLAB simulation of rolling a fair die. The first 100 outcomes
{4,6,6,5,1, . . ., 4,5,3} are shown.

The MATLAB code rollingdie1.m generates 50,000 outcomes and
checks the proportion of those equal to 3, probA, those outcomes greater
than or equal to 3, probB, and those smaller than 3, probC. The relative fre-
quencies of these outcomes tend to their theoretical probabilities of 1/6,
2/3, and 1/3. Figure 3.1 shows the outcomes of the first 100 simulations
described in the MATLAB code below.

% rollingdie1.m

outcomes = []; %keep outcomes here

M=50000 %# of rolls

for i= 1:M

outcomes = [outcomes ceil( 6*rand )];

% ceil(6*rand) rounds up (takes ceiling) of random

% number from (0, 6), thus the outcomes 1, 2, 3, 4, 5, and 6
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% are equally likely

end

probA = sum((outcomes == 3))/M

% probA = 0.1692

probB = sum((outcomes >= 3))/M

% probB = 0.6693

probC = sum((outcomes < 3))/M

% probC = 0.3307

Events in an experiment are sets containing the elementary outcomes,
that is, distinctive outcomes of the experiment. Among all events in an ex-
periment, two are special: a sure event and an impossible event. A sure
event occurs every time an experiment is repeated and has a probability of
1. It consists of all outcomes and is equal to the sample space of the experi-
ment, S . An impossible event never occurs when an experiment is performed
and is usually denoted as ∅. It contains no elementary outcomes and its
probability is 0.

For any event A, the probability that A will occur is a number between
0 and 1, inclusive:

0≤ P(A) ≤ 1.

Also,

P(∅) = 0, and P(S) = 1.

The intersection A ∩ B of two events A and B occurs if both events A
and B occur. The key word in the definition of the intersection is and. The
intersection of two events A ∩ B is often written as a product AB. We will
use both the ∩ and product notations.

The product of the events translates into the product of their proba-
bilities only if the events are independent, meaning the outcome of one
does not affect the outcome of the other. We will see later that relationship
P(AB) = P(A)P(B) is the definition of the independence of events A and
B.

Events are said to be mutually exclusive if they have no common el-
ementary outcomes. In other words, it is impossible for both events to
occur in a single trial of the experiment. For mutually exclusive events,
P(A · B) = P(∅) = 0.
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In the die-toss example, events A = {
�

} and B = {
�

,
�

,
	

,



} are not
mutually exclusive, since the elementary outcome {

�

} belongs to both of
them. The events A = {

�

} and C = {
�

,
�

} are mutually exclusive.

The union A∪ B of two events A and B occurs if at least one of the events
A or B occurs. The key word in the definition of the union is or.

For mutually exclusive events, the probability that at least one of them
occurs is

P(A ∪ C) = P(A) + P(C).

For example, if the probability of event A = {
�

} is 1/6, and the probability
of the event C = {

�

,
�

} is 1/3, then the probability of A or C is

P(A ∪ C) = P(A) + P(C) = 1/6 + 1/3 = 1/2.

The additivity property is valid for any number of mutually exclusive
events A1, A2, A3, . . . :

P(A1 ∪ A2 ∪ A3 ∪ . . . ) = P(A1) + P(A2) + P(A3) + . . . .

What is P(A∪ B) if events A and B are not mutually exclusive?

For any two events A and B, the probability that either A or B will
occur is given by the inclusion-exclusion rule:

P(A ∪ B) = P(A) + P(B)−P(A · B). (3.1)

If events A and B are exclusive, then P(A · B) = 0, and we get the familiar
result P(A ∪ B) = P(A) + P(B).

The inclusion-exclusion rule can be generalized to unions of an arbitrary
number of events. For example, for three events A, B, and C, the rule is

P(A ∪ B∪ C) = P(A) + P(B) + P(C)

−P(A · B)−P(A · C)−P(B · C)
+ P(A · B · C). (3.2)

For every event defined on a space of elementary outcomes, S , we can
define a counterpart event called its complement. The complement Ac of an
event A consists of all outcomes that are in S but are not in A. The key
word in the definition of a complement is not. In our example, Ac consists
of the outcomes {

�

,
�

,
�

,
	

,



}.
Events A and Ac are mutually exclusive by definition. Consequently,

P(A ∪ Ac) = P(A) + P(Ac).
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Since we also know from its definition that Ac includes all outcomes in the
sample space, S , that are not in A, so that S = A ∪ Ac, it follows that

P(A) + P(Ac) = P(S) = 1.

For any pair of complementary events A and Ac,
P(A) + P(Ac) = 1, P(A) = 1−P(Ac), and P(Ac) = 1−P(A).

These equations simplify the solutions of some probability problems. If
P(Ac) is easier to calculate than P(A), then the equations above let us
obtain P(A) indirectly.

Having defined the complement, we can prove (3.1). The argument is
easy if event B is written as a union of two exclusive events, B = (B∩ Ac)∪
(A ∩ B). From this and the additivity property,

P(B∩ Ac) = P(B)−P(A ∩ B).

Since A ∪ B is equal to a union of exclusive events, A ∪ B = A ∪ (B ∩ Ac),
by the additivity property of probability we obtain

P(A ∪ B) = P(A) + P(B∩ Ac) = P(A) + P(B)−P(A ∩ B).

This and some other probability properties are summarized in the table
below.
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Property Notation

If event S will always occur, its probability is
1.

P(S) = 1

If event ∅ will never occur, its probability is
0.

P(∅) = 0

Probabilities are always between 0 and 1, in-
clusive.

0≤ P(A)≤ 1

If A, B,C, . . . are all mutually exclusive, then
P(A ∪ B∪ C . . . ) can be found by addition.

P(A ∪ B ∪ C . . . ) =
P(A) + P(B) + P(C) +
. . .

The general addition rule for probabilities. P(A ∪ B) = P(A) +
P(B)−P(A · B)

Since A and Ac are mutually exclusive, and
between them include all outcomes from S ,
P(A ∪ Ac) is 1.

P(A ∪ Ac) =
P(A) + P(Ac) =
P(S) = 1, and P(Ac)
= 1−P(A)

Of particular importance in assessing the probability of composite
events are De Morgan’s laws, which are simple algebraic relationships be-
tween events. The laws are named after Augustus De Morgan, a nineteenth-
century British mathematician and logician.

For any set of n events A1, A2, . . . , An,

(A1 ∪ A2 ∪ · · · ∪ An)
c = Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

n,

(A1 ∩ A2 ∩ · · · ∩ An)
c = Ac

1 ∪ Ac
2 ∪ · · · ∪ Ac

n.

De Morgan’s laws can be readily demonstrated using Venn diagrams,
as discussed in Section 3.4.

The following example shows how to apply De Morgan’s laws.

Example 3.3. Nanotubules and Cancer Cells. One technique of killing can-
cer cells involves inserting microscopic synthetic rods, called carbon nan-
otubules, into the cell. When the rods are exposed to near-infrared light
from a laser, they heat up, killing the cell, while cells without rods are left
unscathed (Wong et al., 2005). Suppose that five nanotubules are inserted
in a single cancer cell. Independently of each other, they become exposed
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to near-infrared light with probabilities 0.2, 0.4, 0.3, 0.6, and 0.5. What is
the probability that the cell will be killed?

Let B be an event where a cell is killed and Ai an event where the ith
nanotubule kills the cell. The cell is killed if A1 ∪ A2 ∪ · · · ∪ A5 happens. In
other words, the cell is killed if nanotubule 1 kills the cell, or nanotubule
2 kills the cell, etc. We consider the event where the cell is not killed and
apply De Morgan’s laws. De Morgan’s laws state that Ac

1 ∪ Ac
2 ∪ · · · ∪ Ac

n =
(A1 ∩ A2 ∩ · · · ∩ An)c,

P(B) = 1−P(Bc) = 1−P((A1 ∪ A2 ∪ · · · ∪ A5)
c) = 1−P(Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

5)

= 1− (1− 0.2)(1− 0.4)(1− 0.3)(1− 0.6)(1− 0.5) = 0.9328.

Thus, the cancer cell will be killed with a probability of 0.9328.
�

Example 3.4.
�

Bonferroni Inequality. As an example of the algebra of
events and basic rules of probability, we derive the Bonferroni inequality. It
will be revisited later in the text when calculating the significance level in
simultaneous testing of multiple hypotheses (page 415).

The Bonferroni inequality states that for arbitrary events A1, A2, . . . , An,

P(A1 ∩ A2 ∩ · · · ∩ An) ≥ P(A1) + P(A2) + · · ·+ P(An)− n + 1. (3.3)

Start with n events Ai, i = 1, . . . ,n and the event Ac
1 ∪ Ac

2 ∪ · · · ∪ Ac
n.

The probability of any union of events is never larger than the sum of
probabilities of individual events:

P(Ac
1 ∪ Ac

2 ∪ · · · ∪ Ac
n) ≤ P(Ac

1) + P(Ac
2) + · · ·+ P(Ac

n).

De Morgan’s laws state that Ac
1 ∪ Ac

2 ∪ · · · ∪ Ac
n = (A1 ∩ A2 ∩ · · · ∩ An)c and

1−P((A1 ∩ A2 ∩ · · · ∩ An)
c) ≤ (1−P(A1)) + (1−P(A2)) + · · ·+ (1−P(An)),

leading to the inequality in (3.3).
�

Circuits. The application of basic probability rules involving unions, inter-
sections, and complements of events can be quite useful. An example is the
application in the reliability of a complex system consisting of many com-
ponents that work independently. If a complex system can be expressed as
a configuration of simple elements that are linked in a “serial” or “parallel”
fashion, the reliability of such a system can be calculated by knowing the
reliabilities of its constituents.



82 3 Probability, Conditional Probability, and Bayes’ Rule

E1 E2 En

(a)

E1

E2

En

(b)

Fig. 3.2 (a) Serial connection modeled as E1 ∩ E2 ∩ · · · ∩ En. (b) Parallel connection mod-
eled as E1 ∪ E2 ∪ · · · ∪ En.

Let a system S consist of n constituent elements E1, E2, . . . , En that can be
interconnected in either a serial or a parallel fashion (Fig. 3.2). Suppose that
elements Ei work in time interval T with probability pi and fail with prob-
ability qi = 1− pi, i = 1, . . . ,n. The following table gives the probabilities of
working for elements in S :

Connection Notation Works with probability Fails with probability
Serial E1 ∩ E2 ∩ · · · ∩ En p1 p2 . . . pn 1− p1 p2 . . . pn

Parallel E1 ∪ E2 ∪ · · · ∪ En 1− q1q2 . . . qn q1q2 . . . qn

If the system has both serial and parallel connections, then the probabil-
ity of the system working can be found by the subsequent application of the
probabilities for the union and intersection of events. Here is an example.

Example 3.5. Circuit. A complex system S is defined via

S = E1 ∩ [(E2 ∩ E3) ∪ (E4 ∩ (E5 ∪ E6))]∩ E7,

where the unreliable components Ei, i = 1, . . . ,7 work and fail indepen-
dently. The system is depicted in Figure 3.3. The components are oper-
ational in some fixed time interval [0, T] with probabilities given in the
following table.

Component E1 E2 E3 E4 E5 E6 E7
Probability of functioning well 0.9 0.5 0.3 0.1 0.4 0.5 0.8

We will find the probability that system S will work in [0, T] first analyti-
cally, and then find an approximation by simulating the circuit in MATLAB
and WinBUGS.
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E1

E2 E3

E4

E5

E6

E7

Fig. 3.3 Circuit E1 ∩ [(E2 ∩ E3) ∪ (E4 ∩ (E5 ∪ E6))]∩ E7.

To find the probability that system S works/fails, it is useful to create
a table with probabilities pi = P(component Ei works) and their comple-
ments qi = 1− pi, i = 1, . . . ,7:

Component E1 E2 E3 E4 E5 E6 E7
pis 0.9 0.5 0.3 0.1 0.4 0.5 0.8
qis 0.1 0.5 0.7 0.9 0.6 0.5 0.2

Next, we calculate step-by-step the probabilities of subsystems that ulti-
mately add up to the final system. For example, we calculate the probabil-
ity of working/failing for S1 = E2 ∩ E3, then S2 = E5 ∪ E6, then S3 = E4 ∩ S2,
then S4 = S1 ∪ S3, and finally S = E1 ∩ S4 ∩ E7.

Component Probability of working Probability of failing
S1 = E2 ∩ E3 ps1 = 0.5 · 0.3 = 0.15 qs1 = 1− 0.15 = 0.85
S2 = E5 ∪ E6 ps2 = 1− 0.3 = 0.7 qs2 = 0.6 · 0.5 = 0.3
S3 = E4 ∩ S2 ps3 = 0.1 · 0.7 = 0.07 qs3 = 1− 0.07 = 0.93
S4 = S1 ∪ S3 ps4 = 1− 0.7905 = 0.2095 qs4 = 0.85 · 0.93 = 0.7905

S = E1 ∩ S4 ∩ E7 pS = 0.9 · 0.2095 · 0.8 = 0.15084 qS = 1− 0.15084 = 0.84916

Thus the probability that the system will work in the time interval [0, T] is
0.15084.

The MATLAB code that approximates this probability uses a random
number generator to simulate the case where the simple elements “work”
and binary operations to simulate intersections and unions. For example,
the fact that e1 is functioning well (working) with a probability of 0.9 is
modeled by e1 = rand < 0.9. Note that the left-hand side of the equation
e1 = rand < 0.9 is a logical expression that takes values TRUE (numerical
value 1) and FALSE (numerical value 0). Given that the event {rand< 0.9}
is true 90% of the time, the value e1 represents the status of component E1.
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This will be 0 with a probability of 0.1 and 1 with a probability of 0.9. The
unions and intersections of e1, e2, . . . , en are modeled as (e1 + e2 + · · ·+ en >

0) and e1 ∗ e2 ∗ · · · ∗ en, respectively. Equivalently, they can be modeled as
max{e1, e2, . . . , en} and min{e1, e2, . . . , en}. Indeed, the former is 1 if at least
one ei is 1, and the latter is 1 if all eis are 1, thus coding the union and the
intersection.

To assess the probability that the system is operational, subsystems are
formed and gradually enlarged, identical to the method used to find the
analytic solution ( circuit.m).

% circuit.m

M=1000000;

s = 0;

for i = 1:M

e1 = rand < 0.9; e2 = rand < 0.5; e3 = rand < 0.3;

e4 = rand < 0.1; e5 = rand < 0.4; e6 = rand < 0.5;

e7 = rand < 0.8;

% ===============

s1 = min(e2,e3); % or s1 = e2*e3;

s2 = max(e5,e6); % or s2= e5+e6>0;

s3 = min(e4,s2); % or s3 = e4*s2;

s4 = max(s1,s3); % or s4 = s1+s3 > 0;

st = min([e1;s4;e7]); % or st=e1*s4*e7;

s = s + st;

end

works = s/M

fails = 1 - works

% works = 0.150944

% fails = 0.849056

Next, we repeat this simulation in WinBUGS. There are many differ-
ences between MATLAB and WinBUGS that go beyond the differences in
the syntax. In MATLAB, we had an explicit loop to generate 106 runs; in
WinBUGS this is done via the Model>Update tool and is not a part of the
code. Also, the eis in MATLAB are 0 and 1; in WinBUGS they are 1 and 2,
since the outcomes are realizations of a categorical discrete random vari-
able dcat, and this variable is coded by nonnegative integers: 1, 2, 3, . . . . For
this reason we adjusted the probability of a system working as ps <- s - 1.

# circuit1.odc

model {

for (i in 1:7){

e[i] ~ dcat(p[i,])

}

s1 <- min(e[2],e[3])

s2 <- max(e[5],e[6])

s3 <- min(e[4],s2)

s4 <- max(s1,s3)
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s <- min( min(e[1],s4) , e[7] )

ps <- s-1

}

DATA IN:

list(

p = structure(.Data =

c(0.1,0.9, 0.5,0.5,

0.7,0.3, 0.9,0.1,

0.6,0.4, 0.5,0.5,

0.2,0.8) , .Dim = c(7,2) ) )

INITS NONE, just ’gen inits’

The result of the simulations is close to the theoretical value.

mean sd MC error val2.5pc median val97.5pc start sample

ps 0.1508 0.3578 3.528E–4 0.0 0.0 1.0 10001 1000000

�
This is the first WinBUGS program in the text, and the reader is ad-

vised to consult Chapter 19, which discusses how communication with the
WinBUGS program is structured and carried out. This comment has the
mark “dangerous bend” because many students initially find the BUGS
interface and programming intimidating.
�

3.3 Odds

Odds are alternative measures for the likelihood of events. If an event A
has a probability P(A), then the odds of A are defined as

Odds(A) =
P(A)

P(Ac)
, P(A) =

Odds(A)

Odds(A) + 1
.

From the classical definition of probability P(A) = # of favorable for A
# in the sample space =

nA/n, the odds of A are defined as Odds(A) = nA/(n− nA). For instance,
the odds of event A = {




} are 1/(6− 1), one in five.
In economic decision theory, epidemiology, game theory, and some

other areas, odds and odds ratios are preferred measures of quantifying
and comparing events.

Example 3.6. Odds for Circuit. The odds that the circuit S in Example 3.5
is working are 17.76%, since P(S) = 0.15084 and Odds(S) = 0.15084/(1−
0.15084) = 0.17763.
�
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3.4 Venn Diagrams*

Venn diagrams help in graphically presenting the algebra of events and
in determining the probability of composite events involving unions, in-
tersections, and complements. The diagrams are named after John Venn,
the English logician who introduced the diagrams in his 1880 paper (Venn,
1880).

Venn diagrams connect sets and events in a graphical way – the events
are represented as circles (squares, rectangles) and the notions of unions, in-
tersections, complements, exclusiveness, implication, etc., among the events
translate directly to the corresponding relations among the geometric areas.
Exclusive events are represented by nonoverlapping circles, while the no-
tion of causality among the events translates to the subset relation. The
geometric areas representing the events are plotted in a large rectangle rep-
resenting the sample space (sure event).

Panels (a) and (b) in Figure 3.4 show the union and intersection of events
A and B, while panel (c) shows the complement of event A.

  B  A

(a)

  B  A

(b)

  A

(c)

Fig. 3.4 (a) Union and (b) intersection of events A and B and (c) complement of event
A.

It is possible to define more exotic operations with events. For exam-
ple, the difference between events A and B, denoted as A\B, is shown
in Figure 3.5a. It is obvious from the diagram that A\B = A ∩ Bc. The
symmetric difference (or exclusive union) of events A and B, denoted as
A∆B, is an event in which either A or B happens, but not both (Fig. 3.5b).
From the Venn diagram it is easy to see that A∆B = (A ∩ Bc) ∪ (B ∩ Ac) =
(A\B) ∪ (B\A).

Sometimes, the evidence for more complex algebraic relations between
events can be established by Venn diagrams. Usually, a Venn diagram of
the left-hand side in a relation is compared with the Venn diagram of the
right-hand side, and if the resulting sets coincide, we have a “proof.”

For example, one of De Morgan’s laws for three events, (A ∪ B ∪ C)c =
Ac ∩ Bc ∩Cc, can be demonstrated by Venn diagrams. Panel (a) in Figure 3.6
shows A ∪ B ∪ C, while panel (b) shows Ac ∩ Bc ∩ Cc. It is obvious that the
sets in the two panels are complementary and De Morgan’s law is “demon-
strated.”
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  B  A

(a)

  B  A

(b)

Fig. 3.5 Difference A\B and symmetric difference A∆B.

  A

  B   C

(a)

  A

  B   C

(b)

Fig. 3.6 De Morgan’s Law: (A∪ B ∪ C)c = Ac ∩ Bc ∩ Cc.

Likewise, if we want to demonstrate the distributive law A ∪ (B ∩ C) =
(A ∪ B) ∩ (A ∪ C), the Venn diagram argument is shown in Figure 3.7a–
c. The set A ∪ (B ∩ C) is shown in panel (a). Panels (b) and (c) show sets
A ∪ B and A ∪ C, respectively. Their intersection coincides with the set in
panel (a).

  A

  B   C

(a)

  A

  B   C

(b)

  A

  B   C

(c)

Fig. 3.7 Distributive law among events, A ∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C).

Proofs of this kind can be formalized with the help of mathematical logic
and tautologies.

In addition to algebraic relations among events, Venn diagrams can help
in finding the probability of the complex algebraic composition of events.
The probability can be informally connected with the area of a set in a
Venn diagram, and this connection is extremely useful. For example, for
the result in (3.2), P(A∪ B∪C) =P(A)+ P(B)+P(C) −P(AB)−P(AC)−
P(BC) + P(ABC), an informal “proof” based on areas in a Venn diagram
is simple and intuitive. The argument is as follows: if the probability is
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thought of as an area, then the area of A∪ B∪C can be obtained by adding
the areas of A, B, and C, respectively. However, when the three areas are
added, there is an excess in the total area, and the regions counted mul-
tiple times should be subtracted. Thus areas of A ∩ B, A ∩ C, and B ∩ C
are subtracted from the sum P(A) + P(B) + P(C). In this subtraction, the
area of A ∩ B ∩ C is subtracted three times and should be “patched back.”
Alternatively, one could think about painting the set A ∪ B∪ C with a single
layer of paint, and the total amount of paint used is the probability. Of course,
the amount of paint needed to paint the universal event S is 1. Although
very informal, such a discursion may be quite useful.

3.5 Counting Principles*

Many experiments can be modeled by a sample space with a finite number
of equally likely outcomes. We discussed the experiment of rolling a die,
in which the sample space had six equally likely outcomes. In finding the
probability of an event defined on this sample space, we divided the num-
ber of outcomes favorable to A by 6. For example, the event A = {

�

,
�

,



}
(the number is even) has a probability of 3/6=1/2. But what if 10 dice are si-
multaneously rolled and we were interested in the probability that the sum
of numbers will be equal to 55? The problem here is to count how many of
610 = 60,466,176 possible equally likely outcomes produce the sum of 55,
and a simple inspection of the sample space applicable for one or two dice
is not feasible. In situations like this, combinatorial and counting principles
help. We will briefly illustrate the most important principles and introduce
mathematical notions (factorial, n-choose-k, etc.) needed later in the book.
A comprehensive coverage and a wealth of examples can be found in Ross
(2009).

We start with definitions and basic properties of factorials and n-choose-
k operations.

Factorial n! is defined as the product

n! = n(n− 1)(n− 2) . . . 2 · 1 =
n

∏
i=1

i.

For example, 5! = 5 · 4 · 3 · 2 · 1 = 120. By definition 0! = 1.
An n-choose-k operation (or binomial coefficient) is defined as follows:

(
n

k

)
=

n(n− 1) . . . (n− k + 1)
k!

=
n!

(n− k)!k!
.

As the name indicates, n-choose-k is the number of possible subsets of size
k from a set of n elements. For example, the number of different committees
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of size 3 formed from a group of 8 students is (8
3) =

8×7×6
3×2×1 = 56. In MATLAB

the command for (n
k) is nchoosek(n,k). For example, nchoosek(8,3) results in

56.
The following properties follow directly from the definition of (n

k):

(
n

k

)
=

(
n

n− k

)
,

(
n

0

)
= 1 and

(
n

1

)
= n,

(
n

k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)
.

Fundamental Counting Principle . If an experiment consists of k ac-
tions, and the ith action can be performed in ni different ways, then
the whole experiment can be performed in n1 × n2 × · · · × nk differ-
ent ways. This is called the multiplication counting rule or fundamental
counting principle.

Example 3.7. Item Inspection. Out of 15 items, 4 are defective. The items are
inspected one by one. What is the probability that the ninth item was the
last defective one?

Consider the arrangement of 11 conforming and 4 defective items. The
number of all possible arrangements is (15

4 ) = (15
11) = 1316, as one chooses 4

places out of 15 to place defective items or, equivalently, 11 places out of 15
to place conforming items.

The number of favorable outcomes can be found by the multiplication
rule. Favorable outcomes are defined as follows: among the first-selected
eight items three are defective, the ninth position is occupied by a defective
item, and none of the remaining six items is defective:

(
8
3

)
× 1× 1 = 56.

Note that the number of ways in which a defective item falls at the ninth
position, and the number of ways where six fair items occupy positions 10
to 15, are 1 each. Thus, the required probability is 56/1365 = 0.041.
�

There is also an addition counting rule that mimics the additive prop-
erty of probability: If k events are exclusive and have n1,n2, . . . ,nk out-
comes, then their union has n1 + n2 + · · ·+ nk outcomes. If the events are
not exclusive, this rule is known as the inclusion–exclusion principle. For
instance, if two events are arbitrary, the inclusion–exclusion rule count
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for outcomes in their union is n1 + n2 − n12, where n12 is the number
of common outcomes. For three events the inclusion-exclusion rule is
n1 + n2 + n3 − n12 − n13 − n23 + n123; see (3.2).

If the population has N subjects and a sample of size n is needed, then
Table 3.2 summarizes the number of possible samples, given the sampling
policy and importance of ordering.

We first introduce the necessary notation. When the order is important,
the samples are called variations or permutations. One can think about varia-
tions as words in an alphabet, since for words the order of letters is impor-
tant. By the fundamental counting principle, the number of variations with
repetitions of N elements of length n is V

n
N = Nn, since each of n places can

be selected in N ways. The number of variations without repetition of N

elements of length n is Vn
N = N× (N− 1)× · · · × (N− n+ 1) = N(n), n≤ N.

Note that VN
N = N! is the number of permutations of N distinct elements.

In combinations, the order in the sample is not important. If there is
no repetition of elements, then Cn

N = (N
n ). If the repetition is possible, then

C
n
N = (N+n−1

n ).

Table 3.2 Number of variations/combinations when the selection of n from N elements
is done with/without the repetition.

Order important Order not important
(variations or permutations) (combinations)

Sampling w/ repetition V
n
N = Nn C

n
N = (N+n−1

n )

Sampling w/o repetition Vn
N = N(N− 1) . . .(N− n + 1) Cn

N = (N
n ), n ≤ N

The number of permutations of N distinctive elements is N!, but if
among N elements there are only k different elements, n1 of type 1, n2
of type 2, . . . , nk of type k, (n1 + n2 + · · · + nk = N), then the number of
different permutations is

(
N

n1,n2, . . . nk

)
=

N!
n1!n2! · · ·nk!

. (3.4)

The number in (3.4) is also called the multinomial coefficient.

Example 3.8. Probability by Counting. What is the probability that in a
six-digit license plate of a randomly selected car

(a) All digits will be different?
(b) Exactly two digits will be equal?
(c) At least three digits will be different?
(d) There will be exactly two pairs of equal digits?
We assume that any digit from 0 to 9 can be at any of the six positions

in the six-digit plate number.
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This example is solved by using the classical definition of probability.
For each event in (a)–(d), the number of favorable outcomes will be divided
by the number of possible outcomes. The number of all possible outcomes

is common, V
6
10 = 106.

(a) To find the number of favorable outcomes for the event where all
digits are different, consider forming a six-digit number position by po-
sition. For the first position there are ten digits available, for the second
nine (the digit used in the first position is eliminated as a choice for the
second position), for the third eight, etc., for the last five. By the fundamen-
tal counting principle, the number of all favorable outcomes is the product
10× 9× 8× 7× 6× 5 = 10(6) = V6

10, and the probability is

10(6)

106 = 0.1512.

(b) Out of ten digits choose one and place it on any two positions out
of six available. This can be done in 10× (6

2) = 150 ways. The remaining
four positions could be chosen in 9× 8× 7× 6 ways. Thus, the number of
favorable outcomes is 150× 9× 8× 7× 6, and the required probability is
0.4536.

(c) The opposite event for “at least three digits are different” is “all
digits are the same” or “exactly two digits are the same,” and we will find
its probability first. The number of cases where all digits are the same is
ten, while the number of cases where there are exactly two different digits
is (10

2 ) × (26 − 2). Digits a and b can be selected in (10
2 ) ways. Given the

fixed selection, there are 26 − 2 words in alphabet {a,b} of length 6 where
the words aaaaaa and bbbbbb are excluded. The probability of “at least three
different digits” is

1− 10 + (10
2 )(2

6 − 2)
106 = 1− 0.0028 = 0.9972.

(d) From ten digits first select two for the two pairs, and then an addi-
tional two digits for the remaining two places. There are four different dig-
its: a,b for the two pairs and c,d for the remaining two places. The selection
can be done in (10

2 )× (8
2) ways. Once selected, the digits can be arranged in

( 6
2,2,1,1) =

6!
2!2!1!1! ways, by using permutations with repetitions as in (3.4).

Thus, the probability is

(10
2 )× (8

2)× 6!
2! 2! 1! 1!

106 = 0.2268.

�
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The following two important equations for probability calculation are
a direct consequence of the combinatorial properties discussed in this sec-
tion. They will be used later in the text when discussing the binomial and
hypergeometric distributions and their generalizations.

Multinomial and Multihypergeometric Trials. Suppose that an ex-
periment can result in m possible outcomes, A1, A2, . . . , Am, that have
probabilities P(A1) = p1, . . . ,P(Am) = pm, p1 + · · · + pm = 1. If the
experiment is independently repeated n times, then the probability
that event A1 will appear exactly n1 times, A2 exactly n2 times, . . . ,
Am exactly nm times (n1 + · · ·+ nm = n) is

(
n

n1,n2, . . . nm

)
p

n1
1 pn2

2 · · · pnm
m .

If a finite population of size m has k1 subjects of type 1, . . . , kp

subjects of type p, (k1 + · · ·+ kp = m), and n subjects are sampled at
random, then the probability that x1 will be of type 1, . . . , xp will be
of type p (x1 + · · ·+ xp = n), is

(k1
x1
)(k2

x2
) · · · (kl

xl
)

(m
n)

.

3.6 Conditional Probability and Independence of Events

Important contemporary applications of probability in bioengineering, med-
ical diagnostics, systems biology, bioinformatics, etc., concern modeling
and prediction of causal relationships in complex systems. The methodolo-
gies include influence diagrams, Bayesian networks, Granger causality, and
related methods for which the notions of conditional probability, causality,
and independence are fundamental. In this section, we discuss conditional
probabilities and independence.

3.6.1 Conditioning and Product Rule

A conditional probability is the probability of one event if we have informa-
tion that another event, typically from the same sample space, has occurred.
In the die-toss example, the probability of event A = {

�

} is P(A) = 1
6 . But
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what if we knew that event B = {
�

,
�

,
	

,



} occurred? There are only
four possible outcomes, only one of which is favorable for A. Thus, the
probability of A given B is 1

4 . The conditional probability of A given B is
denoted as P(A|B).

In general, the conditional probability of an event A given that B has
occurred is equal to the probability of their intersection P(AB) divided by
the probability of the event that we are conditioning upon, P(B). Of course,
event B has to have a positive probability, P(B) > 0, because conditioning
upon an event of zero probability is equivalent to the indeterminacy 0/0,
as 0≤ P(AB)≤ P(B):

P(A|B) = P(A · B)
P(B)

, for P(B) > 0.

Figure 3.8 gives a graphical description of the conditional probability
P(A|B). Once event A is conditioned by B, B “becomes the sample space”
and B’s Venn diagram expands by a factor of 1

P(B)
. The intersection AB in

the expanded B becomes event A|B.

Fig. 3.8 Graphical illustration of conditional probability.

An event A is independent of B if the conditional probability of A given
B is the same as the probability of A alone.

Events A and B are independent if

P(A|B) = P(A). (3.5)

In the die-toss example, P(A) = 1
6 and P(A|B) = 1

4 . Therefore, events A
and B are not independent.
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We saw that the probability of the union A∪ B was P(A∪ B) = P(A) +
P(B) − P(AB). Now we are ready to introduce the general rule for the
probability of an intersection.

The probability that events A and B will both occur is obtained by
applying the multiplication rule:

P(A · B) = P(A)P(B|A) = P(B)P(A|B), (3.6)

where P(A|B) and P(B|A) are conditional probabilities of A given B
and of B given A, respectively.

Only for independent events, equation (3.6) simplifies to

P(A · B) = P(A)P(B). (3.7)

Relationship (3.7) is also used to define independence, but (3.5) and (3.7)
are equivalent.

With the repeated application of the multiplication rule, one can easily
show

P(A1A2 . . . An) = P(A1|A2 . . . An) P(A2|A3 . . . An) . . .P(An−1|An) P(An),

which is sometimes referred to as the chain rule. Here is one example of the
use of the chain rule.

Example 3.9. 3+3 Dose Escalation Scheme. In a dose-finding stage of clin-
ical trials (Phase I) patients are given the drug at some dose, and if there
is no dose-limiting toxicity (DLT), the dose is escalated. A version of the
popular 3+3 method is implemented as follows: At a particular dose level,
three patients are randomly selected and given the drug. If there is no
DLT, the dose is escalated to the next higher one. If there are two or more
DLTs, the escalation process is stopped. If there is exactly one DLT among
the three patients, three new patients are selected at random and given the
drug at the same dose. If there are no DLTs among these three new patients,
the dose is escalated. If there is at least one DLT, the escalation process is
stopped.

Assume that 30 patients are available for the trial at some fixed dose. If
among them 4 will exhibit DLT at that dose, what is the probability that in
the described step of the 3+3 procedure the dose will be escalated?

We assume that patients are selected and given the drug one by one.
Denote by Ai the event that the ith patient will exhibit no DLT.

Then the dose will be escalated if the event

B = A1 A2 A3 ∪ Ac
1 A2 A3 A4 A5A6 ∪ A1Ac

2 A3 A4 A5 A6 ∪ A1 A2 Ac
3 A4 A5A6



3.6 Conditional Probability and Independence of Events 95

happens. Here, for example, the event A1 Ac
2 A3 A4 A5 A6 means that among

the first three subjects the second experienced DLT, and that in the second
group of three there was no DLT. Since the events A1 A2 A3, Ac

1 A2 A3 A4A5 A6,
A1 Ac

2 A3 A4 A5A6, and A1A2 Ac
3 A4 A5 A6 are exclusive, the probability of

their union is the sum of probabilities:

P(B) = P(A1A2 A3) + P(Ac
1 A2A3 A4 A5 A6)

+ P(A1Ac
2 A3 A4 A5 A6) + P(A1A2 Ac

3 A4 A5 A6).

For each of the probabilities the chain rule is needed. For example,

P(Ac
1 A2A3 A4 A5 A6) = 0.0739,

since

P(Ac
1) ·P(A2|Ac

1) ·P(A3|Ac
1 A2) ·P(A4|Ac

1 A2 A3)

· P(A5|Ac
1 A2 A3 A4) · P(A6|Ac

1 A2 A3 A4 A5)

=
4

30
· 26

29
· 25

28
· 24

27
· 23

26
· 22

25
.

Thus,

P(B) =
26
30
· 25

29
· 24

28
+

4
30
· 26

29
· 25

28
· 24

27
· 23

26
· 22

25

+
26
30
· 4

29
· 25

28
· 24

27
· 23

26
· 22

25
+

26
30
· 25

29
· 4

28
· 24

27
· 23

26
· 22

25
= 0.8620.

The dose will be escalated with probability 0.8620.
�

If counting rules are applied, the solution can be expressed as

(26
3 )(

4
0)

(30
3 )

+
(26

2 )(
4
1)

(30
3 )
× (24

3 )(
3
0)

(27
3 )

.

�

The conditional odds of A given that B occurred is

Odds(A|B) = P(A|B)
P(Ac|B) =

P(AB)

P(AcB)
.

If events A and B are independent, then Odds(A|B) = Odds(A).
�

For two events A and B the notions of exclusiveness AB = ∅ and in-
dependence P(AB) = P(A)P(B) are often considered equivalent by some
students. Their argument can be summarized as follows: if two events do
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not share outcomes and their intersection is empty, then they must be in-
dependent. The contrary is true. If the events are exclusive and none are
impossible, then they must be dependent. This can be demonstrated with
the simple example of a coin-flipping experiment.

If A denotes tails up and B denotes heads up, then A and B are exclusive
but dependent. If we have information that A happened, then we also have
complete information that B did not happen.

If the sample spaces are different and the events are well separated in
either time or space, their independence is intuitive. However, if the events
share the sample space, it could be difficult to discern whether or not they
are independent without resorting to the definition. The following example
shows this:

Example 3.10. Queen of Spades. Let an experiment consist of drawing a
card at random from a standard deck of 52 playing cards. Define events
A and B as “the card is a ♠” and “the card is a queen.” Are the events
A and B independent? By definition, P(A · B) = P(Q♠) = 1

52 . This is the
product of P(♠) = 13

52 and P(Q) = 4
52 , and events A and B in question are

independent. In this situation, intuition provides no help. Now, pretend
that the 2♥ is drawn and excluded from the deck prior to the experiment.
Events A and B become dependent since

P(A) · P(B) =
13
51
· 4

51
6= 1

51
= P(A · B).

�

The multiplication rule tells us how to find the probability for a com-
posite event (A · B). The probability of (A · B) is used in the general addition
rule for finding the probability of (A ∪ B).
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Rule Notation

Definitions
The conditional probability of A given B is
the probability of event A if event B oc-
curred.

P(A|B)

A is independent of B if the conditional
probability of A given B is the same as
the unconditional probability of A.

P(A|B) = P(A)

Multiplication rule
The general multiplication rule for proba-
bilities.

P(A · B) =P(A)P(B|A) =
P(B)P(A|B)

For independent events only, the multipli-
cation rule is simplified. P(A · B) = P(A)P(B)

3.6.2 Pairwise and Global Independence

If three events A, B, and C are such that any pair of them is exclusive, i.e.,
AB = ∅, AC = ∅, or BC = ∅, then the events are mutually exclusive, ABC =
∅. However, an analogous result does not hold for independence. Even if
the events are pairwise independent for all three pairs A, B; A,C; and B,C,
i.e., P(AB) = P(A)P(B), P(AC) = P(A)P(C), and P(BC) = P(B)P(C),
they may not be independent in their totality. That is, it could happen that
P(ABC) 6= P(A)P(B)P(C).

Here is one example of such a triple:

Example 3.11. Rolling a Tetrahedron. The four sides of a tetrahedron (reg-
ular three-sided pyramid with four sides consisting of isosceles triangles)
are denoted by 2, 3, 5, and 30, respectively. If the tetrahedron is “rolled,”
the number on the bottom side is the outcome of interest. The three events
are defined as follows: A – the number on the bottom side is even, B – the
number is divisible by 3, and C – the number is divisible by 5. The events
are pairwise independent, but in totality, they are dependent.
�

The algebra is simple here, but what is the intuition? The “trick” is that
events AB, AC, BC, and ABC all coincide. In other words, P(A|BC) = 1
even though P(A|B) = P(A|C) = P(A).

The concept of independence/dependence is not transitive. At first
glance, it may seem incorrect. One may argue, “If A depends on B, and
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B depends on C, then A should depend on C, right?” We can demonstrate
that this reasoning is not correct with a simple example.

Example 3.12. Two Q♦ and no Q♣. Take a standard deck of 52 playing
cards and replace the Q♣ with Q♦. The deck still has 52 cards, two Q♦
and no Q♣. From that deck draw a card at random and consider three
events: A – the card is a queen, B – the card is red, and C – the card is a
♥. It is easy to see that A and B are dependent, since P(AB) = 3/52 does
not equal P(A) · P(B) = 4/52 · 27/52. Events B and C are dependent as
well, since event C is contained in B, and P(BC) = P(C) does not equal
P(B) · P(C). However, events A and C are independent, since P(AC) =

P(Q♥) = 1
52 = P(A)P(C) = 13

52 · 4
52 .

�

3.7 Total Probability

The rule of total probability expresses the probability of an event A as
the weighted average of its conditional probabilities. The events that A is
conditioned upon need to be exclusive and should partition the sample
space S . Here are the definitions:

Events H1, H2, . . . , Hn form a partition of the sample space S if
(i) they are mutually exclusive (Hi · Hj = ∅, i 6= j) and
(ii) their union is the sample space S ,

⋃n
i=1 Hi = S .

The events H1, . . . , Hn are usually called hypotheses. By this definition, it
follows that P(H1) + · · ·+ P(Hn) = 1 (= P(S)).

Let the event of interest A happen under any of the hypotheses Hi with
a known (conditional) probability P(A|Hi). Assume, in addition, that the
probabilities of hypotheses H1, . . . , Hn are known. P(A) can then be calcu-
lated using the rule of total probability.

Rule of Total Probability.

P(A) = P(A|H1)P(H1) + · · ·+ P(A|Hn)P(Hn) (3.8)

Thus, the probability of A is a weighted average of the conditional prob-
abilities P(A|Hi) with weights given by P(Hi). Since His partition the sam-
ple space, the sum of the weights is 1.

The proof is simple. From S = H1 ∪ H2 ∪ · · · ∪ Hn it follows that
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A = AS = A(H1 ∪ H2 ∪ · · · ∪ Hn) = AH1 ∪ AH2 ∪ · · · ∪ AHn

(Fig. 3.9). Events AHi are all exclusive, and after applying the additivity
property, we obtain

P(A) = P(AH1) + P(AH2) + · · ·+ P(AHn).

Since each P(AHi) is equal to P(A|Hi)P(Hi) by the multiplication rule
(3.6), the equality in (3.8) is true.

Fig. 3.9 A = A(H1 ∪ H2 ∪ · · · ∪ Hn) = AH1 ∪ AH2 ∪ · · · ∪ AHn, and the events AHi are
exclusive.

Example 3.13. Two-Headed Coin. Out of 100 coins in a box, one has heads
on both sides. The rest are standard fair coins. A coin is chosen at random
from the box. Without inspecting whether it is fair or two-headed, the coin
is flipped twice. What is the probability of getting two heads?

Let A be the event that both flips resulted in heads. Let H1 denote the
event (hypothesis) that a fair coin was chosen. Then, H2 = Hc

1 denotes the
hypothesis that the two-headed coin was chosen.

P(A) = P(A|H1)P(H1) + P(A|H2)P(H2)

= 1/4 · 99/100+ 1 · 1/100 = 103/400 = 0.2575.

The probability of the two flips resulting in tails is 0.2475 (check this!),
which is slightly smaller than 0.2575. Is this an influence of the two-headed
coin?
�

The next example is an interesting interplay between conditional and
unconditional independence solved by the rule of total probability.

Example 3.14. Accident Proneness. Imagine a population with two types of
individuals: N normal, and Nc accident prone. Suppose that 5/6 of these
people are normal, so that, if we randomly select a person from this popu-
lation, the probability that the chosen person will be normal is P(N) = 5/6.
Let Ai be the event that an individual has an accident in year i. For each
individual, Ai is independent of Aj whenever i 6= j.
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The accident probability is different for the two classes of individuals,
P(Ai|N) = 0.01 and P(Ai|Nc) = 0.1. The chance of a randomly chosen in-
dividual having an accident in a given year is

P(Ai) = P(Ai|N)P(N) + P(Ai|Nc)P(Nc)

= 0.01× 5/6 + 0.1× 1/6 = 0.025.

The probability that a randomly chosen individual has an accident in both
the first and second year follows from the rule of total probability and the
fact that A1 and A2 are independent for a given individual

P(A1 ∩ A2) = P(A1 ∩ A2|N)P(N) + P(A1 ∩ A2|Nc)P(Nc)

= P(A1|N)P(A2|N)P(N) + P(A1|Nc)P(A2|Nc)P(Nc)

= 0.01× 0.01× 5/6 + 0.1× 0.1× 1/6 = 0.00175.

Note that

P(A2|A1) = P(A1 ∩ A2)/P(A1)

= 0.00175/0.025= 0.07 6= 0.025 = P(A2).

Therefore, A1 and A2 are not (unconditionally) independent!
�

3.8 Reassessing Probabilities: Bayes’ Rule

The ideas in this section involve reassessing the probabilities of events
when new evidence about related outcomes becomes available. Bayes’ rule
is named after Thomas Bayes, a nonconformist priest from the eighteenth
century who was among the first to use conditional probabilities. He in-
troduced “inverse” probabilities, which are the special case of what is now
called Bayes’ rule (Bayes, 1763). The general form was first used by Laplace
(1774). Recall that the multiplication rule states

P(AH) = P(A)P(H|A) = P(H)P(A|H).

This simple identity in association with the rule of total probability is the
essence of Bayes’ rule.

Bayes’ Rule. Let the event of interest A happen under any of the hy-
potheses Hi with a known (conditional) probability P(A|Hi). Assume
that the probabilities of hypotheses H1, . . . , Hn are known (prior prob-
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abilities). Then the conditional (posterior) probability of the hypothesis
Hi, i = 1,2, . . . ,n, given that event A happened, is

P(Hi|A) =
P(A|Hi)P(Hi)

P(A)
,

where

P(A) = P(A|H1)P(H1) + · · ·+ P(A|Hn)P(Hn).

The proof is simple:

P(Hi|A) =
P(AHi)

P(A)
=

P(A|Hi)P(Hi)

P(A)
,

where P(A) is given by the rule of total probability.
Although Bayes’ rule is a simple formula for finding conditional prob-

abilities, it is a precursor for a coherent “statistical learning” that will be
discussed in the following chapters. It concerns the transition from prior
probabilities of hypotheses to the posterior probabilities once new infor-
mation about the sample space is obtained.

P(H)
BAYES’ RULE−→ P(H|A)

Example 3.15. Many Flips of a Possibly Two-Headed Coin. Assume that
out of N coins in a box, one has heads on both sides, and the remaining
N − 1 are fair. Assume that a coin is selected at random from the box and,
without anyone inspecting what kind of coin it was, flipped k times. Every
time the coin landed heads up. What is the probability that the two-headed
coin was selected?

Let Ak denote the event where a randomly selected coin lands heads up
k times. The hypotheses are H1 – the coin is two-headed, and H2 – the coin
is fair. It is easy to see that P(H1) = 1/N and P(H2) = (N − 1)/N. The
conditional probabilities are P(Ak|H1) = 1 for any k, and P(Ak|H2) = 1/2k.

By the total probability rule,

P(Ak) =
2k + N − 1

2kN
,
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and by Bayes’ rule,

P(H1|Ak) =
2k

2k + N − 1
.

For N =1,000,000 and k = 1,2, . . . ,40 the graph of posterior probabilities is
given in Figure 3.10.
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Fig. 3.10 Posterior probability of a two-headed coin for N = 1,000,000 if in k flips k heads
appeared. The red dots show the posterior probabilities for k = 16 and k = 24, equal to
0.0615 and 0.9437, respectively.

Note that our prior probability P(H1) = 0.000001 jumps to a poste-
rior probability of 0.9991 after observing 30 heads in a row. The code

twoheaded.m calculates the probabilities and plots the graph in Figure 3.10.
It is curious to observe how nonlinear the change of posterior probability
is. This probability is quite stable for k up to 15 and after 25. The most rapid
change is in the range 16≤ k≤ 24, where it increases from 0.0615 to 0.9437.
This illustrates the “learning” ability of Bayes’ rule.
�

Example 3.16. Prosecutor’s Fallacy. The prosecutor’s fallacy is a fallacy
commonly occurring in criminal trials but also in other various arguments
involving rare events. It consists of a subtle exchange of P(A|B) for P(B|A).
We will explain it in the context of Example 3.15. Assume that out of
N =1,000,000 coins in a box, one is two-headed and “guilty.” Assume that
a coin is selected at random from the box and, without inspection, flipped
k = 15 times. All k = 15 times the coin lands heads up. Based on this evi-
dence, the “prosecutor” claims the selected coin is guilty because if it were
“innocent,” the outcome of k = 15 heads in a row would be extremely un-



3.8 Reassessing Probabilities: Bayes’ Rule 103

likely, with a probability of
(

1
2

)15
≈ 0.00003. But in reality, the probability

that the two-headed coin was selected and flipped is 1
1+999999/215 ≈ 0.03,

and the prosecutor is accusing an “innocent” coin with a probability of
approximately 0.97.
�

Bayes’ rule is even more revealing if expressed in terms of odds.

The posterior odds of the hypothesis Hi are equal to the product of
its prior odds and Bayes’ factor (likelihood ratio),

Odds(Hi|A) = BF × Odds(Hi),

where BF = P(A|Hi)/P(A|Hc
i ).

Thus, the “updater” is Bayes’ factor BF, which represents the ratio of
probabilities of the evidence (event A) under Hi and Hc

i . All available in-
formation from the experiment is contained in Bayes’ factor, and Bayesian
“learning” incorporates this information in a coherent way by transforming
the prior odds to the posterior odds.

It is interesting to look at the log-odds equation:

log Odds(Hi|A) = log BF + log Odds(Hi).

If the prior log-odds log Odds(Hi) increase/decrease for a constant
C, then the posterior log-odds increase/decrease for the same constant,
no matter what the Bayes’ factor is. Likewise, if the log-Bayes factor
increases/decreases for a constant C, then the log posterior odds in-
crease/decrease for the same constant, no matter what the log prior odds
are. This additivity property was used for constructing nomograms for fast
approximate calculation of odds, mainly in a medical context.

The log BF was also termed weight of evidence by Alan Turing, who used
similar techniques during the Second World War when breaking German
“Enigma Machine” codes.

Example 3.17. A Bridge Connection. Figure 3.11 shows a circuit S that
consists of components ei, i = 1, . . . ,7, which work (and fail) independently
of each other. Note that the connection of component e7 is neither parallel
nor serial. The components are operational in some time interval T with
probabilities given in the following table:

Component e1 e2 e3 e4 e5 e6 e7
Probability of component working 0.3 0.8 0.2 0.2 0.5 0.6 0.4

We will calculate the posterior odds of e7 working, given the information
that circuit S is operational.
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Fig. 3.11 “Bridge” connection of e7.

Assume two hypotheses, H1 – the component e7 is operational, and
H2 = Hc

1 – e7 is not operational. Under hypothesis H1, circuit S can be
expressed as

S|H1 = e1 ∩ (e2 ∪ e4) ∩ (e3 ∪ e5) ∩ e6,

while under Hc
1 the expression is

S|Hc
1 = e1 ∩ ((e2 ∩ e3) ∪ (e4 ∩ e5)) ∩ e6.

By calculations similar to that in Example 3.5, we find that P(S|H1) =
0.09072 and P(S|Hc

1) = 0.04392.
Note that P(H1) = P(e7 works) = 0.4 and P(H2) = P(Hc

1) = 0.6, so
by the total probability rule, P(S) = 0.06264. The prior odds of H1 are
Odds(H1) = 0.4/0.6 = 2/3, and Bayes’ factor is BF = P(S|H1)/ P(S|Hc

1) =
2.06557. The posterior odds of H1 are Odds(H1|S) = BF × Odds(H1) =
2.06557× 2/3 = 1.37705.

Thus, the odds of e7 working increased from 0.66667 to 1.30705, after
learning that the circuit is operational. See also bridge.m.
�

Example 3.18. Subsequent Transfers. In each of n boxes there are a white
and b black balls. A ball is selected at random from the first box and placed
into the second box. Then, from the second box a ball is selected at random
and transferred to the third box, and so on. Finally, from the (n− 1)th box
a ball is selected at random and transferred to the nth box.

1
ր?ց

2
ր?ց

3
ր·· ·ց

n
ր◦

(a) After this series of consecutive transfers, a ball is selected from the
nth box. What is the probability that this ball will be white?

(b) If the ball drawn from the fourth box was white, what is the proba-
bility that the first ball transferred had been white as well?
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Let Ai denote the event that in the ith transfer the white ball was se-
lected. Then

P(An) = P(An|An−1)P(An−1) + P(An|Ac
n−1)P(Ac

n−1)

=
a + 1

a + b + 1
P(An−1) +

a

a + b + 1
P(Ac

n−1)

=
a + P(An−1)

a + b + 1
.

Since P(A1) =
a

a+b , we find that

P(A2) = P(A3) = · · · = P(An) =
a

a + b
.

(b) By Bayes’ rule, P(A1|A4) =
P(A4|A1)P(A1)

P(A4)
= P(A4|A1).

Then,

P(A4|A1) = P(A2A3 A4|A1) + P(Ac
2 A3 A4|A1) + P(A2Ac

3 A4|A1) + P(Ac
2Ac

3 A4|A1)

=
a + 1

a + b + 1
× a + 1

a + b + 1
× a + 1

a + b + 1
+

b

a + b + 1
× a

a + b + 1
× a + 1

a + b + 1

+
a + 1

a + b + 1
× b

a + b + 1
× a

a + b + 1
+

b

a + b + 1
× b

a + b + 1
× a

a + b + 1

=
(a + 1)3 + 2ab(a + 1) + ab2

(a + b + 1)3 .

�

3.9 Bayesian Networks*

We will discuss simple Bayesian networks in which the nodes are events.
Many events linked in a causal network form a Bayesian net. Graphically,
Bayesian networks are directed acyclic graphs (DAGs) where the nodes
represent events and where the directed edges capture their hierarchy and
dependence. Consider a simple graph in Figure 3.12.

A B

Fig. 3.12 A−→ B graph. A causes B or B is a consequence of A.

We would say that node A is a parent of B, B is a child of A, that A
influences, or causes B, and B depends on A. This is captured by a directed
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edge (arrow) that leads from A to B. The term acyclic in DAG relates to the
fact that a closed loop of dependencies is not allowed. In other words, there
does not exist a path consisting of nodes A1, . . . , An such that

A −→ A1 −→ ·· · −→ An −→ A .

The independence of two nodes in a DAG depends on their relative posi-
tion in the graph as well as on the knowledge of other nodes (conditioning)
in the graph.

Hard evidence for a node A is evidence that the outcome of A is known.
Hard evidence about nodes is the information that we bring to the network,
and it affects the probabilities of other nodes.

Bayesian networks possess a so-called Markovian property. The condi-
tional distribution of any node depends only on its parental nodes. For
instance, in the network

A −→ B −→ C −→ D

P(D|A, B,C) = P(D|C), since C is a parental node of D.
The following simple example illustrates the influence of conditioning

on independence.

Example 3.19. Flips of Two Fair Coins. Let A and B be outcomes of flips
of two fair coins and C be an event that the two outcomes coincide. Thus,
P(A = H) = P(A = T) = 0.5 and P(B = H) = P(B = T) = 0.5.

A −→ C ←− B

Nodes A and B are marginally independent (when we do not have evidence
about C) but become dependent if the outcome of C is known:

1
2
= P(A = T, B = T|C) 6= P(A = T|C)P(B = T|C) = 1

2
· 1

2
.

�

Example 3.20. Alarm. Your house has a security alarm system. The house is
located in a seismically active area and the alarm system can be occasionally
set off by an earthquake. You have two neighbors, Mary and John, who do
not know each other. If they hear the alarm, they call you, but this is not
guaranteed. They also call you from time to time just to chat.

Denote by E, B, A, J, and M the events earthquake, burglary, alarm,
John’s call, and Mary’s call took place, and by Ec, Bc, Ac, Jc, and Mc the
opposite events. The DAG of the network is shown in Figure 3.13.

The known (or elicited) conditional probabilities are as follows:
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B E

A

J M

Fig. 3.13 Alarm Bayesian network.

Bc B
0.999 0.001

Ec E
0.998 0.002

Ac A Condition
0.999 0.001 Bc Ec

0.71 0.29 Bc E
0.06 0.94 B Ec

0.05 0.95 B E

Jc J condition
0.95 0.05 Ac

0.10 0.90 A

Mc M condition
0.99 0.01 Ac

0.30 0.70 A
We are interested in P(J, M|B), which is the probability that both John

and Mary call, given the burglary happened.
�

We will first calculate this probability exactly and then find an ap-
proximation using WinBUGS. If E∗ is either E or Ec and if A∗ is either A or
Ac, we have

P(J, M|B) = 1
P(B)

×P(B, J, M) =
1

P(B) ∑
E∗,A∗

P(B, E∗, A∗, J, M)

=
1

P(B)
{P(B, E)P(A|B, E)P(J, M|A)

+P(B, Ec)P(A|B, Ec)P(J, M|A)

+P(B, Ec)P(Ac|B, Ec)P(J, M|Ac)

+P(B, E)P(Ac|B, E)P(J, M|Ac)}.

Given A∗ (either Ac or A), P(J, M|A∗) = P(J|A∗) × P(M|A∗), since John
and Mary do not know each other, their calls can be considered indepen-
dent. After substituting the probabilities with their numerical values from
the tables above, we obtain

P(J, M|B) = 1
0.001

(0.001 · 0.002 · 0.95 · 0.90 · 0.70 + 0.001 · 0.998 · 0.94 · 0.90 · 0.70

+ 0.001 · 0.998 · 0.06 · 0.05 · 0.01+ 0.001 · 0.002 · 0.05 · 0.05 · 0.01)

= 0.5922.
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Thus, in the case of burglary, both John and Mary will call with probability
of 0.5922.

This probability can be approximated in MATLAB by simulation. The
script alarm.m simulates the events according to known conditional prob-
abilities and by changing hard evidence it can be applied to approximate
unknown conditional probabilities of interest.

% alarm.m

% random numbers to default start

s = RandStream(’mt19937ar’,’Seed’,0);

RandStream.setGlobalStream(s);

%

B=1000000; %number of simulations

bs=[]; es=[]; as=[]; js=[]; ms=[]; %save history

%set hard evidence

bh=1; %bulglary true

start simulation

for i=1:B

b=rand<=0.001; %bulglary

e=rand<=0.002; %earthquake

if(b) if(e) a=rand<=0.95; else a=rand<0.94; end;

else if(e) a=rand<=0.29; else a=rand<0.001; end;

end

if(a) j=rand<=0.9; else j=rand<=0.05; end; %john calls

if(a) m=rand<=0.7; else m=rand<=0.01; end; %mary calls

%hard evidence filter

if(b == bh)

bs=[bs b]; es=[es e]; as =[as a]; js=[js j]; ms=[ms m];

end;

end

jm=sum(ms & js) %608

tbs=sum(bs) %1026

pjm=jm/tbs %0.5926

Note that in 1,000,000 simulation runs, the burglary happened 1026
times. In these 1026 cases, both John and Mary called 608 times. This gives
an estimate of P(J, M|B) as 0.5926.

This probability can also be approximated in WinBUGS. Note that
P(J, M|B) =P(J|M, B)P(M|B)by the chain rule. The probabilities P(J|M, B)
and P(M|B) will be approximated separately.

First, we approximate P(M|B) by fixing hard evidence for a burglary.
WinBUGS will use the code burglary = 1 and burglary = 2 in the Data part
to set the evidence that the burglary did not take place or that it took
place, respectively. This is the only “hard evidence” here; all other nodes
remain stochastic. The use of values 1, 2 instead of the expected 0, 1 is
dictated by the categorical distribution dcat that takes only positive integers
as realizations.

The WinBUGS code ( alarm.odc) is as follows:
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model alarm

{

burglary ~ dcat(p.burglary[]);

earthquake ~ dcat(p.earthquake[]);

alarm ~ dcat(p.alarm[burglary, earthquake, ])

john ~ dcat(p.john[alarm,]);

mary ~ dcat(p.mary[alarm,]);

}

DATA

list(

p.earthquake=c(0.998, 0.002),

p.alarm = structure(.Data = c(0.999, 0.001,

0.71,0.29,

0.06,0.94,

0.05,0.95),

.Dim = c(2,2,2)),

p.john = structure(.Data = c(0.95,0.05,0.10,0.90),

.Dim = c(2,2)),

p.mary = structure(.Data = c(0.99,0.01,0.30,0.70),

.Dim = c(2,2)),

burglary = 2

)

INITS

list( earthquake = 1, alarm = 1, john = 1, mary = 1)

After 10,000 iterations, we obtain the mean value of M as EM = 2 · pM +
1 · (1− pM) = 1.661, that is, P(M|B) = pM = 1.661− 1 = 0.661. Any of the
1s in the initial values earthquake = 1, alarm = 1, john = 1, mary = 1 can be
replaced by 2, as this would not influence the final approximation.

Next, to estimate P(J|M, B), we change WinBUGS’ data by setting B =
M = 2. This is hard evidence that a burglary occurred and Mary called.

DATA

list(

p.earthquake=c(0.998, 0.002),

p.alarm = structure(.Data = c(0.999, 0.001,

0.71,0.29,

0.06,0.94,

0.05,0.95), .Dim = c(2,2,2)),

p.mary = structure(.Data = c(0.99,0.01,0.30,0.70), .Dim = c(2,2)),

burglary = 2,

mary=2

)

and change the initial values to

list(earthquake = 1, alarm = 1, john = 1)

After 10,000 iterations, the mean value of J is obtained as E J = 2 · p J + 1 ·
(1− p J) = 1.899. Then, P(J|M, B) = p J = 0.899. Thus, the final result is

P(J, M|B) = P(J|M, B)P(M|B) = p J · pM = 0.899 · 0.661 = 0.5942
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(which approximates 0.5922, from the exact probability calculations).
�

Bayesian networks can be useful in medical diagnostics if the condi-
tional probabilities of the nodes are known. Here is the celebrated “Asia”
example.

Example 3.21. Asia. Lauritzen and Spiegelhalter (1988) discuss a fictitious
expert system for diagnosing a patient admitted to a chest clinic, who just
returned from a trip to Asia and is experiencing dyspnoea.2 A graphical
model for the underlying process is shown in Figure 3.14, where each vari-
able is binary. The WinBUGS code is shown below with the conditional
probabilities given as in Lauritzen and Spiegelhalter (1988).

Visit to Asia?

Has
Tuberculosis

Smoker?

Has
Bronchitis

Dyspnoea ?

Has Lung
Cancer

Tuberculosis
or Cancer

Positive
X-ray?

Fig. 3.14 Lauritzen and Spiegelhalter’s (1988) Asia Bayes net: a fictitious expert system
representing the diagnosis of a patient having just returned from a trip to Asia and
showing dyspnoea.

model Asia;

asia ~ dcat(p.asia);

smoking ~ dcat(p.smoking[]);

tuberculosis ~ dcat(p.tuberculosis[asia,]);

lung.cancer ~ dcat(p.lung.cancer[smoking,]);

bronchitis ~ dcat(p.bronchitis[smoking,]);

either <- max(tuberculosis,lung.cancer);

xray ~ dcat(p.xray[either,]);

dyspnoea ~ dcat(p.dyspnoea[either,bronchitis,])

DATA

2 Difficulty in breathing, often associated with lung or heart disease, and evincing in
shortness of breath. This is also called air hunger.
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list(asia = 2, dyspnoea = 2,

p.asia = c(0.99,0.01), p.smoking = c(0.50,0.50),

p.tuberculosis = structure(.Data = c(0.99,0.01,0.95,0.05),

.Dim = c(2,2)),

p.bronchitis = structure(.Data = c(0.70,0.30,0.40,0.60),

.Dim = c(2,2)),

p.lung.cancer = structure(.Data = c(0.99,0.01,0.90,0.10),

.Dim = c(2,2)),

p.xray = structure(.Data = c(0.95,0.05,0.02,0.98),

.Dim = c(2,2)),

p.dyspnoea = structure(.Data = c(0.9,0.1,

0.2,0.8,

0.3,0.7,

0.1,0.9), .Dim = c(2,2,2)))

INITS

list(smoking = 1, tuberculosis = 1,

lung.cancer = 1, bronchitis = 1, xray = 1)

mean sd MC error val2.5pc median val97.5pc start sample

bronchitis 1.812 0.3904 0.003988 1.0 2.0 2.0 2001 10000
lung.cancer 1.099 0.2985 0.003345 1.0 1.0 2.0 2001 10000
smoking 1.618 0.4859 0.004976 1.0 2.0 2.0 2001 10000
tuberculosis 1.095 0.2928 0.002706 1.0 1.0 2.0 2001 10000
xray 1.224 0.4171 0.004132 1.0 1.0 2.0 2001 10000

The results should be interpreted as follows: if the patient who vis-
ited Asia experiences dyspnoea (hard evidence in DATA: asia=2, dyspnoea =

2), then the probabilities of bronchitis, lung cancer, being a smoker, tu-
berculosis, and a positive X-ray, are 0.812, 0.099, 0.618, 0.095, and 0.224,
respectively.

For practice, do the simulation of Asia example in MATLAB.
�

3.10 Exercises

3.1. Event Differences. Recall that the difference between events A and B
was defined as A\B = A ∩ Bc. Using Venn diagrams, demonstrate that
(a) A\(A\B) = A ∩ B and A\(B\A) = A,
(b) A\(B\C) = (A ∩ C) ∪ (A ∩ Bc).

3.2. Inclusion–Exclusion Principle in MATLAB. From the set {1,2,3, . . . ,315}
a number is selected at random.
(a) Using MATLAB to count favorable outcomes, find the probability
that the selected number is divisible by at least one of 3, 5, or 7.
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(b) Compare this probability with a naïve solution 41/3 + 1/5 + 1/7−
1/15− 1/21− 1/35+ 1/105= 0.542857, and show that the naïve solution
is correct!
(c) Is the naïve solution correct for {1,2, . . . , N} if N = 316?
(d) Is the naïve solution correct for any other N from {289,290, . . . ,340}?
Plot this probability for 289 ≤ N ≤ 340. Is there any symmetry in the
plot?

3.3. Gambling Fallacy. An event that happened on August 18, 1913, in Le
Grand Casino de Monte Carlo made headlines. The ball of a roulette
wheel landed on “black” 26 times in a row. Out of 37 slots denoted by
0-36 (French roulettes have no a 00-slot), 18 slots (2, 4, 6, 8, 10, 11, 13, 15,
17, 20, 22, 24, 26, 28, 29, 31, 33, 35) are black, so the probability of a ball
landing in black is 18/37.
(a) What is the probability that in the next 26 spins of a similar roulette
wheel the ball lands on “black” every single time.
(b) After the ball landed in black slot 15 times in a row, the players
in Le Grand Casino frantically started to bet on red, and that evening
the Casino amassed a profit in millions of Francs. If one started to bet
on black with $1, what capital he/she will have after 26th consecutive
black, if the Casino doubles the bet placed on winning color.

3.4. Hexi. There is a 10% chance that pure breed German shepherd Hexi
is a carrier of canine hemophilia A. If she is a carrier, there is a 50–50
chance that she will pass the hemophiliac gene to a puppy.
Hexi has two male puppies and they have tested free of hemophilia.
What is the probability that Hexi is a carrier, given this information about
her puppies?

Hint: Passing the hemophiliac gene is independent between the puppies.
If the puppies are male, then the only way they will get the hemophilia
is from the mother carrier because hemophilia is X-chromosome-bound
disorder.

3.5. A Complex Circuit. Figure 3.15 shows a circuit S that consists of iden-
tical components ei, i = 1, . . . ,13 that work (and fail) independently of
each other. Any component is operational in some fixed time interval
with probability 0.8.
(a) Calculate the probability that circuit S is operational.
(b) Write a MATLAB program that approximates the probability in (a)
by simulation.
(c) Approximate the probability in (a) by WinBUGS simulations.
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Fig. 3.15 Each of 13 independent components in the circuit is operational with probabil-
ity 0.8.

3.6. De Mere Paradoxes. In 1654 the Chevalier de Mere asked Blaise Pascal
(1623–1662) the following two questions:

(a) Why would it be advantageous in a game of dice to bet on the oc-
currence of a 6 in 4 trials but not advantageous in a game involving two
dice to bet on the occurrence of a double 6 in 24 trials?

(b) In playing a game with three dice, why is a sum of 11 more advanta-
geous than a sum of 12 when both sums are the result of six configura-
tions:
11: (1, 4, 6), (1, 5, 5), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4);
12: (1, 5, 6), (2, 4, 6), (2, 5, 5), (3, 3, 6), (3, 4, 5), (4, 4, 4)?
How would you respond to the Chevalier?

3.7. Probabilities of Some Composite Events. Show that for arbitrary events
A, B,
(a) P(A∆B) = P(A ∪ B)−P(AB) = P(A) + P(B)− 2P(AB);
(b) P(A∆B)≥ |P(A)−P(B)|.
(c) For arbitrary event C, P(AC∆BC)≤ P(A∆B) and
(d) (P(A) + P(B)) 1

1+2P(AB)/(P(A)+P(B))
≤ P(A ∪ B)≤ P(A) + P(B).

3.8. Deighton’s Novel. In his World War II historical novel Bomber, Len
Dieghton argues that a pilot is “mathematically certain” to be shot down
in 50 missions if the probability of being shot down on each mission is
0.02.
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(a) Assuming independence of outcomes in each mission, is Deighton’s
reasoning correct?
(b) Find the probability of surviving all 50 missions without being shot
down.

3.9. Reliable System from Unreliable Components. NASA is asking you
to design a system that reliably performs a task on a space shuttle in
the next 3 years with probability of 0.999999= 1− 10−6. In other words,
the probability of failing during the next three years should not exceed
one in a million. However, at your disposal you have components that
in the next 3 years will fail with a probability of 0.2. Luckily, the weight
and price of the components are not an issue, and you can combine/link
them to increase the system’s reliability.
(a) Should you link the components in a serial or parallel fashion to
increase the probability of reliable performance?
(b) What minimal number of components should be linked as in (a) to
satisfy NASA’s requirement of 0.999999 probability of reliable perfor-
mance?

3.10. k-out-of-n Systems. Suppose that n independent components consti-
tute an engineering system. The system is called a k-out-of-n system
if it works only when k or more components are operational. Parallel
systems, for example, are 1-out-of-n systems, and series systems are n-
out-of-n systems.
A particular 2-out-of-4 system has four independent components that are
operational with probabilities 0.1,0.8,0.5, and 0.4. What is the probability
that it works?

3.11. Székely’s Reliability Problem. This exercise is adapted from Székely
(1986). Two systems, S1 and S2, are made of components A and B, which
are operational with probabilities 0.9 and 0.1, respectively. The systems
are serial,

S1 : A −→ B −→ A and S2 : B −→ A −→ B ,

and the components are independent. The systems are operational if any
two neighboring components are operational, either A− B or B− A, or
both.
(a) Show that system S2 is more reliable than S1.
(b) At first glance the result in (a) is counterintuitive, since S2 contains
two components of low reliability. Can you provide an informal expla-
nation?

3.12. Dominos. How many different dominos are in a set if the number of
pips (dots) on the dominos ranges between (a) 0 and 6, (b) 0 and 8,
and (c) 0 and 16, inclusive? For the three sets, find the probability of
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a domino selected at random having a “blank” side, i.e., having a side
with no pips.

3.13. “2+4” Dose Escalation Protocol. When introducing a new drug in on-
cology and setting a dosage, a balance between efficacy and toxicity has
to be found. The Phase I in a clinical trial is a dose finding. Usually,
there are preset dosages, and based on the subjects’ toxicity response,
the dosage is either escalated or the escalation is stopped. Then, the cur-
rent dosage adopted for the Phase II, which evaluates the drug’s efficacy.
Assume a “2+4” setup. Two subjects are selected and given the drug at
the current (working) dosage. The dosage is escalated if neither subject
exhibits the dose-limiting toxicity (DLT). If both exhibit the DLT, the esca-
lation is stopped. If one subject exhibits the DLT, four new subjects are
selected and given the drug at the current dosage. If no one subsequently
exhibits the DLT, the dose is escalated. If at least one out of four exhibits
DLT, the escalation is stopped.
In the group of 33 subjects available for the trial, five are sensitive and
will exhibit the DLT if selected.
(a) Find the probability that a single application of the “2+4” scheme will
result in a drug dosage escalation.
Hint: E = A1 A2 ∪ Ac

1A2 A3 A4 A5 A6 ∪ A1 Ac
2 A3A4 A5 A6, where E is esca-

lation and Ai denote the event that ith selected person does not exhibit
the DLT. Events Ai are independent, the three events in the union are
exclusive.
(b) Simulate this probability in MATLAB. Is your simulation result close
to the exact calculation in (a)?
As a hint, a skeleton of MATLAB code is given below.

% Set N -- number of simulation large, say N=10000;

escals=[]; %keep history

for i = 1:N

%33 subjects, 5 sensitive will experience DLT.

%WLOG, subjects 1-5 sensitive, 6-33 not sensitive.

%Randomly permute 1:33, the permuted sequence is a.

a = randperm(33);

two = a(1:2); %selected first two

s2=sum(two <= 5);

%(two <= 5) is 0-1 vector of size 2;

%s2 - the sum can be 0, 1, or 2, representing the

% number of sensitive subjects among the selected

switch s2

case 0

escal=1;

case 1

four=s(3:6);

s4=sum(four <= 5)

if s4=0

escal=1;
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else

escal=0;

end

otherwise

escal=0;

end

escals= [escals escal];

end

% How many 1’s are in escals, what is the mean of escals?

3.14. Counting Protocols. Adel et al. (1993) applied various orders in drug
combination sequence studies in search of a cure for human endometrial
carcinoma. Four drugs A–D were evaluated for sequence-dependent in-
hibition of human tumor colony formation in soft agar.
(a) How many protocols are needed to evaluate all possible sequences of
the four drugs?
(b) How many protocols are possible when only two drugs out of four
are to be administered if the order of their administration is (i) important
or (ii) not important?
(c) A fifth drug, E, is introduced. If drugs A and E cannot be given
subsequent to each other because of cumulative toxicity concerns, how
many protocols are possible if the order of drug administration is to be
evaluated?

3.15. Correlation between Events. The correlation between events A and B is
defined as

Corr(A, B) =
P(A ∩ B)−P(A)P(B)√

P(A)(1−P(A))
√

P(B)(1−P(B))
.

Show that Corr(A, A) = 1 and Corr(A, B) = Corr(Ac, Bc).

3.16. A Fair Gamble with a Possibly Loaded Coin. Suppose that you have
a coin for which you do not know the probability of its landing heads
up. You suspect that the coin is loaded and that the probability of heads
differs from 1/2.
(a) Can you emulate a fair coin by flipping the possibly biased one?
(b) Can you emulate the rolling of a fair die by flipping the possibly
biased coin?
Hint: You may need to flip the coin more than once.

3.17. Easy Genetics. Suppose that a certain organism contains four types
of genes denoted with first four letters of the English alphabet and that
each gene has dominant form (denoted with a capital letter), or recessive
form (denoted by a lower case letter). Thus, xX and XX have different
genotypes but the same phenotype because allele X in xX is dominant.
In a mating, each organism contributes, at random, one of the genes
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(alleles) from each pair. The four contributions are mutually independent
from pair to pair.
If parents have genotypes

AA bB cC DD
AA bB cc dD

find the probability that the offspring will resemble (1) phenotypically
and (2) genotypically:
(a) first parent
(b) second parent
(c) either parent
(d) neither parent.
Answer (a)–(d) [no calculation needed!] in the case

AA bB cc DD
aa bB CC dD

Hint: Calculate probabilities of possible outcomes for each pair of alleles,
and multiply (because of independence) along paths favorable for events
in (a)–(b). Answers for (c)–(d) can be deduced from (a)–(b).

3.18. Neural Signal. A neuron will fire at random at any moment in [0, T],
with a probability of p. If up to time t < T the neuron does not fire, what
is the probability that it will fire in the remaining time, (t, T]?

3.19. Guessing. Subjects in an experiment are told that either a red or a green
light will flash. Each subject is to guess which light will flash. The subject
is told that the probability of a red light is 0.7, independently of guesses.
Assume that the subject is a probability matcher, that is, guesses red with
a probability of 0.7 and green with a probability of 0.3.
(a) What is the probability that the subject will guess correctly?
(b) Given that a subject guesses correctly, what is the probability that the
light flashed red?

3.20. Propagation of Genes. The following example shows how the ideas of
independence and conditional probability can be employed in studying
genetic evolution. Consider a single gene that has two forms, recessive
(R) and dominant (D). Each individual in the population has two genes
in his/her chromosomes and thus can be classified into the genotypes
DD, RD, and RR. If an individual is drawn at random from the nth
generation, then the probabilities of the three genotypes will be denoted
by pn,2rn, and qn, respectively. (Clearly, pn + qn + 2 rn = 1.)
The problem is expressing the probabilities pn, qn, and rn in terms of
initial probabilities p0, q0, and r0 and the method of reproduction. In
random Mendelian mating, a single gene from each parent is selected at
random and the selected pair determines the genotype of the offspring.
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These selections are carried independently of each other from generation
to generation.
Let Mn be the event that R is chosen from the male and Fn be the event
that R is chosen from the counterpart female. Events Mn and Fn are
independent and have the same probability. Thus,

P(Mn) = P(RR)×P(Mn|RR) + P(RD)×P(Mn|RD) + P(DD)×P(Mn|DD)

= P(RR)× 1 + P(RD)× 1/2 + P(DD)× 0

= qn + 2rn/2

= qn + rn

by the rule of total probability.
By the independence of Mn and Fn,

qn+1 = P(Mn ∩ Fn) = P(Mn) · P(Fn) = (qn + rn)
2.

Similarly,
pn+1 = (pn + rn)

2

and
2rn+1 = 1− pn+1− qn+1.

The last three equations govern the propagation of genotypes in this
population.
Start with any initial probabilities p0,q0, and r0. (Say, 0.3, 0.3, and 0.2; re-
member to check: 0.3+ 0.3+ 2 · 0.2= 1.) Find iteratively (p1,q1,r1), (p2,q2,r2),
and (p3,q3,r3), and demonstrate that p1 = p2 = p3,q1 = q2 = q3, and
r1 = r2 = r3. The fact that the probabilities remain the same is known
as the Hardy–Weinberg law. It does not hold if other factors (mutation,
selection, dependence) are introduced into the model.

3.21. Easy Conditioning. Assume P(rain today) = 40%, P(rain tomorrow) =
50%, and P(rain today and tomorrow) = 30%. Given that it is raining
today, what is the chance that it will rain tomorrow?

3.22. Eye Color. The eye color of a child is determined by a pair of genes,
one from each parent. If {b} and {B} denote blue- and brown-eyed genes,
then a child can inherit the following pairs: {bb}, {bB}, {Bb}, and {BB}. The
{B} gene is dominant, that is, the child will have brown eyes when the
pairs are {Bb}, {bB}, or {BB} and blue eyes only for the {bb} combination.
A parent passes to a child either gene from his/her pair with equal
probability.3

3 This description is simplified, and in fact there are several genes affecting eye color
and the amount of yellow and black pigments in the iris, leading to shades of colors
including green and hazel.
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Megan’s parents are both brown-eyed, but Megan has blue eyes. Megan’s
brown-eyed sister is pregnant and her husband has blue eyes. What is
the probability that the baby will have blue eyes?

3.23. Dice. In rolling ten fair dice we have information that at least one



appeared. What is the probability that there were at least two



?

3.24. Inflation and Unemployment. Businesses commonly project revenues
under alternative economic scenarios. For a stylized example, inflation
could be high or low and unemployment could be high or low. There are
four possible scenarios, with the following assumed probabilities:

Scenario Inflation Unemployment Probability
1 High High 0.16
2 High Low 0.24
3 Low High 0.36
4 Low Low 0.24

(a) What is the probability of high inflation?
(b) What is the probability of high inflation if unemployment is high?
(c) Are inflation and unemployment independent?

3.25. Multiple Choice. A student answers a multiple choice examination
question that has four possible answers. Suppose that the probability
that the student knows the answer to a question is 0.80 and the probabil-
ity that the student guesses is 0.20. If the student guesses, the probability
of guessing the correct answer is 0.25.
(a) What is the probability that the fixed question will be answered cor-
rectly?
(b) If it is answered correctly, what is the probability that the student
really knew the correct answer?

3.26. Manufacturing Bayes. A factory has three types of machines producing
an item. The probabilities that the item is conforming if it is produced
on the ith machine are given in the following table:

Type of machine Probability of item conforming
1 0.94
2 0.95
3 0.97

The total production is distributed among the machines as follows: 30%
is done on type 1, 50% on type 2, and 20% on type 3 machines. One item
is selected at random from the production.
(a) What is the probability that it is conforming?
(b) If it is conforming, what is the probability that it was produced on a
type 1 machine?
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3.27. Stanley. Stanley takes an oral exam in statistics with several other
students. He needs to answer the questions from an examination card
drawn at random from the set of 20 cards. There are exactly 8 favorable
cards among the 20 to which Stanley knows the answers. Stanley will
get a grade of A if he knows the answers, that is, if he draws a favorable
card. What is the probability that Stanley will get an A if he draws the
card standing in line (a) first, (b) second, and (c) third?

3.28. Kokomo, Indiana. In Kokomo, IN, 65% of the people are conservative,
20% are liberal, and 15% are independent. Records show that in a partic-
ular election, 82% of conservatives voted, 65% of liberals voted, and 50%
of independents voted. If a person from the city is selected at random
and it is learned that she did not vote, what is the probability that the
person is liberal?

3.29. Mysterious Transfer. Of two bags, one contains four white balls and
three black balls and the other contains three white balls and five black
balls. One ball is randomly selected from the first bag and placed unseen
in the second bag.
(a) What is the probability that a ball now drawn from the second bag
will be black?
(b) If the second ball is black, what is the probability that a black ball
was transferred?

3.30. Two Masked Robbers. (Durrett, 2009) Two masked robbers try to rob
a crowded bank during the lunch hour, but the teller presses a button
that sets off an alarm and locks the front door. The robbers, realizing
they are trapped, throw away their masks and disappear into the chaotic
crowd. Confronted with 40 people claiming they are innocent, the police
give everyone a lie detector test. Suppose that guilty people are detected
with a probability of 0.85 and innocent people appear to be guilty with
a probability of 0.08. What is the probability that Mr. Smith was one of
the robbers given that the lie detector says he is a robber?

3.31. Information Channel. One of the three words AAAA, BBBB, and CCCC
is transmitted via an information channel. The probabilities of these
words being transmitted are 0.3, 0.5, and 0.2, respectively. Each letter
is transmitted and received correctly with a probability of 0.6, indepen-
dently of other letters. Since the channel is not perfect, the transmitted
letter can change to one of the other two letters with an equal probability
of 0.2. What is the probability that the word AAAA was submitted if the
word ABCA is received?

3.32. Quality Control. An automatic machine in a small factory produces
metal parts. Most of the time (90% according to long-term records), it
produces 95% good parts, while the remaining parts have to be scrapped.
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Other times, the machine slips into a less productive mode and only
produces 70% good parts. The foreman observes the quality of parts that
are produced by the machine and wants to stop and adjust the machine
when she believes that the machine is not working well. Suppose that
the first dozen parts produced are given by the sequence

s u s s s s s s s u s u

where s is satisfactory and u is unsatisfactory. After observing this se-
quence, what is the probability that the machine is in its productive
state? If the foreman wishes to stop the machine when the probability of
“good state” is under 0.7, when should she stop it?

3.33. Let’s Make a Deal. In Monty Hall’s game show Let’s Make a Deal there
are three closed doors. Behind one of these doors is a car; behind the
other two are goats. The contestant does not know where the car is, but
Monty Hall does.
After the contestant picks a door Monty opens one of the remaining
doors, one he knows does not hide the car. If the contestant has already
chosen the door with the car behind, Monty is equally likely to open
either of the two remaining doors.
After Monty has shown a goat behind the door that he opens, the con-
testant is given the option to switch doors.

(a) What is the probability of winning the car under the switching and
non-switching strategies?
(b) Show analytically, using the formula of total probability that switch-
ing strategy gives the winning probability of (n− 1)/(n(n− 2)) in the
case of n doors, a single car and (n− 1) goats. The non switching strat-
egy trivially results in the winning probability of 1/n.
Hint: Condition on the result of your first choice, H1 : selected a door
with the car behind, H2: selected a door with a goat behind.
(c) Simulate Monty Hall game B = 10,000 times. How many cars would
you win by adhering to the switching strategy? Non-switching strategy?
Here is MATLAB skeleton script as a hint.

%set B large...

cars=0; carn=0; %set 0 at the beginning

for i = 1:B

a = randperm(3); %Monty places two goats and the car at random

%a(1) -goat, a(2) -goat, a(3) - car

i= randsample(1:3,1); %you select the door!

% SWITCH STRATEGY

if(i == a(1)) cars=cars+1; %a(2)-opened, switch to a(3), car!

elseif (i == a(2)) cars = cars + 1 ;%a(1) opened, switch to a(3), car!

else cars = cars + 0; %a(1)/a(2) opened, switch to a(2)/a(1), no car!

end
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% NOT TO SWITCH STRATEGY

if(i == a(1)) ...

elseif (i==a(2)) ...

else ...

end

end

cars %# of cars with switching

carn %# of cars w/o switching

(d) Consider the following modification to the Monty Hall game. Monty
realizes that most of the people understand that switching is beneficial
and modifies the rules. If the contestant picks the door with the car,
Monty would open a door with a goat and offer a switch. If the contes-
tant selects a door with a goat, Monty goes backstage and flips a coin.
If the coin comes up heads, Monty would just open the door that was
selected and the contestant leaves with a goat. If the coin comes up tails,
Monty would open another door with a goat and offer a switch. What
are chances of getting the car in this modified version under switching
and non-switching strategies? Hint: There are four hypotheses, defined
by contestant’s first pick and the coin’s face.]

3.34. Marmota marmota. Cohas et al. (2009) explored the effect of heterozy-
gosity on survival within a population of alpine marmots, Marmota mar-
mota. In order to test this effect, individual marmots were genotyped at
16 loci and the alleles of those loci were studied. A locus is a location
of a gene on a chromosome. An allele is an alternative form of a gene
found on a locus. Alpine marmots were captured, genotyped, and re-
leased back in the wild. Sample size and alleles varied for each locus.
Due to the large amount of data, only data of 7 loci from genotyping are
provided in the table below.

SS-Bibl1 SS-Bibl18 SS-Bibl20 SS-Bibl31 SS-Bibl4
Alleles Freq Alleles Freq Alleles Freq Alleles Freq Alleles Freq

95 0.16 133 < 0.01 205 < 0.01 157 0.50 175 0.12
97 0.21 127 0.01 208 0.18 159 0.28 188 0.15

101 0.45 143 0.34 216 0.39 161 0.17 190 0.70
103 < 0.01 145 0.14 218 0.33 163 0.05 192 0.03
107 0.14 147 0.41 220 0.08
109 0.04 149 0.10 222 < 0.01

Number of
Animals 692 698 684 692 690

(a) Allele probability is estimated by the relative frequency of a spe-
cific mutated gene found within a locus. On locus SS-Bibl4, estimate the
probability that allele 190 will not be present?
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(b) In locus SS-Bibl1, allele 95 and 101 are mutually exclusive. Estimate
the probability that a marmot will possess allele 95 or allele 101?
(c) Alleles 143 (locus SS-Bibl18), 208 (locus SS-Bibl20), and 159 (locus
SS-Bibl31) are independent. Estimate the probability that a marmot will
possess at least one of these alleles?
(d) Cohas et al. found that the death probability of a marmot with allele
190 is 0.01 and the death probability of a marmot without allele 190 is
0.1. What is the chance of a random marmot dying in this situation?
(e) Using Bayes’ rule, estimate the probability of a dead marmot having
allele 190 found on locus SS-Bibl4.

3.35. Twins. Dizygotic (fraternal) twins have the same probability of each
gender as in overall births, which is approximately 51% male, 49% fe-
male. Monozygotic (identical) twins must be of the same gender. Among
all twin pregnancies, about 1/3 are monozygotic.
Find the probability of two girls in
(a) monozygotic pregnancy,
(b) dizygotic pregnancy, and
(c) dizygotic pregnancy given that we know that the gender of the babies
is the same.
If Mary is expecting twins, but no information about the type of preg-
nancy is available, what is the probability that the babies are
(d) two girls,
(e) of the same gender.
(f) Find the probability that Mary’s pregnancy is dizygotic if it is known
that the babies are two girls.
Retain four decimal places in your calculations.

Hint: (b) genders are independent; (c) since A is subset of B, A ∩ B = A
and P(A|B) = P(A)/P(B); (d, e) total probability; (f) Bayes’ rule.

3.36. Left-handedness. Left-handedness can be an inconvenience for a por-
tion of the human population and is a study of interest to researchers
throughout the world. About 6–10% of the human population exhibits
left-handedness. Studies suggest that left-handedness is due to genetics
rather than environmental causes. It is found to be more common in
males (about 8–12%) than females (about 5–9%), and also that the prob-
ability of left-handedness increases when a mother or father has it.
The table (McManus, 1991; Table 4, page 262) provides empirical prob-
abilities of a child being left-handed depending on gender and mater-
nal/paternal handedness.
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Handedness Left-handed Right-handed
Father Mother Son Daughter
Right-handed Right-handed 0.1049 0.8951 0.0863 0.9137
Right-handed Left-handed 0.2150 0.7850 0.1955 0.8045
Left-handed Right-handed 0.1849 0.8151 0.1744 0.8256
Left-handed Left-handed 0.2940 0.7060 0.2839 0.7161

Using these probabilities, answer parts (a–c)
(a) Assume that parents are both right-handed. What is the probability
that their child is right-handed? Probabilities of a son or daughter are
assumed equal.
(b) Ann is left-handed and expecting a son. No information about hand-
edness of baby’s father Ben is available, but it is known that Ben’s par-
ents are right-handed. What is the probability that the baby is going be
left-handed.
(c) Adam’s parents are both right-handed. Adam’s daughter Bethany
and wife Claudia are both left-handed. What is the probability that
Adam is right-handed. Does Claudia’s handedness matter?

3.37. Redundant Wiring. In a circuit shown in Figure 3.16 the electricity is
to move from point A to point B. The four independently working ele-
ments in the circuit are operational (and the current goes through) with
probabilities given in the table

Element e1 e2 e3 e4
Operational with prob 0.5 0.2 0.3 0.8

If an element fails, the current is not going through.

Fig. 3.16 Circuit for Exercise 3.37.

(a) Is it possible to save on the wire that connects the elements without
affecting functionality of the network? Explain which part of wiring can
be removed.
(b) Find the probability that the electricity will flow from A to B.

Hint: Although this configuration can be analyzed directly, it is simpler
to to condition on the element e1 and apply the Formula of Total Proba-
bility, as done in Example 3.17.
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3.38. Cross-linked System 1. Each of the five components in a cross-linked
system (shown in Fig. 3.17) is operational in a time interval [0, T] with
the probability of 0.6. The components are independent. Let Ei denote
the event that ith component is operational at time T and Ec

i that it is
not. Denote by A the event that the system is operational at time T.

E1 E2

E3

E4

E5

Fig. 3.17 Cross-linked system for Exercise 3.38.

(a) Find the probabilities of events H1 = Ec
2Ec

3, H2 = Ec
2E3, H3 = E2Ec

3,
and H4 = E2E3. Do these four probabilities sum up to 1?
(b) What is the probability of the system being operational if H1 is true;
that is, what is P(A|H1)? Find also P(A|H2), P(A|H3) and P(A|H4).
(c) Using results in (a) and (b), find P(A).

3.39. Cross-linked System 2. The five components in a cross-linked system
(shown in Figure) are operational in a time interval ∆T with probabilities

Component E1 E2 E3 E4 E5
Probability of working 0.8 0.2 0.6 0.7 0.5

The components are independent.
(a) Find the probability that the system is operational during the time
period ∆T .
(b) If the system was found operational during time interval ∆T , what is
the probability that component E1 have been operational?

Hint: The problem combines circuit calculations and Total Probabil-
ity/Bayes’ formula. Discuss how the circuit simplifies when component
E1 works (hypothesis H1) and, alternatively, when it fails (hypothesis
H2).
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E1 E2

E3

E4

E5

Fig. 3.18 Cross-linked system for Exercise 3.39.

3.40. Ternary Channel. A communication system transmits three signals,
s1, s2, or s3, with equal probabilities. The reception is corrupted by noise,
causing the transmission to be changed according to the following table
of conditional probabilities:

Received
s1 s2 s3

s1 0.75 0.1 0.15
Sent s2 0.098 0.9 0.002

s3 0.02 0.08 0.9

The entries in this table list the probability that sj is received, given that
si is sent, for i, j = 1,2,3. For example, if s1 is sent, the conditional prob-
ability of receiving s3 is 0.15.
(a) Compute the probabilities that s1, s2, and s3 are received.

(b) Compute the probabilities P(si sent |sj received ) for i, j = 1,2,3.
(Complete the table.)

Sent
s1 s2 s3

s1 0.8641
Received s2 0.0741

s3

3.41. Sprinkler Bayes Net. Suppose that a sprinkler (S) or rain (R) can make
the grass in your yard wet (W). The probability that the sprinkler was on
depends on whether the day was cloudy (C). The probability of rain also
depends on whether the day was cloudy. The DAG for events C,S, R,
and W is shown in Figure 3.19.
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C

S R

W

Fig. 3.19 Sprinkler Bayes net.

The conditional probabilities of the nodes are given in the following
tables.

Cc C
0.5 0.5

Sc S Condition
0.50 0.50 Cc

0.90 0.10 C

Rc R Condition
0.80 0.20 Cc

0.20 0.80 C

Wc W Condition
1 0 Sc Rc

0.10 0.90 Sc R
0.10 0.90 S Rc

0.01 0.99 S R
(a) Using WinBUGS, approximate the probabilities P(C|W), (b) P(S|Wc),
and (c) P(C|R,Wc).
(b) Approximate the probabilities in (a) using MATLAB simulations.

3.42. Diabetes in Pima Indians. The Pima Indians have the world’s highest
reported incidence of diabetes. Since 1965, this population has partici-
pated in a longitudinal epidemiological study of diabetes and its compli-
cations. The examinations have included a medical history for diabetes
and other major health problems. A population of women who were at
least 21 years old, of Pima Indian heritage, and living near Phoenix, AZ,
was tested for diabetes according to World Health Organization criteria.
The following conditions (“events”), constructed from the database, can
be related to a randomly selected subject from this population.

Event Description
P Three or more pregnancies
A Older than the database median

age
O Heavier than the database me-

dian weight
D Diagnosis of diabetes
G High plasma glucose concentra-

tion in an oral glucose tolerance
test

I High 2-h serum insulin (µU/ml)
B High blood pressure
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The DAG in Figure 3.20 simplifies the proposal of Tom Bylander from
the University of Texas at San Antonio, who used Bayesian networks and
the Pima Indians Diabetes Database in a machine learning example.4

P A O

D

G I B

Fig. 3.20 Pima Indians diabetes Bayes net.

From 768 complete records, relative frequencies are used to approximate
the conditional probabilities of the nodes. The probabilities are given in
the following tables:

Pc P
0.45 0.55

Ac A
0.5 0.5

Oc O
0.5 0.5

Dc D Condition
0.95 0.05 Pc Ac Oc

0.67 0.33 Pc Ac O
0.59 0.41 Pc A Oc

0.40 0.60 Pc A O

Dc D Condition
0.73 0.27 P AcOc

0.66 0.34 P Ac O
0.63 0.37 P A Oc

0.41 0.59 P A O

Gc G Condition
0.64 0.36 Dc

0.21 0.79 D

Ic I Condition
0.49 0.51 Dc

0.52 0.48 D

Bc B Condition
0.55 0.45 Oc Dc

0.58 0.42 Oc D
0.40 0.60 O Dc

0.49 0.51 O D
Suppose a female subject, older than 21, of Pima Indian heritage living
near Phoenix, AZ, was selected at random. Using WinBUGS, approxi-
mate the probabilities (a) P(O|I), P(B|Oc, G), and P(G|B, Ac).

3.43. A Simplified Probabilistic Model of Visual Pathway. Our nervous
system consists of specialized cells called neurons that are connected to
one another in highly organized and specific ways. A neuron changes
its membrane voltage in response to an external stimulus or a signal
from an upstream neuron. For example, in the visual pathway, light ex-
cites photoreceptors in our eyes that are connected to more downstream

4 http://www.cs.utsa.edu/~bylander/cs6243/bayes-example.pdf

http://www.cs.utsa.edu/~bylander/cs6243/bayes-example.pdf
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neurons, and the activities of this neuronal network eventually elicit vi-
sual perceptions. The following diagram illustrates a simplified version
of this connection (P = photoreceptor cell, B = bipolar cell, R = retinal
ganglion cell, L = lateral geniculate nucleus ganglion cell, V = primary
visual cortex simple cell):

Fig. 3.21 Simplified probabilistic model of visual pathway.

Let events S and Sc denote, respectively, the presence and absence of a
light stimulus in a small time interval ∆t. Let events P, B, R, and L mean
that the corresponding cells produce a response (fire) in the time interval
∆t. Suppose that the conditional probabilities of firing for three parallel
branches i = 1,2, and 3 are the same:

P(S) = 0.6
P(Pi|S) = 0.95 P(Pi|Sc) = 0.1
P(Bi|Pi) = 0.95 P(Bi|Pc

i ) = 0.05
P(Ri|Bi) = 0.9 P(Ri|Bc

i ) = 0.02
P(Li|Ri) = 0.8 P(Li|Rc

i ) = 0.08
i = 1,2,3

In the schematic diagram in Figure 3.21, three L ganglion cells, L1, L2,
and L3, connect to one simple cell in the primary visual cortex, V. As-
sume that input from at least one of the L cells is needed for the V simple
cell to respond with certainty. The V simple cell will not respond if the
input there from L cells is absent.
The following questions may need the support of WinBUGS:
(a) What is the probability of the V cell responding given that event S
(light stimulus present) has occurred?
(b) Assume that L1 and R3 have fired. What is the probability of S?
(c) Assume that V responded. What is the probability of S?

3.44. Three Neurons 1. A neuron N is connected with three other neurons
N1, N2, and N3 capable of producing a stimulus by firing, {N1, N2, N3}−→
N. The probabilities of firing for neurons N1, N2, and N3 are 0.2 each and
the actions of these three neurons are simultaneous and mutually inde-
pendent. Neuron N receives a stimulus if at least one of N1, N2, and N3
fires.
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(a) What is the probability that N receives a stimulus? Find this proba-
bility analytically.
(b) Approximate the probability in (a) using MATLAB simulation.
(c) Neuron N will fire with probability 0.9 if a stimulus is present and
with probability 0.05 if a stimulus is not present. In the context of this
problem what is the probability that N fires?
(d) If neuron N did not fire what is the probability that stimulus was not
present.

3.45. Three Neurons 2. Three neurons N1, N2, and N3 are connected as
N1 −→ N2 −→ N3. If a stimulus is present, the neuron will fire with
probability 0.9. When a stimulus is not present, the neuron may still
fire but with a small probability of 0.05. Firing of a neuron serves as a
stimulus for the subsequent neuron. N1 is given a stimulus.
(a) What is the probability that N3 will fire? Find this probability exactly
(analytically).
(b) Write a MATLAB code that approximates the probability in (a) by
simulation.
(c) If N3 did not fire, what is the probability that N2 received stimulus.

MATLAB AND WINBUGS FILES USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch3.Prob/

alarm.m, birthday.m, bridge.m, circ0.m, circ1.m, circ2.m, circuit.m,

ComplexCircuit.m, demere.m, die.m, inclusionexclusion.m, mysterious.m,

mystery.m, pima.m, rollingdie1.m, rollingdie2.m, sheriff.m,

ternarychannel.m, twoheaded.m, venn0.m, venn1.m, venn2.m

alarm.odc, asia.odc, circuit1.odc, DeMere.odc, manufacturingbayes.odc,

markcar.odc, misterioustransfers.odc, pima.odc, sprinkler.odc
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Chapter 4

Sensitivity, Specificity, and Relatives

Poetry teaches us music, metaphor, condensation and specificity.

– Walter Mosley

WHAT IS COVERED IN THIS CHAPTER

• Definitions of Sensitivity, Specificity, Positive and Negative Pre-
dictive Values, Likelihood Ratio Positive and Negative, Measures of
Accuracy.
• Combining Tests
• Performance of Tests: ROC Curves, Area under ROC, Youden

Index
• Two Examples: D-dimer and ADA

4.1 Introduction

This chapter introduces several notions fundamental for disease or device
testing. The sensitivity, specificity, and positive and negative predictive val-
ues of a test are measures of the performance of a diagnostic test and are
intimately connected with probability calculations (estimations) and Bayes’
rule.

Although concepts such as “false positives” and “true negatives” are
quite intuitive, many students and even health professionals have difficul-
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ties in assessing the associated probabilities. The following problem was
posed by Casscells et al. (1978) to 60 students and staff at an elite medical
school: If a test to detect a disease whose prevalence is 1/1000 has a false positive
rate of 5%, what is the chance that a person found to have a positive result actu-
ally has the disease, assuming you know nothing about the person’s symptoms or
signs?

Assuming that the probability of a positive result given the disease is 1,
the answer to this problem is approximately 2%. Casscells et al. found that
only 18% of participants gave this answer. The most frequent response was
95%, presumably on the supposition that, because the error rate of the test
is 5%, it must get 95% of results correct.

Examples of misconceptions of test precision measures, especially in-
volving the sensitivity and positive predictive value, are abundant.

When a multiplicity of tests are possible and a researcher is to select the
“best” test, the receiver operating characteristic (ROC) curve methodology
is used. This methodology is especially useful in setting a threshold that
separates positive and negative outcomes of a test.

4.2 Notation

Usually, n subjects are selected randomly from a given population. The
population may not be very general; it could be a specific segment of sub-
jects (patients in a hospital who were checked in 10+ days ago, subjects
with a history of heart attack, etc.). Now suppose that the true disease sta-
tus (disease present/absent) in all subjects is determined via a gold stan-
dard assessment and that we are interested in evaluating a particular test
for the disease assuming that the gold standard results are always correct.
For example, in testing for breast cancer (BC), a mammogram is used as a
test while the battery of numerous patient symptoms, medical history, and
biopsy results are used as a gold standard.

A positive test would not necessarily mean the disease is present but
rather would mean that the test says the disease is present. For instance, a
patient’s mammogram appears to show breast cancer. A true-positive test
result not only means that the test says the disease is present, but that the
disease really is present. In this case a positive mammogram of a patient for
which the gold standard indicates BC would be a true positive. In the same
context, false positives, true negatives, and false negatives are defined in a
corresponding manner.

By classifying the patients with respect to the test results and the true
disease status, the following table can be constructed:
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Disease (D) No disease (C) Total
Test positive (P) TP FP nP = TP + FP
Test negative (N) FN TN nN = FN + TN

Total nD = TP + FN nC = FP + TN n = nD + nC = nP + nN

where

TP True positive (test positive, disease present)
FP False positive (test positive, disease absent)
FN False negative (test negative, disease present)
TN True negative (test negative, disease absent)
nP Total number of positives (TP + FP)
nN Total number of negatives (TN + FN)
nD Total number with disease present (TP + FN)
nC Total number without disease present (TN + FP)
n Total sample size (TP + FP + FN + TN)

The test’s effectiveness is measured by the number of true positives and
true negatives relative to the total number of cases. It turns out that these
two numbers are used to define two complementary measures of test per-
formance: sensitivity and specificity.

We will illustrate the defined numbers with the following example:

Example 4.1. BreastScreen Victoria. This 1994 study involved women who
participated in the BreastScreen Victoria initiative in Victoria, Australia,
where free biennial screenings for BC are provided to women aged 40 and
older. The data provided by Kavanagh et al. (2000) show that among 96,420
asymptomatic women, 5,401 had positive and 91,019 negative mammogram
results. The mammograms were read independently by two radiologists. In
the case of disagreement over whether to recall, a consensus was reached or
a third reader made the decision. The women were then recommended for
routine rescreen or referred for assessment. Assessment might include clin-
ical examination, further radiographs, ultrasound, or biopsy. After assess-
ment, women might have a cancer diagnosed, be recommended for routine
rescreening, or be recommended for further assessment (early review). Out
of 96,420 women, 665 were diagnosed with BC. Of those 665 diagnosed, the
mammogram was positive for 495 and negative for 160 women. The table
summarizing the data is below.

BC diagnosed BC not diagnosed Total
Mammogram positive 495 4906 5401
Mammogram negative 160 90859 91019

Total 665 95765 96420

�
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Sensitivity is the ratio of the number of true positives and the number
of subjects with a disease, while specificity is the ratio of the number of
true negatives and the number of subjects without the disease. In the BC
example sensitivity is 495/665 = 75.57%, and specificity is 90859/95765 =
94.88%.

Both measures have to be reported, since reporting only sensitivity or
only specificity reveals little information about the test. There are two ex-
treme cases. Imagine a test that classifies all subjects as positive – trivially
the sensitivity is 100%. Since there are no negatives, the specificity is zero.
Likewise, a test that classifies all subjects as negative has a specificity of
100% and zero sensitivity.

The following table summarizes the key notions:

Sensitivity (Se) Se = TP/(TP + FN) = TP/nD
Specificity (Sp) Sp = TN/(FP + TN) = TN/nC
Prevalence (Pre) (TP + FN)/(TP + FP + FN + TN)= nD/n
Positive predictive value (PPV) PPV = TP/(TP + FP) = TP/nP
Negative predictive value (NPV) NPV = TN/(TN + FN) = TN/nN
Likelihood ratio positive (LRP) LRP = Se/(1-Sp)
Likelihood ratio negative (LRN) LRN = (1-Se)/Sp
Apparent prevalence (APre) APre = nP/n
Accuracy (Ac) Ac =(TP + TN)/n

The population prevalence of a disease is defined as the probability
that a randomly selected person from this population will have the dis-
ease. As the table shows, the prevalence is estimated by (TP + FN)/(TP
+ FP + FN +TN) = nD/n. For the Victoria BC data the prevalence is
665/96420 = 0.0069. This is a valid estimator only if the table is a sum-
mary of a representative sample of the population under analysis. In other
words, the sample should have been taken at random and the tabulation
made subsequently. This is not the case in many studies. The prevalence
of some diseases in a general population is often so small that insisting
on a random sample would require huge sample sizes in order to obtain
a nonzero TP or FN table entries. When the table is made from available
cases and controls (convenience samples), the prevalence for the population
cannot be estimated from it.

A related quantity is the incidence of a disease in a population. It is
defined as the probability that a randomly selected person from the subset
of people not affected by the disease will develop the disease in a fixed
time window (week, month, year). While the prevalence relates to the mag-
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nitude, the incidence provides information about the progression and dy-
namics of the disease.

Positive/Negative Predictive Values. One of the most important measures
is the positive predictive value (PPV). Based on the table it can be estimated
as the proportion of true positives among all positives, TP/nP. This is cor-
rect only if the population prevalence is well estimated by nD/n, that is, if
the table is representative of its population. This is approximately the case
for the Victoria BC data; the PPV is well estimated by 495/5401 = 0.0916.

If the table is constructed from a convenience sample, the prevalence
(Pre) would have to be provided as external information. Then the PPV is
calculated as

PPV =
Se× Pre

Se× Pre + (1− Sp)× (1− Pre)
.

This is simply the Bayes rule and will be discussed more in the next section.
Why is the PPV so important? Imagine an almost perfect test for a par-

ticular disease, with a sensitivity of 100% and specificity of 99%. If the
prevalence of the disease in the population is 10%, then among ten posi-
tives there would be approximately one false positive. However, if the pop-
ulation prevalence is 1/10000, then for each true positive there would be
approximately 100 false positives.

The negative predicted value (NPV) is the probability that a person with
negative test result will not have the disease. For a person from the study,
the NPV is estimated as TN/(TN + FN). However, if the person is ran-
domly selected from a population with the prevalence of disease Pre, then,
by Bayes’ rule:

NPV =
Sp× (1− Pre)

Sp× (1− Pre) + (1− Se)× Pre
.

Likelihood Ratio Positive/Negative. Diagnostic evidence provided by the
test is sometimes judged by Likelihood Ratio Positive (LRP) and likelihood
ratio negative (LRN). The LRP is sometimes called disease rule-in. It repre-
sents the extent by which a positive test result would increase the likelihood
of the disease.

The LRN is sometimes called disease rule-out. It represents the extent by
which a negative test result would decrease the likelihood of disease, or
equivalently, increase the likelihood of no-disease. For example, if prior to
the test the odds of disease are established (by symptoms, prevalence, etc.),
the post-test odds are calculated as

Disease odds|Test positive = LRP × Pretest disease odds;

Disease odds|Test negative = LRN × Pretest disease odds.
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In the context of BreastScreen Victoria, suppose that Ann and Betty are
two participants who tested, respectively, positive and negative for BC. If
prior to the test the odds that both Ann ad Betty had BC were 1 : 50, what
are the odds after the test? The LRP for BreastScreen data is Se/(1–Sp) =
0.7557/0.0512 = 14.7598, while the LRN is (1–Se)/Sp = 0.2443/0.9488 =
0.2575. For Ann the posttest odds of disease are 14.7598 · 1/50 = 0.2952.
This is approximately 1 : 3.3876. In terms of the probabilities of disease,
the pretest probability of 1/(50+ 1) = 0.0196 increases to 1/(3.3876+ 1) =
0.2279 after the positive result. For Betty the posttest odds of disease are
0.2575× 1/50 which is 1 : 194.1748.

Diagnostic Odds Ratio. The ratio LRP/LRN is sometimes called diagnos-
tic odds ratio (DOR) and represents a single index of test performance. The
larger the DOR, the better the test. The DOR can be expressed as

DOR =
LRP
LRN

=
Se× Sp

(1− Se)(1− Sp)
=

TP
FP
FN
TN

=
TP
FN
FP
TN

=
TP× TN
FN× FP

. (4.1)

The DOR is interpreted as the odds of a person who tests positive to
have disease divided by the odds of a person who tests negative to have
the disease. It also can be interpreted, by regrouping TP, FP, FN, and TN in
(4.1) in a different way, as the odds of a person with disease testing positive
divided by the odds of a person without the disease testing positive.

Conditional Probability Notation. The definitions introduced in this sec-
tion depend on the relative frequencies in the observed tables, and they are
empirical. The theoretical counterparts are expressed in terms of probabil-
ities. The analogy to this is the interplay of the probability of an event A,
P(A), which is theoretical, and relative frequency of the event nA/n, which
is empirical.

Let T be the event that a subject tests positive and D, Dc the hypoth-
esis that the subject does/does not have the disease. The sensitivity is
the conditional probability P(T|D) = P(T ∩ D)/P(D), which is estimated
by (TP/n)/(nD/n) = TP/nD. Analogously, the specificity is P(Tc|Dc) =
P(Tc ∩ Dc)/P(Dc), which is estimated by (TN/n)/(nC/n) = TN/nC. We
have argued that P(D), the population prevalence, cannot be estimated
from the table unless the sample forming the table is representative of the
population. In the case of “convenience” samples, however, the prevalence
is evaluated separately or assumed known from other studies. If the sam-
ple is randomly obtained from the population, the prevalence can be esti-
mated by nD/n. See also Exercise 4.10 for a related approach. The prob-
ability of a positive test is in fact given by the rule of total probability,
P(T) = P(T|D)P(D) + P(T|Dc)P(Dc). Note that P(T) depends on the
prevalence and is estimated by nP/n for a table from a random sample.
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Finally, the PPV and NPV are determined by Bayes’ rule. For example,
the PPV is

P(D|T) = P(T|D)P(D)

P(T)
=

P(T|D)P(D)

P(T|D)P(D) + P(T|Dc)P(Dc)
.

The posttest disease odds ratio is LRP times the pretest odds ratio. Due to
this property, the LRP is in fact Bayes’ factor in the terminology of Chap-
ters 3 and 8.

P(D|T)
P(Dc|T) =

P(T|D)P(D)

P(T)

/
P(T|Dc)P(Dc)

P(T)

=
P(T|D)P(D)

P(T|Dc)P(Dc)
=

P(T|D)

P(T|Dc)
× P(D)

P(Dc)
.

Thus, posterior disease odds = LRP × prior disease odds.
The definitions above are illustrated with an example where researchers

test for acute pulmonary embolisms.

Example 4.2. D-Dimer. When a vein or artery is injured and begins to leak
blood, a sequence of clotting steps and factors (called the coagulation cas-
cade) are activated by the body to limit the bleeding and create a blood
clot to plug the hole. During this process, threads of a protein called fibrin
are produced. These threads are cross-linked (chemically glued together)
to form a fibrin net that catches platelets and helps hold the forming blood
clot together at the site of the injury. Once the area has had time to heal,
the body uses a protein called plasmin to break the clot (thrombus) into
small pieces so that it can be removed. The fragments of the disintegrat-
ing fibrin in the clot are called fibrin degradation products (FDPs). One of
the FDPs produced is D-dimer, which consists of variously sized pieces of
cross-linked fibrin. D-dimer is normally undetectable in the blood and is
produced only after a clot has formed and is in the process of being broken
down. Measurement of D-dimer can indicate problems in the body’s clot-
ting mechanisms. The data below consist of quantitative plasma D-dimer
levels among patients undergoing pulmonary angiography for suspected
pulmonary embolism (PE). The patients who exceed the threshold of 500
ng/mL are classified as positive for PE. The gold standard for PE is the pul-
monary angiogram. Goldhaber et al. (1993), from Brigham and Women’s
Hospital at Harvard Medical School, considered a population of patients
who are suspected of PE based on a battery of symptoms. The summarized
data for 173 patients are provided in the table below.

Acute PE No PE present Total
Test positive (D-dimer ≥ 500 ng/mL) 42 96 138
Test negative (D-dimer < 500 ng/mL) 3 32 35

Total 45 128 173
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A simple MATLAB file sesp.m will calculate the sensitivity, specificity,
prevalence, positive and negative predictive values, and degree of test ac-
curacy.

function [se sp pre ppv npv ag] = sesp(tp, fp, fn, tn)

%D-dimer as a test for acute PE (Goldhaber et al, 1993)

% [s1, s2, p1, p2, p3, a, yi] = sesp(42,96,3,32)

%

n = tp+tn+fn+fp; %total sample size

np = tp + fp; %total positive

nn = tn + fn; %total negative

nd = tp + fn; %total with disease

nc = tn + fp; %total control (without disease)

%--------------

se = tp/nd; %tp/(tp + fn):::sensitivity

sp = tn/nc; %tn/(tn + fp):::specificity

pre = nd/n; %(tp + fn)/(tp+tn+fn+fp):::prevalence

%only in for case when sample is random from the

% population of interest. Otherwise, the prevalence

% needed for calculating PPV and NPV is an input value

ppv = tp/np; %tp/(tp + fp):::positive predictive value

npv = tn/nn; %tn/(tn+fn):::negative predictive value

lrp = se/(1-sp); %:::likelihood ratio positive

lrn = (1-se)/sp; %:::likelihood ratio negative

ac = (tp+tn)/n; %:::accuracy

yi = (se + sp - 1)/sqrt(2); %:::youden index

%---------------

disp(’ Se Sp Pre PPV NPV LRP Ag Yi’)

disp([se, sp, pre, ppv, npv, lrp, ag yi])

%spacing in disp depends on the font size.

For the D-dimer data, the result is

[a b c d e f g] = sesp(42,96,3,32);

Se Sp Pre PPV NPV LRP Ac Yi

0.9333 0.2500 0.2601 0.3043 0.9143 1.2444 0.4277 0.1296

Goldhaber et al. (1993) conclude: “The results of our study indicate that
quantitative plasma D-dimer levels can be useful in screening patients with
suspected PE who require pulmonary angiography. Plasma D-dimer values
less than 500 ng/mL may obviate the need for pulmonary angiography,
particularly among medical patients for whom the clinical suspicion of PE
is low. The plasma D-dimer value, assayed using a commercially available
enzyme-linked immunosorbent assay kit, is a sensitive but nonspecific test
for the presence of acute PE.”
�
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4.3 Combining Two or More Tests

Suppose that k independent tests for a particular condition are available
and that their sensitivities and specificities are Se1, Sp1, Se2, Sp2, . . . , Sek,
Spk. The independence here is conditional on the true disease status of
the patient. If these tests could be combined, what would be the sensitiv-
ity/specificity of the combined test?

First, it is important to define how the tests are going to be combined.
There are two main strategies: parallel and serial. When the tests are as-
sumed conditionally independent, the calculations are similar to those in
circuit problems from Chapter 3, page 82. Denote by Se and Sp the sensi-
tivity and specificity of the combined test, respectively.

In the parallel strategy the combination is positive if at least one test
is positive and negative if all tests are negative. Then, the sensitivity is
calculated as the probability of a union and the specificity as the probability
of an intersection:

Parallel combination (positive if at least 1 positive)
Se = 1− [(1− Se1)× (1− Se2)× · · · × (1− Sek)]
Sp = Sp1 × Sp2 × · · · × Spk

It is easy to see that, in the parallel strategy, the sensitivity is larger than
any individual sensitivity and the specificity smaller than any individual
specificity.

In the serial strategy, the combination is positive if all tests are positive
and negative if at least one test is negative. Then the sensitivity is calculated
as the probability of an intersection and the specificity as the probability of
a union:

Serial combination (positive if all positive)
Se = Se1 × Se2 × · · · × Sek

Sp = 1− [(1− Sp1)× (1− Sp2)× · · · × (1− Spk)]

Note that the overall sensitivity is smaller than any individual sensitiv-
ity, while the specificity is larger than any individual specificity. There are
other possible combinations as well as procedures that address bias and
correlation among the individual tests.

Example 4.3. Combining Two Tests for Sarcoidosis. Parikh et al. (2008)
provide an example of combining two tests for sarcoidosis. Sarcoidosis is
an idiopathic multisystem granulomatous disease, where the diagnosis is
made by a combination of clinical, radiological, and laboratory findings.
The gold standard is a tissue biopsy showing noncaseating granuloma. Oc-
ular sarcoidosis could be present as anterior, intermediate, posterior, or
panuveitis, but none of these is pathognomonic. Therefore, one has to rely
on ancillary testing to confirm the diagnosis.

An angiotensin-converting enzyme (ACE) test has a sensitivity of 73%
and a specificity of 83% to diagnose sarcoidosis. An abnormal gallium scan
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has a sensitivity of 91% and a specificity of 84%. Though individually the
specificity of either test is not impressive, for the serial combination the
specificity becomes

Sp = 1− (1− 0.84)× (1− 0.83) = 1− (0.16× 0.17) = 0.97.

The combination sensitivity becomes 0.73× 0.91 = 0.66. Note that the over-
all specificity drastically improves, but at the expense of overall sensitivity.
�

The conditional independence of tests in the previous example is a lim-
iting assumption. One could argue that two tests for the same disease are
seldom independent by the very nature of the testing problem, even condi-
tionally on the true disease status of the patient.

Combining Two Conditionally Dependent Tests.
Dependence between the sensitivities or specificities of pairs of tests

affects the sensitivity and specificity of their combination. A positive de-
pendence in test sensitivity reduces the sensitivity of parallel combination
and a positive dependence in test specificity reduces the specificity of serial
combination.

Assume that two tests that are not conditionally independent are to be
combined. Let

cSe =
TP1∩2

nD
− Se1 × Se2, and cSp =

TN1∩2

nC
− Sp1 × Sp2

be conditional covariances for sensitivity and specificity proportions. Here
TP1∩2 is the number of instances when both tests simultaneously resulted
positive among the diseased patients, and TN1∩2 is the number of instances
when both tests resulted as negative among the controls. When the tests are
conditionally independent, cSe and cSp are 0.

Sensitivity and specificity for parallel and serial combinations of the
tests are

Parallel combination
Se = 1− (1− Se1)× (1− Se2)− cSe

Sp = Sp1 × Sp2 + cSp

Serial combination
Se = Se1 × Se2 + cSe

Sp = 1− (1− Sp1)× (1− Sp2)− cSp

See also Exercise 4.17

In the following example, we show how to handle more complex batter-
ies of tests in which the tests could be dependent. The example considers
two tests and a parallel combination strategy, but it could be extended to
any number of tests and to more general combination strategies.
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The approach is based on a simulation because analytic solutions are
typically computationally involved.

Example 4.4. Simulation Approach. Suppose that a testing procedure con-
sists of two tests given in a sequence. Test A has a sensitivity of 0.9 and
a specificity of 0.8. Test B has a sensitivity of 0.7 and a specificity of 0.9
for subjects who tested negative in test A and a sensitivity of 0.95 and a
specificity of 0.6 for subjects who tested positive in test A.

Clearly, test A and test B are dependent. If a subject is declared posi-
tive when the result of at least one of the two tests was positive (parallel
link), what is the overall sensitivity/specificity of the described testing pro-
cedure? The population prevalence is considered known and is used in the
simulation of a patient’s status, but it does not affect the overall sensitiv-
ity/specificity.

Note that, if a subject’s status s is equal to 0/1 when the disease is
absent/present, then the result of a test is s*(rand < se) + (1-s)*(rand > sp)

for a known sensitivity and specificity, se, sp. The test outcome is binary,
with 0/1 denoting a negative/positive test result.

The following MATLAB code ( simulatetesting2.m) considers 20,000
subjects from a population where the disease prevalence is 0.2. The es-
timated sensitivity/specificity was 0.97/0.72, but simulation results may
vary slightly due to the random status of subjects.

nsubjects = 20000;

prevalence = 0.2;

se1 =0.9; sp1 = 0.8; %se/sp of test1

se20 =0.7; sp20 = 0.9; %se/sp of test2 if test1=0

se21 =0.95; sp21 = 0.6; %se/sp of test2 if test1=1

tests = [];

ss=[]; tp=0; fp=0; fn=0; tn=0;

for i = 1:nsubjects

%simulate a subject wp of disease equal to prevalence

s = (rand < prevalence);

%test the subject

test1=s*(rand < se1) + (1-s)*(rand>sp1); %test is 0 or 1

if (test1 == 0)

test2=s*(rand < se20) + (1-s)*(rand>sp20);

else

test2=s*(rand < se21) + (1-s)*(rand>sp21);

end

%test = test1*test2; %for serial

test = (test1 + test2 > 0); %for parallel

ss=[ss s]; %save subject’s status

tests = [tests test]; %save subject’s test

%building the test table

tp = tp + test*s; %true positives

fp = fp + test*(1-s); %false positives

fn = fn + (1-test)*s; %false negatives
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tn = tn + (1-test)*(1-s); %true negatives

end

% estimate overall Se/Sp from the table

sens = tp/(tp+fn)

spec = tn/(tn+fp)

�

Remark: In the previous discussion we assumed that a true disease status
was known and that a perfect gold standard test was available. In many
cases an error-free assessment does not exist, but a reference test, with
known sensitivity SeR and specificity SpR, can be used. By taking this ref-
erence test as a gold standard and by not accounting for its inaccuracy
would lead to biases in evaluating a new test. Staquet et al. (1981) provide
a solution based on SeR, SpR, and concordance of results between the two
tests.

Another approach to this problem is “discrepant resolution,” in which
the subjects for whom the reference and new test disagreed were subjected
to a third “resolver” test. Although commonly used, the resolver method
can be biased and can overestimate sensitivity and specificity of a new test
significantly (Hawkins et al., 2001; Qu and Hadgu, 1998).

4.4 ROC Curves

The receiver operating characteristic (ROC) curve was first used during
World War II for the analysis of radar signals. After WWII it was employed
in signal detection theory and, subsequently, in a range of fields where test-
ing is critical. The ROC curve is defined as a graphical plot of sensitivity vs.
(1 - specificity) for a binary classifier system as its discrimination thresh-
old (value that separates positives and negatives) varies.

Let us look at an ROC curve using the D-dimer example from the pre-
vious section. Mavromatis and Kessler (2001) report that in 18 publications
(between 1988 and 1998) concerning D-dimer testing, the reported cut point
for declaring the test positive ranged from 250 to 1000 ng/mL. What cut
point should be recommended? To increase the apparently low specificity
in the previous D-dimer analysis, suppose that the threshold for testing
positive is increased from 500 to 650 ng/mL and that the data are dis-
tributed in the following way:

Acute PE No PE present Total
Test positive (D-dimer ≥ 650 ng/mL) 31 33 64
Test negative (D-dimer < 650 ng/mL) 14 95 109

Total 45 128 173

This new table results in the following sesp output:
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[a b c d e f] = sesp(31,33,14,95);

Se Sp Pre PPV NPV LRP Ag Yi

0.6889 0.7422 0.2601 0.4844 0.8716 2.6721 0.7283 0.3048

Combining this with the output of the 500-ng/mL threshold, we get the
vectors 1-sp = [0 1-0.7422 1-0.25 1] and se = [0 0.6889 0.9333 1].
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Fig. 4.1 Rudimentary ROC curve for D-dimer data based on two thresholds.

The code RocDdimer.m plots this “rudimentary” ROC curve (Fig. 4.1).
The curve is rudimentary because it is based on only two tests. Note that
points (0,0) and (1,1) always belong to ROC curves. These two points cor-
respond to the trivial tests in which all patients test negative or all patients
test positive. The area under the ROC curve (AUC), is a well-accepted mea-
sure of test performance. The closer the area is to 1, the more unbalanced
the ROC curve, implying that both sensitivity and specificity of the test
are high. It is interesting that some researchers assign an academic scale to
AUC as an informal measure of test performance.

AUC Performance
0.9–1.0 A
0.8–0.9 B
0.7–0.8 C
0.6–0.7 D
0.0–0.6 F
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The following MATLAB program calculates AUC when the vectors csp

= 1 - specificity and sensitivity are supplied.

function A = auc(csp, se)

%

% A = auc(csp,se) computes the area under the ROC curve

% where ’csp’ and ’se’ are vectors representing (1-specificity)

% and (sensitivity), used to plot the ROC curve

% The length of the vectors has to be the same

csp=csp(:); se = se(:);

if length(csp) ~= length(se)

error(’Input vectors (1-specificity) ...

and (sensitivity) should have the same length’)

end

A = sum((csp(2:end)-csp(1:end-1)) .* (se(2:end)+se(1:end-1))/2 );

For example, the AUC for the D-dimer ROC based on the two thresholds
is approx. 73%, a grade of C:

auc([0, 1-0.7422, 1-0.25, 1],[0 0.6889 0.9333 1])

ans = 0.7297

Youden Index. To choose the best test out of a multiplicity of tests ob-
tained by changing the threshold and generating the ROC curve, select the
test corresponding to the point in the ROC curve most distant from the
diagonal. This point corresponds to a Youden index (Youden, 1950)

YI = max
i

1√
2
(Sei + Spi − 1),

where Sei and Spi are, respectively, the sensitivity and specificity for the
ith test. Thus, the Youden index is the distance of the most distant point
(1 − Spi,Sei) on the ROC curve from the diagonal. This distance ranges
between 0 and

√
2/2. In the expression for Youden index the constant 1/

√
2

is taken because of geometric interpretation (distance from the diagonal),
often the constant is omitted.

In the D-dimer example, the Youden index for the test with a 500-ng/mL
threshold is 0.1296, compared to 0.3048 for the test with a 650-ng/mL
threshold. Between the two tests, the test with the 650-ng/mL threshold
is preferred.

F-measure. Another objective criterion to choose from the multiplicity of
thresholds in a test is F-measure or F-index. It is defined as a harmonic
average of sensitivity and and positive predictive value,

F =
2

1/Se + 1/PPV
.

It is easy to see that F is the ratio of TP and an average of nD and nP,
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F =
TP

(nD + nP)/2
.

The test that maximizes F-measure is favored.
In the D-dimer example, the F-measure for the test with a 500-ng/mL

threshold is 0.4590, compared to 0.5688 for the test with a 650-ng/mL
threshold. Between the two tests, the test with the 650-ng/mL threshold
is preferred.

Example 4.5. ADA. Adenosine deaminase (ADA) is an enzyme involved in the
breakdown of adenosine to uric acid. ADA levels were found to be elevated
in the pleural fluid of patients with tuberculosis (TB) pleural effusion. Pleu-
ral effusion is a very common clinical problem. It may occur in patients of
pulmonary TB, pneumonia, malignancy, congestive cardiac failure, cirrho-
sis of the liver, nephrotic syndrome, pulmonary infarction, and connective
tissue disorders. TB is one of the primary causes of pleural effusion. Nu-
merous studies have evaluated the usefulness of ADA estimation in the
diagnosis of TB pleural effusion. However, the sensitivity and specificity of
ADA estimation and the cutoff level used for distinguishing TB pleural ef-
fusion from non-TB pleural effusion have varied between studies. The data
(given in ROCTBCA.XLS or ROC.mat) were collected by Dr. Mark Hopley of
Chris-Hani Baragwanath Hospital (CHB, the largest hospital in the world),
with the goal of critically evaluating the sensitivity and specificity of ADA
estimation in the diagnosis of TB pleural effusion.

The data set consists of three columns:
Column 1 contains ADA levels.
Column 2 is an indicator of TB. The indicator is “1” if the patient had

documented TB, and zero otherwise.
Column 3 is an indicator of documented carcinoma. Six patients who

had both carcinoma and TB have been excluded from the analysis.
To create an empirical ROC curve, the following four steps are applied:

(i) The data are sorted according to the ADA level, with the largest
values first.

(ii) A column is created where each entry gives the total number of TB
patients with ADA levels greater than or equal to the ADA value for that
entry.

(iii) A column equivalent to that from step 2 is created for patients with
cancer.

(iv) Two new columns are created, containing the true positive fre-
quency (TPF) and false positive frequency (FPF) for each entry. The TPF
is calculated by taking the number of TB cases identified at or above the
ADA level for the current entry and dividing by the total number of TB
cases. The FPF is determined by taking the number of “false TB alarms”
(cancer patients) at or above that level and dividing by the total number of
such non-TB patients.
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This description can be simply coded in MATLAB thanks to the cumu-
lative summation (cumsum) command:

disp(’ROC Curve Example’)

set(0, ’DefaultAxesFontSize’, 16);

fs = 15;

% data file ADA.mat should be on path

load ’ADA.mat’

% columns in ADA.mat are:

% 1. ADA level (ordered decreasingly)

% 2. indicator of case TB

% 3. indicator of non-case CA

cumultruepos = cumsum(ada(:,2));

cumulfalsepos = cumsum(ada(:,3));

% these are true positives/false positives if the

% cut-level is from the sequence ada(:,1).

tpf = cumultruepos/cumultruepos(end); %sensitivity

fpf = cumulfalsepos/cumulfalsepos(end); %1-specificity

plot(fpf,tpf) %ROC, sensitivity against (1-specificity)

xlabel(’1 - specificity’)

ylabel(’sensitivity’)
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Fig. 4.2 (a) ROC curve for ADA data. (b) Youden index against ADA level.

Which ADA level should be recommended as a threshold? The Youden
index for the ROC curve in Figure 4.2a is 0.4910, which corresponds to
ADA level of 37, Figure 4.2b. For this particular threshold, the sensitivity
and specificity are 0.8904 and 0.8039, respectively.

%youden index

yi = max((seth-cspth)/sqrt(2)) %0.4910

%ADA level corresponding to YI

ada((seth-cspth)/sqrt(2)== yi , 1) %37
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% sensitivity/specificity at YI

seth((seth-cspth)/sqrt(2)== yi) %0.8904

1 - cspth((seth-cspth)/sqrt(2)== yi) %0.8039

�

4.5 Exercises

4.1. Stacked Auditory Brainstem Response. The failure of standard audi-
tory brainstem response (ABR) measures to detect small (<1 cm) acous-
tic tumors has led to the use of enhanced magnetic resonance imaging
(MRI) as the standard to screen for small tumors. The study by Don
et al. (2005) investigated the suitability of the stacked ABR as a sensitive
screening alternative to MRI for small acoustic tumors (SATs). The objec-
tive of the study was to determine the sensitivity and specificity of the
stacked ABR technique for detecting SATs. A total of 54 patients were
studied who had MRI-identified acoustic tumors that were either <1 cm
in size or undetected by standard ABR methods, regardless of size. There
were 78 nontumor normal-hearing subjects who tested as controls. The
stacked ABR demonstrated 95% sensitivity and 88% specificity. Recover
the testing table.

4.2. Hypothyroidism. Low values of a total thyroxine (T4) test can be indica-
tive of hypothyroidism (Goldstein and Mushlin, 1987). Hypothyroidism is
a condition in which the body lacks sufficient thyroid hormone. Since the
main purpose of the thyroid hormone is to “run the body’s metabolism,”
it is understandable that people with this condition will have symptoms
associated with a slow metabolism. Over five million Americans have
this common medical condition.
A total of 195 patients, among which 59 have confirmed hypothyroidism,
have been tested for the level of T4. If the patients with a T4 level ≤5 are
considered positive for hypothyroidism, the following table is obtained:

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 5 35 5 40
Negative, T4 > 5 24 131 155

Total 59 136 195

However, if the thresholds for T4 are 6, 7, 8, and 9, the following tables
are obtained:

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 6 39 10 49
Negative, T4 > 6 20 126 146

Total 59 136 195
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T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 7 46 29 75
Negative, T4 > 7 13 107 120

Total 59 136 195

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 8 51 61 112
Negative, T4 > 8 8 75 83

Total 59 136 195

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 9 57 96 153
Negative, T4 > 9 2 40 42

Total 59 136 195

Notice that you can improve the sensitivity by moving the threshold to
a higher T4 value; that is, you can make the criterion for a positive test
less strict. You can improve the specificity by moving the threshold to
a lower T4 value; that is, you can make the criterion for a positive test
more strict. Thus, there is a trade-off between sensitivity and specificity.
(a) For the test that uses T4 = 7 as the threshold, find the sensitivity,
specificity, positive and negative predictive values, likelihood ratio, and
degree of agreement. You can use the code sesp.m.
(b) Using the given thresholds for the test to be positive, plot the ROC
curve. What threshold would you recommend? Explain your choice.
(c) Find the area under the ROC curve. You can use the code auc.m.

4.3. Alzheimer’s. A medical research team wished to evaluate a proposed
screening test for Alzheimer’s disease. The test was given to a random
sample of 450 patients with Alzheimer’s disease and to an independent
sample of 500 subjects without symptoms of the disease.
The two samples were drawn from a population of subjects who are 65
years old or older. The results are as follows:

Test result Diagnosed Alzheimer’s No Alzheimer’s symptoms Total
Positive test 436 5 441
Negative test 14 495 509

Total 450 500 950

(a) Using the numbers from the table, estimate P(T|D) and P(Tc|Dc).
Interpret these probabilities in terms of the problem.
The probability of D (prevalence) is the rate of the disease in the relevant
population (≥ 65 y.o.) and is estimated to be 11.3% (Evans 1990). Find
P(D|T) (positive predicted value) using Bayes’ rule. You cannot find
P(D|T) using information from the table only – you need external info.
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4.4. Test for Being a Duchenne Muscular Dystrophy Carrier. In Exercise
2.19, researchers used measures of pyruvate kinase and lactate dehy-
droginase to assess an individual’s carrier status. The following table
closely follows the authors’ report:

Woman carrier Woman not carrier Total
Test positive 56 6 62
Test negative 11 121 132

Total 67 127 194

(a) Find the sensitivity, specificity, and degree of agreement.
The sample is not representative of the general population for which the
prevalence of carriers is 0.03%, or 3 in 10,000.
(b) With this information, find the PPV of the test, that is, the probability
that a woman is a DMD carrier if she tested positive.
(c) What is the PPV if the table was constructed from a random sample
of 194 subjects from a general population?
(d) Approximate the probability that among 15,000 women randomly
selected from a general population, at least 2 are DMD carriers.

4.5. Parkinson’s Disease Statistical Excursions. Parkinson’s disease or,
“shaking palsy,” is a brain disorder that causes muscle tremor, stiffness,
and weakness. Early symptoms of Parkinson’s disease include muscular
stiffness, a tendency to tire more easily than usual, and trembling that
usually begins with a slight tremor in one hand, arm, or leg. This trem-
bling is worse when the body is at rest, but will generally stop when
the body is in use. For example, when the hand becomes occupied by
“pill rolling,” or when the thumb and forefinger are rubbed together as
if rolling a pill (Fig. 4.3).

Fig. 4.3 “Pill rolling” stops muscle tremors in early Parkinson’s disease.

In the later stages of Parkinson’s disease, the affected person loses the
ability to control his or her movements, making everyday activities hard
to manage.
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In a study by Schipper et al. (2008), 52 subjects, 20 with mild or moderate
stages of Parkinson’s disease and 32 age-matched controls, had whole
blood samples analyzed using the near-infrared (NIR) spectroscopy and
Raman spectroscopy methods. The data showed that the two indepen-
dent biospectroscopy measurement techniques yielded similar and con-
sistent results. In differentiating Parkinson’s disease patients from the
control group, Raman spectroscopy resulted in eight false positives and
four false negatives. NIR spectroscopy resulted in four false positives
and five false negatives.
(a) From the description above, construct tables for NIR spectroscopy
and Raman spectroscopy containing TP, FP, FN, and TN.
(b) For both methods find the sensitivity and specificity. Assume that
the prevalence of Parkinson’s disease in the age group matching this
group is 1/120 for the general population. For both methods, also find
the PPV, that is, the probability that a person who tested positive and was
randomly selected from the same age group in the general population
has the disease if no other clinical information is available.
(c) Mr. Smith is one of the 52 subjects in the study, and he tested positive
under a Raman spectroscopy test. What is the probability that Mr. Smith
has the disease?

4.6. Screening for Colorectal Cancer. Immunochemical fecal occult blood
screening has been used in Japan as an early screening practice for de-
tecting colorectal cancer. The study described in Nakama (1997) was per-
formed to assess the three testing methods of screening for colorectal
cancer: one-day method, two-day method, and three-day method. The
test involved 184 patients with biopsy confirmed colorectal cancer, and
368 healthy controls. The tests were conducted on three consecutive days,
and the sensitivities and specificities of each day’s test were evaluated.

Method Sensitivity Specificity
One-Day 67.9% 97.5%
Two-Day 88.0% 95.9%
Three-Day 90.1% 92.1%

(a) Fill out the three tables for TP, FP, TN, and FN based on the informa-
tion available. Round table entries to the closest integer.
(b) If only one of the three tests is to be selected, which one would you
recommend? Justify your choice.
(c) If a person who participated in this study is randomly chosen, what
is the probability that this person has colorectal cancer if the “One-Day”
test was positive?
(d) The prevalence of colorectal cancer among the adults in Japan is
1/200. If a person is randomly chosen from the adult population of
Japan, what is the probability that this person is colorectal cancer free
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if the “Three-Day” test gave negative result and we do not have any
additional information (symptoms, other tests, etc.)?
(e) Before the “Two-Day” test, Mr. Tanaka’s odds of having colorectal
cancer were 1/80, based on diet, lifestyle, and family history. If Mr.
Tanaka tested positive, what are the odds after the test?

4.7. Blood Tests in Diagnosis of Inflammatory Bowel Disease. Cabrera-
Abreu et al. (2004) explored the reliability of a panel of blood tests in
screening for ulcerative colitis and Crohn’s disease. The subjects were
153 children who were referred to a pediatric gastroenterology depart-
ment with possible inflammatory bowel disease (IBD). Of these, 103 were
found to have IBD (Crohn’s disease 60, ulcerative colitis 37, indeter-
minate colitis 6). The 50 without IBD formed the controls. Blood tests
evaluated several parameters, including hemoglobin, platelet count, ESR,
CRP, and albumin. The optimal screening strategy used a combination
of hemoglobin and platelet counts and “one of two abnormal” as the cri-
terion for positivity. This was associated with a sensitivity of 90.3% and
a specificity of 80.0%.
(a) Construct a table with TP, FP, FN, and TN rounded to the nearest
integer.
(b) Find the prevalence and PPV if the prevalence can be assessed from
the table (the table is obtained from a random sample from the popula-
tion of interest).

4.8. Carpal Tunnel Syndrome Tests. Carpal tunnel syndrome is the most
common entrapment neuropathy. The cause of this syndrome is hard
to determine, but it can include trauma, repetitive maneuvers, certain
diseases, and pregnancy.
Three commonly used tests for carpal tunnel syndrome are Tinel’s sign,
Phalen’s test, and the nerve conduction velocity test. Tinel’s sign and
Phalen’s test are both highly sensitive (0.97 and 0.92, respectively) and
specific (0.91 and 0.88, respectively). The sensitivity and specificity of the
nerve conduction velocity test are 0.93 and 0.87, respectively. Assume
that the tests are conditionally independent.
Calculate the sensitivity and specificity of a combined test if combining
is done
(a) in a serial manner;
(b) in a parallel manner.
(c) Find PPV for tests from (a) and (b) if prevalence of carpal tunnel
syndrome is approximately 50 cases per 1000 subjects in the general
population.
(d) Which of the tests from (a) and (b) would you recommend? Justify
your answer.

4.9. Hepatitic Scintigraphy. A commonly used imaging procedure for de-
tecting abnormalities in the liver is hepatitic scintigraphy. Drum and
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Christacopoulos (1972) reported data on 344 patients who underwent
scintigraphy and were later examined by autopsy, biopsy, or surgical
inspection for a gold standard determination of the presence of liver
pathology (parenchymal, focal, or infiltrative disease). The table summa-
rizes the experimental results. Assume that this table is representative of
the population of interest for this study.

Liver disease (D) No liver disease (C) Total
Abnormal liver scan (P) 231 32 263
Normal liver scan (N) 27 54 81

Total 258 86 344

Find the sensitivity, specificity, prevalence, PPV, NPV, LRP, LRN, and
concordance. Interpret the meaning of a LRP.

4.10. Apparent Prevalence. When the disease status in a sample is not known,
the prevalence cannot be estimated directly. It is estimated using appar-
ent prevalence. There is a distinction between the true prevalence (Pre
– the proportion of a population with the disease) and apparent preva-
lence (APre – the proportion of the population that tests positive for the
disease). If the estimators of sensitivity, specificity, and apparent preva-
lence are available, show that the estimator of prevalence is

Pre =
APre + Sp− 1

Se + Sp− 1
.

See also WinBUGS code apre2pre.odc.

4.11. HAAH Improves the Test for Prostate Cancer. A new procedure based
on a protein called human aspartyl (asparaginyl) beta-hydroxylase, or
HAAH, adds to the accuracy of standard prostate-specific antigen (PSA)
testing for prostate cancer. The findings were presented at the 2008 Gen-
itourinary Cancers Symposium (Keith et al., 2008).
The research involved 233 men with prostate cancer and 43 healthy men,
all over 50 years old. Results showed that the HAAH test had an overall
sensitivity of 95% and specificity of 93%.
Compared to the sensitivity and specificity of PSA (about 40%), this
test may prove particularly useful for men with both low and high PSA
scores. In men with high PSA scores (4 to 10), the addition of HAAH in-
formation could substantially decrease the number of unnecessary biop-
sies, according to the authors.
(a) From the reported percentages, construct a table with true positives,
false positives, true negatives, and false negatives. You will need to
round to the nearest integer since the specificity and sensitivity were
reported as integer percents.
(b) Suppose that for men aged 50+ in the United States, the prevalence of
prostate cancer is 7%. Suppose that Jim Smith is randomly selected from
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this group and tested positive on the HAAH test. What is the probability
that Jim has prostate cancer?
(c) Suppose that Bill Schneider is a randomly selected person from the
sample of n = 276 (= 233 + 43) subjects involved in the HAAH study.
What is the probability that Bill has prostate cancer if he tests positive
and no other information is available? What do you call this probability?
What is different here from (b)?

4.12. miRNA Identifies NSCLS. Tremendous efforts have been made to de-
velop cancer biomarkers by detecting circulating extracellular miRNAs
directly released from tumors. Yet, until recently none of the cell-free
biomarkers has been accepted to be used for early detection of non-small
cell lung cancer (NSCLC).
Ma et al. (2015) investigated whether analysis of miRNA expressions
of peripheral blood mononuclear cells (PBMC) has diagnostic value for
NSCLC. They identified several PBMC miRNAs with a significantly al-
tered expression level in subjects with NSCLC. In a training set of 84
patients with confirmed NSCLC and 69 cancer-free smokers, a panel
of two miRNAs (miRs-19b-3p and -29b-3p) produced 72.62% sensitivity
and 82.61% specificity in identifying NSCLC.
(a) From the data supplied, recover the table with TP, FP, TN, and FN.
(b) If Mr. Molina is one of the participants in the study and tested posi-
tive for NSCLC, what is the probability that he has the disease?
(c) Find F-measure and Youden Index for the test.
(d) The prevalence of undiagnosed NSCLC in the population of smokers
aged over 60 is 0.3%. Mr. Ramussen and Ms. Antonetti are randomly
selected from that population and tested for NSCLC. What is the prob-
ability that Mr. Ramussen has disease if he tested positive? What is the
probability that Ms. Antonetti does not have the disease if she tested
negative.
(e) Based on pretest symptoms there was 1:3 odds that Mr. Bhwana has
disease. He tested positive. What are his posttest odds?

4.13. Creatinine Kinase and Acute Myocardial Infraction. In a study of 773
patients, Radack et al. (1986) used an elevated serum creatinine kinase
concentration as a diagnostic test for acute myocardial infraction. The
following thresholds of a diagnostic test have been suggested: 481, 361,
241, and 121 IU/l; if the creatine kinase concentration exceeds the se-
lected threshold, the test for myocardial infraction is considered posi-
tive. The gold standard is dichotomized: myocardial infraction present
(MIP) and myocardial infraction not present (MINP). Assume that the
sample of 773 subjects is randomly selected from the population, so that
the prevalence of the disease is estimated as 51/773.
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MIP MINP Total
≥ 481 IU/l 9 14 23
< 481 IU/l 42 708 750
≥ 361 IU/l 15 26 41
< 361 IU/l 36 696 732
≥ 241 IU/l 22 50 72
< 241 IU/l 29 672 701
≥ 121 IU/l 28 251 279
< 121 IU/l 23 471 494
Total 51 722 773

(a) For the test that uses 361 IU/l as a threshold, find the sensitivity,
specificity, PPV, NPV, LRP, and degree of agreement.
(b) Using given thresholds, plot the ROC curve. What threshold would
you suggest?
(c) Find the area under the ROC curve.

4.14. FNAC and FNA-Tg Testing for CLN Metastases. A key component for
guiding clinical treatment and selecting surgical methods to combat thy-
roid cancer is the early detection of cervical lymph node (CLN) metas-
tases. Diagnostic methods currently include US-guided fine-needle aspi-
ration cytology (FNAC) and detection of thyroglobulin on FNA (FNA-
Tg). Shi et al. (2015) provide data evaluating the specificity and sensitiv-
ity of these tests alone and combined.
(a) Using the numbers from the following table, determine the sensitiv-
ity, specificity, PPV, and NPV for the FNAC method. Give an interpreta-
tion of each proportion.

FNAC test result CLN metastasis No CLN metastasis Total
Positive test 64 0 64
Negative test 30 54 84

Total 94 54 148

(b) The same patients from part (a) were also tested using FNA-Tg/serum
Tg. This method was found to have a sensitivity of 91.5% and specificity
of 88.9%. Fill out the following table for TP, FP, TN, and FN. (Round
entries to the nearest integer)

FNATg/ Tg Test result CLN metastasis No CLN metastasis Total
Positive test
Negative test

Total 148

(c) Find the sensitivity and specificity of a parallel combination of FNAC
and FNA-Tg/serum Tg tests.
(d) Further results from the same group of patients finds a combination
of tests with TP = 90 and TN = 52. A physician wants to use whichever
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test (or combination of tests) gives the best accuracy. Which do you rec-
ommend?

4.15. Asthma. A medical research team wished to evaluate a proposed screen-
ing test for asthma. The test was given to a random sample of 100 pa-
tients with asthma and to an independent sample of 200 subjects without
symptoms of the disease.
The two samples were drawn from a population of subjects who were 50
years old or older. The results are as follows:

Test result Asthma, D No asthma, Dc Total
Positive test, T 92 13 105
Negative test, Tc 8 187 195

Total 100 200 300

(a) Using the numbers from the table, estimate the sensitivity and speci-
ficity. Interpret these proportions in terms of the problem, one sentence
each.
(b) The probability of D (prevalence) as the rate of the disease in the
relevant population (≥ 50 y.o.) is estimated to be 6.3%. Find the PPV
using Bayes’ rule.

4.16. H. pylori and ELISA. Marshal et al. (1999) evaluated an enzyme-linked
immunosorbent assay (ELISA) for the detection of anti-Helicobacter pylori
specific IgG antibodies in specimens of oral fluid. Antral biopsy spec-
imens, serum and oral fluid samples were collected from 81 patients
attending for upper gastrointestinal endoscopy. The presence or absence
of current H. pylori infection was determined by culture, histology, and
urease detection that served as gold standard. Anti-H. pylori specific IgG
was detected in oral fluid by an ELISA developed for this study. In all,
34 (42%) of 81 patients were positive for H. pylori by the battery of gold
standard tests. The diagnosis was established by optical density (OD)
readings measured at a wavelength of 490 nm, taken on specially pre-
pared plates with specimens.
Depending on the OD cut-point, the following list of sensitivities and
specificities was reported:
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OD cut-point Sensitivity Specificity
0.1 1.00 0.43
0.2 1.00 0.70
0.3 0.94 0.85
0.4 0.91 0.85
0.5 0.82 0.87
0.6 0.76 0.91
0.7 0.74 0.94
0.8 0.71 0.96
0.9 0.62 0.96
1.0 0.62 0.96

In the same experiment, Marshall et al. also compared the described oral
fluid ELISA performance to the standard serum ELISA. The following
results were reported:

H. pylori No H. pylori
Oral fluid ELISA (OD=0.3) + 32 7

– 2 40
Serum ELISA + 31 4

– 3 43

(a) Using MATLAB, find the sequence of PPV for all OD thresholds.
Using PPV and Se sequences, find the sequence of F-measures. What
value of OD maximizes the F-measure?
(b) Marshal et al. state that OD = 0.3 should be used as a threshold in
this test. Can this be confirmed by the Youden index calculation?
(c) Find the area under the ROC curve, AUC.

4.17. Swine Toxoplasmosis. Ingestion of undercooked infected pork is con-
sidered an important source of human toxoplasmosis. Serologic screen-
ing could have future use for surveillance of animal populations and
certification of freedom from Toxoplasma gondii. Results on three sero-
logic tests for the diagnosis of toxoplasmosis by modified agglutination
test (MAT), enzyme-linked immunosorbent assay (ELISA), and Sabin–
Feldman dye test (DT), are provided. The conditional covariances for
sensitivity and specificity proportions, cSe and cSp, are defined on page
142.
The data are a part of an extensive analysis by Gardner et al. (2000).

Test Sensitivity Specificity
ELISA 73% 86%
MAT 83% 90%
DT 54% 91%

Tests cSe cSp

ELISA, MAT 0.08 0.04
MAT, DT 0.09 0.04
DT, ELISA 0.09 0.03

(a) Find sensitivity and specificity of a parallel combination of ELISA
and MAT tests.
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(b) Find sensitivity and specificity of a serial combination of MAT and
DT tests.
(c) Which test would you favor: a parallel combination of ELISA and
MAT or a serial combination of MAT and DT?

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch4.ROC/

auc.m, cancerslope.m, hypothyroidism.m, Kinaseandmi.m, rocada.m,

RocDdimer.m, sesp.m, simulatetesting.m, simulatetseting2.m

apre2pre.odc

ADA.mat, pasi.dat, roccreatine.vi, ROCTBCA.XLS, slopesmammo.dat
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Chapter 5

Random Variables

The generation of random numbers is too important to be left to chance.

– Robert R. Coveyou

WHAT IS COVERED IN THIS CHAPTER

• Definition of Random Variables and Their Basic Characteristics
• Discrete Random Variables: Bernoulli, Binomial, Poisson, Hyper-

geometric, Geometric, Negative Binomial, and Multinomial
• Continuous Random Variables: Uniform, Exponential, Gamma,

Inverse Gamma, Beta, Double Exponential, Logistic, Weibull, Pareto,
and Dirichlet
• Transformation of Random Variables
• Markov Chains

5.1 Introduction

Thus far we have been concerned with random experiments, events, and
their probabilities. In this chapter we will discuss random variables and
their probability distributions. The outcomes of an experiment can be asso-
ciated with numerical values, and this association will help us arrive at the
definition of a random variable.

161
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A random variable is a variable whose numerical value is determined
by the outcome of a random experiment.

Thus, a random variable is a mapping from the sample space of an
experiment, S , to a set of real numbers. In this respect, the term random
variable is a misnomer. The more appropriate term would be random function
or random mapping, given that X maps a sample space S to real numbers.
We generally denote random variables by capital letters X,Y, Z, . . . .

Example 5.1. Three Coin Tosses. Suppose a fair coin is tossed three times.
We can define several random variables connected with this experiment.
For example, we can set X to be the number of heads, Y the difference
between the number of heads and the number of tails, and Z an indicator
that heads appeared, etc.

Random variables X, Y, and Z are fully described by their probability
distributions, associated with the sample space on which they are defined.

For random variable X the possible realizations are 0 (no heads in three
flips), 1 (exactly one head), 2 (exactly two heads), and 3 (all heads). Fully
describing random variable X amounts to finding the probabilities of all
possible realizations. For instance, the realization {X = 2} corresponds to
either outcome in the event {HHT, HTH, THH}. Thus, the probability of X
taking value 2 is equal to the probability of the event {HHT, HTH, THH},
which is equal to 3/8. After finding the probabilities for other outcomes,
we determine the distribution of random variable X:

X 0 1 2 3
Prob 1/8 3/8 3/8 1/8

.

�

The probability distribution of a random variable X is a table (assign-
ment, rule, formula) that assigns probabilities to realizations of X, or
sets of realizations.

Most random variables of interest to us will be the results of random
sampling. There is a general classification of random variables that is based
on the nature of realizations they can take. Random variables that take
values from a finite or countable set are called discrete random variables.
Random variable X from Example 5.1 is an example of a discrete random
variable. Another type of random variable can take any value from an inter-
val on a real line. These are called continuous random variables. The results of
measurements are usually modeled by continuous random variables. Next,
we will describe discrete and continuous random variables in a more struc-
tured manner.
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5.2 Discrete Random Variables

Let random variable X take discrete values x1, x2, . . . , xn, . . . with probabili-
ties p1, p2, . . . , pn, . . . , ∑n pn = 1. The probability distribution function (PDF)
is simply an assignment of probabilities to the realizations of X and is given
by the following table.

X x1 x2 · · · xn · · ·
Prob p1 p2 · · · pn · · · .

The probabilities pi sum up to 1: ∑i pi = 1. It is important to emphasize
that discrete random variables can have an infinite number of realizations,
as long as the infinite sum of the probabilities converges to 1. The PDF
for discrete random variables is also called the probability mass function
(PMF). The cumulative distribution function (CDF)

F(x) = P(X ≤ x) = ∑
n:xn≤x

pn,

sums the probabilities of all realizations smaller than or equal to x. Fig-
ure 5.1a shows an example of a discrete random variable X with four values
and a CDF as the sum of probabilities in the range X ≤ x shown in yellow.

(a) (b)

Fig. 5.1 (a) Example of a cumulative distribution function for discrete random vari-
able X. The CDF is the sum of probabilities in the region X ≤ x (yellow). (b) Expectation
as a point of balance for “masses” p1, . . . , p4 located at the points x1, . . . , x4.

The expectation of X is given by

EX = x1 p1 + · · ·+ xn pn + · · · = ∑
n

xn pn

and is a weighted average of all possible realizations with their probabilities
as weights. Figure 5.1b illustrates the interpretation of the expectation as the
point of balance for a system with weights p1, . . . , p4 located at the locations
x1, . . . , x4.



164 5 Random Variables

The distribution and expectation of a function g(X) are simple when
X is discrete: one applies function g to realizations of X and retains the
probabilities:

g(X) g(x1) g(x2) · · · g(xn) · · ·
Prob p1 p2 · · · pn · · ·

and
Eg(X) = g(x1)p1 + · · ·+ g(xn)pn + · · · = ∑

n

g(xn)pn.

The kth moment of a discrete random variable X is defined as

mk = EXk = ∑
n

xk
n pn,

and the kth central moment is

µk = E(X−EX)k = ∑
n

(xn −EX)k pn.

The first moment is the expectation, m1 = EX, and the second central mo-
ment is the variance, µ2 = Var (X) = E(X−EX)2. Thus, the variance for a
discrete random variable is

Var (X) = ∑
n

(xn −EX)2 pn.

The skewness and kurtosis of X are defined via the central moments as

γ =
µ3

µ3/2
2

=
E(X−EX)3

(Var (X))3/2 and κ =
µ4

µ2
2
=

E(X−EX)4

(Var (X))2 . (5.1)

The following properties are common for both discrete and continuous
random variables:

For any set of random variables X1, X2, . . . , Xn

E(X1 + X2 + · · ·+ Xn) = EX1 + EX2 + · · ·+ EXn. (5.2)

For any constant c, E(c) = c and E(cX) = c EX.

The independence of two random variables is defined via the indepen-
dence of events. Two random variables X and Y are independent if for arbi-
trary intervals A and B, the events {X ∈ A} and {Y ∈ B} are independent,
that is, when

P(X ∈ A, Y ∈ B) = P(X ∈ A) ·P(Y ∈ B),
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holds.

If the random variables X1, X2, . . . , Xn are independent, then

E(X1 · X2 · . . . · Xn) = EX1 ·EX2 · . . . ·EXn, and

Var (X1 + X2 + · · ·+ Xn) = Var X1 + Var X2 + · · ·+ Var Xn. (5.3)

For a constant c, Var (c) = 0, and Var (cX) = c2
Var X.

If X1, X2, . . . , Xn, . . . are independent and identically distributed random
variables, we will refer to them as i.i.d. random variables.

The arguments behind these properties involve the linearity of the sums
(for discrete variables) and integrals (for continuous variables). The inde-
pendence of the Xis is critical for (5.3).

Moment-Generating Function. A particularly useful function for find-
ing moments and for more advanced operations with random variables
is the moment-generating function. For a random variable X, the moment-
generating function is defined as

mX(t) = EetX = ∑
n

pnetxn , (5.4)

which for discrete random variables has the form mX(t) = ∑n pnetxn . When
the moment-generating function exists, it uniquely determines the distri-
bution. If X has distribution FX and Y has distribution FY, and if mX(t) =
mY(t) for all t, then it follows that FX = FY.

The name “moment-generating” is motivated by the fact that the kth
derivative of mX(t) evaluated at t = 0 results in the kth moment of X, that

is, m
(k)
X (t) = ∑n pnxk

netxn , and m
(k)
X (0) = ∑n pnxk

n = EXk. For example, if

X 0 1 3
Prob 0.2 0.3 0.5

,

then mX(t) = 0.2 + 0.3 et + 0.5 e3t. Since m′X(t) = 0.3 et + 1.5 e3t, the first
moment is EX = m′(0) = 0.3 + 1.5 = 1.8. The second derivative is m′′X(t) =
0.3 et + 4.5 e3t, the second moment is EX2 = m′′(0) = 0.3+ 4.5 = 4.8, and so
on.

In addition to generating the moments, moment-generating functions
satisfy

mX+Y(t) = mX(t) mY(t), (5.5)

mcX(t) = mX(ct),
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which helps in identifying distributions of linear combinations of random
variables whenever their moment-generating functions exist.

The properties in (5.5) follow from the properties of expectations. When
X and Y are independent, etX and etY are independent as well, and by (5.3)
Eet(X+Y) = EetXetY = EetX ·EetY.

Example 5.2. Apgar Score. In the early 1950s, Dr. Virginia Apgar proposed
a method to assess the health of a newborn child by assigning a grade
referred to as the Apgar score (Apgar, 1953). It is given twice for each
newborn, once at 1 min after birth and again at 5 min after birth.

Possible values for the Apgar score are 0, 1, 2, · · · , 9, and 10. A child’s
score is determined by five factors: muscle tone, skin color, respiratory ef-
fort, strength of heartbeat, and reflex, with a high score indicating a healthy
infant. Let the random variable X denote the Apgar score of a randomly
selected newborn infant at a particular hospital. Suppose that X has a given
probability distribution:

X 0 1 2 3 4 5 6 7 8 9 10
Prob 0.002 0.001 0.002 0.005 0.02 0.04 0.17 0.38 0.25 0.12 0.01.

The following MATLAB program calculates (a) EX, (b) Var (X), (c)
EX4, (d) F(x), (e) P(X < 4), and (f) P(2 < X ≤ 3):

X = 0:10;

p = [0.002 0.001 0.002 0.005 0.02 ...

0.04 0.17 0.38 0.25 0.12 0.01];

EX = X * p’ %(a) EX = 7.1600

VarX = (X-EX).^2 * p’ %(b) VarX = 1.5684

EX4 = X.^4 * p’ %(c) EX4 = 3.0746e+003

ps = [0 cumsum(p)];

Fx = @(x) ps( min(max( floor(x)+2, 1),12) ); %handle

Fx(3.45) %(d) ans = 0.0100

sum(p(X < 4)) %(e) ans = 0.0100

sum(p(X > 2 & X <= 3)) %(f) ans = 0.0050

Note that the CDF F is expressed as function handle Fx to a custom-
made function.
�

Example 5.3. Cells. Randomly observed circular cells on a plate have a di-
ameter D that is a random variable with the following PMF:

D 8 12 16
Prob 0.4 0.3 0.3

.

(a) Find the CDF for D.
(b) Find the PMF for the random variable A = D2π/4 (the area of a cell).

Show that EA 6= (ED)2π/4. Explain.
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(c) Find the variance Var (A).
(d) Find the moment-generating functions mD(t) and mA(t). Find Var (A)

using its moment-generating function.
(e) It is known that a cell with D > 8 is observed. Find the probability

of D = 12 taking into account this information.
Solution:

(a)

FD(d) =





0, d < 8
0.4, 8≤ d < 12
0.7, 12≤ d < 16
1, d ≥ 16

(b)

A 82 π/4 122 π/4 162 π/4
Prob 0.4 0.3 0.3

A 16 π 36 π 64 π
Prob 0.4 0.3 0.3

EA = 16 π( 4
10) + 36 π( 3

10 ) + 64 π( 3
10) =

364 π
10 = 114.3540.

ED = 8( 4
10) + 12( 3

10) + 16( 3
10) = 116/10 = 11.6

(ED)2 π
4 = 3364 π

100 6= 364 π
10 .

The expectation is a linear operator, and such a “plug-in” operation
would work only if the random variable A were a linear function of D, that
is, if A = αD + β, EA = αED + β. In our case, A is quadratic in D, and
“passing” the expectation through the equation is not valid.

(c)

Var A = EA2 − (EA)2 = 1720 π2 − 1324.96 π2 = 395.04 π2,

since

A2 162 π2 362 π2 642 π2

Prob 0.4 0.3 0.3

and EA2 = 1720 π2.
(d) mD(t) =EetD = 0.4e8t + 0.3e12t + 0.3e16t, and mA(t) =EetA = 0.4e16πt +

0.3e36πt + 0.3e64πt.
From m′A(t) = 6.4e16πt + 10.8e36πt + 19.2e64πt, and m′′A(t) = 6.4e16πt +

10.8e36πt + 19.2e64πt, we find m′A(0) = 36.4π and m′′A(0) = 1720π, leading to
the result in (c).

(e) When D > 8 is true, only two values for D are possible, 12 and 16.
These values are equally likely. Thus, the distribution for D|{D > 8} is

D|{D > 8} 12 16
Prob 0.3/0.6 0.3/0.6

,

and P(D = 12|D > 8) = 1/2. We divided 0.3 by 0.6 since P(D > 8) =
0.6. From the definition of the conditional probability it follows that,
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P(D = 12|D > 8) = P(D = 12, D > 8)/P(D > 8) = P(D = 12)/P(D > 8) =
0.3/0.6 = 1/2.
�

There are important properties of discrete distributions in which the
realizations x1, x2, . . . , xn are irrelevant and the focus is on the probabilities
only, such as the measure of entropy. For a discrete random variable where
the probabilities are p = (p1, p2, . . . , pn) the (Shannon) entropy is defined as

H(p) = −∑
i

pi log(pi).

Entropy is a measure of the uncertainty of a random variable and for fi-
nite discrete distributions achieves its maximum when the probabilities of
realizations are equal, p = (1/n,1/n, . . . ,1/n).

For the distribution in Example 5.2, the entropy is 1.5812.

ps = [.002 .001 .002 .005 .02 .04 .17 .38 .25 .12 .01]

entropy = @(p) -sum( p(p>0) .* log(p(p>0)))

entropy(ps) %1.5812

The maximum entropy for distributions with 11 possible realizations is
2.3979.

Jointly Distributed Discrete Random Variables. So far we have discussed
probability distributions of a single random variable. As we delve deeper
into this subject, a two-dimensional extension will be needed.

When two or more random variables constitute the coordinates of a
random vector, their joint distribution is often of interest. For a random
vector (X,Y) the joint distribution function is defined via the probability of
the event {X ≤ x,Y ≤ y},

F(x,y) = P(X ≤ x,Y ≤ y).

The univariate case P(a ≤ X ≤ b) = F(b)− F(a) takes the bivariate form

P(a1 ≤ X ≤ a2,b1 ≤ Y ≤ b2) = F(a2,b2)− F(a1,b2)− F(a2,b1) + F(a1,b1).

Marginal CDFs FX and FY are defined as follows: for X, FX(x) = F(x,∞)
and for Y as FY(y) = F(∞,y).

For a discrete bivariate random variable, the PMF is

p(x,y) = P(X = x,Y = y), ∑
x,y

p(x,y) = 1,

while for marginal random variables X and Y the PMFs are

pX(x) = ∑
y

p(x,y), pY(y) = ∑
x

p(x,y).
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The conditional distribution of X given Y = y is defined as

pX|Y(x|y) = p(x,y)/pY(y),

and, similarly, the conditional distribution for Y given X = x is

pY|X(y|x) = p(x,y)/pX(x).

When X and Y are independent, for any “cell” (x,y), p(x,y) = P(X =
x,Y = y) = P(X = x)P(Y = y) = pX(x) pY(y), that is, the joint proba-
bility of (x,y) is equal to the product of the marginal probabilities. If
p(x,y) = pX(x)pY(y) holds for every (x,y), then X and Y are independent.
The independence of two discrete random variables is fundamental for the
inference in contingency tables (Chapter 12) and will be revisited later.

Example 5.4. PMF of a two-dimensional discrete random variable is given
by the following table:

Y
5 10 15

X
1 0.1 0.2 0.3
2 0.25 0.1 0.05

The marginal distributions for X and Y are

X 1 2
Prob 0.6 0.4

and
Y 5 10 15
Prob 0.35 0.3 0.35

while the conditional distribution for X when Y = 10 and the conditional
distribution for Y when X = 2 are

X|Y = 10 1 2

Prob
0.2
0.3

0.1
0.3

and Y|X = 2 5 10 15

Prob
0.25
0.4

0.1
0.4

0.05
0.4

,

respectively. Here X and Y are not independent since

0.1 = P(X = 1,Y = 5) 6= P(X = 1)P(Y = 5) = 0.6 · 0.35 = 0.21.

�

For two independent random variables X and Y, EXY = EX ·EY; that
is, the expectation of a product of random variables is equal to the product
of their expectations.
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The covariance of two random variables X and Y is defined as

Cov(X,Y) = E((X−EX) · (Y−EY)) = EXY−EX ·EY.

For a discrete random vector (X,Y), EXY = ∑x ∑y xyp(x,y), and the
covariance is expressed as

Cov(X,Y) = ∑
x

∑
y

xyp(x,y)−∑
x

xpX(x)∑
y

ypY(y).

It is easy to see that the covariance satisfies the following properties:

Cov(X, X) = Var (X),

Cov(X,Y) = Cov(Y, X), and

Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z).

For (X,Y) from Example 5.4 the covariance between X and Y is −1.
The calculation is provided in the following MATLAB code. Note that the
distribution of the product XY is found in order to calculate EXY.

X = [1 2]; pX = [0.6 0.4]; EX = X * pX’ %EX = 1.4000

Y = [5 10 15]; pY = [0.35 0.3 0.35]; EY = Y*pY’ %EY =10

XY = [5 10 15 20 30];

pXY = [0.1 0.2+0.25 0.3 0.1 0.05]; EXY = XY * pXY’ %EXY = 13

CovXY = EXY - EX * EY %CovXY = -1

The correlation between random variables X and Y is the covariance nor-
malized by the standard deviations:

Corr(X,Y) =
Cov(X,Y)√

Var X ·Var Y
.

In Example 5.4, the variances of X and Y are Var X = 0.24 and Var Y = 17.5.
Using these values, we find that the correlation Corr(X,Y) is−1/

√
0.24 · 17.5=

−0.488. Thus, the random components in (X,Y) are negatively correlated.

5.3 Some Standard Discrete Distributions

5.3.1 Discrete Uniform Distribution

A random variable X that takes values from 1 to n with equal probabilities
of 1/n is called a discrete uniform random variable. In MATLAB unidpdf
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and unidcdf are the PDF and CDF of X, while unidinv is its quantile. For
example,

unidpdf(1:5, 5)

%ans = 0.2000 0.2000 0.2000 0.2000 0.2000

unidcdf(1:5, 5)

%ans = 0.2000 0.4000 0.6000 0.8000 1.0000

are the PDF and CDF of the discrete uniform distribution on {1,2,3,4,5}.
From ∑

n
i=1 i = n(n+ 1)/2, and ∑

n
i=1 i2 = n(n + 1)(2n+ 1)/6, one can derive

EX = (n + 1)/2 and Var X = (n2 − 1)/12. One of the important uses of
discrete uniform distribution is in nonparametric statistics (page 894).

Example 5.5. Discrete Uniform: A Basis for Random Sampling. Suppose
that a population is finite and that we need a sample such that every subject
in the population has an equal chance of being selected.

If the population size is N and a sample of size n is needed, then if
replacement is allowed (each sampled object is recorded and then returned
back to the population), there would be Nn possible equally likely samples.
If replacement is not allowed or possible (all subjects in the selected sample
are to be different, i.e., sampling is without replacement), then there would
be (N

n ) different equally likely samples (see Section 3.5 for a definition of
(N

n)).
The theoretical model for random sampling is the discrete uniform dis-

tribution. If replacement is allowed, each of {1,2, . . . , N} has a probability of
1/N of being selected. In the case of no replacement, possible subsets of n

subjects can be indexed as {1,2, . . . , (N
n )} and each subset has a probability

of 1/(N
n ) of being selected.

In MATLAB, random sampling is achieved by the function randsample. If
the population has n indexed subjects (from 1 to n), the indices in a random
sample of size k are found as indices=randsample(n,k).

If it is possible to code the entire population as a vector population, then
taking a sample of size k is done by y=randsample(population,k).

The default is set to sampling without replacement. For sampling with
replacement, the flag for replacement should be ’true’. If the sampling is
done with replacement, it can be weighted with a nonnegative weight as-
signed to each subject in the population: y=randsample(population,k,true,w).
The size of weight vector w should be the same as that of population.

For instance,

randsample([’A’ ’C’ ’G’ ’T’],50,true,[1 1.5 1.4 0.9])

%ans = GCCTAGGGCATCCAAGTCGCGGCCGAGAATCAACGTTGCAGTGCTCAAAT

�
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5.3.2 Bernoulli and Binomial Distributions

A simple Bernoulli random variable Y is dichotomous with P(Y = 1) = p
and P(Y = 0) = 1− p for some 0≤ p≤ 1 and is denoted as Y ∼Ber(p). It is
named after Jakob Bernoulli (1654–1705), a prominent Swiss mathematician
and astronomer. Suppose that an experiment consists of n independent tri-
als (Y1, . . . ,Yn) in which two outcomes are possible (e.g., success or failure),
with P(success) = P(Y = 1) = p for each trial. If X = x is defined as the
number of successes (out of n), then X = Y1 + Y2 + · · ·+ Yn, and there are
(n

x) arrangements of x successes and n − x failures, each having the same
probability px(1− p)n−x. X is a binomial random variable with the PMF

pX(x) =

(
n

x

)
px(1− p)n−x, x = 0,1, . . . ,n.

This is denoted by X ∼ Bin(n, p). From the moment-generating function
mX(t) = (pet + (1− p))n, we obtain µ = EX = np and σ2 = Var X = np(1−
p).

The cumulative distribution for a binomial random variable is not sim-
plified beyond the sum, that is, F(x) = ∑i≤x pX(i). However, interval prob-
abilities can be computed in MATLAB using binocdf(x,n,p), which com-
putes the CDF at value x. The PMF can also be computed in MATLAB
using binopdf(x,n,p). In WinBUGS, the binomial distribution is denoted as
dbin(p,n). Note the reversed order of parameters n and p.

Example 5.6. Left-Handed Families. About 10% of the world’s population
is left-handed. Left-handedness is more prevalent in men (1/9) than in
women (1/13). Studies have shown that left-handedness is linked to the
gene LRRTM1, which affects the symmetry of the brain. In addition to
its genetic origins, left-handedness also has developmental origins. When
both parents are left-handed, a child has a probability of 0.26 of being left-
handed.

Ten families in which both parents are left-handed and have a single
child are selected, and the ten children are inspected for left-handedness.
Let X be the number of left-handed children among the inspected. What is
the probability that X

(a) Is equal to 3?
(b) Falls anywhere between 3 and 6, inclusive?
(c) Is at most 4?
(d) Is not less than 4?
(e) Would you be surprised if the number of left-handed children among

the ten inspected was eight or more? Why or why not?
The solution is given by the following annotated MATLAB script:

% Solution



5.3 Some Standard Discrete Distributions 173

disp(’(a) Bin(10, 0.26): P(X = 3)’);

binopdf(3, 10, 0.26)

% ans = 0.2563

disp(’(b) Bin(10, 0.26): P(3 <= X <= 6)’);

% using binopdf(x, n, p)

disp(’(b)-using PDF’); binopdf(3, 10, 0.26) + ...

binopdf(4, 10, 0.26) + binopdf(5, 10, 0.26)+ binopdf(6, 10, 0.26)

% using binocdf(x, n, p)

disp(’(b)-using CDF’); binocdf(6, 10, 0.26) - binocdf(2, 10, 0.26)

% ans = 0.4998

%(c) at most four i.e., X <= 4

disp(’(c) Bin(10, 0.26): P(X <= 4)’); binocdf(4, 10, 0.26)

% ans = 0.9096

%(d) not less than 4 is 4,5,...,10, or complement of <=3

disp(’(d) Bin(12, 0.7): P(X >= 4)’); 1-binocdf(3, 10, 0.26)

% ans = 0.2479

disp(’(e) Bin(10, 0.26): P(X >= 8)’);

1-binocdf(7, 10, 0.26)

% ans = 5.5618e-04

% Yes, this would be a surprising outcome since

% the probability of such an event is rather small

Panels (a) and (b) in Figure 5.2 show, respectively, the PMF and CDF for
the binomial Bin(10,0.26) distribution.
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Fig. 5.2 Binomial Bin(10,0.26) : (a) PMF and (b) CDF.

�

How does one recognize that random variable X has a binomial dis-
tribution?

(a) It allows an interpretation as the sum of “successes” in n
Bernoulli trials, for n fixed.
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(b) The Bernoulli trials are independent.
(c) The Bernoulli probability p is constant for all n trials.

Next we discuss how to deal with a binomial-like framework in which
condition (c) is violated.

Generalized Binomial Sampling*. Suppose that n independent experi-
ments are performed and that an event A has a probability of pi of appear-
ing in the ith experiment.

We are interested in the probability that A appeared exactly k times
in the n experiments. The binomial setup is not directly applicable since
the probabilities of A differ from experiment to experiment. However, the
binomial setup is useful as a hint on how to solve the general case. In the
binomial setup the probability of k events A in n experiments is equal to the
coefficient of zk in the expansion of G(z) = (pz + q)n. Indeed, (pz + q)n =
pnq0zn + · · ·+ (n

k)pkqn−kzk + · · ·+ npqn−1z + p0qn.
�

The polynomial G(z) is called the probability-generating function. If X
is a discrete integer-valued random variable such that pn = P(X = n), then
its probability-generating function is defined as

GX(z) = EzX = ∑
n

pnzn.

Note that in the polynomial GX(z), the probability pn = P(X = n) is the
coefficient of the power zn. Also, GX(e

z) is the moment-generating function
mX(z).

In the general binomial setup, the polynomial (pz + q)n becomes

GX(z) = (p1z + q1)× (p2z + q2)× · · · × (pnz + qn) =
n

∑
i=0

aiz
i, (5.6)

and the probability that there are k events A in n experiments is equal
to the coefficient ak of zk in the polynomial GX(z). This follows from the
two properties of G(z): (i) When X and Y are independent, GX+Y(z) =
GX(z) GY(z), and (ii) if X is a Bernoulli Ber(p), then GX(z) = pz + q.

Example 5.7. System with Unreliable Components. Let S be a system con-
sisting of ten unreliable components that work and fail independently of
each other. The components are operational in some fixed time interval
[0, T] with the probabilities

ps =[0.5 0.3 0.2 0.5 0.6 0.4 0.2 0.4 0.7 0.8];

Let a random variable X represent the number of components that re-
main operational after time T.

Find (a) the distribution for X and (b) EX and Var X.
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ps =[0.5 0.3 0.2 0.5 0.6 0.4 0.2 0.4 0.7 0.8];

qs = 1- ps;

all = [ps’ qs’];

[m n]= size(all);

Gz = [1]; %initial

for i = 1:m

Gz = conv(Gz, all(i,:) );

% conv as polynomial multiplication

end

%at the end, Gz is the product of p_i x + q_i

%

sum(Gz) %the sum is 1

probs = Gz(end:-1:1);

k = 0:10

% probs=[0.0010 0.0117 0.0578 0.1547 0.2507 ...

% 0.2582 0.1716 0.0727 0.0188 0.0027 0.0002]

EX = k * probs’ %expectation 4.6

EX2 = k.^2 * probs’;

VX = EX2 - (EX)^2 %variance 2.12

Note that in the above script we used the convolution operation conv to
multiply polynomials, as in

conv([2 -1],[1 3 2])

% ans = 2 5 1 -2,

which is interpreted as (2z− 1) · (z2 + 3z + 2) = 2z3 + 5z2 + z− 2.
From the MATLAB calculations we find that the probability-generating

function G(z) from (5.6) is

G(z) = 0.00016128z10 + 0.00268992z9 + 0.01883264z8 + 0.07273456z7

+ 0.17155808z6 + 0.25816544z5 + 0.25070848z4 + 0.15470576z3

+ 0.05777184z2 + 0.01170432z+ 0.00096768,

and the random variable X, the number of operational items, has the fol-
lowing distribution (after rounding to four decimal places):

X 0 1 2 3 4 5 6 7 8 9 10
Prob 0.0010 0.0117 0.0578 0.1547 0.2507 0.2582 0.1716 0.0727 0.0188 0.0027 0.0002

.

The answers to (b) are EX = 4.6 and Var X = 2.12.
Note that a “solution” in which one finds the average of the compo-

nent probabilities, ps, as p̄ = 1
10 (0.5 + 0.3 + · · ·+ 0.8) = 0.46, and then ap-

plies the standard binomial calculation, will lead to the correct expecta-
tion, 4.6, because of linearity. However, the variance and probabilities for
X would be different. For example, the probability P(X = 4) would be
binopdf(4,10,0.46)=0.2331, while the correct value is 0.2507.
�

Example 5.8. Surviving Pairs.
�

Daniel Bernoulli (1700–1782), a nephew
of Jacob Bernoulli, posed and solved the following problem. If among N
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married pairs there are m random deaths, what is the expected number of
intact marriages?

Suppose that there are N pairs of balls denoted by 1,1, 2,2, . . . , N,N. If
m balls are selected at random and removed, what is the expected number
of intact pairs? Consider the pair i. Define a Bernoulli random variable
Yi equal to 1 if pair i remains intact after the removal of m balls, and 0
otherwise. Then the number of unaffected pairs Nm would be the sum of
all Yi, for i = 1, . . . , N.

The probability that pair i is not affected by the removal of m balls is

(2N−2
m )

(2N
m )

=
(2N−2)(2N−3)...(2N−2−m+2)(2N−2−m+1)

m!
2N(2N−1)...(2N−m+2)(2N−m+1)

m!

=
(2N −m)(2N−m− 1)

2N(2N− 1)
,

and it is equal to EYi. If Nm is the number of unaffected pairs, then

Nm = Y1 + Y2 + · · ·+ YN

ENm = EY1 + EY2 + · · ·+ EYN = NEYi =
(2N −m)(2N−m− 1)

2(2N− 1)
.

For example, if among N = 1000 couples there are 100 random deaths,
then the expected number of unaffected couples is 902.4762. If among N =
1000 couples there are 1936 deaths, then a single couple is expected to
remain intact.

Even though Nm is the sum of N Bernoulli random variables Yi, each

with the same probability p = (2N−m)(2N−m−1)
2N(2N−1) , it does not have a binomial

distribution due to the dependence among Yis.
�

5.3.3 Hypergeometric Distribution

Suppose a box contains m balls, k of which are white and m− k of which
are black. Suppose we randomly select and remove n balls from the box
without replacement, so that when sampling is finished, there are only m− n
balls left in the box. If X is the number of white balls in n selected, then the
probability that X = x is

pX(x) =
(k

x)(
m−k
n−x)

(m
n)

, x ∈ {0,1, . . . ,min{n,k}}.

Random variable X is called hypergeometric and denoted by X∼HG(m,k,n),
where m,k, and n are integer parameters.
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This PMF can be deduced by counting rules. There are (m
n) different

ways of selecting the n balls from a box with a total of m balls. From these
(each equally likely), there are (k

x) ways of selecting x white balls from the k

white balls in the box and, similarly, (m−k
n−x) ways of choosing the black balls.

The probability P(X = x) is the ratio of these two numbers. The PDF and
CDF of HG(40,15,10) are shown in Figure 5.3.

It can be shown that the mean and variance for the hypergeometric
distribution are, respectively,

EX = n
k

m
and Var X = n

k

m

(
1− k

m

)
m− n

m− 1
.

The MATLAB commands for hypergeometric CDF, PDF, quantile, and
a random number are hygecdf, hygepdf, hygeinv, and hygernd. WinBUGS does
not have a built-in command for a hypergeometric distribution.

Example 5.9. CASES. In a group of 40 people, 15 are “CASES” and 25 are
“CONTROLS.” A sample of 10 subjects is selected [(A) with replacement
and (B) without replacement]. Find the probability P(at least 2 subjects are
CASES).

%Solution

%(A) - with replacement (binomial case);

%Let X be the number of CASES. The event

%X is at least 2 is the complement of X <= 1.

disp(’(A) Bin(10, 15/40): P(X >= 2)’); 1 - binocdf(1, 10, 15/40)

% ans = 0.9363

% or

1 - binopdf(0, 10, 15/40) - binopdf(1, 10, 15/40)

% ans = 0.9363

%B - without replacement (hypergeometric case) hygecdf(x, m, k, n)

% where m size of population,

% k - number of cases among m, and n sample size.

disp(’(B) HyGe(40,15,10): P(X >=2)’); 1 - hygecdf(1, 40, 15, 10)

% ans = 0.9600, or

1 - hygepdf(0, 40, 15, 10)- hygepdf(1, 40, 15, 10)

% ans = 0.9600

�

Example 5.10. Capture–Recapture Models. Suppose that an unknown num-
ber m of animals inhabit a particular region. To assess the population size,
ecologists often apply the following capture–recapture scheme. They catch
k animals, tag them, and release them back into the region. After some time,
when the tagged animals are expected to be mixed well with the untagged,
a second catch of size n is made. Suppose that x animals in the second
sample are found to be tagged.
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Fig. 5.3 The PDF and CDF for hypergeometric distribution with m = 40, k = 15, and
n = 10.

If catching any animal is assumed equally likely, the number x of tagged
animals in the second sample is hypergeometric HG(m,k,n). Ecologists use
the observed ratio x/n as an approximation to k/m, from which m is esti-
mated as

m̂ =
k× n

x
.

A statistically better estimator of m (known as the Schnabel formula) is
given as

m̂ =
(k + 1)× (n + 1)

(x + 1)
− 1.

In epidemiology and public health, capture–recapture methods use mul-
tiple, routinely collected, computerized data sources to estimate various
population indexes.

For example, Gjini et al. (2004) investigated the number of matching
records of pneumococcal meningitis among adults in England by compar-
ing data from Hospital Episode Statistics (HES) and the Public Health Lab-
oratory Services reconciled laboratory records (RLR). The time period cov-
ered was April 1996 to December 1999. The authors found 646 records in
RLR and 737 in HES, and matching based on demographic information was
possible in 296 cases.

By the capture–recapture method the estimated incidence is m̂ = 646 ·
737/296 = 1608.5 ≈ 1609. If Schnabel’s formula is used, then m̂ ≈ 1607.
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Thus, the total incidence of of pneumococcal meningitis in England be-
tween April 1996 to December 1999 is estimated to be 1607.
�

For large m, the hypergeometric distribution is close to binomial. More
precisely, when m→∞ and k/m→ p, the hypergeometric distribution with
parameters (m,k,n) approaches a binomial with parameters (n, p) for any
value of x between 0 and n. It is also instructive to compare expressions for
EX and Var X for the two distributions.

format long

disp(’(A)=(B) for large population’);

1 - binocdf(1, 10, 150000/400000) %ans = 0.936335370875895

1 - hygecdf(1, 400000, 150000, 10) %ans = 0.936337703719839

We will use the hypergeometric distribution later in the book (i) in the
Fisher exact test (page 602) and in Logrank test (page 818).

5.3.4 Poisson Distribution

This discrete distribution is named after Simeon Denis Poisson (1781–1840),
French mathematician, geometer, and physicist.

The PMF for the Poisson distribution is

pX(x) =
λx

x!
e−λ, x = 0,1,2, . . . ,

which is denoted by X ∼ Poi(λ). From the moment-generating function
mX(t) = exp{λ(et − 1)} we have EX = λ and Var X = λ; the mean and the
variance coincide.

The sum of a finite independent set of Poisson variables is also Pois-
son. Specifically, if Xi ∼ Poi(λi), then Y = X1 + · · · + Xk is distributed as
Poi(λ1 + · · ·+λk). If X1 ∼Poi(λ1) and X2 ∼Poi(λ2) are independent, then

the distribution of X1 given that X1 + X2 = n is binomial Bin
(

n, λ1
λ1+λ2

)

(Exercise 5.7).
Furthermore, the Poisson distribution is a limiting form for a binomial

model, i.e.,

lim
n,np→∞,λ

(
n

x

)
px(1− p)n−x =

1
x!

λxe−λ. (5.7)

The MATLAB commands for Poisson CDF, PDF, quantile, and random
number are poisscdf, poisspdf, poissinv, and poissrnd. In WinBUGS the Pois-
son distribution is denoted as dpois(lambda).
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Example 5.11. Poisson Model for EBs. After 7 days of aggregation, the mi-
croscopy images of 2000 embryonic bodies (EBs) are used to assess their
surface area size. The probability that the area of a randomly selected EB
exceeds the critical size Sc is 0.001.

(a) Find the probability that the areas of exactly three EBs, among the
2000, exceed the critical size.

(b) Find the probability that the number of EBs exceeding the critical
size is between three and eight, inclusively.

We use a Poisson approximation to the binomial probabilities since n is
large, p is small, and product np is moderate.

%Solution

disp(’Poisson(2): P(X=3)’); poisspdf(3, 2)

%ans= 0.1804

disp(’Poisson(2): P(3 <= X <= 8)’); poisscdf(8, 2)-poisscdf(2, 2)

%ans= 0.3231

Figure 5.4 shows the PMF and CDF of the Poi(2) distribution.
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Fig. 5.4 (Top) Poisson probability mass function. (Bottom) Cumulative distribution func-
tion for λ = 2.

�

In the binomial sampling scheme, when n→∞ and p→ 0, so that np→
λ, binomial probabilities converge to Poisson probabilities.

The following MATLAB simulation demonstrates the convergence. In
the binomial distribution, n is increasing as 2,000, 200,000, 20,000,000 and
p is decreasing as 0.001, 0.00001, 0.0000001, so that np remains constant



5.3 Some Standard Discrete Distributions 181

and equal to 2. Then, the binomial probabilities of X = 3 are compared to
probability of X = 3 when X is distributed as Poisson with parameter λ = 2.

disp(’P(X=3) for Bin(2000, 0.001), Bin(200000, 0.00001), ’);

disp(’ Bin(20000000, 0.0000001), and Poi(2) ’);

format long

binopdf(3, 2000, 0.001) % 0.180537328031786

binopdf(3, 200000, 0.00001) % 0.180447946554779

binopdf(3, 20000000, 0.0000001) % 0.180447058859339

poisspdf(3, 2) % 0.180447044315484

format short

Example 5.12. Cold. Suppose that the number of times during a year that
an individual catches a cold can be modeled by a Poisson random vari-
able with an expectation of 4. Further, suppose that a new drug based on
vitamin C reduces this expectation to 3 (but the distribution still remains
Poisson) for 90% of the population but has no effect on the remaining 10%
of the population. We will calculate

(a) the probability that an individual taking the drug has two colds in
a year if that individual is in part of the population that benefits from the
drug;

(b) the probability that a randomly chosen individual has two colds in
a year if that individual takes the drug; and

(c) the conditional probability that a randomly chosen individual is in
the part of the population that benefits from the drug, given that the indi-
vidual had two colds in the year during which he/she took the drug.

poisspdf(2,3) %(Cold (a))

%ans = 0.2240

poisspdf(2,3)*0.90 + poisspdf(2,4)*0.10 %(Cold (b))

%ans = 0.2163

poisspdf(2,3)*0.90/(poisspdf(2,3)*0.90 + ...

poisspdf(2,4)*0.10) %(Cold (c))

%ans = 0.9323

�

Example 5.13. Imperfectly Observed Poisson. Suppose that the number of
particular experimental events in time interval [0, T] has a Poisson distribu-
tion Poi(λT). A student who is observing the experiment may fail to count
some of the events. An event is counted with probability equal to p and
missing one event is independent of missing or counting the others. What
is the distribution of the number of events in [0, T] that are counted?

By total probability formula,
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P(n events counted) =
∞

∑
k=n

(P(n events counted|k events happened)

×P(k events happened)

=
∞

∑
k=n

(
k

n

)
pn(1− p)k−n(λT)k exp{−λT}/k!

= exp{−λT}(pλT)n/n!
∞

∑
k=n

[(1− p)λT]k−n

(k− n)!

= (pλT)n exp{−pλT}/n!

after representing (k
n) by factorials and observing that ∑

∞
k=n

[(1−p)λT]k−n

(k−n)! =

∑
∞
v=0

[(1−p)λT]v

v! = exp{(1− p)λT}. Thus, the number of counted events is
again Poisson but with the rate pλT.
�

5.3.5 Geometric Distribution

Suppose that independent trials are repeated and that in each trial the prob-
ability of a success is equal to 0 < p < 1. We are interested in the number
of failures X before the first success. The number of failures is a random
variable with a geometric Ge(p) distribution. Its PMF is given by

pX(x) = p(1− p)x, x = 0,1,2, . . . .

The expected value is EX = (1− p)/p and the variance is Var X = (1−
p)/p2. The moments can be found either directly or by the moment-
generating function, which is

mX(t) =
p

1− (1− p)et
.

The geometric random variable possesses a “memoryless” property.
That is, if we condition on the event X ≥ m, for some nonnegative inte-
ger m, then for n ≥ m, P(X ≥ n|X ≥ m) = P(X ≥ n − m) (Exercise 5.25).
The MATLAB commands for geometric CDF, PDF, quantile, and random
number are geocdf, geopdf, geoinv, and geornd. There are no special names for
the geometric distribution in WinBUGS; the negative binomial can be used
as dnegbin(p,1).
�

If instead of the number of failures before the first success (X) one is
interested in the total number of experiments until the first success (Y), then
the relationship is simple: Y = X + 1. In this formulation of the geometric
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distribution, Y ∼ Geom(p), EY = EX + 1 = q/p + 1 = 1/p, and Var Y =
Var X = (1− p)/p2.

Example 5.14. CASES I. Let a subject constitute either a CASE or a CON-
TROL depending on whether the subject’s level of LDL cholesterol is
>160 mg/dL or ≤160 mg/dL, respectively. According to a recent National
Health and Nutrition Examination Survey (NHANES III), the prevalence
of CASES among white male Americans aged 20 and older (target popu-
lation) is p = 20%. Subjects are sampled (when the population is large, it
is unimportant if the sampling is done with or without replacement) until
the first CASE is found. The number of CONTROLS sampled before find-
ing the first CASE is a geometric random variable with parameter p = 0.2
(Fig. 5.5).

(a) Find the probability that seven CONTROLS will be sampled before
we come across the first CASE.

(b) Find the probability that the number of CONTROLS before the first
CASE will fall between four and eight, inclusively.

disp(’X ~ Geometric(0.2):P(X=7)’);

geopdf(7, 0.2)

%ans=0.0419

disp(’X ~ Geometric(0.2):P(4 <= X <= 8)’);

geocdf(8, 0.2) - geocdf(3,0.2)

%ans=0.2754
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Fig. 5.5 Geometric (Top) PMF and (Bottom) CDF for p = 0.2.

�
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Example 5.15. Mingling Trees. The degree to which the individual trees of
two species are mingled together is an intrinsic property of a two-species
population. Two species are said to be segregated if the individuals of each
tend to have a member of their own species as nearest neighbor, rather
than a member of the other species. To assess the segregation, Pielou (1961)
developed a field experiment in which alternating uninterrupted runs of
Pseudotsuga menziesii and Pinus ponderosa are measured along a narrow long
belt.

The data in table give lengths of runs Y and their frequency.

Run length, Y 1 2 3 4 5 6 7 8 9 10 11 12
Frequency 21 20 21 4 6 6 2 3 3 1 0 1

(a) Assuming geometric Geom(1/3) for Y, or equivalently Ge(1/3) dis-
tribution for X =Y− 1, find the mean EY, variance Var Y, and P(Y > 5|Y >

2). Is this probability the same as P(Y > 5− 2) (memoryless property)?
(b) What are sample counterparts of quantities from (a)?

%mingling.m

%(a)

[ex varx] = geostat(1/3)

ey = ex+1 %E(Y)=1/(1/3)=3

vary = varx %Var(Y)=((1-1/3)/((1/3)^2)=6

%P(Y>5|Y>2)=P(Y>5)/P(Y>2)=P(X>=5)/P(X>=2)

(1-geocdf(4, 1/3))/(1-geocdf(1, 1/3)) %0.2963

% memoryles

%P(Y>5-2)=P(Y>3)=P(X>=3)

1-geocdf(2, 1/3) %0.2963

%(b) empirical counterparts to (a)

Y=1:12;

freq =[21 20 21 4 6 6 2 3 3 1 0 1];

n=sum(freq) %88

ybar = sum(Y .* freq)/n %3.3295

s2y = sum((Y -ybar).^2 .* freq)/(n-1) %5.9936

sum(freq(Y >5))/sum(freq(Y>2)) %0.3404

sum(freq(Y>3))/n %0.2955

Note that geometric Geom(1/3) distribution provides a good model for
the data, as evidenced by the closeness of empirical moments and prob-
abilities to their theoretical counterparts. Later in the text (Chapter 7 and
Chapter 17) we will learn how to, given the data, set the model, estimate
parameters, and assess the goodness of model fit.
�
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5.3.6 Negative Binomial Distribution

The negative binomial distribution was formulated by Montmort (1714).
Here we are dealing with independent trials again. This time we count the
number of failures observed until a fixed number of successes (r≥ 1) occur.
Let p be the probability of success in a single trial.

If we observe r consecutive successes at the start of the experiment,
then the count of failures is X = 0 and P(X = 0) = pr. If X = x, then we
have observed x failures and r successes in x + r trials. There are (x+r

x )
different ways of arranging x failures in those x + r trials, but we can only
be concerned with those arrangements in which the last trial ended in a
success. So there are really only (x+r−1

x ) equally likely arrangements. For
any particular arrangement, the probability is pr(1 − p)x. Therefore, the
PMF is

pX(x) =

(
r + x− 1

x

)
pr(1− p)x, x = 0,1,2, . . . .

Sometimes this PMF is stated with (r+x−1
r−1 ) in place of the equivalent

(r+x−1
x ). This distribution is denoted as X ∼NB(r, p).
From its moment-generating function

mX(t) =

(
p

1− (1− p)et

)r

,

the expectation of a negative binomial random variable is EX = r(1− p)/p
and its variance is Var X = r(1− p)/p2.

Since the negative binomial X ∼ NB(r, p) is a convolution (a sum) of r
independent geometric random variables, X =Y1 +Y2 + · · ·+Yr , Yi ∼G(p),
the mean and variance of X can be easily derived from the mean and vari-
ance of its geometric components Yi, as in (5.2) and (5.3). Note also that

mX(t) = (mY(t))
r , where mY(t) =

(
p

1−(1−p)et

)
is the moment-generating

function of the component Yi in the sum. This is a consequence of the fact
that a moment-generating function for a sum of independent random vari-
ables is the product of the moment-generating functions of the components;
see (5.5).

The distribution remains valid if r is not an integer, although an in-
terpretation involving r successes is lost. For an arbitrary nonnegative r,
the distribution is called a Pólya distribution or a generalized negative bi-
nomial distribution (although this second term can be ambiguous since

several generalizations exist). The constant (r+x−1
x ) =

(r+x−1)!
x!(r−1)! is replaced

by Γ(r+x)
x!Γ(r) , keeping in mind that Γ(n) = (n− 1)! when n is an integer. The
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Pólya distribution is used in ecology for inference about the abundance of
species in nature.

The MATLAB commands for negative binomial CDF, PDF, quantile, and
random number are nbincdf, nbinpdf, nbininv, and nbinrnd. In WinBUGS the
negative binomial distribution is denoted as dnegbin(p,r). Note the opposite
order of parameters r and p compared to notation NB(r, p) and the order
adopted by MATLAB.

Example 5.16. CASES II. Assume as in Example 5.14 that the prevalence of
“CASES” in a large population is p = 20%. Subjects are sampled, one by
one, until seven CASES are found and then the sampling is stopped.

(a) What is the probability that the number of CONTROLS among all
sampled subjects will be 18?

(b) What is the probability of observing more than the “expected num-
ber” of CONTROLS?

The number of CONTROLS X among all sampled subjects is a negative
binomial, X ∼ NB(7,0.2).

P(X = 18) =
(

25 + 7− 1
18

)
0.27(1− 0.2)18 = 0.0310.

Also, nbinpdf(18,7,0.2)=0.0310.
Thus, with a probability of 0.031 the number of CONTROLS sampled,

before seven CASES are observed, is equal to 18.
(b) The expected number of CONTROLS is EX = 7 0.8

0.2 = 28. The proba-
bility of X >EX is P(X > 28) = 1−P(X≤ 28) = 1−∑

28
x=0 (

7+x−1
x )0.8x0.27 =

0.4328. In MATLAB P(X > 28) is calculated as 1-nbincdf(28,7,0.20)=0.4328.
�

The tail probabilities of a negative binomial distribution can be ex-
pressed by binomial probabilities. If X ∼ NB(r, p), then

P(X > x) = P(Y < r),

where Y ∼ Bin(x + r, p). In words, if we have not seen r successes after
seeing x failures, then in x + r experiments the number of successes will be
less than r. In part (b) of the previous example, r = 7, x = 28, and p = 0.20,
so
1 - nbincdf(28, 7, 0.20) % 0.4328

binocdf(7-1, 28+7, 0.20) % 0.4328

5.3.7 Multinomial Distribution

The binomial distribution was developed by counting the occurrences two
complementary events, A and Ac, in n independent trials. Suppose, instead,
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that each trial results in one of k > 2 mutually exclusive events, A1, . . . Ak,
so that S = A1 ∪ · · · ∪ Ak. One can define the vector of random variables
(X1, . . . , Xk) where a component Xi counts how many times Ai appeared in
n trials. The defined random vector is called multinomial.

The probability mass function for (X1, . . . , Xk) is

pX1,...,Xk
(x1, ..., xk) =

n!
x1! · · · xk!

p1
x1 · · · pk

xk ,

where p1 + · · ·+ pk = 1 and x1 + · · ·+ xk = n. Since pk = 1− p1− · · · − pk−1,
there are k− 1 free parameters to characterize the multinomial distribution,
which is denoted by X = (X1, . . . , Xk) ∼Mn(n, p1, . . . , pk).

The mean and variance of the component Xi are the same as in the
binomial case. It is easy to see that the marginal distribution for a compo-
nent Xi is binomial since the events A1, . . . , Ak can be grouped as Ai, Ac

i .
Therefore, E(Xi) = npi, Var (Xi) = npi(1− pi). The components Xi are de-
pendent since they sum up to n. For i 6= j, the covariance between Xi and
Xj is

Cov(Xi, Xj) = EXiXj −EXiEXj = −npi pj. (5.8)

This is easy to verify if Xi and Xj are represented as the sums of Bernoullis
Yi1 + Yi2 + · · ·+ Yik and Yj1 + Yj2 + · · ·+ Yjk, respectively. Since YimYjm = 0
(in a single trial Ai and Aj cannot occur simultaneously), it follows that

EXiXj = (n2 − n)pi pj.

Since EXiEXj = n2 pi pj, the covariance in (5.8) follows.
If X = (X1, X2, . . . , Xk) ∼Mn(n, p1, p2, . . . , pk), then X′= (X1 +X2, . . . , Xk)

∼Mn(n, p1 + p2, . . . , pk). This is called the fusing property of the multino-
mial distribution.

If X1 ∼ Poi(λ1), X2 ∼ Poi(λ2), . . . , Xn ∼ Poi(λn) are n independent
Poisson random variables with parameters λ1, . . . ,λn, then the conditional
distribution of X1, X2, . . . , Xn, given that X1 + X2 + · · ·+ Xn = n, is Mn(n,
p1, . . . , pk), where pi = λi/(λ1 +λ2 + · · ·+λn). This fact is used in modeling
contingency tables with a fixed total and will be discussed in Chapter 12.

In MATLAB, the multinomial PMF is calculated by mnpdf(x,p), where x

is a 1× k vector of values, such that ∑
k
i=1 xi = n, and p is a 1× k vector of

probabilities, such that ∑
k
i=1 pi = 1.

For example,

%If n=2, Multinomial is Binomial

mnpdf([5 15],[0.6 0.4])

%ans = 0.0013

% is the same as

binopdf(5, 5+15, 0.6)

%ans = 0.0013
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In WinBUGS, the multinomial distribution is coded as dmulti(p[],n).

Example 5.17. ABO Group Distribution. Suppose that the probabilities of
blood groups in a particular population are given as

O A B AB
0.37 0.39 0.18 0.06 .

If eight subjects are selected at random from this population, what is
the probability that

(a) (O, A, B, AB) = (3,4,1,0)?
(b) O = 3?
In (a), the probability is

factorial(8) /(factorial(3) * ...

factorial(4) * factorial(1) * factorial(0)) * ...

0.37^3 * 0.39^4 * 0.18^1 * 0.06^0

%ans = 0.0591

%or

mnpdf([3 4 1 0],[0.37 0.39 0.18 0.06])

%ans = 0.0591.

In (b), O ∼ Bin(8,0.37) and P(O = 3) = 0.2815.
�

5.3.8 Quantiles

Quantiles of random variables are defined as follows. A p-quantile (or
100× p percentile) of random variable X is the value x for which F(x) = p,
if F is a monotone cumulative distribution function for X. For an arbitrary
random variable, including discrete, this definition is not unique and mod-
ification is needed:

F(x) = P(X ≤ x)≥ p and P(X ≥ x) ≥ 1− p.

For example, the 0.05 quantile of a binomial distribution with param-
eters n = 12 and p = 0.7 is x = 6 since P(X ≤ 6) = 0.1178 ≥ 0.05 and
P(X≥ 6) = 1−P(X≤ 5) = 1− 0.0386= 0.9614≥ 0.95. Binomial Bin(12,0.7)
and geometric G(0.2) quantiles are shown in Figure 5.6.

quab =[]; quag =[];

for p = 0.00:0.0001:1

quab = [quab binoinv(p, 12, 0.7)];

quag = [quag geoinv(p, 0.2)];

end

figure(1)
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plot([0.00:0.0001:1],quab,’k-’)

figure(2)

plot([0.00:0.0001:1],quag,’k-’)
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Fig. 5.6 (a) Binomial Bin(12,0.7) and (b) geometric G(0.2) quantiles.

5.4 Continuous Random Variables

Continuous random variables take values within an interval (a,b) on a real
line R. The probability density function (PDF) f (x) fully specifies the vari-
able. The PDF is nonnegative, f (x) ≥ 0, and integrates to 1,

∫
R f (x) dx = 1.

The probability that X takes a value in an interval (a,b) (and for continu-
ous random variables equivalently [a,b), (a,b], or [a,b]) is P[X ∈ (a,b)] =∫ b

a f (x)dx.
The CDF is

F(x) = P(X ≤ x) =
∫ x

−∞
f (t)dt.

In terms of the CDF, P[X ∈ (a,b)] = F(b)− F(a).
The expectation of X is given by

EX =
∫

R
x f (x)dx.

The expectation of a function of a random variable g(X) is

Eg(X) =
∫

R
g(x) f (x)dx.
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The kth moment of a continuous random variable X is defined as

mk = EXk =
∫

R
xk f (x)dx,

and the kth central moment is

µk = E(X−EX)k =
∫

R
(x−EX)k f (x)dx.

As in the discrete case, the first moment is the expectation and the second
central moment is the variance, µ2 = Var (X) = E(X−EX)2. The skewness
and kurtosis of X are defined via the central moments as in the discrete case
(5.1),

γ =
µ3

µ3/2
2

=
E(X−EX)3

(Var (X))3/2 and κ =
µ4

µ2
2
=

E(X−EX)4

(Var (X))2 .

The moment-generating function of a continuous random variable X is

m(t) = EetX =
∫

R
etx f (x)dx.

Since m(k)(t) =
∫

R xketx f (x)dx, EXk = m(k)(0). Moment-generating func-
tions are related to Laplace transforms of densities. Since the bilateral
Laplace transform of f (x) is defined as

L( f ) =
∫

R
e−tx f (x)dx,

it holds that m(−t) = L( f ).
The entropy of a continuous random variable with a density f (x) is

defined as

H(X) = −
∫

R

f (x) log f (x)dx,

whenever this integral exists. Unlike the entropy for discrete random vari-
ables, H(X) can be negative and not necessarily invariant with respect to a
transformation of X.

Example 5.18. Markov’s Inequality. If X is a random variable that takes
only nonnegative values, then for any positive constant a,

P(X ≥ a) ≤ EX

a
. (5.9)

Indeed,
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EX =
∫ ∞

0
x f (x)dx ≥

∫ ∞

a
x f (x)dx

≥
∫ ∞

a
a f (x)dx

= a
∫ ∞

a
f (x)dx = aP(X ≥ a).

An average mass of a single cell of E. coli bacterium is 665 fg (femtogram,
fg = 10−15g). If a particular cell of E. coli is inspected, what can be said about
the probability that its weight will exceed 1000 fg? According to Markov’s
inequality, this probability does not exceed 665/1000 = 0.665.
�

Example 5.19. Durability of the Starr–Edwards Valve. The Starr–Edwards
valve is one of the oldest cardiac valve prostheses in the world. The first
aortic valve replacement (AVR) with a Starr–Edwards metal cage and sili-
cone ball valve was performed in 1961. Follow-up studies have documented
the excellent durability of the Starr–Edwards valve as an AVR. Suppose that
the durability of the Starr–Edwards valve (in years) is a random variable X
with density

f (x) =





ax2/100, 0 < x < 10,
a(x− 30)2/400, 10≤ x ≤ 30,
0, otherwise.

(a) Find the constant a.
(b) Find the CDF F(x) and sketch graphs of f and F.
(c) Find the mean and 60th percentile of X. Which is larger? Find the

variance.
Solution: (a) Since 1 =

∫
R f (x)dx,

1 =
∫ 10

0
ax2/100dx +

∫ 30

10
a(x− 30)2/400dx

= ax3/300
∣∣∣∣
10

0
+ a(x− 30)3/1200

∣∣∣∣
30

10
.

This gives 1000a/300− 0 + 0− (−20)3a/1200 = 10a/3 + 20a/3 = 10a = 1,
that is, a = 1/10. The density is

f (x) =





x2/1000, 0 < x < 10,
(x− 30)2/4000, 10≤ x ≤ 30,
0, otherwise.

(b) The CDF is
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F(x) =





0, x < 0,
x3/3000, 0 < x < 10,
1 + (x− 30)3/12000, 10≤ x ≤ 30,
1, x ≥ 30.

(c) The 60th percentile is a solution to the equation 1 + (x− 30)3/12000 =
0.6 and is x = 13.131313 . . . . The mean is EX = 25/2, and the 60th percentile
exceeds the mean. EX2 = 180; thus the variance is Var X = 180− (25/2)2 =
95/4 = 23.75.
�

Example 5.20. Soliton Waves and Sech Distribution. Soliton waves were
first described by John Scott Russell, a Scottish civil engineer. In August
1834 he was riding beside the Union Canal near Edinburgh, Scotland, and
noticed a strange wave building up at the bow of a boat. After the boat
stopped, the wave traveled on, “assuming the form of a large solitary ele-
vation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or diminu-
tion of speed.” Soliton waves appear within the ocean and the atmosphere,
within magnets and super-cooled devices, within the ionized plasma of
space, and in optical fibers, to list a few.

The envelope of a soliton wave (Fig. 5.7a), properly scaled, is a proba-
bility density as is described next. Let X be a continuous random variable
with the density

f (x) =
2

eπx + e−πx
, x ∈ R. (5.10)

This function is in fact hyperbolic secant of argument πx, motivating the
name “sech,”

f (x) = sech(πx), x ∈ R.

The density is shown in Figure 5.7b. The odd moments for this distribution
are 0, and a few even moments are

EX2 = 1/4, EX4 = 5/16, EX6 = 61/64, EX8 = 1385/256, . . . .

(a) What are the skewness and kurtosis of this distribution?
(b) Calculate the 0.25- and 0.75-quantiles of this distribution.
(c) Find the “width” of the sech envelope, defined as the length of the

line segment at height 0.5 that falls inside the envelope, see Figure 5.7a.
(d) What is the probability of random variable X with sech distribution

to fall within the “width” range?
Solution. Since this distribution is symmetric about 0, the central mo-

ments are equal to raw moments. The skewness γ = 0, and kurtosis is
κ = 5/16

(1/4)2 = 5.
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Fig. 5.7 (a) Soliton waves and (b) density of sech distribution.

(b) By representing (5.10) as

f (x) =
2eπx

1 + (eπx)2

and taking the substitution t = eπx in the integral F(x) =
∫ x
−∞

f (t)dt, we
find the CDF,

F(x) =
2
π

arctan(eπx) , x ∈ R.

Since F(x) is monotone and one-to-one, its inverse is unique and represents
a quantile function for this distribution. For F(x) = p, it is easy to find

x =
1
π

log
(

tan
(πp

2

))
,

which for p = 0.25 gives x0.25 = −0.2805. Because of symmetry, x0.75 =
0.2805.

p=0.25; x25=1/pi * log( tan(pi * p/2)) %-0.2805

(c) The solution of f (x) = 1/2 can be found in finite form, x1/2 =
1
π log(2±

√
3) = ±0.4192. The length of segment inside the envelope is

x2 − x1 =
1
π

log
2 +
√

3

2−
√

3
= 0.8384.

In MATLAB,

fzero(@(x) sech(pi * x) - 1/2, 1) % 0.4192

fzero(@(x) sech(pi * x) - 1/2,-1) %-0.4192

(d) The required probability is 2/3. Numerically,

format long

sechcdf = @(x) 2/pi * atan( exp(pi * x));
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x2=1/pi * log(2 + sqrt(3));

prob =sechcdf(x2)-sechcdf(-x2) %0.666666666666667

This probability can be obtained analytically by observing that tan π
12 =

2−
√

3 and tan 5π
12 = 2 +

√
3.

�

5.4.1 Joint Distribution of Two Continuous Random
Variables

Two random variables X and Y are jointly continuous if there exists a non-
negative function f (x,y) so that for any two-dimensional domain D,

P((X,Y) ∈ D) =
∫ ∫

D
f (x,y)dxdy.

When such a two-dimensional density f (x,y) exists, it is a repeated partial
derivative of the cumulative distribution function F(x,y) =P(X≤ x,Y≤ y),

f (x,y) =
∂2F(x,y)

∂x ∂y
.

The marginal densities for X and Y are, respectively, fX(x) =
∫ ∞

−∞
f (x,y)dy

and fY(y) =
∫ ∞

−∞
f (x,y)dx. The conditional distributions of X when Y = y

and of Y when X = x are

f (x|y) = f (x,y)/ fY(y) and f (y|x) = f (x,y)/ fX(x).

The distributional analogy of the multiplication probability rule P(AB) =
P(A|B)P(B) = P(B|A)P(A) is

f (x,y) = f (x|y) fY(y) = f (y|x) fX(x). (5.11)

When X and Y are independent, the joint density is the product of
marginal densities, f (x,y) = fX(x) fY(y). Conversely, if the joint density of
(X,Y) can be represented as a product of marginal densities, X and Y are
independent.
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The definition of covariance and the correlation for X and Y coincides
with the discrete case equivalents:

Cov(X,Y) = EXY−EX ·EY and Corr(X,Y) =
Cov(X,Y)√

Var (X) ·Var (Y)
.

Here, EXY =
∫

R2 xy f (x,y)dxdy.

Example 5.21. Probability, Marginals, and Conditional. A two-dimensional
random variable (X,Y) is defined by its density function, f (x,y) = 2xe−x−2y, x≥
0,y ≥ 0.

(a) Find the probability that random variable (X,Y) falls in the rectangle
0≤ X ≤ 1,1≤ Y ≤ 2.

(b) Find the marginal distributions of X and Y.
(c) Find the conditional distribution of X|{Y = y} Does it depend on y?
Solution: (a) The joint density separates variables x and y, therefore

P(0≤ X ≤ 1, 1≤ Y ≤ 2) =
∫ 1

0
xe−xdx×

∫ 2

1
2e−2ydy.

Since

∫ 1

0
xe−xdx = −xe−x

∣∣∣∣
1

0
+
∫ 1

0
e−xdx =−e−1 − e−1 + 1 = 1− 2/e,

and

∫ 2

1
2e−2ydy = −e−2y

∣∣∣∣
2

1
=−e−4 + e−2 =

e2 − 1
e4 .

then

P(0≤ X ≤ 1, 1≤ Y ≤ 2) =
e− 2

e
× e2 − 1

e4 ≈ 0.0309.

(b) Since the joint density separates the variables, it is a product of
marginal densities f (x,y) = fX(x)× fY(y). This is an analytic way to state
that components X and Y are independent. Therefore, fX(x) = xe−x, x ≥ 0
and fY(y) = 2e2y, y ≥ 0.

(c) The conditional densities for X|{Y = y} and Y|{X = x} are defined
as

f (x|y) = f (x,y)/ fY(y) and f (y|x) = f (x,y)/ fX(x).

Because of independence of X and Y the conditional densities coincide
with the marginal densities. Thus, the conditional density for X|{Y = y}
does not depend on y.
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�

5.4.2 Conditional Expectation*

Conditional expectation of Y given {X = x} is simply the expectation with
respect to the conditional distribution,

E(Y|X = x) =
∫

R

y f (y|x)dy.

Since it depends on the value x taken by random variable X, conditional
expectation is a function of x. When a particular realization of X is not
specified, the conditional expectation of Y given X is denoted by EY|X and
represents a random variable.

The following properties of conditional expectation and variance are
very important and useful in applications:

In general, EY|X is a random variable for which

EY = E(EY|X), (5.12)

Var Y = Var (EY|X) + E(Var Y|X).

These two equations are sometimes called the Iterated Expectation
Rule and Total Variance Rule.

Example 5.22. Conditional Distributions, Expectations, and Variances. Let
a bivariate random variable (X,Y) have a uniform distribution on triangle
x≥ 0, y≥ 0 and x + y≤ 1. The density is constant over the triangle, and the
constant is a reciprocal of the triangle area,

f (x,y) =
{

2, 0≤ x, y, x + y ≤ 1
0, else

The marginal density for X is obtained by integrating y form the joint
density f (x,y). Here variable y ranges from 0 to 1− x, and

fX(x) =
∫ 1−x

0
2dy = 2y

∣∣∣∣
1−x

0
= 2(1− x), 0≤ x ≤ 1.

For fY(y), the derivation is analogous, fY(y) = 2(1− y), 0 ≤ y ≤ 1. The
means and variances of X (as well as Y) are
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EX =
∫ 1

0
2x(1− x)dx =

(
x2 − 2x3

3

)∣∣∣∣
1

0
= 1− 2

3
=

1
3

,

Var X = EX2 − (EX)2 =
∫ 1

0
2x2(1− x)dx− 1

9

=

(
2x3

3
− x4

2

)∣∣∣∣
1

0
− 1

9

=
2
3
− 1

2
− 1

9
=

1
18

.

The conditional distribution of Y when X = x is

f (y|x) =
{ 1

1−x , 0≤ y ≤ 1− x
0, else

The conditional expectation of Y given {X = x} is

E(Y|X = x) =
∫ 1−x

0

ydy

1− x
=

y2

2(1− x)

∣∣∣∣
1−x

0
=

1− x

2
.

Since this is true for any x that X takes, the conditional expectation can be
expressed in terms of X as

EY|X =
1− X

2
,

and as such represents a random variable. It is straightforward to show

(Exercise 5.23) that Var (Y|X = x) = (1−x)2

12 , that is,

Var Y|X =
(1− X)2

12
.

We will check that the Iterated Expectation Rule and Total Variance Rule
from (5.12) are satisfied. The iterate expectation is

E(EY|X) = E
1− X

2
=

1− 1/3
2

=
1
3

,

which coincides with EY. The total variance is
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E(Var Y|X) + Var (EY|X) = E
(1− X)2

12
+ Var

1− X

2

=
1

12
(1− 2EX + EX2) +

1
4

Var X

=
1

12

(
1− 2

3
+

1
6

)
+

1
4
· 1

18

=
6− 4 + 1

72
+

1
72

=
1
18

,

which coincides with Var Y.
�

5.5 Some Standard Continuous Distributions

In this section we overview some popular, commonly used continuous dis-
tributions: uniform, exponential, gamma, inverse gamma, beta, double ex-
ponential, logistic, Weibull, Pareto, and Dirichlet. The normal (Gaussian)
distribution will be just briefly mentioned here. Due to its importance, a
separate chapter will cover the details of the normal distribution and its
close relatives: χ2, t, Cauchy, F, and lognormal distributions. Some other
continuous distributions will be featured in the examples, exercises, and
other chapters, such as Maxwell and Rayleigh distributions.

5.5.1 Uniform Distribution

A random variable X has a uniform U (a,b) distribution if its density is
given by

fX(x) =

{ 1
b−a , a ≤ x ≤ b,
0, else .

Sometimes, to simplify notation, the density can be written simply as

fX(x) =
1

b− a
1(a≤ x ≤ b).

Here, 1(A) is 1 if A is a true statement and 0 if A is false. Thus, for x < a
or x > b, fX(x) = 0, since for those values of x the relation a≤ x ≤ b is false
and 1(a≤ x≤ b) = 0. For a = 0 and b = 1, the distribution is called standard
uniform.

The CDF of X is given by
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FX(x) =





0, x < a,
x−a
b−a , a≤ x ≤ b,
1, x > b.

The graphs of the PDF and CDF of a uniform U (−1,4) random variable are
shown in Figure 5.8.
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Fig. 5.8 (a) PDF and (b) CDF for uniform U (−1,4) distribution. The graphs are plot-
ted as (a) plot(-2:0.001:5, unifpdf(-2:0.001:5, -1, 4)) and (b) plot(-2:0.001:5,

unifcdf(-2:0.001:5, -1, 4)).

The expectation of X is EX = a+b
2 and the variance is Var X = (b −

a)2/12. The nth moment of X is given by EXn = 1
n+1 ∑

n
i=0 aibn−i. The

moment-generating function for the uniform distribution is m(t) = etb−eta

t(b−a)
.

If U is U (0,1), then X = −λ log(U) is an exponential random variable
with scale parameter λ. The sum of two independent standard uniform
random variables has triangular distribution,

fX(x) =





x, 0≤ x ≤ 1,
2− x, 1≤ x ≤ 2,
0, else .

This is sometimes called a “witch hat” distribution. The distribution of the
sum of n independent standard uniforms random variables is known as the
Irwing–Hall distribution.

The MATLAB commands for uniform CDF, PDF, quantile, and random
number are unifcdf, unifpdf, unifinv, and unifrnd. In WinBUGS, the uniform
distribution is coded as dunif(a,b).

Example 5.23. A Gauge That Rounds. An absolute error E of a measure-
ment read at a particular gauge has uniform U (0,1/2) distribution. This er-
ror is caused by gauge’s rounding to the nearest integer. The mean and vari-
ance of E are (0+ 1/2)/2 = 1/4 and (1/2− 0)2/12 = 1/48. The probability
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that in a single measurement the absolute error exceeds 0.3 is 1-unifcdf(0.3,

0, 1/2) which is equal to 0.4. Since the density is 2 for values between 0 and
1/2, this probability can be easily visualized as an area of a rectangle with
basis 0.5− 0.3 = 0.2 and height 2.
�

Example 5.24. Uniform Inspection Time. Counts N at a particle counter
observed at time t≥ 0 are distributed as Poisson Poi(λt). Suppose the count
is inspected at random time T = t. If the inspection time T is distributed
uniformly between 0 and b, what are the expectation and variance of N?

If the inspection time t was fixed, the expectation and variance would
be λt. When inspection time is random, T ∼ U (0,b), then we use iterated
expectation and total variance as in (5.12),

EN = E(EN|T) = E(λT) = λb/2,

Var N = Var (EN|T) + E(Var N|T)
= Var (λT) + E(λT) = λ2b2/12 + λb/2.

Note the overdispersion λ2b2/12 due to randomness of the inspection
time.
�

5.5.2 Exponential Distribution

The probability density function for an exponential random variable is

fX(x) =

{
λe−λx, x ≥ 0,
0, else ,

where λ > 0 is called the rate parameter. An exponentially distributed ran-
dom variable X is denoted by X ∼ E (λ). Its moment-generating function is
m(t) = λ/(λ− t) for t < λ, and the mean and variance are 1/λ and 1/λ2,
respectively. The nth moment is EXn = n!

λn .
This distribution has several interesting features; for example, its failure

rate, defined as

λX(t) =
fX(t)

1− FX(t)
,

is constant and equal to λ.
The exponential distribution has an important connection to the Poisson

distribution. Suppose we observe i.i.d. exponential variates (X1, X2, . . . ) and
define Sn = X1 + · · · + Xn. For any positive value t, it can be shown that
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P(Sn < t < Sn+1) = pY(n), where pY(n) is the probability mass function for
a Poisson random variable Y with parameter λt.

Like a geometric random variable, an exponential random variable has
the memoryless property, P(X ≥ u + v|X ≥ u) = P(X ≥ v) (Exercise 5.25).

The median value, representing a typical observation, is roughly 70%
of the mean, showing how extreme values can affect the population mean.
This is explicitly shown by the ease in computing the inverse CDF:

p = F(x) = 1− e−λx ⇐⇒ x = F−1(p) = − 1
λ

log(1− p).

The MATLAB commands for exponential CDF, PDF, quantile, and ran-
dom number are expcdf, exppdf, expinv, and exprnd. MATLAB uses the alter-
native parametrization with 1/λ in place of λ. Thus, the CDF of random
variable X with E (3) distribution evaluated at x = 2 is calculated in MAT-
LAB as expcdf(2,1/3). In WinBUGS, the exponential distribution is coded as
dexp(lambda).

Example 5.25. Melanoma. The 5-year cancer survival rate in the case of ma-
lignant melanoma of the skin at stage IIIA is 78%. Assume that the survival
time T can be modeled by an exponential random variable with unknown
rate λ. Given the 5-year survival rate, we will find the probability of a
melanoma patient surviving more than 10 years.

Using the given survival rate of 0.78, we first determine the parameter
of the exponential distribution – the rate λ. Since P(T > t) = exp(−λt),
P(T > 5) = 0.78 leads to exp{−5λ} = 0.78, with solution λ = − 1

5 log(0.78),
which can be rounded to λ = 0.05.

Next, we find the probability that the survival time exceeds 10 years,
first directly using the CDF,

P(T > 10) = 1− F(10) = 1−
(

1− e−0.05·10
)
=

1√
e
= 0.6065,

and then by MATLAB.
�

One should be careful when parameterizing the
exponential distribution in MATLAB. MATLAB uses the scale parameter, a
reciprocal of the rate λ.

1 - expcdf(10, 1/0.05)

%ans = 0.6065

%

%Figures of PDF and CDF are produced by

time=0:0.001:30;

pdf = exppdf(time, 1/0.05); plot(time, pdf, ’b-’);

cdf = expcdf(time, 1/0.05); plot(time, cdf, ’b-’);

This is shown in Figure 5.9.
�
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Fig. 5.9 Exponential (a) PDF and (b) CDF for rate λ = 0.05.

Example 5.26. Minimum of n Exponential Lifetimes. Let n = 20 indepen-
dent components be connected in a serial system; that is, all components
need to be operational for the system to work. The lifetime of each com-
ponent is exponential E (λ) random variable, where λ = 1/3 is the rate
parameter (in units of 1/year). What is the probability that the system re-
mains operational for more than one month?

If Ti are lifetimes of system components, the system’s lifetime is T =
min{T1, T2, . . . , Tn} because of the serial connection. When Ti are indepen-
dent exponentials with rates λi, the system’s lifetime T is also exponential
with rate λ = ∑

n
i=1 λi.

This is easy to see; for T to exceed t, each Ti has to exceed t,

P(T > t) = P(T1 > t, T2 > t, . . . , Tn > t).

Due to the independence of Ti’s, the probability above is

n

∏
i=1

P(Ti > t) =
n

∏
i=1

exp{−λit}= exp

{
−t

n

∑
i=1

λi

}
.

Thus, T ∼ E (∑n
i=1 λi) .

In this example, all λi are equal and T ∼ E (30 · 1/3). We assume that 1
month is 1/12 of a year, and

P(T > 1/12) = exp{−10/12}= 0.4346.

Even though each component will work for at least a month with prob-
ability of 97.26%, this probability for a serial system of 30 independent
components scales down to 43.46%.
�
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5.5.3 Normal Distribution

As we indicated at the start of this section, due to its importance, the normal
distribution is covered in a separate chapter. Here we provide a definition
and list a few important facts.

The probability density function for a normal (Gaussian) random vari-
able X is given by

fX(x) =
1√

2π σ
exp

{
− (x− µ)2

2σ2

}
,

where µ is the mean and σ2 is the variance of X. This will be denoted as
X ∼ N (µ,σ2). For µ = 0 and σ = 1, the distribution is called the standard
normal distribution. The CDF of a normal distribution cannot be expressed
in terms of elementary functions and so defines a function of its own. For
the standard normal distribution, the CDF is

Φ(x) =
∫ x

−∞

1√
2π

exp
{
− t2

2

}
dt.

The standard normal PDF and CDF are shown in Figure 5.10a,b.
The moment-generating function is m(t) = exp{µt + σ2t2/2}. The odd

central moments E(X − µ)2k+1 are 0 because the normal distribution is
symmetric about the mean. The even moments are

E(X− µ)2k = σ2k (2k− 1)!!,

where (2k− 1)!! = (2k− 1) · (2k− 3) · · ·5 · 3 · 1.
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Fig. 5.10 Standard normal (a) PDF and (b) CDF Φ(x).
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The MATLAB commands for normal CDF, PDF, quantile, and random
number are normcdf, normpdf, norminv, and normrnd. In WinBUGS, the normal
distribution is coded as dnorm(mu,tau), where tau is a precision parameter,
the reciprocal of variance.

5.5.4 Gamma Distribution

The gamma distribution is an extension of the exponential distribution.
Prior to defining its density, we define the gamma function that is crit-
ical in normalizing the density. Function Γ(x), defined via the integral∫ ∞

0 tx−1e−tdt, x > 0, is called the gamma function (Fig. 5.11a). If n is a
positive integer, then Γ(n) = (n− 1)!. In MATLAB: gamma(x).

Random variable X has a gamma Ga(r,λ) distribution if its PDF is given
by

fX(x) =

{
λr

Γ(r)
xr−1e−λx, x ≥ 0,

0, else.

The parameter r > 0 is called the shape parameter, and λ > 0 is the rate pa-
rameter. Figure 5.11b shows gamma densities for (r,λ) = (1,1/3), (2,2/3),
and (20,2).
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Fig. 5.11 (a) Gamma function, Γ(x). The red dots are values of the gamma function at
integers, Γ(n) = (n− 1)!; (b) Gamma densities: Ga(1,1/3), Ga(2,2/3), and Ga(20,2).

The moment-generating function is m(t) = (λ/(λ− t))r , so in the case
r = 1, the gamma distribution becomes the exponential distribution. From
m(t) we have EX = r/λ and Var X = r/λ2.

If X1, . . . , Xn are generated from an exponential distribution with (rate)
parameter λ, it follows from m(t) that Y = X1 + · · ·+ Xn is distributed as
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gamma with parameters λ and n; that is, Y ∼ Ga(n,λ). A gamma distribu-
tion with an integer shape parameter is sometimes called Erlang’s distribu-
tion. More generally, if Xi ∼ Ga(ri,λ) are independent, then Y = X1 + · · ·+
Xn is distributed as gamma with parameters λ and r = r1 + r2 + · · ·+ rn,;
that is, Y ∼ Ga(r,λ) (Exercise 5.24).

Often, the gamma distribution is parameterized with 1/λ in place of
λ, and this alternative parametrization is used in MATLAB definitions. The
CDF in MATLAB is gamcdf(x,r,1/lambda), and the PDF is gampdf(x,r,1/lambda).
The function gaminv(p,r,1/lambda) computes the pth quantile of the Ga(r,λ)
random variable. In WinBUGS, Ga(n,λ) is coded as dgamma(n,lambda).

Example 5.27. Corneoretinal Potentials. Emil du Bois-Reymond (1848) ob-
served that the cornea of the eye is electrically positive relative to the back
of the eye. This potential is not affected by the presence or absence of light,
and its variability is critical in defining the electro-oculogram (EOG). Eye
movements thus produce a moving (rotating) dipole source, and accord-
ingly, signals that are indicative of the movement may be obtained.

Assume that corneoretinal potential is a random variable X = Y + 0.35
[mV], where Y is gamma distributed with shape parameter 3 and rate pa-
rameter 20 [1/mV] (or equivalently, scale parameter 1/20 = 0.05 [mV]).

(a) What is the probability to observe corneoretinal potential X exceed-
ing 0.5 [mV].

(b) If an observed corneoretinal potential exceeds x∗, it is recorded as
significant. If, in the long run, we wish to label 1% largest potentials as
significant, how should the threshold x∗ be set?

%(a) P(X > 0.5)=P(Y+0.35 > 0.5)=P(Y > 0.15)

1-gamcdf(0.15, 3, 1/20) %0.4232

%(b) 0.01=P(X > x*)=P(Y-0.35 > x*)=P(Y>x*-0.35).

%x*-35 is 0.99-quantile of gamma distribution with shape=3 and rate=20.

xstar = 0.35 + gaminv(0.99, 3, 1/20) %0.7703

Thus, if modeled as gamma Ga(3,20), the corneoretinal potential will
exceed 0.5 with probability 0.4232, and will exceed x∗ = 0.7703 with prob-
ability 0.01.
�

5.5.5 Inverse Gamma Distribution

Random variable X is said to have an inverse gamma IG(r,λ) distribution
with parameters r > 0 and λ > 0 if its density is given by
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fX(x) =

{
λr

Γ(r)xr+1 e−λ/x, x ≥ 0,
0, else .

The mean and variance of X are EX = λ/(r− 1), r > 1, and Var X =
λ2/[(r − 1)2(r − 2)], r > 2, respectively. If X ∼ Ga(r,λ), then its recipro-
cal X−1 is IG(r,λ) distributed. We will see that in the Bayesian context, the
inverse gamma is a natural prior distribution for a scale parameter.

5.5.6 Beta Distribution

We first define two special functions: beta and incomplete beta. The beta
function is defined as B(a,b) =

∫ 1
0 ta−1(1 − t)b−1dt = Γ(a)Γ(b)/Γ(a + b).

In MATLAB, beta function is coded as beta(a,b). An incomplete beta is
B(x, a,b) =

∫ x
0 ta−1(1− t)b−1dt, 0≤ x≤ 1. In MATLAB, betainc(x,a,b) repre-

sents the normalized incomplete beta, defined as Ix(a,b) = B(x, a,b)/B(a,b).
As we will see in a moment, B(a,b) will be a normalizing constant in PDF,
while B(x, a,b)/B(a,b) coincides with CDF of beta distribution.

The density function for a beta random variable is

fX(x) =

{
1

B(a,b)xa−1(1− x)b−1, 0≤ x ≤ 1,
0, else ,

where B is the beta function and a,b ≥ 0. Because X is defined only in the
interval [0,1], the beta distribution is useful in modeling uncertainty or ran-
domness in proportions or probabilities. A beta-distributed random vari-
able is denoted by X ∼ Be(a,b). The standard uniform distribution U (0,1)
serves as a special case with (a,b) = (1,1). The moments of beta distribution
are

EXk =
Γ(a + k)Γ(a + b)

Γ(a)Γ(a + b + k)
=

a(a + 1) . . . (a + k− 1)
(a + b)(a + b + 1) . . . (a + b + k− 1)

so that E(X) = a/(a + b) and Var X = ab/[(a + b)2(a + b + 1)].
In MATLAB, the CDF for a beta random variable (at x ∈ (0,1)) is com-

puted as betacdf(x,a,b), and the PDF is computed as betapdf(x,a,b). The pth
percentile is betainv(p,a,b). In WinBUGS, the beta distribution is coded as
dbeta(a,b).

To emphasize the modeling diversity of beta distributions, we depict
densities for a selection of (a,b), as in Figure 5.12.

If U1,U2, . . . ,Un is a sample from a uniform U (0,1) distribution, then
the distribution of the kth component in the ordered sample is beta, U(k) ∼
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Fig. 5.12 Beta densities for (a, b) as (1/2, 1,2), (1,1), (2,2), (10,10), (1,5), (1, 0.4), (3,5), (50,
30), and (5000, 3000).

Be(k,n− k + 1), for 1 ≤ k ≤ n. Also, if X ∼ G(m,λ) and Y ∼ G(n,λ), then
X/(X + Y) ∼ Be(m,n).

5.5.7 Double Exponential Distribution

A random variable X has double exponential DE(µ,λ) distribution if its
PDF and CDF are given by

fX(x) =
λ

2
e−λ|x−µ|,

FX(x) =

{ 1
2 eλ(x−µ), x < µ

1− 1
2 e−λ(x−µ), x ≥ µ

, −∞ < x < ∞,λ > 0

The expectation of X is EX = µ, and the variance is Var X = 2/λ2. The
moment-generating function for the double exponential distribution is

m(t) =
λ2eµt

λ2 − t2 , |t|< λ.
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The double exponential distribution is also known as the Laplace distri-
bution. If X1 and X2 are independent exponential E (λ), then X1 − X2 is
distributed as DE (0,λ). Also, if X ∼ DE(0,λ), then |X| ∼ E (λ). In MAT-
LAB the double exponential distribution is not implemented since it can be
readily obtained by folding the exponential distribution about y-axis, see
Figure 5.13a.

In WinBUGS, DE(µ,λ) is coded as ddexp(mu,lambda).

Example 5.28. Neighboring Pixels in Digital Mammograms. The differ-
ence D between two arbitrary neighboring pixels in a digital mammogram
image is modeled by a double exponential DE (0,λ) distribution.

(a) It is known that the probability of D being less than −4 is 0.3. Using
this information calculate λ.

(b) Find the probability of D falling between −5 and 20.
(c) What are the mean and variance of D?
(d) Plot graphs of the PDF and CDF.

%mammopixels.m

dexppdf=@(x, mu, lambda) 1/2 * exppdf(abs(x-mu),1./lambda);

dexpcdf=@(x, mu, lambda) 1/2 + sign(x-mu)/2.*expcdf(abs(x-mu),1./lambda);

dexpinv=@(p, mu, lambda) mu+sign(2*p-1).*expinv(abs(2*p-1),1./lambda);

dexprnd=@(mu,lambda,size) mu+exprnd(1./lambda,size)-exprnd(1./lambda,size);

dexpstat = @(mu, lambda) deal(mu, 2./lambda.^2);

% (a) 0.3=P(D<=-4)=0.5 * exp(- 4*lambda) -> lambda=-1/4*log(2*0.3)=0.1277

% To check:

dexpinv(0.3, 0, 0.1277) %-4.0002

%(b) P( -5 < D < 20)

dexpcdf(20, 0, 0.1277) - dexpcdf(-5,0,0.1277) %0.6971

%(c)

[m v]=dexpstat(0, 0.1277) %m = 0, v=122.6445

%(d)

mu=0; lambda=0.1277

x = mu-5/lambda:0.001:mu+5/lambda;

figure;

plot(x, dexppdf(x, mu, lambda));

figure;

plot(x, dexpcdf(x,mu, lambda));

�

5.5.8 Logistic Distribution

The logistic distribution was first defined by Belgian mathematician Pierre
Francois Verhulst (1804–1849) who, in 1838, used it in modeling population
growth and coined the term logistic. Logistic distribution is used for models
in pharmacokinetics, regression with binary responses, river discharge and
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Fig. 5.13 (a) PDF and (b) CDF for D ∼DE(0,0.1277).

rainfall in hydeology, neural networks, and machine learning, to list just a
few modeling applications.

The logistic random variable can be introduced by a property of its
CDF expressed by a differential equation. Let F(x) = P(X ≤ x) be the CDF
for which F′(x) = F(x) × (1− F(x)). One interpretation of this differen-
tial equation is as follows: For a Bernoulli random variable 1(X ≤ x) ={

1, X ≤ x
0, X > x

, the change in E1(X ≤ x) as a function of x, is equal to its

variance. The solution in the class of CDFs is

FX(x) =
1

1 + e−x
=

ex

1 + ex
,

which is called the logistic distribution. Its density is

fX(x) =
ex

(1 + ex)2 =
e−x

(1 + e−x)2 .

Graphs of fX(x) and FX(x) are shown in Figure 5.14. The mean of the distri-
bution is 0 and the variance is π2/3. For a more general logistic distribution
given by the CDF

FX(x) =
1

1 + e−(x−µ)/σ
,

the mean is µ, variance π2σ2/3, skewness 0, and kurtosis 21/5. For the
higher moments, one can use the moment-generating function

m(t) = exp{µt}B (1− σt,1+ σt) ,
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Fig. 5.14 (a) Density and (b) CDF of logistic distribution. Superimposed (dotted red) is
the normal distribution with matching mean and variance, 0 and π2/3, respectively.

where B is the beta function. In WinBUGS the logistic distribution is coded
as dlogis(mu,tau), where tau is the reciprocal of σ.

If X has a logistic distribution, then log(X) has a log-logistic distribution
(also known as the Fisk distribution). The log-logistic distribution is used
in economics (population wealth distribution) and reliability.

The logistic distribution will be revisited in Chapter 15, where we deal
with logistic regression.

5.5.9 Weibull Distribution

The Weibull distribution is one of the most important distributions in sur-
vival theory and engineering reliability. It is named after Swedish engi-
neer and scientist Waloddi Weibull after his publication in the early 1950s
(Weibull, 1951).

The density of the two-parameter Weibull random variable X∼Wei(r,λ)
is given as

fX(x) = λrxr−1e−λxr
, x > 0. (5.13)

The CDF is given as FX(x) = 1− e−λxr
. Parameter r is the shape parameter,

while λ is the rate parameter. Both parameters are strictly positive. In this
form, Weibull X ∼Wei(r,λ) is a distribution of X = Y1/r for Y exponential
E (λ).

In MATLAB, the Weibull distribution is parameterized by a and r, as in

f (x) = a−rrxr−1e−(x/a)r
, x > 0. (5.14)
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Note that in this parametrization, a is the scale parameter and relates to
λ as λ = a−r. So when a = λ−1/r, the CDF in MATLAB is wblcdf(x,a,r),
and the PDF is wblpdf(x,a,r). The function wblinv(p,a,r) computes the pth
quantile of theWei(r,λ) random variable.

The (r,λ) parametrization of Weibull distribution is not as prevalent as
the shape-scale parametrization from (5.14), but the likelihood in (5.13) is
more convenient for Bayesian inference. In WinBUGS,Wei(r,λ) is coded as
dweib(r,lambda).

The Weibull distribution generalizes the exponential distribution (r = 1)
and Rayleigh distribution (r = 2). Figure 5.15 shows the densities of the
Weibull distribution for r = 2 (blue), r = 1 (red), and r = 1/2 (black). In all
three cases, λ = 1/2. The values for the scale parameter a = λ−1/r are

√
2,2,

and 4, respectively.
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Fig. 5.15 Densities of Weibull distribution with r = 2 (blue), r = 1 (red), and r = 2 (black).
In all three cases, λ = 1/2.

The mean of a Weibull random variable X is EX = Γ(1+1/r)
λ1/r = aΓ

(
1 + 1

r

)
,

and the variance is Var X = Γ(1+2/r)−Γ2(1+1/r)
λ2/r = a2(Γ

(
1 + 2

r

)
− Γ2

(
1 + 1

r

)
).

The kth moment is EXk = Γ(1+k/r)
λk/r = akΓ

(
1 + k

r

)
.

5.5.10 Pareto Distribution

The Pareto distribution is named after the Italian economist Vilfredo Pareto
(1848-1923). Some examples in which the Pareto distribution provides an
exemplary model include wealth distribution in individuals, sizes of hu-
man settlements, visits to encyclopedia pages, and file size distribution of
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Internet traffic that uses the TCP protocol. A random variable X has a
Pareto Pa(c,α) distribution with parameters 0 < c < ∞ and α > 0 if its den-
sity is given by

fX(x) =

{
α
c

(
c
x

)α+1 , x ≥ c,
0, else .

The CDF is

FX(x) =

{
0, x < c,
1−

(
c
x

)α , x ≥ c.

The mean and variance of X are EX = αc/(α − 1), α > 1, and Var X =
αc2/[(α− 1)2(α− 2)], α > 2. The median is m = c · 21/α. If X1, . . . , Xn are
independent Pa(c,α), then Y = 2c ∑

n
i=1 ln(Xi)∼ χ2 with 2n degrees of free-

dom.
In MATLAB one can specify the generalized Pareto distribution, which

for some selection of its parameters is equivalent to the aforementioned
Pareto distribution. In WinBUGS, the code is dpar(alpha,c) (note the per-
muted order of parameters).

5.5.11 Dirichlet Distribution

The Dirichlet distribution is a multivariate version of the beta distribution
in the same way that the multinomial distribution is a multivariate exten-
sion of the binomial. A random variable X = (X1, . . . , Xk) with a Dirichlet
distribution of (X ∼ Dir(a1, . . . , ak)) has a PDF of

f (x1, . . . , xk) =
Γ(A)

∏
k
i=1 Γ(ai)

k

∏
i=1

xi
ai−1,

where A = ∑ ai, and x = (x1, . . . , xk)≥ 0 is defined on the simplex x1 + · · ·+
xk = 1. Then

E(Xi) =
ai

A
, Var (Xi) =

ai(A− ai)

A2(A + 1)
, and Cov(Xi, Xj) = −

aiaj

A2(A + 1)
.

The Dirichlet random variable can be generated from gamma random
variables Y1, . . . ,Yk ∼ Ga(a,b) as Xi = Yi/SY, i = 1, . . . ,k, where SY = ∑i Yi.
The marginal distribution of a component Xi is Be(ai, A − ai). This is il-
lustrated in the following MATLAB m-file that generates random Dirichlet
vectors:

function drand = dirichletrnd(a,n)
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% function drand = dirichletrnd(a,n)

% a - vector of parameters 1 x m

% n - number of random realizations

% drand - matrix m x n, each column one realization.

%---------------------------------------------------

a=a(:);

m=size(a,1);

a1=zeros(m,n);

for i = 1:m

a1(i,:) = gamrnd(a(i,1),1,1,n);

end

for i=1:m

drand(i, 1:n )= a1(i, 1:n ) ./ sum(a1);

end

5.6 Random Numbers and Probability Tables

In older introductory statistics texts, many back-end pages have been de-
voted to various statistical tables. Several decades ago, many books of sta-
tistical tables were published. Also, the most respected of statistical journals
occasionally published articles providing statistical tables.

In 1947 the RAND Corporation published the monograph A Million Ran-
dom Digits with 100,000 Normal Deviates, which at the time was a state-of-
the-art resource for simulation and Monte Carlo methods. The book can be
found at http://www.rand.org/pubs/monograph_reports/MR1418.html.

These days, much larger tables of random numbers can be produced by
a single line of code, resulting in a set of random numbers that can pass
a battery of stringent randomness tests. With MATLAB and many other
widely available software packages, statistical tables and tables of random
numbers are now obsolete. For example, tables of binomial CDF and PDF
for a specific n and p can be reproduced by

%n=12, p=0.7

disp(’binocdf(0:12, 12, 0.7)’);

binocdf(0:12, 12, 0.7)

disp(’binopdf(0:12, 12, 0.7)’);

binopdf(0:12, 12, 0.7)

We will show how to sample and simulate from a few distributions in
MATLAB and compare empirical means and variances with their theoret-
ical counterparts. The following annotated MATLAB code simulates from
binomial, Poisson, and geometric distributions and compares theoretical
and empirical means and variances:

%various_simulations.m

simu = binornd(12, 0.7, [1,100000]);

http://www.rand.org/pubs/monograph_reports/MR1418.html
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% simu is 10000 observations from Bin(12,0.7)

disp(’simu = binornd(12, 0.7, [1,100000]); 12*0.7 - mean(simu)’);

12*0.7 - mean(simu) %0.001069

%should be small since the theoretical mean is n*p

disp(’simu = binornd(12, 0.7, [1,100000]); ...

12 * 0.7 * 0.3 - var(simu)’);

12 * 0.7 * 0.3 - var(simu) %-0.008350

%should be small since the theoretical variance is n*p*(1-p)

%% Simulations from Poisson(2)

poi = poissrnd(2, [1, 100000]);

disp(’poi = poissrnd(2, [1, 100000]); mean(poi)’);

mean(poi) %1.9976

disp(’poi = poissrnd(2, [1, 100000]); var(poi)’);

var(poi) %2.01501

%%% Simulations from Geometric(0.2)

geo = geornd(0.2, [1, 100000]);

disp(’geo = geornd(0.2, [1, 100000]); mean(geo)’);

mean(geo) %4.00281

disp(’geo = geornd(0.2, [1, 100000]); var(geo)’);

var(geo) %20.11996

5.7 Transformations of Random Variables*

When a random variable with known density is transformed, the result is
a random variable as well. The question is how to find its distribution. The
general theory for distributions of functions of random variables is beyond
the scope of this text, and the reader can find comprehensive coverage in
Ross (2010a, b).

We have already seen that, for a discrete random variable X, the PMF of
a function Y = g(X) is simply the table

g(X) g(x1) g(x2) · · · g(xn) · · ·
Prob p1 p2 · · · pn · · ·

in which only realizations of X are transformed while the probabilities are
kept unchanged.

For continuous random variables the distribution of a function is more
complex. In some cases, however, looking at the CDF is sufficient.

In this section we will discuss two topics: (i) how to find the distribution
for a transformation of a single continuous random variable and (ii) how
to approximate moments, in particular means and variances, of complex
functions of many random variables.
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Suppose that a continuous random variable has a density fX(x) and
that a function g is monotone on the domain of f , with the inverse
function h, h = g−1. Then the random variable Y = g(X) has a density

fY(y) = f (h(y))|h′(y)|. (5.15)

If g is not one-to-one, but has k one-to-one inverse branches,
h1,h2, . . . ,hk, then

fY(y) =
k

∑
i=1

f (hi(y))|h′i(y)|. (5.16)

An example of a function which is not one-to-one is g(x) = x2, for which
inverse branches h1(y) =

√
y and h2(y) = −√y are one-to-one.

Example 5.29. Square Root of Exponential. Let X be a random variable with
an exponential E (λ) distribution, where λ > 0 is the rate parameter. Find
the distribution of the random variable Y =

√
X.

Here g(x) =
√

x and g−1(y) = y2. The Jacobian is |g−1(y)′| = 2y, y ≥ 0.
Thus,

fY(y) = λe−λy2 · 2y, y ≥ 0,λ > 0,

which is known as the Rayleigh distribution.
An alternative approach to finding the distribution of Y is to consider

the CDF:

FY(y) = P(Y ≤ y) = P(
√

X ≤ y) = P(X ≤ y2) = 1− e−λy2

since X has the exponential distribution. The density is now obtained by
taking the derivative of FY(y),

fY(y) = (FY(y))
′ = 2λye−λy2

, y ≥ 0,λ > 0.

�

The distribution of a function of one or many random variables is an ul-
timate summary. However, the result could be quite messy and sometimes
the distribution lacks a closed form. Moreover, not all facets of the result-
ing distribution may be of interest to researchers; sometimes only the mean
and variance are needed.
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If X is a random variable with EX = µ and Var X = σ2, then for a
function Y = g(X) the following approximation holds:

EY ≈ g(µ) +
1
2

g′′(µ)σ2,

Var Y ≈
(

g′(µ)
)2

σ2. (5.17)

If n independent random variables are transformed as Y =
g(X1, X2, . . . , Xn), then

EY ≈ g(µ1,µ2, . . . ,µn) +
1
2

n

∑
i=1

∂2g

∂x2 (µ1,µ2, . . . ,µn)σ
2
i ,

Var Y ≈
n

∑
i=1

(
∂g

∂xi
(µ1,µ2, . . . ,µn)

)2

σ2
i , (5.18)

where EXi = µi and Var Xi = σ2
i .

The approximation for the mean EY is obtained by the second-order
Taylor expansion and is more precise than the approximation for the vari-
ance Var Y, which is of the first order (“linearization”). The second-order
approximation for Var Y is straightforward but involves third and fourth
moments of Xs. Also, when the variables X1, . . . , Xn are correlated, the fac-

tor 2 ∑1≤i<j≤n
∂2g

∂xi∂x j
(µ1, . . . ,µn)Cov(Xi, Xj) should be added to the expres-

sion for Var Y in (5.18).
If g is a complicated function, the mean EY is often approximated by

a first-order approximation, EY ≈ g(µ1,µ2, . . . ,µn), that involves no deriva-
tives.

Example 5.30. String Vibrations. In string vibration, the frequency of the
fundamental harmonic is often of interest. The fundamental harmonic is
produced by the vibration with nodes at the two ends of the string. In this
case, the length of the string L is half of the wavelength of the fundamental
harmonic. The frequency ω (in Hz) depends also on the tension of the
string T, and the string mass M,

ω =
1
2

√
T

ML
.

Quantities L, T, and M are measured imperfectly and are considered
independent random variables. The means and variances are estimated as
follows:
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Variable (unit) Mean Variance
L (m) 0.5 0.0001
T (N) 70 0.16

M (kg/m) 0.001 10−8

Approximate the mean µω and variance σ2
ω of the resulting frequency ω.

The partial derivatives

∂ω

∂T
=

1
4

√
1

TML
,

∂2ω

∂T2 = −1
8

√
1

T3ML
,

∂ω

∂M
= −1

4

√
T

M3L
,

∂2ω

∂M2 =
3
8

√
T

M5L
,

∂ω

∂L
=−1

4

√
T

ML3 ,
∂2ω

∂L2 =
3
8

√
T

ML5 ,

evaluated at the means µL = 0.5, µT = 70, and µM = 0.001, are

∂ω

∂T
(µL,µT ,µM) = 1.3363,

∂2ω

∂T2 (µL,µT ,µM) = −0.0095,

∂ω

∂M
(µL,µT ,µM) = −9.3541 · 104,

∂2ω

∂M2 (µL,µT ,µM) = 1.4031 · 108,

∂ω

∂L
(µL,µT ,µM) =−187.0829,

∂2ω

∂L2 (µL,µT ,µM) = 561.2486,

and the mean and variance of ω are

µω ≈ 187.8117 and σ2
ω ≈ 91.2857 .

The first-order approximation for µω is 1
2

√
µT

µMµL
= 187.0829.

�

5.8 Mixtures*

In modeling tasks it is sometimes necessary to combine two or more
random variables in order to get a satisfactory model. There are two
ways of combining random variables: by taking the linear combination
a1X1 + a2X2 + . . . for which a density in the general case is often convo-
luted and difficult to express in a finite form, or by combining densities
and PMFs directly.
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For example, for two densities f1 and f2, the density g(x) = ε f1(x)+ (1−
ε) f2(x) is a mixture of f1 and f2 with weights ε and 1− ε. It is important
for the weights to be nonnegative and add up to 1 so that g(x) remains a
density.

Very popular mixtures are point mass mixture distributions that com-
bine a density function f (x) with a point mass (Dirac) function δx0 at a
value x0. The Dirac functions belong to a class of special functions. Infor-
mally, one may think of δx0 as a limiting function for a sequence of functions

fn,x0 =

{
n, x0 − 1

2n < x < x0 +
1

2n ,
0, else,

when n→ ∞. It is easy to see that for any finite n, fn,x0 is a density since
it integrates to 1; however, the function domain shrinks to a singleton x0,
while its value at x0 goes to infinity.

For example, f (x) = 0.3δ0 + 0.7× 1√
2π

exp{− x2

2 } is a normal distribution
contaminated by a point mass at zero with a weight 0.3.

5.9 Markov Chains*

You may have encountered statistical jargon containing the term “Markov
chain.” In Bayesian calculations the acronym MCMC stands for Markov
chain Monte Carlo simulations, while in statistical models of genomes, hid-
den Markov chain models are popular. Here we give a basic definition and
a few examples of Markov chains.

A sequence of random variables X0, X1, . . . , Xn, . . . , with values in the
set of “states” S = {1,2, . . .}, constitutes a Markov chain if the probability
of transition to a future state, Xn+1 = j, depends only on the value at the
current state, Xn = i, and not on any previous values Xn−1, Xn−2, . . . , X0.
A popular way of putting this is to say that in Markov chains the future
depends on the present and not on the past. Formally,

P(Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i) = P(Xn+1 = j|Xn = i) = pij,

where i0, i1, . . . , in−1, i, j are the states from S . The probability pij is indepen-
dent of n and represents the transition probability from state i to state j. In
our brief coverage of Markov chains, we will consider chains with a finite
number of states, N.

For states S = {1,2, . . . , N}, the transition probabilities form an N × N
matrix P= (pij). Each row of this matrix sums up to 1 since the probabilities
of all possible moves from a particular state, including the probability of
remaining in the same state, sum up to 1:

pi1 + pi2 + · · ·+ pii + · · ·+ piN = 1.
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The matrix P describes the evolution and long-time behavior of the Markov
chain it represents. In fact, if the distribution π(0) for the initial variable X0

is specified, the pair π(0),P fully describes the Markov chain.
Matrix P2 gives the probabilities of transition in two steps. Its element

p
(2)
ij is P(Xn+2 = j|Xn = i).

Likewise, the elements of matrix Pm are the probabilities of transition in
m steps,

p
(m)
ij = P(Xn+m = j|Xn = i),

for any n ≥ 0 and any i, j ∈ S .

If the distribution for X0 is π(0) =
(

π
(0)
1 ,π(0)

2 , . . . ,π(0)
N

)
, then the distri-

bution for Xn is

π(n) = π(0)Pn. (5.19)

Of course, if the state X0 is known, X0 = i0, then π(0) is a vector of 0s except
at position i0, where the value is 1.

For n large, the probability π(n) “forgets” the initial distribution at state
X0 and converges to π = limn→∞ π(n). This distribution is called the sta-
tionary distribution of a chain and satisfies

π = πP.

Operationally, to find stationary distribution, one solves the system
{
(I− P)π′ = 0
1′π = 1.

Result. If for a finite state Markov chain one can find an integer k so that
all entries in Pk are strictly positive, then stationary distribution π exists.

Example 5.31. Ehrenfest Model. Ehrenfest model (Ehrenfest, 1907) illus-
trates the diffusion in gasses by considering random transition of molecules
between two compartments.

Consider N balls numbered from 1 to N, distributed in two boxes, A
and B. The system is in state i if i balls are in the box A (and N − i balls
in the box B). A number between 1 and N is randomly selected, and the
ball with the selected number switches the boxes. The system constitutes a
Markov chain, since the future state of the system depends on the present
and not on the past states. We will analyze the case of N = 4.

Possible states of the system are {0,1,2,3,4}, so the MC has 5 states. The
transition probabilities among the states are given as follows:

N=4; %total number of particles
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ns=N+1; %number of MC states

%forming transition matrix

P=zeros(ns);

P(1,2)=1; P(ns,ns-1)=1; %states 0 and N are ‘‘reflective’’

for j=2:ns-1

i=j-1; %number of particles in box A

P(j, j-1)=i/N %A -> B

P(j, j+1)=(N-i)/N %B -> A

end

Therefore, the transition matrix is

P =




0 1 0 0 0
1/4 0 3/4 0 0

0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 1 0




.

What is the most likely state of the system after M = 11 steps if all balls
originally were in A?

pi0 =[0 0 0 0 1] %probability of initial state i=4 is 1.

pi0 * P^11

%0 0.4995 0 0.5005 0

The most likely state is i = 3. For any even number of transitions, the most
likely state is i = 2 with constant probability of 3/4.

The stationary probabilities are found by solving the following system:

linsolve([(eye(ns)-P)’; ones(1,ns)],[ zeros(ns,1);1])

The stationary probabilities coincide with binomial Bin(4 + 1,1/2) PDF.

st=[0.0625 0.25 0.375 0.25 0.0625]

st * P

%0.0625 0.2500 0.3750 0.2500 0.0625

MATLAB script ehrenfestsim.m simulates dynamic change of states in
Ehrenfest model with N = 20× 20 = 400 particles, that are initially all in
box A. Figure 5.16 summarizes the calculations. It shows the content of
boxes A and B after 10,000 transitions, as well as the proportion of balls in
each of the boxes.
�

Example 5.32. Point-Accepted Mutation. Point-accepted mutation (PAM)
implements a simple theoretical model for scoring the alignment of protein
sequences. Specifically, at a fixed position, the rate of mutation at each mo-
ment is assumed to be independent of previous events. Then the evolution
of this fixed position in time can be treated as a Markov chain, where the
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Fig. 5.16 Ehrenfest model simulation by ehrenfestsim.m. The top two panels show the
contents of two boxes A and B after 10,000 transitions. The lower left panel shows the
proportion of balls in the boxes (0 for A and 1 for B), and the lower right panel shows
how the proportions changed over 10,000 transitions. The red curve is the proportion for
box A.

PAM matrix represents its transition matrix. The original PAMs are 20× 20
matrices describing the evolution of 20 standard amino acids (Dayhoff et
al. 1978). As a simplified illustration, consider the case of a nucleotide se-
quence with only four states (A, T, G, and C). Assume that in a given time
interval ∆T the probabilities that a given nucleotide mutates to each of
the other three bases or remains unchanged can be represented by a 4× 4
mutation matrix M:

M =




A T G C
A 0.98 0.01 0.005 0.005
T 0.01 0.96 0.02 0.01
G 0.01 0.01 0.97 0.01
C 0.02 0.03 0.01 0.94




Consider the fixed position with the letter T at t = 0:

s0 = (0 1 0 0).

Then, at times ∆, 2∆, 10∆, 100∆, 1000∆, and 10000∆, by (5.19), the proba-
bilities of the nucleotides (A, T, G, C) are s1 = s0 M,s2 = s0 M2, s10 = s0 M10,
s100 = s0 M100,s1000 = s0 M1000, and s10000 = s0 M10000, as given in the follow-
ing table:
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∆ 2∆ 10∆ 100∆ 1000∆ 10000∆

A 0.0100 0.0198 0.0909 0.3548 0.3721 0.3721
T 0.9600 0.9222 0.6854 0.2521 0.2465 0.2465
G 0.0200 0.0388 0.1517 0.2747 0.2651 0.2651
C 0.0100 0.0193 0.0719 0.1184 0.1163 0.1163

�

5.10 Exercises

5.1. Phase I Clinical Trials and CTCAE Terminology. In Phase I clinical
trials, a safe dosage of a drug is assessed. In administering the drug,
doctors are grading subjects’ toxicity responses on a scale from 0 to 5.
In CTCAE (Common Terminology Criteria for Adverse Events, National
Institute of Health), Grade refers to the severity of adverse events. Gener-
ally, Grade 0 represents no measurable adverse events (sometimes omit-
ted as a grade); Grade 1 events are mild; Grade 2 are moderate; Grade
3 are severe; Grade 4 are life-threatening or disabling; Grade 5 are fatal.
This grading system inherently places a value on the importance of an
event, although there is not necessarily “proportionality" among grades
(a “2" is not necessarily twice as bad as a “1"). Some adverse events are
difficult to “fit" into this point schema, but altering the general guide-
lines of severity scaling would render the system useless for comparing
results between trials, which is an important purpose of the system.

Assume that based on a large number of trials (administrations to pa-
tients with renal cell carcinoma), the toxicity of the drug PNU (a murine
Fab fragment of the monoclonal antibody 5T4 fused to a mutated su-
perantigen staphylococcal enterotoxin A) at a particular fixed dosage is
modeled by discrete random variable X,

X 0 1 2 3 4 5
Prob 0.620 0.190 0.098 0.067 0.024 0.001

.

Plot the PMF and CDF and find EX and Var (X).

5.2. Mendel and Dominance. Suppose that a specific trait, such as eye color
or left-handedness, in a person is dependent on a pair of genes, and
suppose that D represents a dominant and d a recessive gene. Thus,
a person having DD is pure dominant and dd is pure recessive while
Dd is a hybrid. The pure dominants and hybrids are alike in outward
appearance. A child receives one gene from each parent.
Suppose two hybrid parents have 4 children. What is the probability that
3 out of 4 children have outward appearance of the dominant gene.
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5.3. Chronic Kidney Disease. Chronic kidney disease (CKD) is a serious
condition associated with premature mortality, decreased quality of life,
and increased healthcare expenditures. Untreated CKD can result in end-
stage renal disease and necessitate dialysis or kidney transplantation.
Risk factors for CKD include cardiovascular disease, diabetes, hyperten-
sion, and obesity. To estimate the prevalence of CKD in the United States
(overall and by health risk factors and other characteristics), the CDC
(CDC’s MMWR Weekly, 2007; Coresh et al., 2003) analyzed the most re-
cent data from the National Health and Nutrition Examination Survey
(NHANES). The total crude (i.e., not age-standardized) CKD prevalence
estimate for adults aged > 20 years in the United States was 17%. By age
group, CKD was more prevalent among persons aged > 60 years (40%)
than among persons aged 40–59 years (13%) or 20–39 years (8%).
(a) From the population of adults aged > 20 years, 10 subjects are se-
lected at random. Find the probability that 3 of the selected subjects
have CKD.
(b) From the population of adults aged > 60, 5 subjects are selected at
random. Find the probability that at least one of the selected have CKD.
(c) From the population of adults aged > 60, 16 subjects are selected at
random and it was found that 6 of them had CKD. From this sample
of 16, subjects are selected at random, one-by-one with replacement, and
inspected. Find the probability that among 5 inspected (i) exactly 3 had
CKD; (ii) at least one of the selected have CKD.
(d) From the population of adults aged > 60 subjects are selected at
random until a subject is found to have CKD. What is the probability
that exactly 3 subjects are sampled.
(e) Suppose that persons aged > 60 constitute 23% of the population of
adults older than 20. For the other two age groups, 20–39, and 40–59, the
percentages are 42% and 35%. Ten people are selected at random. What
is the probability that 5 are from the > 60 group, 3 from the 20–39 group,
and 2 from the 40-59 group.

5.4. Experimenting to See All Possible Outcomes. In a chemical experiment
two outcomes are possible, A and Ac, with probabilities p and q = 1− p.
A student is repeating the experiment until both A and Ac are observed.
(a) Find the distribution of random variable X, the number of experi-
ments necessary to observe A and Ac.
(b) What is the expected number of experiments?
(c) If the expected number of experiments is 3, what can you say about
p?
Hint: Use P(X = k) = P(X > k− 1)− P(X > k), k = 2,3, . . . . Argue that
P(X > k) = pk + qk.
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5.5. Ternary Channel. Refer to Exercise 3.40 in which a communication sys-
tem was transmitting three signals, s1, s2, and s3.
(a) If s1 is sent n = 1000 times, find an approximation to the probability
of the event that it was correctly received between 730 and 770 times,
inclusive.
(b) If s2 is sent n = 1000 times, find an approximation to the probability
of the event that the channel did not switch to s3 at all, that is, if 1,000 s2
signals are sent and not a single s3 was received. Can you use the same
approximation as in (a)?

5.6. Random Circular Sector with Cells. On a circular plate, there are 400
randomly located cells. A part of the plate in the shape of a circular
sector with central angle ϕ = π

100 (in radians) is selected at random.
Find an approximation to the probability that the number of cells in the
selected sector is
(a) zero;
(b) 4 or more.
Hint: Argue that the number of cells in the selected area is Poisson with
λ = 2.

5.7. Conditioning a Poisson. If X1 ∼ Poi(λ1) and X2 ∼ Poi(λ2) are inde-
pendent, show that the distribution of X1, given X1 +X2 = n, is binomial
Bin (n,λ1/(λ1 + λ2)) .

5.8. Rh+ Plates. Assume that there are 6 plates with red blood cells, three
are Rh+ and three are Rh–.
Two plates are selected (a) with, (b) without replacement. Find the prob-
ability that one plate out of the 2 selected/inspected is of Rh+ type.
Now, increase the number of plates keeping the proportion of Rh+ fixed
to 1/2. For example, if the total number of plates is 10000, 5000 of each
type, what are the probabilities from (a) and (b)?

5.9. Your Teammate’s Misconceptions about Density and CDF. Your team-
mate thinks that if f is a probability density function for the continuous
random variable X, then f (10) is the probability that X = 10. (a) Explain
to your teammate why his/her reasoning is false.
Your teammate is not satisfied with your explanation and challenges you
by asking, “If f (10) is not the probability that X = 10, then just what does
f (10) signify?" (b) How would you respond?
Your teammate now thinks that if F is a cumulative probability density
function for the continuous random variable X, then F(5) is the proba-
bility that X = 5. (c) Explain why your teammate is wrong.
Your teammate then asks you, “If F(5) is not the probability of X = 5,
then just what does F(5) represent?" (d) How would you respond?
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5.10. Falls among Elderly. Falls are the second leading cause of unintentional
injury-related death for people of all ages and the leading cause for peo-
ple 60 years and older in the United States. Falls are also the most costly
injury among older persons in the United States.
One in three adults aged 65 years and older falls annually.
(a) Find the probability that 3 among 11 adults aged 65 years and older
will fall in the following year.
(b) Find the probability that among 110,000 adults aged 65 years and
older the number of falls will be between 36,100 and 36,700, inclusive.
Find the exact probability by assuming a binomial distribution for the
number of falls, and an approximation to this probability via de Moivre’s
theorem; see page 252.

5.11. Cell Clusters in 3D Petri Dishes. The number of cell clusters in a 3D
Petri dish has a Poisson distribution with mean λ = 5. Find the percent-
age of Petri dishes that have (a) 0 clusters, (b) at least one cluster, (c)
more than 8 clusters, and (d) between 4 and 6 clusters. Use MATLAB
and poisspdf, poisscdf functions.

5.12. Left-Handed Twins. The identical twin of a left-handed person has a 76
% chance of being left-handed, implying that left-handedness has partly
genetic and partly environmental causes. Ten identical twins of ten left-
handed persons are inspected for left-handedness. Let X be the number
of left-handed among the inspected. What is the probability that X
(a) falls anywhere between 5 and 8, inclusive;
(b) is at most 6;
(c) is not less than 6.
(d) Would you be surprised if the number of left-handed among the 10
inspected was 3? Why or why not?

5.13. Pot Smoking Is Not Cool! A nationwide survey of seniors by the Uni-
versity of Michigan reveals that almost 70% disapprove of daily pot
smoking, according to a report in Parade, September 14, 1980. If 12 se-
niors are selected at random and asked their opinion, find the probability
that the number who disapprove of smoking pot daily is
(a) anywhere from 7 to 9;
(b) at most 5;
(c) not less than 8.

5.14. Power Supply. A power supply is connected to 20 independent loads.
Each load is ON 30% of the time and draws a current of 0.75 amps. Let
X be a current in the power supply at a particular moment.
(a) If X exceeds 13 amps, the power supply is declared to be in a critical
regime. What is the probability of this happening?
(b) Find the probability that X is below 5 amps.
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(c) Find the expectation and variance of X.

5.15. Emergency Help by Phone. The emergency hotline in a hospital tries to
answer questions to its patient support within 3 minutes. The probability
is 0.9 that a given call is answered within 3 minutes and the calls are
independent.
(a) What is the expected total number of calls that occur until the first
call is answered late?
(b) What is the probability that exactly one of the next 10 calls is an-
swered late?

5.16. Min of Three. Let X1, X2, and X3 be three mutually independent ran-
dom variables, with a discrete uniform distribution on {1,2,3}, given as
P(Xi = k) = 1/3 for k = 1,2 and 3.
(a) Let M = min{X1, X2, X3}. What is the distribution (probability mass
function) and cumulative distribution function of M?
(b) What is the distribution (probability mass function) and cumula-
tive distribution function of random variable R = max{X1, X2, X3} −
min{X1, X2, X3}.

5.17. Cystic Fibrosis in Japan. Some rare diseases, including those of genetic
origin, are life-threatening or chronically debilitating diseases that are of
such low prevalence that special combined efforts are needed to address
them. An accepted definition of low prevalence is a prevalence of less
than 5 in a population of 10,000. A rare disease has such a low prevalence
in a population that a doctor in a busy general practice would not expect
to see more than one case in a given year.
Assume that cystic fibrosis, which is a rare genetic disease in most parts
of Asia, has a prevalence of 2 per 10,000 in Japan. What is the probability
that in a Japanese city of 15,000 there are
(a) exactly 3 incidences,
(b) at least one incidence,
of cystic fibrosis.

5.18. Random Variables as Models. Tubert-Bitter et al. (1996) found that the
number of serious gastrointestinal reactions reported to the British Com-
mittee on Safety of Medicines was 538 out of 9,160,000 prescriptions of
the anti-inflammatory drug Piroxicam.
(a) What is the rate of gastrointestinal reactions per 10,000 prescriptions?
(b) Using the Poisson model with the rate λ as in (a), find the probability
of exactly two gastrointestinal reactions per 10,000 prescriptions.
(c) Find the probability of finding at least two gastrointestinal reactions
per 10,000 prescriptions.

5.19. Jack and Jill, Poisson, and Bayes’ Rule. Jack and Jill are partners in
a typing service. Jill handles 60% of the typing work in their partner-
ship. She makes errors (uncorrected errors) at an average rate of one
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per 4 pages while Jack makes errors at a rate of one per page. Assume
that for each typist these errors occur independently and at a constant
rate throughout the paper. Assume, in addition, that for both typists the
number of errors per page is well approximated by a Poisson distribu-
tion.
You submit a 5-page paper to the partnership for typing without know-
ing whether Jack or Jill will type it.
(a) It comes back error-free. What is the probability that Jack typed it?
(b) What is the probability that Jack typed the paper if 3 errors are found.

5.20. Variance of Difference of Two Multinomial Components. Let (X1, X2, . . . , Xk)
be a discrete random vector with multinomialMn(n, p1, . . . , pk) distribu-
tion. Show that the variance of Xi − Xj is n(pi + pj − (pi − pj)

2).

5.21. A 2D PDF. Let

f (x,y) =
{ 3

8 (x2 + 2xy), 0≤ x ≤ 1, 0≤ y ≤ 2
0, else

be a bivariate PDF of a random vector (X,Y).
(a) Show that f (x,y) is a density.
(b) Show that marginal distributions are fX(x) = 3

2 x + 3
4 x2, 0 ≤ x ≤ 1,

and fY(y) =
3+8y

4+12y , 0≤ y ≤ 2.
(c) Show EX = 11/16 and EY = 5/4.
(d) Show that conditional distributions are

f (x|y) = 3x(x + 2y)

1 + 3y
, 0≤ x ≤ 1, for any fixed y ∈ [0,2],

f (y|x) = 2y + x

4 + 2x
, 0≤ y ≤ 2, for any fixed x ∈ [0,1].

(e) Show that

EX|Y =
3 + 8Y

4 + 12Y
and EY|X =

8 + 3X

6 + 3X
.

(f) Demonstrate that iterated expectation rule (5.12) is satisfied,

E(EX|Y) = 11/16 and E(EY|X) = 5/4.

5.22. 2-D Density Tasks. If

f (x,y) =
{ 1

4 xy(x + y)exp{−x− y}, 0≤ x < ∞, 0≤ y < ∞

0, else

Find
(a) marginal distribution fX(x),
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(b) conditional distribution f (x|y),
(c) expectation EX, and
(d) conditional expectation EX|Y.
(f) Are X and Y independent? Explain.

5.23. Conditional Variance. In the context of Example 5.22 show that

Var (Y|X = x) =
(1− x)2

12
.

5.24. Additivity of Gammas. If Xi ∼ Ga(ri,λ) are independent, prove that
Y = X1 + · · ·+ Xn is distributed as gamma with parameters r = r1 + r2 +
· · ·+ rn and λ; that is, Y ∼ Ga(r,λ).

5.25. Memoryless Property. Prove that the geometric Ge(p) distribution
(P(X = x) = (1− p)x p, x = 0,1,2, . . . ) and the exponential distribution
(P(X≤ x) = 1− e−λx, x≥ 0,λ≥ 0) both possess the Memoryless Property;
that is, they satisfy

P(X ≥ v|X ≥ u) = P(X ≥ v− u), v ≥ u.

5.26. Rh System. Rh antigens are transmembrane proteins with loops ex-
posed at the surface of red blood cells. They appear to be used for the
transport of carbon dioxide and/or ammonia across the plasma mem-
brane. They are named for the rhesus monkey in which they were first
discovered. There are a number of different Rh antigens. Red blood cells
that are Rh positive express the antigen designated as D. About 15% of
the population do not have RhD antigens and thus are Rh negative. The
major importance of the Rh system for human health is to avoid the
danger of RhD incompatibility between a mother and her fetus.
(a) From the general population 8 people are randomly selected and
checked for their Rh factor. Let X be the number of Rh negative among
the eight selected. Find P(X = 2).
(b) In a group of 16 patients, three members are Rh negative. Eight pa-
tients are selected at random. Let Y be the number of Rh negative among
the eight selected. Find P(Y = 2).
(c) From the general population subjects are randomly selected and
checked for their Rh factor. Let Z be the number of Rh positive subjects
before the first Rh negative subject is selected. Find P(Z = 2).
(d) Identify the distributions of the random variables in (a), (b), and (c).
(e) What are the expectations and variances for the random variables in
(a), (b), and (c)?

5.27. Blood Types. The prevalence of blood types in the US population is O+:
37.4%, A+: 35.7%, B+: 8.5%, AB+: 3.4%, O–: 6.6%, A–: 6.3%, B–: 1.5%, and
AB–: 0.6%.
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(a) A sample of 24 subjects is randomly selected from the US popula-
tion. What is the probability that 8 subjects are O+? Random variable X
describes the number of O+ subjects among 24 selected. Find EX and
Var X.
(b) Among 16 subjects, eight are O+. From these 16 subjects, five are
selected at random as a group. What is the probability that among the
five selected at most two are O+?
(c) Use Poisson approximation to find the probability that among 500
randomly selected subjects the number of AB– subjects is at least 1.
(d) Random sampling from the population is performed until the first
subject with B+ blood type is found. What is the expected number of
subjects sampled?

5.28. Variance of the Exponential. Show that for an exponential random vari-
able X with density f (x) = λe−λx, x ≥ 0, the variance is 1/λ2.
Hint: You can use the fact that EX = 1/λ. To find EX2 you need to repeat
the integration-by-parts twice.

5.29. Equipment Aging. Suppose that the lifetime T of a particular piece of
laboratory equipment (in 1000 hour units) is an exponentially distributed
random variable such that P(T > 10) = 0.8.
(a) Find the “rate” parameter, λ.
(b) What are the mean and standard deviation of the random variable
T?
(c) Find the median, the first and third quartiles, and the inter-quartile
range of the lifetime T. Recall that for an exponential distribution, you
can find any percentile exactly.

5.30. A Simple Continuous Random Variable. Assume that the measured
responses in an experiment can be modeled as a continuous random
variable with density

f (x) =

{
c− x, 0≤ x ≤ c

0, else

(a) Find the constant c and sketch the graph of the density f (x).
(b) Find the CDF F(x) = P(X ≤ x), and sketch its graph.
(c) Find E(X) and Var (X).
(d) What is P(X ≤ 1/2)?

5.31. 2D Continuous Random Variable Question. A two-dimensional ran-
dom variable (X,Y) is defined by its density function, f (x,y) =Cxe−xy, 0≤
x ≤ 1; 0≤ y ≤ 1.
(a) Find the constant C.
(b) Find the marginal distributions of X and Y.
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5.32. Insulin Sensitivity. The insulin sensitivity (SI), obtained in a glucose
tolerance test is one of the patient responses used to diagnose type II
diabetes. Leading a sedative lifestyle and being overweight are well-
established risk factors for type II diabetes. Hence, body mass index
(BMI) and hip to waist ratio (HWR = HIP/WAIST) may also predict an
impaired insulin sensitivity. In an experiment, 106 males (coded 1) and
126 females (coded 2) had their SI measured and their BMI and HWR
registered. Data ( diabetes.xls) are available on the text web page. For
this exercise you will need only the 8th column of the data set, which
corresponds to the SI measurements.
(a) Find the sample mean and sample variance of SI.
(b) A gamma distribution with parameters α and β seems to be an appro-
priate model for SI. What α, β should be chosen so that the EX matches
the sample mean of SI and Var X matches the sample variance of SI.
(c) With α and β selected as in (b), simulate a random sample from
gamma distribution with a size equal to that of SI (n = 232). Use
gamrnd. Compare two histograms, one with the simulated values from
the gamma model and the second from the measurements of SI. Use 20
bins for the histograms. Comment on their similarities/differences.
(d) Produce a Q–Q plot to compare the measured SI values with the
model. Suppose that you selected α = 3 and β = 3.3, and that dia is
your data set. Take n = 232 equally spaced points between [0,1] and find
their gamma quantiles using gaminv(points,alpha,beta). If the model fits
the data, these theoretical quantiles should match the ordered sample.
Hint: (i) Here MATLAB’s parametrization of gamma density is used,
α = r and β = 1/λ. In terms of α and β, EX = αβ and Var X = αβ2.
(ii) The plot of theoretical quantiles against the ordered sample is called
a Q–Q plot. An example of producing a Q–Q plot in MATLAB is as
follows:

xx = 0.5/232: 1/232: 1;

yy=gaminv(xx, 3, 3.3);

plot(yy, sort(dia(:,8)),’*’)

hold on

plot(yy, yy,’r-’)

5.33. Correlation between a Uniform and Its Power. Suppose that X has
uniform U (−1,1) distribution and that Y = Xk.
(a) Show that for k even, Corr(X,Y) = 0.
(b) Show that for arbitrary k, Corr(X,Y)→ 0, when k→∞.

5.34. Precision of Lab Measurements. The error X in measuring the weight
of a chemical sample is a random variable with PDF.
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f (x) =

{
3x2

16 , −2 < x < 2
0, otherwise

(a) A measurement is considered to be accurate if |X| < 0.5. Find the
probability that a randomly chosen measurement can be classified as
accurate.
(b) Find and sketch the graph of the cumulative distribution function
F(x).
(c) The loss in dollars, which is caused by measurement error, is Y = X2.
Find the mean of Y (expected loss).
(d) Compute the probability that the loss is less than $3.
(e) Find the median of Y.

5.35. Lifetime of Cells. Cells in the human body have a wide variety of life
spans. One cell may last a day; another a lifetime. Red blood cells (RBC)
have a lifespan of several months and cannot replicate, which is the price
RBCs pay for being specialized cells. The lifetime of a RBC can be mod-
eled by an exponential distribution with density f (t) = 1

β e−t/β, where
β = 4 (in units of months). For simplicity, assume that when a particular
RBC dies, it is instantly replaced by a newborn RBC of the same type.
For example, a replacement RBC could be defined as any new cell born
approximately at the time when the original cell died.
(a) Find the expected lifetime of a single RBC. Find the probability that
the cell’s life exceeds 150 days. Hint: Days have to be expressed in units
of β.
(b) A single RBC and its replacements are monitored over the period of 1
year. How many deaths/replacements are observed on average? What is
the probability that the number of deaths/replacements exceeds 5. Hint:
Utilize a link between exponential and Poisson distributions. In simple
terms, if lifetimes are exponential with parameter β, then the number of
deaths/replacements in the time interval [0, t] is Poisson with parameter
λ = t/β. Time units for t and β have to be the same.
(c) Suppose that a single RBC and two of its replacements are monitored.
What is the distribution of their total lifetime? Find the probability that
their total lifetime exceeds 1 year. Hint: Consult the gamma distribution.
If n random variables are exponential with parameter β, then their sum
is gamma distributed with parameters α = n and β.
(d) A particular RBC is observed t = 2.2 months after its birth and is
found to still be alive. What is the probability that the total lifetime of
this cell will exceed 7.2 months?

5.36. k-out-of-n and Weibull Lifetime. Engineering systems of type k-out-
of-n are described in Exercise 3.10. Suppose that a k-out-of-n system
consists of n identical and independent elements for which the lifetime
has Weibull distribution with parameters r and λ. More precisely, if T is
a lifetime of a component,
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P(T ≥ t) = e−λtr
.

Time t is in units of months, and consequently, rate parameter λ is in
units (month)−1. Parameter r is dimensionless.
Assume that n = 20,k = 7, r = 3/2 and λ = 1/4.
(a) Find the probability that the k-out-of-n system is working at time
t = 3.
(b) Plot this probability as a function of time.
(c) At time t = 3 the system is found operational. What is the distribution
of the number of failed components? What is the expected number of
failed components?
Hint: For each component the probability of the system working at time
t is p = e−1/2t3/2

. The probability that a k-out-of-n system is operational
corresponds to the tail probability of binomial distribution: P(X ≥ k),
where X is the number of components working. Use binocdf and be care-
ful about the discrete nature of the binomial distribution.
In part (c), first find the probability that a component fails in the time
interval [0,3]. Denote this probability with f . Then, the number of failed
components Y cannot exceed n− k, and given the independence of com-
ponents, it is binomial. That is, Y ∼ Bin(n− k, f ).

5.37. Silver-Coated Nylon Fiber. Silver-coated nylon fiber is used in hospi-
tals for its anti-static electricity properties, as well as for antibacterial
and antimycotic effects. In the production of silver-coated nylon fibers,
the extrusion process is interrupted from time to time by blockages oc-
curring in the extrusion dyes. The time in hours between blockages, T,
has an exponential E (1/10) distribution, where 1/10 is the rate parame-
ter.
Find the probabilities that
(a) a run continues for at least 10 hours,
(b) a run lasts less than 15 hours, and
(c) a run continues for at least 20 hours, given that it has lasted 10 hours.
Use MATLAB and expcdf function. Be careful about the parametrization
of exponentials in MATLAB.

5.38. Xeroderma Pigmentosum. Xeroderma pigmentosum (XP) was first de-
scribed in 1874 by Hebra et al. XP is the condition characterized as
dry, pigmented skin. It is a hereditary condition with an incidence of
1:250,000 live births (Robbin et al., 1974). In a city with a population of
1,000,000, find the distribution of the number of people with XP. What
is the expected number? What is the probability that there are no XP-
affected subjects?

5.39. Failure Time. Let X model the time to failure (in years) of a Beckman
Coulter TJ-6 laboratory centrifuge. Suppose that the PDF of X is f (x) =
c/(3 + x)3 for x ≥ 0.
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(a) Find the value of c such that f is a legitimate PDF.
(b) Compute the mean and median time to failure of the centrifuge.

5.40. Resistors. If n resistors with resistances R1, R2, . . . , Rn are connected in-
line, the total resistance R is

R = R1 + R2 + · · ·+ Rn.

If the connection is parallel (resistors branch out from a single node, and
join up again somewhere else in the circuit), then

1/R = 1/R1 + 1/R2 + · · ·+ 1/Rn.

Suppose that resistances of two resistors are independent random vari-
ables with means µ1 = 2 Ω and µ2 = 3 Ω and variances σ2

1 = 0.022 Ω2

and σ2
2 = 0.012 Ω2.

Estimate the mean and variance of the total resistance if the resistors are
connected
(a) in line;
(b) parallel.
(c) In the case of parallel connection, assume that R1 ∼ IG(r1,λ) and
R2 ∼ IG(r2,λ), where r1,r2 > 1 and λ is the rate parameter. Thus, R
is IG(r1 + r2,λ) and ER = λ/(r1 + r2 − 1). How does this exact value
compare to the first-order approximation

ER = g(ER1, ER2)

for g(x1, x2) = 1/(1/x1 + 1/x2)?

5.41. Beta Fit. Assume that the fraction of impurities in a certain chemical so-
lution is modeled by a Beta Be(α, β) distribution with known parameter
α = 1. The average fraction of impurities is 0.1.
(a) Find the parameter β.
(b) What is the standard deviation of the fraction of impurities?
(c) Find the probability that the fraction of impurities exceeds 0.25.

5.42. Uncorrelated but Possibly Dependent. Show that for any two random
variables X and Y with equal second moments, the variables Z = X + Y
and W = X − Y are uncorrelated. Note, that Z and W could be depen-
dent.

5.43. Nights of Mr. Jones. If Mr. Jones had insomnia one night, the probability
that he would sleep well the following night is 0.6; otherwise, he would
have insomnia. If he slept well one night, the probabilities of sleeping
well or having insomnia the following night would be 0.5 each.
On Monday night Mr. Jones had insomnia. What is the probability that
he had insomnia on the following Friday night?
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5.44. Stationary Distribution of MC. Consider a Markov chain with transi-
tion matrix

P =




0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


 .

(a) Show that all entries of P2 are strictly positive.
(b) Using MATLAB, find P100 and guess what the stationary distribution
π = (π1,π2,π3) would be. Confirm your guess by solving the equation
π = πP, which gives the exact stationary distribution. Hint: The system
π = πP needs a closure equation π1 + π2 + π3 = 1.

5.45. Influence of Two Previous Trials. In a potentially infinite sequence of
trials, the probability of success is 1/2, unless the previous two trials
resulted in a success. In this case, the probability of success is 2/3. Code
successes as 1 and failures as 0. Such binary sequence defines a MC
where the states are 00, 01, 10, and 11; see Figure 5.17.
(a) Write down the transition matrix P.

11 10

01 00

1/3

1/2 1/2

1/2

1/2

1/2
1/2

2/3

Fig. 5.17 Markov chain schematic graph

(b) Using MATLAB find P100 and argue that the stationary probabilities
for 00, 01, 10, and 11 are 2/9, 2/9, 2/9, and 1/3, respectively. Confirm
this numerical result by solving the system

π = πP,

where P is the transition matrix and π = (π1,π2,π3,π4) is the row vec-
tor of stationary probabilities. Since P is not of full rank, the equation
∑

4
i πi = 1 completes the system.
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Hint: > linsolve([(eye(4)-P)’; ones(1,4)],[zeros(4,1); 1])

(c) Argue that the proportion of successes in a long run is 5/9.

5.46. Heat Production by a Resistor. Joule’s Law states that the amount of
heat produced by a resistor is

Q = I2 R T,

where
Q is heat energy (in Joules),
I is current (in Amperes),
R is resistance (in Ohms), and
T is duration of time (in seconds).
Suppose that in an experiment, I, R, and T are independent random
variables with means µI = 10 A, µR = 30 Ω, and µT = 120 s. Suppose
that the variances are σ2

I = 0.01 A2, σ2
R = 0.02 Ω2, and σ2

T = 0.001 s2.
Estimate the mean µQ and the variance σ2

Q of the produced energy Q.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
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Chapter 6

Normal Distribution

The adjuration to be normal seems shockingly repellent to me.

– Karl Menninger

WHAT IS COVERED IN THIS CHAPTER

• Definition of Normal Distribution, Bivariate Case
• Standardization, Quantiles of Normal Distribution, Sigma Rules
• Linear Combinations of Normal Random Variables
• Central Limit Theorem, de Moivre’s Approximation
• Distributions Related to Normal: Chi-Square, Wishart, t, F, Log-

normal, and Some Noncentral Distributions
• Transformations to Normality

6.1 Introduction

In Chapters 2 and 5 we occasionally referred to a normal distribution ei-
ther informally (bell-shaped distributions/histograms) or formally, as in
Section 5.5.3, where the normal density and its moments were briefly intro-
duced. This chapter is devoted to the normal distribution due to its impor-
tance in statistics. What makes the normal distribution so important? The
normal distribution is the proper statistical model for many natural and so-
cial phenomena. But even if some measurements cannot be modeled by the

237
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normal distribution (it could be skewed, discrete, multimodal, etc.), their
sample means would closely follow the normal law, under very mild con-
ditions. The central limit theorem covered in this chapter makes it possible
to use probabilities associated with the normal curve to answer questions
about the sums and averages in sufficiently large samples. This translates
to the ubiquity of normality – many estimators, test statistics, and nonpara-
metric tests covered in later chapters of this text are approximately normal,
when sample sizes are not small (typically larger than 20 to 30), and this
asymptotic normality is used in a substantial way. Several other important
distributions can be defined through a normal distribution. Also, normal-
ity is a quite stable property – an arbitrary linear combination of normal
random variables remains normal. The property of linear combinations of
random variables preserving the distribution of their components is not
shared by any other probability law and is a characterizing property of a
normal distribution.

6.2 Normal Distribution

In 1738, Abraham de Moivre developed the normal distribution as an ap-
proximation to the binomial distribution, and it was subsequently used by
Laplace in 1783 to study measurement errors and by Gauss in 1809 in the
analysis of astronomical data. The name normal came from Quetelet, who
demonstrated that many human characteristics distributed themselves in a
bell-shaped manner (centered about the “average man,” l’homme moyen),
including such measurements as chest girths of 5,738 Scottish soldiers,
the heights of 100,000 French conscripts, and the body weight and height
of people he measured. From his initial research on height and weight
has evolved the internationally recognized measure of obesity called the
Quetelet index (QI), or body mass index (BMI), QI = (weight in kilo-
grams)/(squared height in meters).

Table 6.1 provides frequencies of chest sizes of 5,738 Scottish soldiers as
well as the relative frequencies. Using this now famous data set, Quetelet
argued that many human measurements distribute as normal. Figure 6.1
gives a normalized histogram of Quetelet’s data set with superimposed
normal density in which the mean and the variance are taken as the sample
mean (39.8318) and sample variance (2.04962).

The PDF for a normal random variable with mean µ and variance σ2 is

f (x) =
1√

2πσ2
e
− 1

2σ2 (x−µ)2

, −∞ < x < ∞.

The distribution function is computed using integral approximation be-
cause no closed form exists for the antiderivative of f (x); this is generally
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Table 6.1 Chest sizes of 5738 Scottish soldiers, data compiled from the 13th edition of
the Edinburgh Medical Journal (1817).

Size Frequency Relative frequency (in %)
33 3 0.05
34 18 0.31
35 81 1.41
36 185 3.22
37 420 7.32
38 749 13.05
39 1073 18.70
40 1079 18.80
41 934 16.28
42 658 11.47
43 370 6.45
44 92 1.60
45 50 0.87
46 21 0.37
47 4 0.07
48 1 0.02

Total 5738 99.99

30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 6.1 Normalized bar plot of Quetelet’s data set. Superimposed is the normal density
with mean µ = 39.8318 and variance σ2 = 2.04962.

not a problem for practitioners because most software packages will com-
pute interval probabilities numerically. In MATLAB, normcdf(x, mu, sigma)

and normpdf(x, mu, sigma) calculate the CDF and PDF at x, and norminv(p,

mu, sigma) computes the inverse CDF at given probability p, that is, the
p-quantile. Equivalently, a normal CDF can be expressed in terms of a spe-
cial function called the error integral:

erf(x)=
2√
π

∫ x

0
e−t2

dt.
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It holds that normcdf(x)= 1/2+1/2*erf(x/sqrt(2)). A random variable X with a
normal distribution will be denoted X ∼ N (µ,σ2).

In addition to software, CDF values are often given in tables. Such tables
contain only quantiles and CDF values for the standard normal distribution,
Z ∼ N (0,1), for which µ = 0 and σ2 = 1. Such tables are sufficient since an
arbitrary normal random variable X can be standardized to Z if its mean and
variance are known:

X ∼ N (µ,σ2) −→ Z =
X − µ

σ
∼ N (0,1).

For a standard normal random variable, Z the PDF is denoted by φ, and
CDF by Φ,

Φ(x) =
∫ x

−∞
φ(t) dt =

∫ x

−∞

1√
2π

e−t2/2 dt. [normcdf(x)]

Suppose we are interested in the probability that a random variable X dis-
tributed as N (µ,σ2) falls between two bounds a and b, P(a < X < b). It is
irrelevant whether the bounds are included or not since the normal distri-
bution is continuous and P(a < X < b) = P(a ≤ X ≤ b). Also, any of the
bounds can be infinite.

µa b

X ∼ N (µ, σ2)

0
a − µ

σ

b − µ

σ

Z ∼ N (0, 1)

(a) (b)

Fig. 6.2 Illustration of the relation P(a≤ X ≤ b) = P

(
a−µ

σ ≤ Z ≤ b−µ
σ

)
.

In terms of Φ,
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X ∼ N (µ,σ2) :

P(a ≤ X ≤ b) = P

(
a− µ

σ
≤ Z ≤ b− µ

σ

)
= Φ

(
b− µ

σ

)
−Φ

(
a− µ

σ

)
.

Figures 6.2 and 6.3 provide the illustration. In MATLAB:
normcdf((b-mu)/sigma) - normcdf((a - mu)/sigma)

%or equivalently

normcdf(b, mu, sigma) - normcdf(a, mu, sigma)

b − µ

σ

Φ

(
b − µ

σ

)

a − µ

σ

Φ

(
a− µ

σ

)

a − µ

σ

b − µ

σ

(a) (b) (c)

Fig. 6.3 Calculation of P(a ≤ X ≤ b) for X ∼ N (µ, σ2). (a) P(X ≤ b) = P(Z ≤ b−µ
σ ) =

Φ
(

b−µ
σ

)
; (b) P(X ≤ a) = P(Z ≤ a−µ

σ ) = Φ
(

a−µ
σ

)
; (c) P(a ≤ X ≤ b) as the difference of

the two probabilities in (a) and (b).

Note that when the bounds are infinite, since Φ is a CDF,

Φ(−∞) = 0, and Φ(∞) = 1.

Traditional statistics textbooks provide tables of cumulative probabilities
for the standard normal distribution, p = Φ(x), for values of x typically
between –3 and 3 with an increment of 0.01. The tables have been used in
two ways: (i) directly, that is, for a given x the user finds p = Φ(x); and (ii)
inversely, given p, one finds approximately what x gives Φ(x) = p, which is
of course a p-quantile of the standard normal. Given the limited precision
of the tables, the results in direct and inverse uses have been approximate.

In MATLAB, the tables can be reproduced by a single line of code:

x=(-3:0.01:3)’; tables=[x normcdf(x)]

Similarly, the normal p-quantiles zp defined as p = Φ(xp) can be tabulated
as

probs=(0.005:0.005:0.995)’; tables=[probs norminv(probs)]

There are several normal quantiles that are frequently used in the construc-
tion of confidence intervals and tests; these are the 0.9, 0.95, 0.975, 0.99,
0.995, and 0.9975 quantiles,
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z0.9 = 1.28155≈ 1.28 z0.95 = 1.64485≈ 1.64 z0.975 = 1.95996≈ 1.96
z0.99 = 2.32635≈ 2.33 z0.995 = 2.57583≈ 2.58 z0.9975 = 2.80703≈ 2.81

For example, the 0.975 quantile of the normal is z0.975 = 1.96. This is
equivalent to saying that 95% of the area below the standard normal density
φ(x) = 1√

2π
exp{−x2/2} lies between –1.96 and 1.96. Note that the shortest

interval containing 1− α probability is defined by quantiles zα/2 and z1−α/2
(see Figure 6.4 as an illustration for α = 0.05). Since the standard normal
density is symmetric about 0, zp = −z1−p.

z0.975 = 1.96

97.5%

z0.025 = −1.96

2.5%

z0.025 = −1.96

z0.975 = 1.96

95%

(a) (b) (c)

Fig. 6.4 (a) Normal quantiles (a) z0.975 = 1.96, (b) z0.025 =−1.96, and (c) 95% area between
quantiles –1.96 and 1.96.

6.2.1 Sigma Rules

Sigma rules state that for any normal distribution, the probability that an ob-
servation will fall in the interval µ± kσ for k = 1,2, and 3 is 68.27%,95.45%,
and 99.73%, respectively. More precisely,

P(µ− σ < X < µ + σ) = P(−1 < Z < 1) = Φ(1)−Φ(−1) = 0.682689 ≈ 68.27%
P(µ− 2σ < X < µ + 2σ) = P(−2 < Z < 2) = Φ(2)−Φ(−2) = 0.954500 ≈ 95.45%
P(µ− 3σ < X < µ + 3σ) = P(−3 < Z < 3) = Φ(3)−Φ(−3) = 0.997300 ≈ 99.73%

Have you ever wonder about the origin of the term Six Sigma? It does
not involve P(µ− 6σ < X < µ + 6σ) as one may expect.

The Six Sigma doctrine is a standard according to which an item with
measurement X ∼ N (µ,σ2) should satisfy X < 6σ to be conforming if µ is
allowed to vary between −1.5σ and 1.5σ.

Thus, effectively, accounting for the variability in the mean, the Six
Sigma constraint becomes

P(X < µ + 4.5σ) = P(Z < 4.5) = Φ(4.5) = 0.99999660.
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This means that only 3.4 items per million produced are allowed to exceed
µ + 4.5σ (be defective). Such standard of quality was set by the Motorola
Company in the 1980s, and it evolved into a doctrine for improving effi-
ciency and quality in management.

6.2.2 Bivariate Normal Distribution*

When the components of a random vector have a normal distribution, we
say that the vector has a multivariate normal distribution. For indepen-
dent components, the density of a multivariate distribution is simply the
product of the univariate densities. When components are correlated, the
distribution involves the covariance matrix that describes the correlation.
Next we discuss the bivariate normal distribution, which will be important
later on, in the context of correlation and regression.

The pair (X,Y) is distributed as bivariate normal N2(µX ,µY,σ2
X,σ2

Y,ρ) if
the joint density is

f (x, y) =
1

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
(x− µx)2

σ2
X

− 2ρ(x− µx)(y− µy)

σXσY
+

(y− µy)
2

σ2
Y

]}
. (6.1)

The parameters µX ,µY,σ2
X ,σ2

Y, and ρ are

µX = E(X), µY = E(Y), σ2
X = Var (X), σ2

Y = Var (Y), and ρ = Corr(X,Y).

One can define bivariate normal distribution with a density as in (6.1)
by transforming two independent, standard normal random variables Z1
and Z2,

X = µ1 + σXZ1,

Y = µ2 + ρσYZ1 +
√

1− ρ2σYZ2.

The marginal distributions in (6.1) are X∼N (µX ,σ2
X) and Y∼N (µY,σ2

Y).
The bivariate normal vector (X,Y) has a covariance matrix

Σ =

(
σ2

X σXσYρ
σXσYρ σ2

Y

)
. (6.2)

The covariance matrix Σ is nonnegative definite. A sufficient condition for
nonnegative definiteness in this case is |Σ| ≥ 0 (see also Exercise 6.2).
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Figure 6.5a shows the density of a bivariate normal distribution with
mean

µ =

(
µX

µY

)
=

(−1
2

)

and covariance matrix

Σ =

(
3 −0.9
−0.9 1

)
.

Figure 6.5b shows contours of equal probability.
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Fig. 6.5 (a) Density of bivariate normal distribution with mean mu=[-1 2] and covariance
matrix Sigma=[3 -0.9; -0.9 1]. (b) Contour plots of a density at levels [0.001 0.01

0.05 0.1]

Several properties of bivariate normal are listed below:
(i) If (X,Y) is bivariate normal, then aX + bY has a univariate normal

distribution.
(ii) If (X,Y) is bivariate normal, then (aX + bY, cX + dY) is also bivariate

normal.
(iii) If the components in (X,Y) are such that Cov(X,Y) = σXσYρ = 0,

then X and Y are independent.
(iv) Any bivariate normal pair (X,Y) can be transformed into a pair

(U,V) = (aX + bY, cX + dY) such that U and V are independent. If σ2
X = σ2

Y,
then one such transformation is U = X + Y, V = X − Y. For an arbitrary
bivariate normal distribution, the rotation

U = X cos ϕ−Y sin ϕ

V = X sin ϕ +Y cos ϕ

makes components (U,V) independent if the rotation angle ϕ satisfies
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cot2ϕ =
σ2

X − σ2
Y

2σXσYρ
.

(v) If (X,Y) is bivariate normal, then the conditional distribution of Y
when X = x is normal with expectation and variance

µX + ρ
σY

σX
(x− µX), and σ2

Y(1− ρ2),

respectively. The linearity in x of the conditional expectation of Y will be
the basis for linear regression, covered in Chapter 14. Also, the fact that
X = x is known decreases the variance of Y; indeed, σ2

Y(1− ρ2) ≤ σ2
Y.

More generally, when the components of a p-dimensional random vec-
tor all have a normal distribution, we say that the vector has a multivariate
normal distribution. For independent components, the density of a mul-
tivariate distribution is simply the product of the univariate normal den-
sities. When the components are correlated, the distribution involves the
covariance matrix that describes the correlation.

A random vector X = (X1, . . . , Xp)′ has a multivariate normal distribu-
tion with parameters µ and Σ, denoted as X ∼MVN p(µ,Σ), if its density
is

f (x) =
1

(2π)p/2|Σ|1/2
e−(1/2)(x−µ)′Σ−1(x−µ),

where x ∈Rp, and Σ is a non-negative definite p× p matrix. Here |Σ| is the
determinant and Σ

−1 the inverse of the covariance matrix Σ.

6.3 Examples with a Normal Distribution

We provide two examples with typical calculations involving normal dis-
tributions, with solutions in MATLAB and WinBUGS.

Example 6.1. IgE Concentration. Total serum IgE (immunoglobulin E) con-
centration allergy tests allow for the measurement of the total IgE level in
a serum sample. Elevated levels of IgE are associated with the presence of
an allergy. An example of testing for total serum IgE is the PRIST (paper
radioimmunosorbent test). This test involves serum samples reacting with
IgE that has been tagged with radioactive iodine. The bound radioactive
iodine, calculated upon completion of the test procedure, is proportional
to the amount of total IgE in the serum sample. The determination of nor-
mal IgE levels in a population of healthy, nonallergic individuals varies by
the fact that some individuals may have subclinical allergies and therefore
have abnormal serum IgE levels. The log concentration of IgE (in IU/ml) in
a cohort of healthy subjects is distributed as a normal N (9, (0.9)2) random
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variable. What is the probability that in a randomly selected subject from
the same cohort the log concentration will

(a) Exceed 10 IU/ml?
(b) Be between 8.1 and 9.9 IU/ml?
(c) Differ from the mean by no more than 1.8 IU/ml?
(d) Find the number x0 such that the IgE log concentration in 90% of the

subjects from the same cohort exceeds x0.
(e) In what bounds (symmetric about the mean) does the IgE log con-

centration fall with a probability of 0.95?
(f) If the IgE log concentration is N (9,σ2), find σ so that

P(8≤ X ≤ 10) = 0.64.

Let X be the IgE log concentration in a randomly selected subject.
Then X ∼N (9,0.92). The solution is given by the following MATLAB code
( ige.m):

%(a)

%P(X>10)= 1-P(X <= 10)

1-normcdf(10,9,0.9) %or 1-normcdf((10-9)/0.9)

%ans = 0.1333

%(b)

%P(8.1 <= X <= 9.9)

%P((8.1-9)/0.9 <= Z <= (9.9-9)/0.9)

%P(-1 <= Z <= 1) ::: Note the 1-sigma rule.

normcdf(9.9, 9, 0.9) - normcdf(8.1, 9, 0.9)

%or, normcdf((9.9-9)/0.9)-normcdf((8.1-9)/0.9)

%ans = 0.6827

%(c)

%P(9-1.8 <= X <= 9+1.8) = P(-2 <= Z <= 2)

%Note the 2-sigma rule.

normcdf(9+1.8, 9, 0.9) - normcdf(9-1.8, 9, 0.9)

% ans = 0.9545

%(d)

%0.90 = P(X > x0)=1-P(X <= x0)

%that is P(Z <= (x0-9)/0.9)=0.1

norminv(1-0.9, 9, 0.9)

%ans = 7.8466

%(e)

%P(9-delta <= X <= 9+delta)=0.95

[9-0.9*norminv(1-0.05/2), 9+0.9*norminv(1-0.05/2)]

%ans = 7.2360 10.7640

%(f)

%P(-1/sigma) <= Z <= 1/sigma)=0.64

%note that 0.36/2 + 0.64 + 0.36/2 = 1

1/norminv( 1 - 0.36/2 )

%ans = 1.0925

�
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Example 6.2. Aplysia Nerves. In this example, easily solved analytically
and using MATLAB, we will show how to use WinBUGS and obtain an
approximate solution. The analysis is not Bayesian; WinBUGS will sim-
ply serve as a random number generator and the required probability and
quantile will be found approximately by simulation.

Characteristics of Aplysia nerves in response to extension were exam-
ined by Koike (1987). Only the Aplysia nerve was easily elongated up to
about five times its resting or relaxing length without impairing propaga-
tion of the action potential along the axon in the nerve. The conduction
velocity along the elongated nerve increased linearly in proportion to the
nerve length in a range from the relaxing length to about 1 to 1.5 times ex-
tension. For an expansion factor of 1.5, the conducting velocity factors are
normally distributed with a mean of 1.4 and a standard deviation of 0.1.
Using WinBUGS, we are interested in finding

(a) the proportion of Aplysia nerves elongated by a factor of 1.5 for
which the conduction velocity factor exceeds 1.5;

(b) the proportion of Aplysia nerves elongated by a factor of 1.5 for
which the conduction velocity factor falls in the interval [1.35,1.61]; and

(c) the velocity factor x that is exceeded by 5% of Aplysia nerves elon-
gated by a factor of 1.5.

#aplysia.odc

model{

mu <- 1.4

stdev <- 0.1

prec<- 1/(stdev * stdev)

y ~ dnorm(mu, prec)

#a

propexceed <- step(y - 1.5)

#b

propbetween <- step(y-1.35)*step(1.61-y)

#c

#done in Sample Monitor Tool by

#selecting 95th percentile

}

There are no data to load; after the check model in Model>Specification

go directly to compile, and then to gen inits. Update 10,000 iterations, and
set in Sample Monitor Tool from Inference>Samples the nodes y, propexceed, and
propbetween. For part (c) select the 95th percentile in Sample Monitor Tool un-
der percentiles. Finally, run the Update Tool for 1,000,000 updates and check
the results in Sample Monitor Tool by setting a star (*) in the node window and
looking at stats.

mean sd MC error val2.5pc median val97.5pc start sample

propbetween 0.6729 0.4691 4.831E-4 0.0 1.0 1.0 10001 1000000
propexceed 0.1587 0.3654 3.575E-4 0.0 0.0 1.0 10001 1000000

y 1.4 0.1001 1.005E-4 1.204 1.4 1.565 10001 1000000
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Here is the same computation in MATLAB.

1-normcdf(1.5, 1.4, 0.1) %0.1587

normcdf(1.61, 1.4, 0.1)-normcdf(1.35, 1.4, 0.1) %0.6736

norminv(1-0.05, 1.4, 0.1) %1.5645

�

6.4 Combining Normal Random Variables

Any linear combination of independent normal random variables is also
normally distributed. Thus, we need only keep track of the mean and vari-
ance of the variables involved in the linear combination, since these two
parameters completely characterize the distribution. Let X1, X2, . . . , Xn be
independent normal random variables such that Xi ∼ N (µi,σ2

i ); then for
any selection of constants a1, a2, . . . , an,

a1X1 + a2X2 + · · ·+ anXn =
n

∑
i=1

aiXi ∼ N (µ,σ2),

where

µ = a1µ1 + a2µ2 + · · ·+ anµn =
n

∑
i=1

aiµi,

σ2 = a2
1σ2

1 + a2
2σ2

2 + . . . a2
nσ2

n =
n

∑
i=1

a2
i σ2

i .

Two special cases are important: (i) a1 = 1, a2 = −1 and (ii) a1 = · · · =
an = 1/n. In case (i) we have a difference of two normals; its mean is the dif-
ference of the corresponding means and variance is a sum of two variances.
Case (ii) corresponds to the arithmetic mean of normals, X. For example, if
X1, . . . , Xn are i.i.d. N (µ,σ2), then the sample mean X = (X1 + · · ·+ Xn)/n
has a normal N (µ,σ2/n) distribution. Thus, variances for Xis and X are
related as

σ2
X
=

σ2

n

or, equivalently, for standard deviations
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σX =
σ√
n

.

Example 6.3. The Piston Production Error. The profile of a piston comprises
a ring in which inner and outer radii X and Y are normal random variables,
N (88,0.012) and N (90,0.022), respectively. The thickness D = Y − X is the
random variable of interest.

(a) Find the distribution of D.
(b) For a randomly selected piston, what is the probability that D will

exceed 2.04?
(c) If D is averaged over a batch of n = 64 pistons, what is the probability

that D will exceed 2.04? Exceed 2.004?

sqrt(0.01^2 + 0.02^2) %0.0224

1-normcdf((2.04 - 2)/0.0224) %0.0371

1-normcdf((2.04 - 2)/(0.0224/sqrt(64))) %0

1-normcdf((2.004 - 2)/(0.0224/sqrt(64))) %0.0766

Compare the probabilities of events {D > 2.04} and {D > 2.04}. Why is
the probability of {D > 2.04} essentially 0, when the analogous probability
for an individual measure D is 3.71%?
�

Example 6.4. Diluting Acid. In a laboratory, students are told to mix 100 ml
of distilled water with 50 ml of sulfuric acid and 30 ml of C2H5OH. Of
course, the measurements are not exact. The water is measured with a
mean of 100 ml and a standard deviation of 4 ml, the acid with a mean of
50 ml and a standard deviation of 2 ml, and C2H5OH with a mean of 30 ml
and a standard deviation of 3 ml. The three measurements are normally
distributed and independent.

(a) What is the probability of a given student measuring out at least 103
ml of water?

(b) What is the probability of a given student measuring out between
148 and 157 ml of water plus acid?

(c) What is the probability of a given student measuring out a total of
between 175 and 180 ml of liquid?

1 - normcdf(103, 100, 4) %0.2266

normcdf(157, 150, sqrt(4^2 + 2^2)) ...

- normcdf(148, 150, sqrt(4^2 + 2^2)) %0.6139

normcdf(180, 180, sqrt(4^2 + 2^2 + 3^2 )) ...

- normcdf(175, 180, sqrt(4^2 + 2^2 + 3^2)) %0.3234

�

Example 6.5. Two Plate Assembly Simulation. The following example is
adapted from Banks et al. (1984). In assembly of two square 4 × 4 steel
plates, comprising a part of a medical device, each plate has a hole drilled
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in its center. The plates are to be joined by a pin. Assembling machine
adjusts the plates with respect to the lower left corner denoted as (0,0) in
coordinate system xOy.

The coordinates of hole centers Xi and Yi for ith plate (i = 1,2) are inde-
pendent normally distributed random variables with mean 2 and standard
deviation 0.001.

The hole diameters D1 and D2 are normally distributed with mean of 0.2
and standard deviation 0.0012, for both plates. The pin diameter, R, is also
normally distributed with mean 0.195 and standard deviation of 0.0005.

(a) What proportion of pins will go through assembled plates? We will
approximate this proportion by 1,000,000 simulated assembles using MAT-
LAB. The clearance

min{D1, D2} −
√
(X1 − X2)2 + (Y1 − Y2)2 − R,

has to be positive for a successful assembly. Why is the second term
needed?

(b) In an assembled pair of plates the pin will wobble if it is too loose.
This wobbling will occur if

min{D1, D2} − R ≥ 0.006.

What fraction of assembled plates would not wobble? This is conditional
probability, since we restrict attention on the assembled plates only. Thus
in simulating this proportion we ignore the cases when the assembly was
not possible.

The following MATLAB script estimates the desired proportions:

%Normal Probabilities by Simulation

rng(10,’twister’)

M=1000000 ; %number of simulations

clear = 0;

clearnowobb=0;

for i = 1:M

X1 = 2 + 0.001 * randn;

Y1 = 2 + 0.001 * randn;

X2 = 2 + 0.001 * randn;

Y2 = 2 + 0.001 * randn;

C=sqrt((X1-X2)^2 + (Y1-Y2)^2);

D1=0.2+0.0012*randn;

D2=0.2+0.0012*randn;

D = min(D1, D2);

R = 0.195 + 0.0005*randn;

clear = clear + (D-C-R > 0);

clearnowobb = clearnowobb + (D-C-R > 0)*(D-R<0.006);

end

p1=clear/M %(a) 0.9553

p2 = clearnowobb/clear %(b) 0.9346
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Thus, by simulation, we estimated that 95.53% of assembles are possible
and that among the assembled plates 93.46% would not wobble.
�

6.5 Central Limit Theorem

The central limit theorem (CLT) elevates the status of the normal distribu-
tion above other distributions. We have already seen that a linear combina-
tion of independent normals is a normal random variable itself. That is, if
X1, . . . , Xn

iid∼ N (µ,σ2), then

n

∑
i=1

Xi ∼ N (nµ,nσ2), and X =
1
n

n

∑
i=1

Xi ∼ N
(

µ,
σ2

n

)
.

The CLT states that X1, . . . , Xn need not be normal in order for ∑
n
i=1 Xi or,

equivalently, for X to be approximately normal. This approximation is quite
good for n as low as 30. As we said, variables X1, X2, . . . , Xn need not be
normal but must satisfy some conditions. For CLT to hold, it is sufficient for
Xis to be independent, equally distributed, and have finite variances and,
consequently, means. Other than that, the Xis can be arbitrary – skewed,
discrete, etc. The conditions of i.i.d. and finiteness of variances are sufficient
– more precise formulations of the CLT are beyond the scope of this text.
Dasgupta (2008) provides comprehensive coverage.

CLT. Let X1, X2, . . . , Xn be i.i.d. random variables with a mean µ and
finite variance σ2. Then,

n

∑
i=1

Xi
approx∼ N (nµ,nσ2) and X =

1
n

n

∑
i=1

Xi
approx∼ N

(
µ,

σ2

n

)
.

A special case of CLT involving Bernoulli random variables results
in a normal approximation to binomials because the sum of many i.i.d.
Bernoullis is at the same time exactly binomial and approximately normal.
This approximation is handy when n is very large.

de Moivre (1738). Let X1, X2, . . . , Xn be independent Bernoulli Ber(p)
random variables with parameter p.

Then,
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Y =
n

∑
i=1

Xi
approx∼ N (np,npq)

and

P(k1 ≤ Y ≤ k2) = Φ

(
k2 + 1/2− np√

npq

)
−Φ

(
k1 − 1/2− np√

npq

)
,

where Φ is the CDF of standard normal random variable.

De Moivre’s approximation is good if both np and nq exceed 10 and
n exceeds 30. If that is not the case, a Poisson approximation to binomial
(page 179) could be better.

The factors 1/2 in de Moivre’s formula are continuity corrections. For
example, Y, which is discrete, is approximated with a continuous distri-
bution. P(Y ≤ k2 + 1) and P(Y < k2 + 1) are the same for a normal but
not for a binomial distribution for which P(Y < k2 + 1) = P(Y ≤ k2).
Likewise, P(Y ≥ k1 − 1) and P(Y > k1 − 1) are the same for a normal
but not for a binomial distribution for which P(Y > k1 − 1) = P(Y ≥ k1).
Thus, P(k1 ≤ Y ≤ k2) for a binomial distribution is better approximated by
P(k1 − 1/2≤ Y ≤ k2 + 1/2).

All approximations used to be much more important in the era before
modern computing power was available. MATLAB is capable of calculating
exact binomial probabilities for huge values of n, and for practical reasons
de Moivre’s approximation is obsolete. For example,

format long

binocdf(1999988765, 4000000000, 1/2)

%ans = 0.361195130797824

format short

However, the theoretical value of de Moivre’s approximation is signifi-
cant since many estimators and tests based on a binomial distribution can
use well-developed normal distribution machinery for an analysis beyond
the computation.

The following MATLAB program exemplifies the CLT by averages of
simulated uniform random variables:

% Central Limit Theorem Demo

figure;

subplot(3,2,1)

hist(rand(1, 10000),40) %histogram of 10000 uniforms

subplot(3,2,2)

hist(mean(rand(2, 10000)),40) %histogtam of 10000

%averages of 2 uniforms

subplot(3,2,3)
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hist(mean(rand(3, 10000)),40) %histogtam of 10000

%averages of 3 uniforms

subplot(3,2,4)

hist(mean(rand(5, 10000)),40) %histogtam of 10000

%averages of 5 uniforms

subplot(3,2,5)

hist(mean(rand(10, 10000)),40) %histogtam of 10000

%averages of 10 uniforms

subplot(3,2,6)

hist(mean(rand(100, 10000)),40)%histogtam of 10000

%averages of 100 uniforms
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Fig. 6.6 Convergence to normal distribution shown via averages of 1, 2, 3, 5, 10, and 100
independent uniform (0,1) random variables.

Figure 6.6 shows the histograms of 10,000 simulations of averages of
k = 1,2,3,5,10, and 100 uniform random variables. It is interesting to see
the metamorphosis of a flat single uniform (k = 1), via a “witch hat dis-
tribution” (k = 2), into bell-shaped distributions close to the normal. For
additional simulation experiments, see the script cltdemo.m.

Example 6.6. Is Grandpa’s Genetic Theory Valid? The domestic cat’s wild
appearance is increasingly overshadowed by color mutations, such as black,
white spotting, maltesing (diluting), red and tortoiseshell, shading, and
Siamese pointing. By favoring the odd or unusually colored and marked
cats over the “plain” tabby, people have consciously and unconsciously
enhanced these color mutations over the course of domestication. Today,
“colored” cats outnumber the wild looking tabby cats, and pure tabbies are
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becoming rare. Some may not be quite as taken by the coat of our domestic
feline friends as Jason’s grandpa is. He has a genetic theory that asserts that
three-fourths of cats with more than three colors in their fur are female. A
total of n = 300 three-color cats (TCCs) are observed and 86 are found to be
male. If Jason’s grandpa’s genetic theory is true, then the number of male
TCCs is binomial B(300,0.25), with an expectation of 75 and variance of
56.25 = 7.52.

(a) What is the probability that, assuming Jason’s grandpa’s theory, one
will observe 86 or more male cats? How does this finding support the the-
ory?

(b) What is the probability that, assuming the independence of a cat’s
fur and gender, one will observe 86 or more male cats?

(c) What is the probability that one will observe exactly 75 male TCCs?
We will find exact solutions using binomial distribution and compare

results with normal approximations.

format long %for precise comparisons

%(a)

1 - binocdf(85, 300, 0.25) %0.08221654140000, exact

1 - normcdf(85, 75, 7.5) %0.09121121972587

1 - normcdf(86, 75, 7.5) %0.07123337741399

1 - normcdf(85.5, 75, 7.5) %0.08075665923377, approx

%85.5 is taken as continuity-corrected argument

%(b)

1 - binocdf(85, 300, 0.5) %0.99999999999998

%virtually a sure event

%(c)

binopdf(75, 300, 0.25) %0.05312831515720, exact

normcdf(75.5, 75, 7.5)-normcdf(74.5, 75, 7.5)

%0.05315292860073, approx

�

Example 6.7. Avio Company. The Avio Company sells 410 plane tickets
for a 400-seater flight. Find the probability that the company overbooked
the flight if a person who bought a ticket shows up at the gate with a
probability of 0.96.

Each sold ticket can be thought of as an “experiment” where “success”
means showing up at the gate for the flight. The number of people that
show up X is binomial Bin(410,0.96). The following MATLAB script calcu-
lates the normal approximation:

410*0.96 %393.6000

sqrt(410*0.96*0.04) %3.9679

1-normcdf((400.5-393.6)/3.9679) %0.0410

Notice that in this case the normal approximation is not very good since
the exact binomial probability is 0.0329:
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1-binocdf(400, 410, 0.96) %0.0329

The reason is that the normal approximation works well when the proba-
bilities are not close to 0 or 1, and here 0.96 is quite close to 1 for a given
sample size of 410.

The Poisson approximation to the binomial performs better. The proba-
bility of missing the flight is 1− 0.96 = 0.04, and overbooking will happen
if 9 or fewer passengers miss the flight:

%prob that 9 or less fail to show

poisscdf(9, 0.04*410) %0.0355

�

6.6 Distributions Related to Normal

Four distributions – chi-square χ2, t, F, and lognormal – are specially re-
lated to the normal distribution. This relationship is described in terms of
functions of independent standard normal variables. Let Z1, Z2, . . . , Zn be n
independent standard normal (mean 0, variance 1) random variables. Then:
• The sum of squares Z2

1 + · · · + Z2
n is chi-square distributed with n

degrees of freedom, χ2
n:

χ2
n ∼ Z2

1 + Z2
2 + · · ·+ Z2

n.

• The ratio of a standard normal Z and the square root of an indepen-
dent chi-square χ2 random variable normalized by its number of degrees
of freedom, has a t-distribution with n degrees of freedom, tn:

tn ∼
Z√

χ2
n

n

.

• The ratio of two independent chi-squares normalized by their respec-
tive numbers of degrees of freedom is distributed as an F:

Fm,n ∼
χ2

m/m

χ2
n/n

.
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The degrees of freedom for F are m – numerator df and n – denominator
df.
• As the name indicates, the lognormal (“log-is-normal”) distribution

is connected to a normal distribution via a logarithm function. If X has a
lognormal disrtibution, then the distribution of Y = log X is normal.

A more detailed description of these four distributions follows next.

6.6.1 Chi-square Distribution

The probability density function for a chi-square random variable with pa-
rameter k, called the degrees of freedom, is

fX(x) =
(1/2)k/2 xk/2−1

Γ(k/2)
e−x/2, 0≤ x < ∞.

The chi-square distribution (χ2) is a special case of the gamma distribution
with parameters r = k/2 and λ = 1/2. Its mean and variance are µ = k and
σ2 = 2k, respectively.

If Z ∼ N (0,1), then Z2 ∼ χ2
1, that is, a chi-square random variable with

one degree of freedom. Furthermore, if U ∼ χ2
m and V ∼ χ2

n are indepen-
dent, then U + V ∼ χ2

m+n.
From these results it can be shown that if X1, . . . , Xn ∼N (µ,σ2) and X is

the sample mean, then the sample variance s2 = ∑i(Xi − X)2/(n− 1) is pro-
portional to a chi-square random variable with n− 1 degrees of freedom:

(n− 1)s2

σ2 ∼ χ2
n−1. (6.3)

This result was proved first by German geodesist Helmert (1876). The χ2-
distribution was previously defined by Abbe and Bienaymé in the mid-
1800s.

�
The formal proof of (6.3) is beyond the scope of this text, but an

intuition can be obtained by inspecting

(n− 1)s2

σ2 =

(
X1 − X

σ

)2

+

(
X2 − X

σ

)2

+ · · ·+
(

Xn − X

σ

)2

= (Y1 − Y)2 + (Y2 −Y)2 + · · ·+ (Yn −Y)2,

where Yi are independent normal N (µ/σ,1).
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(Y1 − Y)2 + (Y2 − Y)2 =

(
Y1 − Y2√

2

)2

= Z2
1 , for Y =

Y1 + Y2

2
,

(Y1 − Y)2 + (Y2 − Y)2 + (Y3 − Y)2 =

(
Y1 − Y2√

2

)2

+

(
Y1 + Y2 − 2Y3√

6

)2

= Z2
1 + Z2

2 ,

for Y =
Y1 + Y2 + Y3

3
,

etc.

Note that the right-hand sides are sums of squares of uncorrelated stan-
dard normal variables.
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Fig. 6.7 χ2-distribution with 5, 10, and 20 degrees of freedom. A normal N (20,40) dis-
tribution is superimposed to illustrate a good approximation to χ2

n by N (n, 2n) for n
large

In MATLAB, the CDF and PDF for a χ2
k are chi2cdf(x,k) and chi2pdf(x,k),

respectively. The pth quantile of the χ2
k distribution is chi2inv(p,k).

Example 6.8. χ2
10 as a Sum of Squares of Ten Standard Normals. In this

example we demonstrate by simulation that the sum of squares of stan-
dard normal random variates follows the χ2-distribution. In particular we
compare Z2

1 + Z2
2 + · · ·+ Z2

10 with χ2
10.

Figure 6.8, produced by the code in nor2chi2.m, shows a normalized
histogram of the sums of squares of ten standard normals with a superim-
posed χ2

10 density (above) and a Q–Q plot comparing the sorted generated
sample with χ2

10 quantiles (below). As expected, the simulated empirical
distribution is very close to the theoretical chi-square distribution.
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figure;

subplot(2,1,1)

%form a matrix of standard normals 10 x 10000

%square the entries, sum up columnwise, to

% get a vector of 10000 chi2 with 10 df.

histn(sum(normrnd(0,1,[10, 10000]).^2),0, 1,30)

hold on

plot((0.1:0.1:30), chi2pdf((0.1:0.1:30),10),’r-’,’LineWidth’,2)

axis tight

subplot(2,1,2)

%check the Q-Q plot

xx = sum(normrnd(0,1,[10, 10000]).^2);

tt = 0.5/10000:1/10000:1;

yy = chi2inv(tt,10);

plot(sort(xx), yy,’*’)

hold on

plot(yy, yy,’r-’)
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Fig. 6.8 Sum of 10 squared standard normals compared to χ2
10 distribution. Above: Nor-

malized histogram with superimposed χ2
10 density (red); Below: Q–Q-plot of sorted sums

against χ2
10 quantiles.

�

Example 6.9. Targeting Meristem Cells. A gene transfer system for meris-
tem cells can be developed on the basis of a ballistic approach (Sautter,
1993). Instead of a macroprojectile, microtargeting uses the law of Bernoulli
for acceleration of highly uniform-sized gold particles. The particle is aimed
at an area as small as 150 µm in diameter, which corresponds to the size of
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a meristem. Suppose that a particle is fired at a meristem at the origin
of a plane coordinate system, with units in microns. The particle lands at
(X,Y), where X and Y are independent and each has a normal distribution
with mean µ = 0 and variance σ2 = 102. The particle is successively deliv-
ered if it lands within

√
738 µm of the target (origin). What is the proba-

bility of this event? The particle is successively delivered if X2 + Y2 ≤ 738,
or (X/10)2 + (Y/10)2 ≤ 7.38. Since both X/10 and Y/10 have a standard
normal distribution, random variable (X/10)2 + (Y/10)2 is χ2

2-distributed.
Since chi2cdf(7.38,2)=0.975, we conclude that the particle is successfully de-
livered with a probability of 0.975.
�

A square root of chi-square random variable χ2
k with k degrees of free-

dom is called chi (χk) random variable. The density of χk random variable
X is

fX(x) =
21−k/2xk−1e−x/2

Γ
(

k
2

) , 0≤ x < ∞.

The mean and variance of X are

EX =

√
2Γ
(

k+1
2

)

Γ
(

k
2

) and Var X = k− (EX)2.

Special cases of χ-distribution are Rayleigh and Maxwell distributions.
In their standard form (scale/rate = 1), these two distributions are χ2 and
χ3 respectively. Absolute value of a standard normal random variable is χ1
distributed.

A multivariate version of the χ2-distribution is called a Wishart distribu-
tion. It is a distribution of random matrices that are symmetric and positive
definite. As such, it is a proper model for normal covariance matrices, and
we will see later its use in Bayesian inference involving bivariate normal
distributions.

A p × p random matrix X has a Wishart distribution if its density is
given by

f (X) =
|X|(n−p−1)/2 exp{− 1

2 tr(Σ−1X)}
2np/2πp(p−1)/4|Σ|n/2 ∏

p
i=1 Γ

(
n+1−i

2

) ,

where Σ is the scale matrix and n is the number of degrees of freedom.
Operator tr is the trace of a matrix, that is, the sum of its diagonal elements,
and |Σ| and |X| are determinants of Σ and X, respectively.
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For p = 1 and Σ = 1, the Wishart distribution is χ2
n. In MATLAB, it is

possible to simulate from the Wishart distribution as wishrnd(Sigma,n). In
WinBUGS, the Wishart distribution is coded as dwish(R[,],n), where the
precision matrix R is defined as Σ−1.

6.6.2 t-Distribution

Random variable X has t-distribution with k degrees of freedom, X ∼ tk, if
its PDF is

fX(x) =
Γ
(

k+1
2

)

√
kπ Γ(k/2)

(
1 +

x2

k

)− k+1
2

, −∞ < x < ∞.

The t-distribution is similar in shape to the standard normal distribution
except for having fatter tails. If X ∼ tk, then EX = 0, k > 1 and Var X =
k/(k − 2), k > 2. For k = 1, the t-distribution coincides with the Cauchy
distribution.

The t-distribution has an important role to play in statistical inference.
With a set of i.i.d. X1, . . . , Xn ∼ N (µ,σ2), we can standardize the sample
mean using the simple transformation of Z = (X− µ)/σX =

√
n(X− µ)/σ.

However, if the variance is unknown, by using the same transformation,
except for substituting the sample standard deviation s for σ, we arrive at
a t-distribution with n− 1 degrees of freedom:

t =
X− µ

s/
√

n
∼ tn−1.

More technically, if Z ∼ N (0,1) and Y ∼ χ2
k are independent, then t =

Z/
√

Y/k ∼ tk. In MATLAB, the CDF at x for a t-distribution with k de-
grees of freedom is calculated as tcdf(x,k), and the PDF is computed as
tpdf(x,k). The pth percentile is computed with tinv(p,k). In WinBUGS, the
t-distribution is coded as dt(mu,tau,k), where tau is a precision parameter
and k is the number of degrees of freedom.

The t-distribution was originally found by German mathematician and
astronomer Jacob Lüroth in 1876 (Lüroth, 1876). William Sealy Gosset re-
discovered the t-distribution in 1908 and published the results under the
pen name “Student.”
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Fig. 6.9 t-distribution with 2 and 6 degrees of freedom. A standard normal distribution
is superimposed as the solid red line.

6.6.3 Cauchy Distribution

The Cauchy distribution is a special case of the t-distribution; it is symmet-
ric and bell-shaped like the normal distribution, but with much fatter tails.
In fact, it is a popular distribution to use in nonparametric robust proce-
dures and simulations because the distribution is so spread out; it has no
mean and variance (none of the Cauchy moments exist). Physicists know
this distribution as the Lorentz distribution. If X ∼ Ca(a,b), then X has a
density

fX(x) =
1
π

b

b2 + (x− a)2 , −∞ < x < ∞.

The standard Cauchy Ca(0,1) distribution coincides with the t-distribution
with 1 degree of freedom.

The Cauchy distribution is also related to the normal distribution. If
Z1 and Z2 are two independent N (0,1) random variables, then their ratio
C = Z1/Z2 is Cauchy, Ca(0,1). Finally, if Ci ∼ Ca(ai,bi) for i = 1, . . . ,n, then
Sn = C1 + · · · + Cn is Cauchy distributed with parameters aS = ∑i ai and
bS = ∑i bi. The consequence of this additivity is interesting. If one observes
n Cauchy Ca(0,1) random variables Xi, i = 1, . . . ,n, and takes the average X,
the average is also Cauchy Ca(0,1). This means that for Cauchy CLT does
not hold; a single measurement is as precise as the average of any finite
number of measurements.
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Here is a simple geometric example that leads to a Cauchy distribution:

Example 6.10. Geometric Interpretation of Cauchy. A ray passing through
the point (−1,0) in R2 intersects the y-axis at the coordinate (0,Y). If the
angle α between the ray and the positive direction of the x-axis is uniform
U (−π/2,π/2), what is the distribution for Y?

Fig. 6.10 If the angle α between the ray and x-axis is uniform U (−π/2, π/2), Y is Cauchy
Ca(0,1).

Here Y = tanα, α = h(Y) = arctan(Y) and h′(y) = 1
1+y2 . The density for

uniform U (−π/2,π/2) is constant 1/π if α ∈ (−π/2,π/2), and 0 else.
From (5.15),

fY(y) =
1
π
|h′(y)|= 1

π

1
1 + y2 ,

which is the density of the Cauchy Ca(0,1) distribution.
�

6.6.4 F-Distribution

Random variable X has an F-distribution with m and n degrees of freedom,
denoted as Fm,n, if its density is given by

fX(x) =
mm/2nn/2

B(m/2,n/2)
xm/2−1(n + mx)−(m+n)/2, x > 0.

The CDF of an F-distribution is not of closed form, but it can be ex-
pressed in terms of an incomplete beta function (page 206) as

F(x) = 1− Iν(n/2,m/2), ν = n/(n + mx), x > 0.
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The mean is given by EX = n/(n− 2),n > 2, and the variance by Var X =
2n2(m+n−2)

m(n−2)2(n−4) ,n > 4.

If X ∼ χ2
m and Y ∼ χ2

n are independent, then (X/m)/(Y/n) ∼ Fm,n. Be-
cause of this representation, m and n are often called, respectively, the nu-
merator and denominator degrees of freedom. F and beta distributions are
related. If X ∼ Be(a,b), then bX/[a(1− X)] ∼ F2a,2b. Also, if X ∼ Fm,n, then
mX/(n + mX)∼ Be(m/2,n/2).
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Fig. 6.11 F5,10 PDF. t2 = 0:0.005:5; plot(t2, fpdf(t2, 5, 10))

The F-distribution is one of the most important distributions for statisti-
cal inference; in introductory statistical courses, the test for equality of vari-
ances, ANOVA, and multivariate regression are based on the F-distribution.
For example, if s2

1 and s2
2 are sample variances of two independent nor-

mal samples with variances σ2
1 and σ2

2 and sizes m and n respectively,

the ratio s2
1/σ2

1
s2

2/σ2
2

is distributed as Fm−1,n−1. The F-distribution is named af-

ter Sir Ronald Fisher, who in fact tabulated not F but z = 1
2 log F. The F-

distribution in its current form was first tabulated and used by George
W. Snedecor, and the distribution is sometimes called Snedecor’s F, or the
Fisher–Snedecor F.

In MATLAB, the CDF at x for an F-distribution with m,n degrees of free-
dom is calculated as fcdf(x,m,n), and the PDF is computed as fpdf(x,m,n).
The pth percentile is computed with finv(p,m,n). Figure 6.11 provides a plot
of a F5,10 PDF.
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6.6.5 Noncentral χ2, t, and F Distributions

Noncentral χ2, t, and F distributions are generalizations of standard χ2,
t, and F distributions. They are used mainly in power analysis of tests
and sample size designs. For example, we will use noncentral t for power
analysis of one-sample and two-sample t tests later in the text.

Random variable χ2
n(δ) has a noncentral χ2-distribution with n degrees of

freedom and parameter of noncentrality δ if it can be represented as

χ2
n(δ) = Z1 + Z2 + · · ·+ Zn−1 + Xn,

where Z1, Z2, . . . Zn−1, Xn are independent random variables. Random vari-
ables Z1, . . . , Zn−1 have a standard normal N (0,1) distribution while Xn is
distributed as N (δ,1). In MATLAB the noncentral χ2 is denoted as ncx2pdf,
ncx2cdf, ncx2inv, ncx2stat, and ncx2rnd for PDF, CDF, quantile, descriptive
statistics, and random number generator.

Random variable tn(δ) has a noncentral t-distribution with n degrees of
freedom and noncentrality parameter δ if it can be represented as

tn(δ) =
X√

χ2
n/n

,

where X and χ2
n are independent, X∼N (δ,1), and χ2

n has a (central) χ2 dis-
tribution with n degrees of freedom. In MATLAB, functions nctpdf, nctcdf,
nctinv, nctstat, and nctrnd, stand for PDF, CDF, quantile, descriptive statis-
tics, and random number generator of the noncentral t.

Figure 6.12 plots the densities of noncentral t for values of the non-
centrality parameter −1,0, and 2. Noncentral t for δ = 0 is a standard t-
distribution.

Random variable Fm,n(δ) has a noncentral F-distribution with m,n degrees
of freedom and parameter of noncentrality δ if it can be represented as

Fm,n(δ) =
χ2

m(δ)/m

χ2
n/n

,

where χ2
m(δ) and χ2

n are independent, with noncentral (δ) and standard
χ2 distributions with m and n degrees of freedom, respectively. In MAT-
LAB, functions ncfpdf, ncfcdf, ncfinv, ncfstat, and ncfrnd, stand for the PDF,
CDF, quantile, descriptive statistics, and random number generator of the
noncentral F.

The noncentral F will be used in Chapter 11 for power calculations in
several ANOVA designs.
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Fig. 6.12 Densities of noncentral t8(δ) distribution for δ = −1,0, and 2.

6.6.6 Lognormal Distribution

A random variable X has a lognormal distribution with parameters µ and
σ2, X ∼ LN (µ,σ2), if its density function is given by

f (x) =
1

x
√

2πσ
exp

{
− (log x− µ)2

2σ2

}
, x > 0.

If Y has a normal distribution, then X = eY is lognormal.
�

Parameter µ is the mean and σ is the standard deviation of the distribu-
tion for the normal random variable Y = log X, not the lognormal random
variable X, and this can sometimes be confusing.

The moments of the lognormal distribution can be computed from the
moment-generating function of the normal distribution. The nth moment
is E(Xn) = exp{nµ + n2σ2/2}, from which the mean and variance of X are

E(X) = exp{µ + σ2/2}, and Var (X) = exp{2(µ + σ2)} − exp{2µ + σ2}.

The median is exp{µ} and the mode is exp{µ− σ2}.
The lognormality is preserved under multiplication and division, i.e.,

the products and quotients of lognormal random variables remain lognor-
mally distributed. If Xi ∼ LN (µi,σ2

i ), then ∏
n
i=1 Xi ∼ LN (∑n

i=1 µi,∑
n
i=1 σ2

i ).
Several biomedical phenomena are well modeled by a lognormal dis-

tribution, such as the age at onset of Alzheimer’s disease, latent periods
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of infectious diseases, or survival time after diagnosis of cancer. For mea-
surement errors that are multiplicative, the lognormal distribution is the
convenient model. More applications and properties can be found in Crow
and Shimizu (1988).

In MATLAB, the CDF of a lognormal distribution with parameters m
and s is evaluated at x as logncdf(x,m,s), and the PDF is computed as
lognpdf(x,m,s). The pth percentile is computed with logninv(p,m,s). Here the
parameter s stands for σ, not σ2. In WinBUGS, the lognormal distribution
is coded as dlnorm(mu,tau), where tau stands for the precision parameter 1

σ2 .

Example 6.11. Renner’s Honey Data. The content of hydroxymethylfurfurol
(HMF, mg

kg ) in 1573 honey samples (Renner, 1970) is well conforming to the

lognormal distribution. The data set renner.mat|dat contains the inter-
val midpoints (first column) and interval frequencies (second column). The
parameter µ was estimated as −0.6084 and σ as 1.0040. The histogram and
fitting density are shown in Figure 6.13 and the code is given in renner.m.
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Fig. 6.13 Normalized histogram of Renner’s honey data and lognormal distribution with
parameters µ =−0.6083 and σ2 = 1.00402 that fits data well.

The goodness of such fitting procedures will be discussed in Chapter 17
more formally. Note that µ and σ are the mean and standard deviation of
the logarithms of observations, not the observations themselves.

load ’renner.dat’

% mid-intervals, int. length = 0.25

rennerx = renner(:,1);

% frequencies in the interval
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rennerf = renner(:,2);

n = sum(renner(:,2)); % sample size (n=1573)

bar(rennerx, rennerf./(0.25 * n))

hold on

m = sum(log(rennerx) .* rennerf)/n %m =-0.6083

s = sqrt( sum( rennerf .*(log(rennerx) - m).^2 )/n )

%s=1.0040

xx = 0:0.01:8;

yy = lognpdf(xx, m, s);

plot(xx, yy, ’r-’,’linewidth’,2)

�

6.7 Delta Method and Variance-Stabilizing
Transformations*

The CLT states that for independent identically distributed random vari-
ables X1, . . . , Xn with mean µ and finite variance σ2,

√
n(X− µ)

approx∼ N (0,σ2),

where the symbol
approx∼ means distributed approximately as. Other than for

a finite variance, there are no restrictions on the type, distribution, or any
other feature of random variables Xi.

For a function g,

√
n
(

g(X)− g(µ)
) approx∼ N (0, g′(µ)2σ2).

The only restriction on g is that the derivative evaluated at µ must be
finite and nonzero.

This result is called the delta method and the proof, which uses a simple
Taylor expansion argument, will be omitted since it also uses facts concern-
ing the convergence of random variables not covered in the text.

Example 6.12. Reciprocal and Square of Sample Mean. For n large

1/X
approx∼ N

(
1
µ

,
σ2

µ4

)
,

(
X
)2 approx∼ N

(
µ2, 4µ2σ2

)
.

�
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The delta method is useful for many asymptotic arguments. Now we focus
on the selection of the transformation g that stabilizes the variance.

Important statistical methodologies often assume that observations have
variances that are constant for all possible values of the mean. Observations
coming from a normal N (µ,σ2) distribution would satisfy this requirement
since σ2 does not depend on the mean µ. However, constancy of variances
with respect to the mean is rather an exception than the rule. For example,
if random variates from the exponential E (λ) distribution are generated,
then the variance σ2 = 1/λ2 depends on the mean µ = 1/λ, as σ2 = µ2.

For some important distributions we will find a transformation that will
make the variance constant and thus uninfluenced by the mean. This will
prove beneficial for a range of inferential statistical procedures covered later
in the text (confidence intervals, testing hypotheses).

Suppose that the variance Var X = σ2
X(µ) can be expressed as a function

of the mean µ = EX. For Y = g(X), Var Y ≈ [g′(µ)]2σ2
X(µ), see (5.18). The

condition that the variance of Y is constant leads to a simple differential
equation

[g′(µ)]2σ2
X(µ) = c2

with the following solution:

g(x) = c
∫

dx

σX(x)
dx. (6.4)

This is the theoretical basis for many proposed variance-stabilizing
transformations. Note that σX(x) in (6.4) is a function expressing the vari-
ance as a function of the mean.

Example 6.13. Stabilizing Variance. Suppose data are sampled from (a)
Poisson Poi(λ), (b) exponential E (λ), and (c) binomial Bin(n, p) distribu-
tions.

In (a), the mean and variance are equal, σ2(µ) = µ (= λ), and (6.4) be-
comes

g(x) = c
∫

dx√
x

dx = 2c
√

x + d

for some constants c and d. Thus, as the variance-stabilizing transformation
for Poisson observations we can take g(x) =

√
x.

In (b) and (c), σ2(µ) = µ2 and σ2(µ) = µ− µ2/n, and, after solving the
integral in (6.4), we find that the transformations are g(x) = log(x) and
g(x) = arcsin

√
x/n (Exercise 6.19).

�
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Example 6.14. Box–Cox Transformation. Box and Cox (1964) introduced a
family of transformations, indexed by a parameter λ, applicable to positive
data X1, . . . , Xn:

Yi =

{
Xλ

i −1
λ , λ 6= 0

log Xi, λ = 0.
(6.5)

This transformation is mostly applied to responses in linear models exhibit-
ing nonnormality or heterogeneity of variances (heteroscedasticity). For a
properly selected λ, transformed data Y1, . . . ,Yn may look “more normal”
and amenable to standard modeling techniques. The parameter λ is se-
lected by maximizing,

(λ− 1)
n

∑
i=1

log Xi −
n

2
log

[
1
n

n

∑
i=1

(Yi − Y)2

]
, (6.6)

where Yi are as given in (6.5) and Y = 1
n ∑

n
i=1 Yi. As an illustration, we apply

the Box–Cox transformation to apparently skewed data of pyruvate kinase
concentrations.

Exercise 2.19 featured a multivariate data set dmd.dat in which the
fourth column gives pyruvate kinase concentrations in 194 female relatives
of boys with Duchenne muscular dystrophy (DMD). The distribution of
this measurement is skewed to the right (Fig. 6.14a). We will find the Box–
Cox transformation to symmetrize the data (make it approximately nor-
mal). Panel (b) gives the values of likelihood in (6.6) for different values
of λ. Note that (6.6) is maximized for λ approximately equal to –0.15. Fig-
ure 6.14c gives the histogram for data transformed by the Box–Cox transfor-
mation with λ = −0.15. The histogram is notably symmetrized. For details
see boxcox.m.
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Fig. 6.14 (a) Histogram of row data of pyruvate kinase concentrations; (b) log-likelihood
is maximized at λ = −0.15; and (c) histogram of Box–Cox-transformed data.
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6.8 Exercises

6.1. Standard Normal Calculations. Random variable X has a standard nor-
mal distribution. What is larger, P(|X| ≤ 0.7) or P(|X| ≥ 0.7)?

6.2. Nonnegative Definiteness of Σ Constrains ρ. A symmetric 2× 2-matrix
A = [a b;b d] is nonnegative definite if a ≥ 0 and det(A) = ad− b2 ≥ 0.
Show that condition det(Σ) ≥ 0 for Σ in (6.2), implies −1≤ ρ ≤ 1.

6.3. Herrings. The alewife (Pomolobus pseudoharengus, Wilson 1811) grows to
maximum length of about 15 in., but adults average only about 10.5 in.
long and about 8 oz. in weight; 16,400,000 fish taken in New England in
1898 weighed about 8,800,000 lbs.

Fig. 6.15 Alewife fish.

Assume that the length of an individual fish (Fig. 6.15) is normally dis-
tributed with mean 10.5 in. and standard deviation 1.6 in. and that the
weight is distributed as χ2 with 8 degrees of freedom.
(a) What percentage of fish are between 10.5 and 13 in. long?
(b) What percentage of fish weigh more than 10 oz.?
(c) Ten percent of fish are longer than x. Find x.

6.4. Sea Urchins. In a laboratory experiment, researchers at Barry Univer-
sity, (Miami Shores, FL) studied the rate at which sea urchins ingested
turtle grass (Florida Scientist, Summer/Autumn 1991). The urchins were
starved for 48 h, then fed 5-cm blades of green turtle grass. The mean
ingestion time was found to be 2.83 h and the standard deviation 0.79 h.
Assume that green turtle grass ingestion time for the sea urchins has an
approximately normal distribution.
(a) Find the probability that a sea urchin will require between 2.3 and
4 h to ingest a 5-cm blade of green turtle grass.
(b) Find the time t∗ (hours) so that 95% of sea urchins take more than t∗

hours to ingest a 5-cm blade of green turtle grass.

6.5. Pyruvate Kinase for Controls Is Normal. Refer to Exercise 2.19. The
histogram for PK response for controls, X, is fairly bell-shaped (as much
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as 142 observations show), so you decided to fit it with a normal distri-
bution, N (12,42).
(a) How would you defend the choice of a normal model that allows for
negative values when the measured level is always positive?
(b) Find the probability that X falls between 4 and 20.
(c) Find the probability that X exceeds 20.
(d) Find the value x0 so that 93% of all PK measurements exceed x0.

6.6. Leptin. Leptin (from the Greek word leptos, meaning thin) is a 16-kDa
hormone that plays a key role in regulating energy intake and energy ex-
penditure, including the regulation (decrease) of appetite and (increase)
of metabolism. Serum leptin concentrations can be measured in sev-
eral ways. One approach is by using a radioimmunoassay in venous
blood samples (Linco Research Inc., St Charles, MO). Several studies
have consistently found women to have higher serum leptin concentra-
tions than do men. For example, among US adults across a broad age
range, the mean serum leptin concentration in women is approximately
normal N (12.7 µg/L, (1.3 µg/L)2) and in men approximately normal
N (4.6 µg/L, (0.5 µg/L)2).
(a) What is the probability that the concentration of leptin in a randomly
selected US adult male exceeds 6 µg/L?
(b) What proportion of US women have concentration of leptin in the
interval 12.7± 2 µg/L?
(c) What interval, symmetric about the mean 12.7 µg/L, contains leptin
concentrations of 95% of adult US women?

6.7. Pulse Rate. The pulse rate of 1-month-old infants has a mean of 115
beats per minute and a standard deviation of 16 beats per minute.
(a) Explain why the average pulse rate in a sample of 64 1-month-old
infants is approximately normally distributed.
(b) Find the mean and the variance of the normal distribution in (a).
(c) Find the probability that the average pulse rate of a sample of 64 will
exceed 120.

6.8. Side Effects. One of the side effects of flooding a lake in northern boreal
forest areas1 (e.g., for a hydroelectric project) is that mercury is leached
from the soil, enters the food chain, and eventually contaminates the
fish. The concentration of mercury in fish will vary among individual
fish because of differences in eating patterns, movements around the
lake, etc. Suppose that the concentrations of mercury in individual fish
follows an approximately normal distribution with a mean of 0.25 ppm
and a standard deviation of 0.08 ppm. Fish are safe to eat if the mercury
level is below 0.30 ppm. What proportion of fish are safe to eat?

1 The northern boreal forest, sometimes also called the taiga or northern coniferous
forest, stretches unbroken from eastern Canada westward throughout the majority of
Canada to the central region of Alaska.
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6.9. Macrolepiota Procera. The size of mushroom caps varies. While many
species of Marasmius and Collybia are only 12 to 20 mm (1/2 to 3/4 in.) in
diameter, some fungi are nearly 200 mm (8 in.) across. The cap diameter
of parasol mushroom (Macrolepiota procera, Fig. 6.16) is a normal random
variable with parameters µ = 230 mm and σ = 25 mm.

Fig. 6.16 Parasol mushroom Macrolepiota procera.

(a) What proportion of parasol caps has a diameter between 200 and
250 mm?
(b) Five percent of parasol caps are larger than x0 in diameter. Find x0.

6.10. Duration of Gestation in Humans. Altman (1980) quotes the following
incident from the UK: “In 1949 a divorce case was heard in which the
sole evidence of adultery was that a baby was born 349 days after the
husband had gone abroad on military service. The appeal judges agreed
that medical evidence was unlikely but scientifically possible.” So the
appeal failed. “Most people think that the husband was hard done by,”
Altman adds.
So let us judge the judges. The reported mean duration of an uncompli-
cated human gestation is between 266 and 288 days, depending on many
factors but mainly on the method of calculation. Assume that population
mean and standard deviations are µ = 280 and σ = 10 days, respectively.
In fact, smaller standard deviations have been reported, so 10 days is a
conservative choice. The normal model fits the data reasonably well if
the samples are large.
Under the normal N (µ,σ2) model, find the probability that a gestation
period will be equal to or greater than 349 days.

6.11. Tolerance Design. Eggert (2005) provides the following engineering
design question. A 5-in. diameter pin will be assembled into a 5.005-
in. journal bearing. The pin manufacturing tolerance is specified to
tpin = 0.003 inch. A minimum clearance fit of 0.001 in. is needed.
Determine tolerance required of the hole, thole, such that 99.9% of the
mates will exceed the minimum clearance. Assume that manufacturing
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variations are normally distributed. The tolerance is defined as 3 stan-
dard deviations.

6.12. Ulnar Variance. The lower arm is made up of two bones – the ulna
and the radius. The length of these bones can lead to an ulnar variance,
which can cause wrist pain, degenerative ailments, improper hand and
wrist functioning.
This exercise uses data reported in Jung et al. (2001), who studied ra-
diographs of the wrists of 120 healthy volunteers in order to determine
the normal range of ulnar variance. The radiographs had been taken
in various positions under both unloaded (static) and loaded (dynamic)
conditions.
The ulnar variance in neutral rotation was modeled by normal distribu-
tion with a mean of µ = 0.74 mm and standard deviation of σ = 1.46 mm.
(a) What is the probability that a radiogram of a normal person will
show negative ulnar variance in neutral rotation (ulnar variance, unlike
the statistical variance, can be negative)?
The researchers modeled the maximum ulnar variance (UVmax) as nor-
malN (1.52, 1.562) when gripping in pronation and minimum ulnar vari-
ance (UVmin) as normal N (0.19, 1.432) when relaxed in supination.
(b) Find the probability that the mean dynamic range in ulnar variance,
C = UVmax −UVmin, will exceed 1 mm.

6.13. Independence of Sample Mean and Standard Deviation in Normal
Samples. Simulate 1000 samples from the standard normal distribution,
each of size 100, and find their sample mean and standard deviation.
(a) Plot a scatterplot of sample means vs. the corresponding sample stan-
dard deviations. Are there any trends?
(b) Find the coefficient of correlation between sample means and stan-
dard deviations from (a) arranged as two vectors. Is the coefficient close
to zero?

6.14. Sonny and Multiple Choice Exam. An instructor gives a 100-question
multiple-choice final exam. Each question has 4 choices. In order to pass,
a student has to have at least 35 correct answers. Sonny decides to guess
at random on each question. What is the probability that Sonny will pass
the exam?

6.15. Amount of Liquid in a Bottle. Suppose that the volume of liquid in a
bottle of a certain chemical solution is normally distributed with a mean
of 0.5 L and standard deviation of 0.01 L.
(a) Find the probability that a bottle will contain at least 0.48 L of liquid.
(b) Find the volume that corresponds to the 95th percentile.

6.16. Marginals and Conditionals of a 2D Normal. Find marginal and con-
ditional densities fX(x), fY(y), f (x|y) and f (y|x), if (X,Y) has density
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f (x,y) =
3
√

3
π

exp
{
−4x2 − 6xy− 9y2

}
.

6.17. Meristem Cells in 3D. Suppose that a particle is fired at a cell sitting
at the origin of a spatial coordinate system, with units in microns. The
particle lands at (X,Y, Z), where X,Y, and Z are independent, and each
has a normal distribution with a mean of µ = 0 and variance of σ2 =
250. The particle is successfully delivered if it lands within 70 µm of
the origin. Find the probability that the particle was not successfully
delivered.

6.18. Glossina morsitans. Glossina morsitans (tsetse fly) is a large biting fly
that inhabits most of midcontinental Africa. This fly is infamous as the
primary biological vector (the meaning of vector here is epidemiological,
not mathematical. A vector is any living carrier that transmits an infec-
tious agent) of trypanosomes, which cause human sleeping sickness. The
data in the table below are reported in Pearson (1914) and represent the
frequencies of length in microns of trypanosomes found in Glossina mor-
sitans.

Microns 15 16 17 18 19 20 21 22 23 24 25
Frequency 7 31 148 230 326 252 237 184 143 115 130
Microns 26 27 28 29 30 31 32 33 34 35 Total
Frequency 110 127 133 113 96 54 44 11 7 2 2500

The original data distinguished five different strains of trypanosomes,
but it seems that the summary data set, as shown in the table, can be well
approximated by a mixture of two normal distributions, p1N µ1,σ2

1 ) +

p2N µ2,σ2
2 ).

Using MATLAB’s gmdistribution.fit identify the means of the two nor-
mal components, as well as their weights in the mixture, p1 and p2. Plot
the normalized histogram and superimpose the density of the mixture.
Data can be found in glossina.mat.

6.19. Stabilizing the Variance. In Example 6.13 it was stated that the variance
stabilizing transformations for exponential E (λ) and binomial Bin(n, p)

distributions are g(x) = log(x) and g(x) = arcsin
√

x
n , respectively. Prove

these statements.

6.20. From Normal to Lognormal. Derive the density of a lognormal distri-
bution by transforming X ∼ N (0,1) into Y = exp{X}.

6.21. Changing the Threshold for FPG. Woolf and Rothmich (1998) report
that a change of the diagnostic threshold for fasting plasma glucose
(FPG) from 140 to 126 mg per dL, drastically increased the number of
people diagnosed as diabetics:
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Lowering the diagnostic threshold shifts the definition of diabetes into the cen-
tral bulge of the distribution curve where the glucose level of most Americans
falls. Among U.S. adults 40 to 74 years of age who have not been diagnosed
with diabetes, 1.9 million have FPG levels of 126 to 140 mg per dL, which is
almost as many as the number of people who have levels over 140 mg per dL.
Under the new guidelines (ADA 1997), many Americans with FPG levels of
126 to 140 mg per dL, who previously would have been told that they had
normal (or impaired) glucose tolerance, will now be informed that they harbor
a disease.

Assume that the FPG of a randomly selected adult of age 40 to 74 from
the US state of Georgia, can be modeled as lognormal LN (µ,σ2), where
µ = 4.46 and σ2 = 0.222.
(a) Estimate how many people will fall in the range 126–140 if the pop-
ulation of adults of age 40 to 74 in Georgia is approximately 4 million.
(b) Find the FPG∗ level so that 95% of the population falls below FPG∗.
(c) The lognormal model is not symmetric (lognormal distribution is
positively skewed), so the mean is larger than the median. Find the me-
dian. In one sentence explain what this median represents in the terms
of FPG.
Hint: In (a) you need first to estimate proportion of the population in
126–140 FPG range. MATLAB parametrizes lognormal distributions with
µ and σ. Be careful about the mean and variance of FPG. They are not
µ = 4.46 and σ2 = 0.222.

6.22. The Square of a Standard Normal. If X ∼ N (0,1), show that Y = X2

has a density of

fY(y) =
1

√
2Γ
(

1
2

)y1/2−1e−y/2, y ≥ 0,

which is χ2 with 1 degree of freedom.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch6.Norm/

acid.m, aviocompany.m, boxcox.m, ch2itf.m, cltdemo.m, glossina.m,

histn.m, ige.m, meanvarind.m, nor2chi2.m, piston.m, plot2dnormal.m,

plotnct.m, quetelet.m, renner.m, simulplates.m, tsetse.m

aplysia.odc

glossina.mat, renner.dat|mat
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Chapter 7

Point and Interval Estimators

A grade is an inadequate report of an inaccurate judgment by a biased and variable judge
of the extent to which a student has attained an undefined level of mastery of an unknown
proportion of an indefinite amount of material.

– Paul Dressel

WHAT IS COVERED IN THIS CHAPTER

• Moment-Matching and Maximum Likelihood Estimators
• Unbiased and Consistent Estimators
• Estimation of Mean and Variance
• Confidence Intervals
• Estimation of Population Proportions
• Sample Size Design by Length of Confidence Intervals
• Prediction and Tolerance Intervals
• Intervals for the Poisson Rate

7.1 Introduction

One of the primary objectives of inferential statistics is estimation of pop-
ulation characteristics, or descriptors, on the basis of limited information
contained in a sample. The population descriptors are formalized by a sta-
tistical model, which can be postulated at various levels of specificity: a
broad class of models, a parametric family, or a fully specific unique model.

279
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Often, a functional or distributional form is fully specified but dependent
on one or more parameters. Such a model is called parametric. When the
model is parametric, the task of estimation is to find the best possible sam-
ple counterparts as estimators for the parameters and to assess the accuracy
of the estimators.

The estimation procedure follows standard rules. Usually, a sample is
taken and a statistic, as a function of observations, is calculated. The value
of the statistic serves as a point estimator for the unknown population pa-
rameter. For example, responses in political pools observed as sample pro-
portions are used to estimate the population proportion of voters in favor of
a particular candidate. The associated model is binomial and the parameter
of interest is the binomial proportion in the population.

The estimators for a parameter can be given as a single value – point
estimators or as a range of values – interval estimators. For example, the sam-
ple mean is a point estimator of the population mean. Confidence intervals
and credible sets in a Bayesian context are examples of interval estimators.

In this chapter, we first discuss general methods for finding estimators
and then focus on estimation of specific population parameters: means,
variances, proportions, rates, etc. Some estimators are universal; that is,
they are not connected with any specific distribution. Universal estimators
are a sample mean for the population mean and a sample variance for
the population variance. However, for interval estimators and for Bayesian
estimators, a knowledge of sampling distribution is critical.

In Chapter 2 we learned about many sample summaries that are good
estimators for their population counterparts; these will be discussed further
in this chapter. We have also seen some robust competitors based on order
statistics and ranks; these will be discussed further in Chapter 18.

The methods for how to propose an estimator for a population param-
eter are discussed next. The methods will use knowledge of the form of
population distribution or, equivalently, distribution of sample summaries
treated as random variables.

7.2 Moment-Matching and Maximum Likelihood Estimators

We describe two approaches for devising point estimators: moment match-
ing and maximum likelihood.

Matching Estimation. Matching theoretical descriptors, most often mo-
ments, with their empirical counterparts, is a natural way to propose an
estimator. The theoretical moments of a random variable X with a density
specified up to a parameter, f (x|θ), are functions of that parameter:

EXk = h(θ).
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For example, if the measurements have a Poisson distribution Poi(λ), the
second moment EX2 is λ+λ2, which is a function of λ. Here, h(x) = x+ x2.

Suppose we obtained a sample X1, X2, . . . , Xn from f (x|θ). The empirical
counterparts for theoretical moments EXk are sample moments

Xk =
1
n

n

∑
i=1

Xk
i .

By matching the theoretical and empirical moments, an estimator θ̂ is found
as a solution of the equation

Xk = h(θ).

For example, for the exponential distribution E (λ), the first theoretical
moment is EX = 1/λ. An estimator for rate parameter λ is obtained by
solving the moment-matching equation X = 1/λ, resulting in λ̂mm = 1/X.
Moment-matching estimators are not unique; different theoretical and sam-
ple moments can be matched. In the context of an exponential model, the
second theoretical moment is EX2 = 2/λ2, leading to an alternative match-
ing equation,

X2 = 2/λ2,

with the solution

λ̂mm =

√
2

X2
=

√
2n

∑
n
i=1 X2

i

.

The following simple MATLAB code simulates a sample of size 106 from
an exponential distribution with rate parameter λ = 3, then calculates
moment-matching estimators based on the first two moments.

Y = exprnd(1/3, 10e6, 1);

%parametrization in MATLAB is 1/lambda

1/mean(Y) %matching the first moment

ans = 2.9981

sqrt(2/mean(Y.^2)) %matching the second moment

ans = 2.9984

Example 7.1. Moment Matching for Gamma. Consider a sample from a
gamma distribution with parameters r and λ. It is known that for X ∼
Ga(r,λ), E(X) = r

λ , and Var X = EX2 − (EX)2 = r
λ2 . It is easy to see that
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r =
(EX)2

EX2 − (EX)2 and λ =
EX

EX2 − (EX)2 .

Thus, the moment-matching estimators are

r̂mm =
(X)2

X2 − (X)2
and λ̂mm =

X

X2 − (X)2
.

�

Matching estimation uses mostly moments, but any other statistic that
is (i) easily calculated from a sample and (ii) whose population counterpart
depends on parameter(s) of interest can be used in matching. For example,
the sample/population quantiles can be used.

Example 7.2. Melanoma Survival Rate. In one study on cancer, the highest
5-year survival rate (90%) for women was for malignant melanoma of the
skin. Assume that survival time T has an exponential distribution with an
unknown rate parameter λ. Using quantiles, estimate λ.

From

P(T > 5) = 0.90 ⇒ exp{−5 · λ} = 0.90

it follows that λ̂ = 0.0211.
�

Maximum Likelihood. An alternative method, which uses a functional
form for distributions of measurements, is maximum likelihood estimation
(MLE).

The MLE was first proposed and used by R. A. Fisher in the 1920s and
remains one of the most popular tools in estimation theory and broader sta-
tistical inference. The method can be formulated as an optimization prob-
lem involving the search for extrema when the model is considered as a
function of parameters.

Suppose that the sample X1, . . . , Xn comes from a population with dis-
tribution f (x|θ) indexed by θ, which could be a scalar or a vector of param-
eters. Elements of the sample are independent, thus the joint distribution
of X1, . . . , Xn is a product of individual densities:

f (x1, . . . , xn|θ) =
n

∏
i=1

f (xi|θ).

When the sample is observed, the joint distribution remains depen-
dent upon the parameter,
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L(θ|X1, . . . , Xn) =
n

∏
i=1

f (Xi|θ), (7.1)

and, as a function of the parameter, L is called the likelihood. The value
of the parameter θ that maximizes the likelihood L(θ|X1, . . . , Xn) is the
MLE, θ̂mle.

The problem of finding the maximum of L and the value θ̂mle at which
L is maximized is an optimization problem. In some cases, the maximum
can be found directly or with the help of the log transformation of L. Other
times, the procedure must be iterative and the solution is an approximation.
In some cases, depending on the model and sample size, the maximum is
not unique or does not exist.

In the most common cases, maximizing the logarithm of likelihood, log-
likelihood, is simpler than maximizing the likelihood directly. This is because
the product in L becomes the sum when a logarithm is applied:

ℓ(θ|X1, . . . , Xn) = log L(θ|X1, . . . , Xn) =
n

∑
i=1

log f (Xi|θ),

and finding an extremum of a sum is simpler. Since the logarithm is a
monotonically increasing function, the maxima of L and ℓ are achieved at
the same value θ̂mle (see Figure 7.1 for an illustration).
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Fig. 7.1 Likelihood and log-likelihood of exponential distribution with rate parameter λ
when the sample X = [0.4,0.3,0.1,0.5] is observed. The MLE is 1/X = 3.077.

Analytically,
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θ̂mle = argmaxθℓ(θ|X1, . . . , Xn),

and it can be found as a solution of

∂ℓ(θ|X1, . . . , Xn)

∂θ
= 0 subject to

∂2ℓ(θ|X1, . . . , Xn)

∂θ2 < 0.

In simple terms, the MLE makes the first derivative (with respect to θ) of
the log-likelihood equal to 0 and the second derivative negative, which is a
condition for a maximum.

As an illustration, consider the MLE of λ in the exponential model, E (λ).
After X1, . . . , Xn is observed, the likelihood becomes

L(λ|X1, . . . , Xn) =
n

∏
i=1

λe−λXi = λn exp

{
−λ

n

∑
i=1

Xi

}
.

The likelihood L is obtained as a product of densities f (xi|λ) where the
arguments xis are fixed observations Xi. The product is taken over all ob-
servations, as in (7.1). We can search for the maximum of L directly, but
since it is a product of two terms involving λ, it is beneficial to look at the
log-likelihood instead.

The log-likelihood is

ℓ(λ|X1, . . . , Xn) = n log λ− λ
n

∑
i=1

Xi.

The equation to be solved is

∂ℓ

∂λ
=

n

λ
−

n

∑
i=1

Xi = 0,

and the solution is λ̂mle =
n

∑
n
i=1 Xi

= 1/X. The second derivative of the log-

likelihood, ∂2ℓ
∂λ2 =− n

λ2 , is always negative; thus, the solution λ̂mle maximizes
ℓ, and consequently L. Figure 7.1 shows the likelihood and log-likelihood as
functions of λ. For sample X = [0.4,0.3,0.1,0.5], the maximizing λ is 1/X =
3.0769. Note that both the likelihood and log-likelihood are maximized at
the same value.

For the alternative parametrization of exponentials via a scale parame-
ter, as in MATLAB, f (x|λ) = 1

λ e−x/λ, the estimator is, of course, λ̂mle = X.
An important property of MLE is their invariance property.

Invariance Property of MLEs. Let θ̂mle be an MLE of θ and let η =
g(θ), where g is an arbitrary function. Then η̂mle = g(θ̂mle) is an MLE
of η.
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For example, if the MLE for λ in the exponential distribution was 1/X,
then for a function of the parameter η = λ2 − sin(λ) the MLE is (1/X)2 −
sin
(
1/X

)
.

In MATLAB, the function mle finds the MLE when inputs are data and
the name of a distribution with a list of options. The normal distribution is
the default. For example, parhat = mle(data) calculates the MLE for µ and σ
of a normal distribution, evaluated at vector data. One of the outputs is the
confidence interval. For example, [parhat, parci] = mle(data) returns MLEs
and 95% confidence intervals for the parameters. The confidence intervals,
as interval estimators, will be discussed later in this chapter. The command
[...] = mle(data,’distribution’,dist) computes parameter estimations for

the distribution specified by dist. Acceptable strings for dist are as follows:

’beta’ ’bernoulli’ ’binomial’

’discrete uniform’ ’exponential’ ’extreme value’

’gamma’ ’generalized extreme value’ ’generalized pareto’

’geometric’ ’lognormal’ ’negative binomial’

’normal’ ’poisson’ ’rayleigh’

’uniform’ ’weibull’

Example 7.3. MLE of Beta in MATLAB. The following MATLAB com-
mands show how to estimate parameters a and b in a beta distribution.
We will simulate a sample of size 1,000 from a beta Be(2,3) distribution
and then find MLEs of a and b from the sample.

a = betarnd( 2, 3,[1, 1000]);

thetahat = mle(a,’distribution’, ’beta’)

%thetahat = 1.9991 3.0267

�

It is possible to find the MLE using MATLAB’s mle command for dis-
tributions that are not on the list. The code is given at the end of Exam-
ple 7.4in which moment-matching estimators and MLEs for parameters in
a Maxwell distribution are compared.

Example 7.4. Moment-Matching Estimators and MLEs in a Maxwell Dis-
tribution. The Maxwell distribution models random speeds of molecules
in thermal equilibrium as given by statistical mechanics. A random variable
X with a Maxwell distribution is given by the probability density function

f (x|θ) =
√

2
π

θ3/2 x2 e−θx2/2, θ > 0, x > 0.
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Assume that we observed velocities X1, . . . , Xn and want to estimate the
unknown parameter θ.

The following theoretical moments for the Maxwell distribution are

available: the expectation EX = 2
√

2
πθ , the second moment EX2 = 3/θ,

and the fourth moment EX4 = 15/θ2. To find moment-matching estimators
for θ, the theoretical moments are “matched” with their empirical counter-
parts X, X2 = 1

n ∑
n
i=1 X2

i , and X4 = 1
n ∑

n
i=1 X4

i , and the resulting equations
are solved with respect to θ :

X = 2

√
2

πθ
⇒ θ̂1 =

8
π(X)2

,

1
n

n

∑
i=1

X2
i =

3
θ

⇒ θ̂2 =
3n

∑
n
i=1 X2

i

,

1
n

n

∑
i=1

X4
i =

15
θ2 ⇒ θ̂3 =

√
15n

∑
n
i=1 X4

i

.

To find the MLE of θ, we show that the log-likelihood has the form
3n
2 log θ − θ

2 ∑
n
i=1 X2

i + factor free of θ. The maximum of the log-likelihood
is achieved at θ̂MLE =

3n
∑

n
i=1 X2

i

, which is the same as the moment-matching

estimator θ̂2.
Specifically, if X1 = 1.4, X2 = 3.1, and X3 = 2.5 are observed, the MLE

of θ is θ̂MLE =
9

17.82 = 0.5051. The other two moment-matching estimators are
θ̂1 = 0.4677 and θ̂3 = 0.5768.

In MATLAB, the Maxwell distribution can be custom-defined using a
’handle’ to an anonymous function @:

maxwell = @(x,theta) sqrt(2/pi) * ...

theta.^(3/2) * x.^2 .* exp( - theta * x.^2/2);

mle([1.4 3.1 2.5], ’pdf’, maxwell, ’start’, rand)

%ans = 0.5051

�

In most cases, taking the log of likelihood simplifies finding the MLE.
Here is an example in which the maximization of likelihood was done with-
out the use of derivatives.

Example 7.5. Suppose the observations X1 = 2, X2 = 5, X3 = 0.5, and X4 = 3
come from the uniform U (0,θ) distribution. We are interested in estimating
θ. The density for the single observation X is f (x|θ) = 1

θ 1(0 ≤ x ≤ θ), and
the likelihood, based on n observations X1, . . . , Xn, is

L(θ|X1, . . . , Xn) =
1
θn
· 1(0≤ X1 ≤ θ) · 1(0≤ X2 ≤ θ) · . . . · 1(0≤ Xn ≤ θ).
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The product in the expression above can be simplified: if all Xs are less
than or equal to θ, then their maximum X(n) is less than θ as well. Thus,

1(0≤ X1 ≤ θ) · 1(0≤ X2 ≤ θ) · . . . · 1(0≤ Xn ≤ θ) = 1(X(n) ≤ θ).

Maximizing the likelihood now can be performed by inspection. In order
to maximize 1

θn , subject to X(n) ≤ θ, we should take the smallest θ possible,
and that θ is X(n) = max Xi. Therefore, θ̂mle = X(n), and in this problem, the
estimator is X(4) = X2 = 5.

An alternative estimator can be found by moment matching. It can be
shown (the arguments are beyond the scope of this book) that in estimating
θ in U (0,θ), only max Xi should be used. What is the distribution of max Xi?

We will find this distribution for general i.i.d. Xi, i = 1, . . . ,n, with CDF
F(x) and PDF f (x) = F′(x).

The CDF is, by definition,

G(x) = P(max Xi ≤ x) = P(X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x)

=
n

∏
i=1

P(Xi ≤ x) = (F(x))n.

The reasoning in the equation above is as follows: If the maximum is ≤ x,
then all Xi are ≤ x, and vice versa. The density for maxXi is g(x) = G′(x) =
n Fn−1(x) f (x), and the first moment is

E maxXi =
∫

R

x g(x)dx =
∫

R

x n Fn−1(x) f (x)dx.

For the uniform distribution U (0,θ),

E maxXi =
∫ θ

0
x · n (x/θ)n−1 · 1/θ dx =

n

θn

∫ θ

0
xn dx =

n

n + 1
θ.

The expectation of the maximum E maxXi is matched with the largest or-
der statistic in the sample, X(n). Thus, in solving the moment-matching
equation, we obtain an alternative estimator for θ, θ̂mm = n+1

n X(n). In this
problem, θ̂mm = 25/4 = 6.25. For a Bayesian estimator, see Example 8.6.
�

7.3 Unbiasedness and Consistency of Estimators

Based on a sample X1, . . . , Xn from a population with distribution f (x|θ), let
θ̂n = g(X1, . . . , Xn) be a statistic that estimates the parameter θ. The statistic,
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or estimator, θ̂n as a function of the sample is a random variable. As a
random variable, the estimator has an expectation of Eθ̂n, a variance of
Var θ̂n, and its own distribution called a sampling distribution.

Example 7.6. AB Blood-Group Proportion. Suppose we are interested in
finding the proportion of AB blood-group subjects in a particular geo-
graphic region. This proportion, θ, is to be estimated on the basis of the
sample Y1,Y2, . . . ,Yn, each having a Bernoulli Ber(θ) distribution taking val-
ues 1 and 0 with probabilities θ and 1 − θ, respectively. The realization
Yi = 1 indicates the presence of the AB group in observation i. The sum
X = ∑

n
i=1 Yi is, by definition, binomial Bin(n,θ).

The estimator for θ is θ̂n = Y = X
n . It is easy to check that this estimator

is both moment-matching (EYi = θ) and MLE (the likelihood is θ∑Yi (1−
θ)n−∑Yi ). Thus, θ̂n has a binomial distribution with rescaled realizations {0,
1/n, 2/n, . . . , (n− 1)/n, 1}, that is,

P

(
θ̂n =

k

n

)
=

(
n

k

)
θk(1− θ)n−k, k = 0,1, . . . ,n,

which is the estimator’s sampling distribution.
It can be shown, by referring to a binomial distribution, that the expec-

tation of θ̂n is the expectation of the binomial, nθ, multiplied by 1/n,

Eθ̂n =
1
n
× nθ = θ,

and that the variance is

Var θ̂n =

(
1
n

)2

× nθ(1− θ) =
θ(1− θ)

n
.

�

If Eθ̂n = θ, then the estimator θ̂ is called unbiased. The expectation is
taken with respect to the sampling distribution. The quantity

b(θ) = Eθ̂n − θ

is called the bias of θ̂.

The error in estimation can be assessed by various measures. The usual
measure is the mean squared error (MSE).
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The MSE is defined as

MSE(θ̂,θ) = E(θ̂n − θ)2.

The MSE represents the expected squared deviation of the estimator
from the parameter it estimates. This expectation is taken with respect to
the sampling distribution of θ̂n.

From the definition of MSE,

E(θ̂n − θ)2 = E(θ̂n −Eθ̂n + Eθ̂n − θ)2

= E(θ̂n −Eθ̂n)
2 − 2E(θ̂n −Eθ̂n)(Eθ̂n− θ) + (Eθ̂n − θ)2

= E(θ̂n −Eθ̂n)
2 + (Eθ̂n − θ)2.

Consequently, the MSE can be represented as a sum of the variance of the
estimator and its bias squared:

MSE(θ̂,θ) = Var θ̂ + b(θ)2.

The square root of the MSE is sometimes used; it is called the root mean
squared error (RMSE). For example, in estimating the population proportion,
the estimator p̂ = X/n, for the X ∼ Bin(n, p) model, is unbiased, E( p̂) = p.
In this case, the MSE is Var ( p̂) = pq/n, and the RMSE is

√
pq/n. Note that

the RMSE is a function of the parameter. If parameter p is replaced by its
estimator p̂, then the RMSE becomes the standard error, s.e., of the estimator.
For binomial p, the standard error of p̂ is s.e.( p̂) =

√
p̂q̂/n.

Remark. The standard error (s.e.) of any estimator usually refers to a sample
counterpart of its RMSE, which is a sample counterpart of standard devi-
ation for unbiased estimators. For example, if X1, X2, . . . , Xn are N (µ,σ2),
then s.e.(X) = s/

√
n.

Inspecting the variance of an unbiased estimator, when the sample size
increases, allows for checking estimator’s consistency. The consistency is a
desirable property of estimators. Informally, it is defined as the convergence
of an estimator, in a stochastic sense, to the parameter it estimates.

If, for an unbiased estimator θ̂n, Var θ̂n → 0 when the sample size
n→∞, the estimator is called consistent.

More advanced definitions of convergences of random variables, which
are beyond the scope of this text, are required in order to deduce more pre-
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cise definitions of asymptotic unbiasedness, weak and strong consistency.
These definitions will not be discussed here.

Example 7.7. Estimating Normal Variance. Suppose that we are inter-
ested in estimating the parameter θ in a population with a distribu-
tion of N (0,θ),θ > 0, and that the proposed estimator, when the sample
X1, X2, . . . , Xn is observed, is θ̂ = 1

n ∑
n
i=1 X2

i .
It can be demonstrated that, when X∼N (0,θ), EX2 = θ and EX4 = 3θ2,

by representing X as
√

θZ for Z ∼ N (0,1) and using the fact that EZ2 = 1
and EZ4 = 3.

The estimator θ̂ = 1
n ∑

n
i=1 X2

i = X2 is unbiased and consistent. Since Eθ̂ =
1
n ∑

n
i=1 EX2

i =
1
n nθ = θ, the estimator is unbiased. To show consistency, it is

sufficient to demonstrate that the variance tends to 0 as the sample size
increases. This is evident from

Var θ̂ =
1
n2

n

∑
i=1

Var X2
i =

1
n2 3nθ2 =

3θ2

n
→ 0, when n→∞.

Alternatively, we can use the fact that 1
θ ∑

n
i=1 X2

i has a χ2
n-distribution,

therefore the sampling distribution of θ̂ is a scaled χ2
n, where the scaling

factor is 1
nθ . The unbiasedness and consistency follow from Eχ2

n = n and
Var χ2

n = 2n by accounting for the scaling factor.
�

Some important examples of unbiased and consistent estimators are
provided next.

7.4 Estimation of a Mean, Variance, and Proportion

7.4.1 Point Estimation of Mean

For a sample X1, . . . , Xn of size n we have already discussed the sample
mean X = 1

n ∑
n
i=1 Xi as an estimator of location. A natural estimator of the

population mean µ is the sample mean µ̂ = X. The estimator X is an “op-
timal” estimator of a mean in many different models/distributions and for
many different definitions of optimality.

The estimator X varies from sample to sample. More precisely, X is
a random variable with a fixed distribution depending on the common
distribution of observations, Xi.
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The following is true for any distribution in the population as long as
EXi = µ and Var (Xi) = σ2 exist:

EX = µ, Var (X) =
σ2

n
. (7.2)

The preceding equations are a direct consequence of independence in a
sample and imply that X is an unbiased and consistent estimator of µ. If,
in addition, we assume normality Xi ∼ N (µ,σ2), then the sampling distri-
bution of X is known exactly (page 248),

X ∼N
(

µ,
σ2

n

)
,

and the relations in (7.2) are apparent.

Chebyshev’s Inequality and Strong Law of Large Numbers*. There are
two general results in probability that theoretically justify the use of the
sample mean X to estimate the population mean, µ. These are Cheby-
shev’s inequality and strong law of large numbers (SLLN). We will briefly
overview these results.

The Chebyshev inequality states that when X1, X2, . . . , Xn are i.i.d. ran-
dom variables with mean µ and finite variance σ2, the probability that X
will deviate from µ is small,

P(|Xn − µ| ≥ ǫ) ≤ σ2

nǫ2 ,

for any ǫ > 0. The inequality is a direct consequence of (5.9) with (Xn− µ)2

in place of X and ǫ2 in place of a.
To translate this to specific numbers, we can choose ǫ small, say 0.000001.

Assume that the Xis have a variance of 1. The Chebyshev inequality states
that with n larger than the solution of 1/(n× 0.00000012) = 0.9999, the dis-
tance between Xn and µ will be smaller than 0.000001 with a probability of
99.99%. Admittedly, n here is an experimentally unfeasible number; how-
ever, for any small ǫ, finite σ2, and “confidence” 1− σ2

nǫ2 close to 1, such n
is finite.

The laws of large numbers state that, as a numerical sequence, Xn con-
verges to µ. Care is nevertheless needed. The sequence Xn is not a sequence
of numbers, but a sequence of random variables, which are functions de-
fined on sample spaces S . Thus, direct application of a calculus-type of
convergence is not appropriate. However, for any fixed realization from the
sample space S , the sequence Xn becomes numerical and a traditional con-
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vergence can be stated. Thus, a correct statement for the so-called SLLN
is

P(Xn→ µ) = 1,

that is, viewed as an event,
{

Xn→ µ
}

is a sure event – it happens with a
probability of 1.

7.4.2 Point Estimation of Variance

To obtain some intuition, we start, once again, with a finite popula-
tion: y1, . . . ,yN. The population variance is σ2 = 1

N ∑
N
i=1(yi − µ)2, where

µ = 1
N ∑

N
i=1 yi is the population mean.

For a sample X1, X2, . . . , Xn that is observed, an estimator of variance
σ2 is

σ̂2 =
1
n

n

∑
i=1

(Xi − µ)2

for µ known, and

σ̂2 = s2 =
1

n− 1

n

∑
i=1

(Xi − X)2

for µ not known, which is estimated by X.

In the expression for s2 we divide the sum by n− 1 instead of the “ex-
pected” n in order to ensure the unbiasedness of s2, Es2 = σ2. The proof of
this fact is straightforward and does not require any distributional assump-
tions, except that the population variance σ2 is finite.

Note that by the definition of variance, E(Xi−µ)2 = σ2 and E(X−µ)2 =
σ2/n.

(n− 1)s2 =
n

∑
i=1

(Xi − X)2

=
n

∑
i=1

[(Xi − µ)− (X− µ)]2

=
n

∑
i=1

(Xi − µ)2 − 2(X− µ)
n

∑
i−1

(Xi − µ) + n(X− µ)2

=
n

∑
i=1

(Xi − µ)2 − n(X − µ)2, since
n

∑
i=1

(Xi − µ) = n(X− µ).
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Then,

E(s2) =
1

n− 1
E(n− 1)s2

=
1

n− 1
E[

n

∑
i=1

(Xi − µ)2 − n(X− µ)2]

=
1

n− 1
(nσ2 − n

σ2

n
)

=
1

n− 1
(n− 1)σ2 = σ2.

When, in addition, the population is normal N (µ,σ2), then

(n− 1)s2

σ2 ∼ χ2
n−1,

meaning that the statistic (n−1)s2

σ2 = ∑
n
i=1

(
Xi−X

σ

)2
has a χ2-distribution with

n− 1 degrees of freedom (see equation 6.3 and the related discussion).
For a sample from a normal distribution, the unbiasedness of s2 is a

consequence of the following two facts: s2 ∼ σ2

n−1 χ2
n−1 and Eχ2

n−1 = (n− 1).
The variance of s2 is

Var s2 =

(
σ2

n− 1

)2

×Var χ2
n−1 =

2σ4

n− 1
, (7.3)

since Var χ2
n−1 = 2(n− 1). Unlike the unbiasedness result, Es2 = σ2, which

does not require a normality assumption, the result in (7.3) is valid only
when observations come from a normal distribution. In the general case,

Var s2 =
µ4 − µ2

2
n

− 2(µ4 − 2µ2
2)

n2 +
µ4 − 3µ2

2
n3 , (7.4)

where µk = E(X − EX)k is kth central moment. It is easy to see how for
a normal distribution, (7.4) becomes (7.3), since in this case µ4 = 3µ2 and
µ2 = σ2.

Although s2 is an unbiased estimator for σ2, s is not an unbiased estima-
tor for σ, a fact that is often overlooked. If the population is normal, then√
(n− 1)/2 Γ((n−1)/2)

Γ(n/2) s is an unbiased estimator of σ. This bias correction
for s is important when n is small; for n large the correction is negligible.
For example, if n = 50, the unbiased estimator of σ is 1.0051 s.
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As Figure 7.2 shows, the empirical distribution of normalized sample
variances is close to a χ2-distribution. We generated M = 100,000 samples
of size n = 8 from a normal N (0,52) distribution and found sample vari-
ances s2 for each sample. The sample variances were multiplied by n− 1 = 7
and divided by σ2 = 25. The histogram of these rescaled sample variances
is plotted and the density of a χ2-distribution with 7 degrees of freedom is
superimposed in red. The code generating Figure 7.2 is given next.

−5 0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 7.2 Histogram of normalized sample variances (n − 1)s2/σ2 obtained from M =
100,000 independent samples from N (0,52), each of size n = 8. The density of a χ2-
distribution with 7 degrees of freedom is superimposed in red.

M=100000; n = 8;

X = 5 * randn([n, M]);

ch2 = (n-1) * var(X)/25;

histn(ch2,0,0.4,30)

hold on

plot( (0:0.1:30), chi2pdf((0:0.1:30), n-1),’r-’)

The code is efficient since a for-end loop is avoided. The simulated object
X is an n× M matrix consisting of M columns (samples) of length n. The
operator var(X) acts on columns of X producing M sample variances.

Several Robust Estimators of the Standard Deviation*. Suppose that a
sample X1, . . . , Xn is observed but its normality is not assumed. We discuss
two estimators of the standard deviation that are calibrated by the normal
distribution and are robust with respect to outliers and deviations from
normality.
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�
Gini’s mean difference is defined as

G =
2

n(n− 1) ∑
1≤i<j≤n

|Xi − Xj|.

The statistic G
√

π
2 is an estimator of the standard deviation and is more

robust to outliers than the standard statistic s.
A proposal by Croux and Rousseeuw (1992) involves absolute differ-

ences, as in Gini’s mean difference estimator, but uses a kth-order statistic
rather than the average. The estimator of σ is

Q = 2.2219 {|Xi − Xj|, i < j}(k), where k =

(⌊n/2⌋+ 1
2

)
.

The constant 2.2219 is used to calibrate the estimator, so that if the sample is
a standard normal, then Q = 1. In calculating Q, all (n

2) differences |Xi−Xj |
are ordered, and the kth in rank is selected and multiplied by 2.2219. This
choice of k requires an additional multiplicative correction factor n/(n +
1.4) for n odd, or n/(n + 3.8) for n even.

MATLAB scripts ginimd.m and crouxrouss.m can be used to evaluate the
estimators. The algorithm is naïve and uses a double loop to evaluate G and
Q. The evaluation breaks down for sample sizes exceeding a few hundreds
because of memory problems. A smarter algorithm that avoids looping is
implemented in versions ginimd2.m and crouxrouss2.m. In these versions, the
sample size can go up to 6,000.

In the next MATLAB session, we show how the robust estimators of the
standard deviation perform. If 1,000 standard normal random variates are
generated and one value is replaced with a clear outlier, say X1000 = 20, we
will explore the influence of this outlier to both standard and robust esti-
mators of the standard deviation. Note that s is quite sensitive, the outlier
will inflate the estimator by almost 20%. The robust estimators are affected
as well, but not as much as s.

x =randn(1, 1000);

x(1000)=20;

std(x)

% ans = 1.1999

s1 = ginimd2(x)

%s1 =1.0555

s2 = crouxrouss2(x)

%s2 =1.0287

iqr(x)/1.349

%ans = 1.0172
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There are many other robust estimators of the variance/standard devi-
ation. Good references containing extensive material on robust estimation
are Wilcox (2005) and Staudte and Sheater (1990).

Estimation of Covariance. If (X1,Y1), . . . , (Xn,Yn) are independent realiza-
tions of a bivariate random variable (X,Y), then an unbiased estimator of
covariance

σXY = E(X−EX)(Y−EY)

is the sample covariance (page 32)

sXY =
1

n− 1

n

∑
i=1

(Xi − X)(Yi −Y).

In the case of normal distribution, the variance of this estimator is

Var (sXY) =
σ2

Xσ2
Y + σ2

XY

n− 1
.

7.4.3 Point Estimation of Population Proportion

It is natural to estimate the population proportion p by a sample propor-
tion. The sample proportion is the MLE and moment-matching estimator
for p.

For sample proportions a binomial distribution is used as the theoretical
model. Let X ∼ Bin(n, p), where parameter p is unknown. The MLE of p
based on a single observation X is obtained by maximizing the likelihood

(
n

X

)
pX(1− p)n−X

or the log-likelihood

factor free of p + X log(p) + (n− X) log(1− p).

The maximum is obtained by solving

(factor free of p + X log(p) + (n− X) log(1− p))′ = 0
X

p
− n− X

1− p
= 0,

which after some algebra gives the solution p̂mle =
X
n .
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In Example 7.6, we argued that the exact distribution for X/n is a
rescaled binomial and that the statistic is unbiased, with the variance con-
verging to 0 when the sample size increases. These two properties define a
consistent estimator.

7.5 Confidence Intervals

Whenever the sampling distribution of a point estimator θ̂n is continuous,
then necessarily P(θ̂n = θ) = 0. In other words, the probability that the
estimator exactly matches the parameter it estimates is 0.

Instead of the point estimator, one may report two estimators, L =
L(X1, . . . , Xn) and U = U(X1, . . . , Xn), so that the interval [L,U] covers θ
with a probability of 1− α, for small α. In this case, the interval [L,U] will
be called a (1− α)100% confidence interval for θ.

For the construction of a confidence interval for a parameter, one needs
to know the sampling distribution of the associated point estimator. The
lower and upper interval bounds L and U depend on the quantiles of this
distribution. We will derive the confidence interval for the normal mean,
normal variance, population proportion, and Poisson rate. Many other con-
fidence intervals, including differences, ratios, and some functions of statis-
tics, are tightly connected to testing methodology and will be discussed in
subsequent chapters.

Note that when the population is normal and X1, . . . , Xn is observed,
the exact sampling distributions of

Z =
X− µ

σ/
√

n
and

t =
X− µ

s/
√

n
=

X − µ

σ/
√

n
× 1√

(n−1)s2

σ2 /(n− 1)

are standard normal and tn−1 distributions, respectively.

The expression for t is shown as a product to emphasize the construction
of a t-distribution from a standard normal (in blue) and χ2 (in red), as in
page 255. When the population is not normal but n is large, both statistics
Z and t have an approximate standard normal distribution, due to the CLT.

We saw that the point estimator for the population probability of a suc-
cess is the sample proportion p̂ = X/n, where X is the number of successes
in n trials. The statistic X/n is based on a binomial sampling scheme in
which X has exactly a binomial Bin(n, p) distribution. Using this exact dis-
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tribution would lead to confidence intervals in which the bounds and con-
fidence levels are discretized. The normal approximation to the binomial
(CLT in the form of de Moivre’s approximation) leads to

p̂
approx∼ N

(
p,

p(1− p)

n

)
, (7.5)

and the confidence intervals for the population proportion p would be
based on normal quantiles.

7.5.1 Confidence Intervals for the Normal Mean

Let X1, . . . , Xn be a sample from a normal N (µ,σ2) distribution where the
parameter µ is to be estimated and σ2 is known.

Starting from the identity

P(−z1−α/2 ≤ Z ≤ z1−α/2) = 1− α

and the fact that X has a N (µ, σ2

n ) distribution, we can write

P

(
−z1−α/2

σ√
n
+ µ ≤ X ≤ z1−α/2

σ√
n
+ µ

)
= 1− α;

see Figure 7.3a for an illustration. Simple algebra gives

X− z1−α/2
σ√
n
≤ µ ≤ X + z1−α/2

σ√
n

, (7.6)

which is a (1− α)100% confidence interval.
If σ2 is not known, then a confidence interval with the sample standard

deviation s in place of σ can be used. The z quantiles are valid for large n,
but for small n (n < 40) we use tn−1 quantiles, since the sampling distribu-

tion for X−µ

s/
√

n
is tn−1. Thus, for σ2 unknown,

X− tn−1,1−α/2
s√
n
≤ µ ≤ X + tn−1,1−α/2

s√
n

(7.7)

is the confidence interval for µ of level 1− α.
Below is a summary of the above-stated intervals:

The (1− α) 100% confidence interval for an unknown normal mean µ
on the basis of a sample of size n is
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µ

µ − z1−α/2
σ√
n

µ + z1−α/2
σ√
n

X̄ ∼ N
(

µ,
σ2

n

)

1 − α

µ

µ − tn−1,1−α/2

s√
n

µ + tn−1,1−α/2

s√
n

X̄ − µ

s/
√

n
∼ tn−1

1 − α

(a) (b)

Fig. 7.3 (a) When σ2 is known, X has a normal N (µ, σ2/n) distribution and P(µ −
z1−α/2

σ√
n
≤ X ≤ µ + z1−α/2

σ√
n
) = 1− α, leading to the confidence interval in (7.6). (b) If

σ2 is not known and s2 is used instead, then X−µ

s/
√

n
is tn−1, leading to the confidence

interval in (7.7).

[
X− z1−α/2

σ√
n

, X + z1−α/2
σ√
n

]

when the variance σ2 is known, and
[

X − tn−1,1−α/2
s√
n

, X + tn−1,1−α/2
s√
n

]

when the variance σ2 is not known and s2 is used instead.

Interpretation of Confidence Intervals. What does a “confidence of 95%”
mean? A common misconception is that this means that the unknown mean
falls in the calculated interval with a probability of 0.95. Such a probability
statement is valid for credible sets in the Bayesian context, which will be
discussed in Chapter 8.

The interpretation of the (1− α) 100% confidence interval is as follows.
If a random sample from a normal population is selected a large number of
times and the confidence interval for the population mean µ is calculated,
the proportion of such intervals covering µ approaches 1− α.

The following MATLAB code illustrates this. The code generates M =
10,000 random samples of size n = 40 from a normal population with a
mean of µ = 10 and a variance of σ2 = 42; then it calculates a 95% confi-
dence interval from each sample. It then counts how many of the intervals
cover the mean µ, cover = 1, and finally finds their proportion, covers/M. The
code was run consecutively several times and the following empirical con-
fidences were obtained: 0.9461, 0.9484, 0.9469, 0.9487, 0.9502, 0.9482, 0.9502,
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0.9482, 0.9530, 0.9517, 0.9503, 0.9514, 0.9496, 0.9515, etc., all clearly scatter-
ing around 0.95. Figure 7.4a plots the behavior of the coverage proportion
when simulations range from 1 to 10,000. Figure 7.4b plots the first 100
intervals in the simulation and their position with respect to µ = 10. The
confidence intervals in simulations 17, 37, 47, 58, 78, and 82 fail to cover µ.

M=10000; %simulate M times

n = 40; % sample size

alpha = 0.05; %1-alpha = confidence

tquantile = tinv(1-alpha/2, n-1);

covers =[];

for i = 1:M

X = 10 + 4*randn(1,n); %sample, mean=10, var =16

xbar = mean(X); s = std(X);

LB = xbar - tquantile * s/sqrt(n);

UB = xbar + tquantile * s/sqrt(n);

% cover=1 if the interval covers population mean 10

if UB < 10 | LB > 10

cover = 0;

else

cover = 1;

end

covers =[covers cover]; %saves cover history

end

sum(covers)/M %proportion of intervals covering the mean
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Fig. 7.4 (a) Proportion of intervals covering the mean plotted against the iteration num-
ber, as in plot(cumsum(covers)./(1:length(covers)) ). (b) First 100 simulated inter-
vals. The intervals 17, 37, 47, 58, 78, and 82 fail to cover the true mean.



7.5 Confidence Intervals 301

7.5.2 Confidence Interval for the Normal Variance

Earlier (page 256) we argued that the sampling distribution of (n−1)s2

σ2 was
χ2 with n− 1 degrees of freedom. From the definition of χ2

n−1 quantiles,

1− α = P(χ2
n−1,α/2 ≤ χ2

n−1 ≤ χ2
n−1,1−α/2),

as in Figure 7.5. Replacing χ2
n−1 with (n−1)s2

σ2 , we get

1− α = P

(
χ2

n−1,α/2 ≤
(n− 1)s2

σ2 ≤ χ2
n−1,1−α/2

)
.

0 χ2

n−1,α/2
χ2

n−1,1−α/2

1 − α

α/2 α/2

Fig. 7.5 Confidence interval for normal variance σ2 is derived from P(χ2
n−1,α/2 ≤ (n−

1)s2/σ2 ≤ χ2
n−1,1−α/2) = 1− α.

Simple algebra with the inequalities above (taking the reciprocal of all
three parts, being careful about the direction of the inequalities, and multi-
plying everything by (n− 1)s2) gives

(n− 1)s2

χ2
n−1,1−α/2

≤ σ2 ≤ (n− 1)s2

χ2
n−1,α/2

.

The (1− α) 100% confidence interval for an unknown normal variance
is
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[
(n− 1)s2

χ2
n−1,1−α/2

,
(n− 1)s2

χ2
n−1,α/2

]
. (7.8)

Remark. If the population mean µ is known, then s2 is calculated as
1
n ∑

n
i=1(Xi − µ)2, and the χ2 quantiles gain one degree of freedom (n in-

stead of n− 1). This makes the confidence interval a bit tighter.

Example 7.8. Amanita muscaria. With its bright red, sometimes dinner-
plate-sized caps, the fly agaric (Amanita muscaria) is one of the most strik-
ing of all mushrooms. The white warts that adorn the cap, the white gills,
a well-developed ring, and the distinctive volva of concentric rings dis-
tinguish the fly agaric from all other red mushrooms. The spores of the
mushroom print white, are elliptical, and have a larger axis in the range of
7 to 13 µm (Fig. 7.6).

Fig. 7.6 Spores of Amanita muscaria.

Measurements of the diameter X of spores for n = 51 mushrooms are given
in the following table:

10 11 12 9 10 11 13 12 10 11
11 13 9 10 9 10 8 12 10 11
9 10 7 11 8 9 11 11 10 12

10 8 7 11 12 10 9 10 11 10
8 10 10 8 9 10 13 9 12 9
9

Assume that the measurements are normally distributed with mean µ
and variance σ2, but both parameters are unknown. The sample mean and
variances are X = 10.098 , s2 = 2.1702, and s = 1.4732. Also, the confidence
interval would use an appropriate t-quantile, in this case tinv(1-0.05/2,

51-1) = 2.0086.

The 95% confidence interval for the population mean, µ, is
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[
10.098− 2.0086× 1.4732√

51
, 10.098+ 2.0086× 1.4732√

51

]
= [9.6836,10.5124].

Thus, the unknown mean µ belongs to the interval [9.6836,10.5124] with
confidence 95%. That means that if the sample is obtained many times and
for each sample the confidence interval is calculated, 95% of the intervals
would contain µ.

To find, say, the 90% confidence interval for the population variance, σ2,
we need χ2 quantiles, chi2inv(1-0.10/2, 51-1) = 67.5048, and chi2inv(0.10/2,

51-1) = 34.7643. According to (7.8), the interval is

[(51− 1)× 2.1702/67.5048, (51− 1)× 2.1702/34.7643] = [1.6074,3.1213].

Thus, the interval [1.6074,3.1213] covers the population variance σ2 with a
confidence of 90%.
�

Example 7.9. A Confidence Interval for σ2 by CLT. An alternative con-
fidence interval for the normal variance is possible. Since by the CLT

s2 approx∼ N
(

σ2, 2σ4

n−1

)
(Can you explain why?), when n is not small, an

approximate (1− α)100% confidence interval for σ2 is
[

s2 − z1−α/2 ·
√

2 s2
√

n− 1
, s2 + z1−α/2 ·

√
2 s2

√
n− 1

]
.

In Example 7.8, s2 = 2.1702 and n = 51. A 90% confidence interval for the
variance was [1.6074,3.1213]. By normal approximation,

s2 = 2.1702; n=51; alpha = 0.1;

[s2 - norminv(1-alpha/2)*sqrt(2)* s2/sqrt(n-1), ...

s2 + norminv(1-alpha/2)*sqrt(2)* s2/sqrt(n-1)]

%ans = 1.4563 2.8841

The interval [1.4563,2.8841] is shorter, compared to the standard con-
fidence interval [1.6074,3.1213] obtained using χ2 quantiles, as 1.4278 <

1.5139. Insisting on equal-probability tails does not lead to the shortest in-
terval since the χ2-distribution is asymmetric. In addition, the approximate
interval is centered at s2. Why, then, is this interval not used? The cover-
age probability of a CLT-based interval is smaller than the nominal 1− α,
and unless n is large (>100, say), this discrepancy can be significant (Exer-
cise 7.28).
�
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7.5.3 Confidence Intervals for the Population Proportion

The sample proportion p̂ = X
n has a range of optimality properties (unbi-

asedness, consistency); however, its realizations are discrete. For this rea-
son, confidence intervals for p are obtained using the normal approxima-
tion, or connections of binomial with other continuous distributions, such
as F.

Recall that for n large and np or nq not small (>10), the binomial X can
be approximated by a N (np,npq) distribution. This approximation leads

to X
n

approx∼ N (p, pq
n

)
.

Note, however, that the standard deviation of p̂,
√

pq
n , is not known,

as it depends on p, and for the confidence interval we can use a plug-in

estimator
√

p̂q̂
n instead.

Let p be the population proportion and p̂ the observed sample pro-
portion. Assume that the smaller of np

q and nq
p is larger than 10. Then

the (1− α)100% confidence interval for unknown p is
[

p̂− z1−α/2

√
p̂ q̂

n
, p̂ + z1−α/2

√
p̂ q̂

n

]
.

This interval is known as the Wald interval (Wald and Wolfowitz,
1939).

The Wald interval is used quite frequently, but its performance is sub-
optimal and even poor when p is close to 0 or 1. Figure 7.7a demonstrates
the performance of Wald’s 95% confidence interval for n = 20 and p rang-
ing from 0.05 to 0.95 with a step of 0.01. The plot is obtained by simulation
( waldsimulation.m). For each p, 100,000 binomial proportions are simu-
lated, the Wald confidence intervals calculated, and the proportion of those
intervals containing p is plotted. Notice that for nominal 95% confidence,
the actual coverage probability may be much smaller, depending on p.

Unless the sample size n is very large, the Wald interval should not be
used. The performance of Wald’s interval can be improved by continuity
corrections:

[
p̂− 1

2n
− z1−α/2

√
p̂ q̂

n
, p̂ +

1
2n

+ z1−α/2

√
p̂ q̂

n

]
.

Figure 7.7b shows the coverage probability of Wald’s corrected interval.
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Fig. 7.7 (a) Simulated coverage probability for Wald’s confidence interval for the true
binomial proportion p ranging from 0.05 to 0.95, and n = 20. For each p, 100,000 binomial
proportions are simulated, the Wald confidence intervals calculated, and the proportion
of those containing p plotted. (b) The same as (a), but for the corrected Wald interval.

There is a range of intervals that have a performance superior to Wald’s
interval. An overview of several alternatives is provided next.

Adjusted Wald Interval. The adjusted Wald interval (Agresti and Coull,
1998) uses p∗ = X+2

n+4 as an estimator of the proportion. Adding “two suc-
cesses and two failures” was proposed by Wilson (1927):

[
p∗ − z1−α/2

√
p∗q∗

n + 4
, p∗ + z1−α/2

√
p∗q∗

n + 4

]
.

We will see in the next chapter that Wilson’s proposal p∗ has a Bayesian
justification (page 343).

Wilson Score Interval. The Wilson score interval is another adjustment to
the Wald interval based on the so-called Wilson-score test (Wilson, 1927;
Hogg and Tanis, 2001):
[

1
1 + z2/n

(
p̂ +

z2

2n
− z

√
p̂ q̂

n
+

z2

4n2

)
,

1
1 + z2/n

(
p̂ +

z2

2n
+ z

√
p̂ q̂

n
+

z2

4n2

) ]
,

where z is z1−α/2. This interval can be obtained by solving the inequality

| p̂− p| ≤ z1−α/2

√
p(1− p)

n

with respect to p. After squaring the left- and right-hand sides and some
algebra, we get the quadratic inequality
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p2

(
1 +

z2
1−α/2

n

)
− p

(
2 p̂ +

z2
1−α/2

n

)
+ p̂2 ≤ 0,

for which the solution coincides with Wilson’s score interval.

Clopper–Pearson Interval. The Clopper–Pearson confidence interval (Clop-
per and Pearson, 1934) does not use a normal approximation but, rather,
exact links among binomial, beta, and F distributions. For 0 < X < n, the
(1− α) · 100% Clopper–Pearson confidence interval is

[
X

X + (n− X + 1)F∗
,

(X + 1)F∗∗

n− X + (X + 1)F∗∗

]
,

where F∗ is the (1 − α/2)-quantile of the Fν1,ν2-distribution with ν1 =
2(n− X + 1) and ν2 = 2X and F∗∗ is the (1− α/2)-quantile of the Fν1,ν2-
distribution with ν1 = 2(X + 1) and ν2 = 2(n− X). In terms of beta distri-
bution, Clopper–Pearson interval takes a very simple form, its MATLAB
code is [betainv(alpha/2, X, n-X+1), betainv(1-alpha/2, X+1, n-X)].

When X = 0, the interval is [0,1− (α/2)1/n] and for X = n, [(α/2)1/n,1].

Anscombe’s ArcSin Interval. For X ∼ Bin(n, p) Anscombe (1948) showed
that if p∗ = X+3/8

n+3/4 , then the quantity

2
√

n(arcsin
√

p∗ − arcsin
√

p)

has an approximately standard normal distribution. From this result it fol-
lows that

[
sin2

(
arcsin

√
p∗ − z1−α/2

2
√

n

)
, sin2

(
arcsin

√
p∗ +

z1−α/2

2
√

n

)]

is the (1− α)100% confidence interval for p.

The next example shows the comparative performance of different con-
fidence intervals for the population proportion.

Example 7.10. Cyclosporine Reversal Study. An interesting case study in-
volved research on the therapeutic benefits of cyclosporine on patients with
chronic inflammatory bowel disease (Crohn’s disease). In a double-blind
clinical trial, researchers reported (Brynskov et al., 1989) that out of 37 pa-
tients with Crohn’s disease resistant to standard therapies, 22 improved
after a 3-month period. This proportion was significantly higher than that
for the placebo group (11/34). The study was published in the New England
Journal of Medicine.

However, at the 6-month follow-up, no significant differences were
found between the treatment group and the control. In the cyclosporine
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group, 30 patients did not improve, compared to 23 out of 34 in the placebo
group (Brynskov et al., 1991). Thus, the proportion of patients who bene-
fited in the cyclosporine group dropped from p̂1 = 22/37 = 59.46% at the
3-month to p̂2 = 7/37 = 18.92% at the 6-month follow-up. The researchers
state: “We conclude that a short course of cyclosporin treatment does not
result in long-term improvement in active chronic Crohn’s disease.”

To illustrate the performance of several introduced confidence intervals
for the population proportion, we will find Wald’s, Wilson’s, Wilson score,
Clopper–Pearson’s, and Arcsin 95% confidence intervals for the proportion
of patients who benefited in the cyclosporine group at the 3-month and
6-month follow-ups. Calculations are performed in MATLAB.

%Cyclosporine Clinical Trials

%

n = 37; %number of subjects in cyclosporine group

% three months

X1 = 22; p1hat = X1/n; q1hat = 1-p1hat;

% six months

X2 = 7; p2hat = X2/n; q2hat = 1- p2hat;

%===============================

%Wald Intervals

W3 = [p1hat - norminv(0.975) * sqrt( p1hat * q1hat / n), ...

p1hat + norminv(0.975) * sqrt( p1hat * q1hat / n)]

W6 = [p2hat - norminv(0.975) * sqrt( p2hat * q2hat / n), ...

p2hat + norminv(0.975) * sqrt( p2hat * q2hat / n)]

%W3 = 0.4364 0.75279

%W6 = 0.06299 0.31539

%==================================

% Wilson Intervals

p1hats = (X1+2)/(n+4); q1hats = 1-p1hats;

p2hats = (X2+2)/(n+4); q2hats = 1- p2hats;

Wi3 = [p1hats - norminv(0.975)*sqrt( p1hats * q1hats/(n+4)), ...

p1hats + norminv(0.975) * sqrt( p1hats * q1hats/(n+4))];

Wi6 = [p2hats - norminv(0.975)*sqrt( p2hats * q2hats/(n+4)), ...

p2hats + norminv(0.975) * sqrt( p2hats * q2hats/(n+4))];

% Wi3 = 0.43457 0.73617

% Wi6 = 0.092815 0.34621

%==========================

%Wilson Score Intervals

z=norminv(0.975);

Wis3 = [ 1/(1 + z^2/n) * (p1hat + z^2/(2 * n) - ...

z * sqrt( p1hat * q1hat / n + z^2/(4 * n^2))), ...

1/(1 + z^2/n) * (p1hat + z^2/(2 * n) + ...

z * sqrt( p1hat * q1hat / n + z^2/(4 * n^2)))];

Wis6 = [ 1/(1 + z^2/n) * (p2hat + z^2/(2 * n) - ...

z * sqrt( p2hat * q2hat / n + z^2/(4 * n^2))), ...

1/(1 + z^2/n) * (p2hat + z^2/(2 * n) + ...

z * sqrt( p2hat * q2hat / n + z^2/(4 * n^2)))];

%Wis3 = 0.43486 0.73653

%Wis6 = 0.0948 0.34205

%=========================



308 7 Point and Interval Estimators

% Clopper-Pearson Intervals

Fs = finv(0.975, 2*(n-X1 + 1), 2*X1);

Fss = finv(0.975, 2*(X1+1), 2*(n-X1));

CP3 = [ X1/(X1 + (n-X1+1).*Fs), ...

(X1+1).*Fss./(n - X1 + (X1+1).*Fss)];

Fs = finv(0.975, 2*(n-X2 + 1), 2*X2);

Fss = finv(0.975, 2*(X2+1), 2*(n-X2));

CP6 = [ X2/(X2 + (n-X2+1).*Fs), ...

(X2+1).*Fss./(n - X2 + (X2+1).*Fss)];

%CP3 = 0.421 0.75246

%CP6 = 0.079621 0.35155

%==========================================

% Anscombe ARCSIN intervals

%

p1h = (X1 + 3/8)/(n + 3/4); p2h = (X2 + 3/8)/(n + 3/4);

AA3 = [(sin(asin(sqrt(p1h))-norminv(0.975)/(2*sqrt(n))))^2, ...

(sin(asin(sqrt(p1h))+norminv(0.975)/(2*sqrt(n))))^2];

AA6 = [(sin(asin(sqrt(p2h))-norminv(0.975)/(2*sqrt(n))))^2, ...

(sin(asin(sqrt(p2h))+norminv(0.975)/(2*sqrt(n))))^2];

%AA3 = 0.43235 0.74353

%AA6 = 0.085489 0.3366

Figure 7.8 shows the pairs of confidence intervals at the 3- and 6-month
follow-ups. Wald’s intervals are in black, Wilson’s in red, the Wilson score
in green, Clopper–Pearson’s in magenta, and ArcSin in blue. Notice that for
all methods, the confidence intervals at the 3- and 6-month follow-ups are
well separated, suggesting a significant change in the proportions. There
are differences among the intervals, in their centers and lengths, for a par-
ticular time of follow-up. However, as Figure 7.8 indicates, these differences
are not large.
�

Next, we discuss the confidence interval for the probability of success
when in n trials no successes have been observed.

7.5.4 Confidence Intervals for Proportions When X = 0

When the binomial probability is small, it is not unusual that out of n
trials no successes are observed. How do we find a (1− α)100% confidence
interval in such a case? The Clopper–Pearson interval is possible for X = 0,
and it is given by [0,1− (α/2)1/n].

Yet it is possible to establish an alternative interval based on the follow-
ing consideration. First, we have (1− p)n is as the probability of no success
in n trials, and this probability is at least α:
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Fig. 7.8 Confidence intervals at 3- and 6-month follow-ups. Wald’s intervals are in black,
Wilson’s in red, the Wilson Score in green, Clopper–Pearson’s in magenta, and ArcSin in
blue.

(1− p)n ≥ α.

Since n log(1− p)≥ log(α) and log(1− p)≈ −p, then

p ≤ − log(α)/n.

This is a basis for the so-called 3/n rule: the 95% confidence interval for p
is [0,3/n] if no successes have been observed since − log(0.05) = 2.9957≈ 3.
By symmetry, the 95% confidence interval for p when n successes are ob-
served in n experiments is [1− 3/n,1]. When n is small, this rule leads to
intervals that are too wide to be useful. See Exercise 7.31 for a compari-
son of the Clopper–Pearson and 3/n-rule intervals. We will argue in the
next chapter that in the case where no successes are observed, one should
approach the inference in a Bayesian manner.

7.5.5 Designing the Sample Size with Confidence Intervals

In all previous examples it was assumed that we had data in hand. Thus,
we looked at the data after the sampling procedure had been completed. It
is often the case that we have control over what sample size to adopt before
the sampling. How large should the sample be? On one hand, a sample
that is too small may affect the validity of our statistical conclusions. On
the other hand, an unnecessarily large sample wastes money, time, and
resources.
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The length L of the (1− α)100% confidence interval is L = 2z1−α/2σ/
√

n

for the normal mean and L = 2z1−α/2
√

p̂(1− p̂)/n for the population pro-
portion. The sample size n is determined by solving the preceeding equa-
tions when L is fixed.

(i) Sample size for estimating the mean: σ2 is known:

n ≥
4z2

1−α/2σ2

L2 , (7.9)

where L is the length of the interval.
(ii) Sample size for estimating the proportion:

n ≥
4z2

1−α/2 p̂(1− p̂)

L2 , (7.10)

where p̂ is estimated or elicited.
Designing the sample size usually precedes the sampling. In the

absence of data, p̂ is elicited from experts or inferred from prior stud-
ies. In the absence of any information, the most conservative choice is
p̂ = 0.5.

It is possible to express L2 in the units of variance of observations, σ2,
for the normal and p(1− p) for the Bernoulli distribution. Therefore, it is
sufficient to state that L/σ is 1/2, for example, or that L/

√
p(1− p) is 1/4,

and the required sample size can be calculated.

Example 7.11. Cholesterol Level. You are asked to design a cholesterol
study experiment and you would like to estimate the mean cholesterol level
of all students on a large metropolitan campus. You plan to take a random
sample of n students and measure their cholesterol levels. Previous stud-
ies have shown that the standard deviation is 25, and you intend to use
this value in planning your study. If a 99% confidence interval with a total
length not exceeding 12 is desired, how many students should you include
in your sample?

For a 99% confidence level, the normal 0.995 quantile is needed, z0.995 =

2.58. Then, n ≥ 4·2.57582·252

122 = 115.1892, and desired sample size is 116 since
115.1892 should be rounded to the closest larger integer.
�

The margin of error is defined as half of the length of a 95% confidence
interval for unknown proportion, location, scale, or some other population
parameter of interest.
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In popular use, the margin of error is usually connected with public
opinion polls and represents the quantifiable sampling error built into well-
designed sampling schemes. For estimating the true proportion of voters
favoring a particular candidate, an approximate 95% confidence interval is

[
p̂− 1.96

√
p̂ q̂/n, p̂ + 1.96

√
p̂ q̂/n

]
,

where p̂ is the sample proportion of voters favoring the candidate, q̂ = 1− p̂,
1.96 is the normal 97.5 percentile, and n is the sample size. Since p̂ q̂≤ 1/4,
the margin of error, 1.96

√
p̂ q̂/n, is usually conservatively rounded to 1√

n
.

For example, if a survey of n = 1600 voters yields that 52% favor a par-
ticular candidate, then the margin of error can be estimated as 1/

√
1600 =

1/40 = 0.025 = 2.5% and is independent of the realized proportion of 52%.
However, if the true proportion is not close to 1/2, the precision of the

margin of error can be improved by selecting a less conservative upper
bound on p̂ q̂. For example, if a survey of n = 1600 citizens yields that
16% of them favor policy P, the margin of error can be estimated as 1.96 ·√

0.2 · 0.8/1600 ≈ 1/50 = 0.02 = 2% provided that we are certain that the
true proportion of citizens supporting policy P does not exceed 20%.

7.6 Prediction and Tolerance Intervals*

In addition to confidence intervals for parameters, a researcher may be in-
terested in predicting future observations. This leads to prediction intervals.

We will focus on the prediction interval for predicting future observa-
tions from a normal population N (µ,σ2) once X1, . . . , Xn have been ob-
served. Any future observation will be denoted by Xn+1.

Consider X and Xn+1. These two random variables are independent and
their difference has a normal distribution,

X− Xn+1 ∼ N (0,σ2/n + σ2),

thus, Z = X−Xn+1
σ
√

1+1/n
has a standard normal distribution. This leads to (1−

α)100% prediction intervals for Xn+1:

[
X− tn−1,1−α/2 s

√
1 +

1
n

, X + tn−1,1−α/2 s

√
1 +

1
n

]
.
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When σ2 is known, s is replaced by σ and tn−1,1−α/2 by z1−α/2.

Note that prediction intervals contain the factor
√

1 + 1
n in place of

√
1
n

in matching confidence intervals for the normal population mean. When n
is large, the prediction interval can be substantially larger than the confi-
dence interval. This is because the uncertainty about a future observation
consists of (1) uncertainty about its mean and (2) uncertainty about the
individual response.

Prediction intervals based on a random sample were used to predict
the value of a future observation from the sampled population. In practice,
the interest may be in the characteristics of a majority of the units in the
population rather than a single unit or the overall mean. For example, a
manufacturer of medical devices might want to learn the proportion of
production for which a particular dimension falls within a given range.

Tolerance intervals (TI) are used for this purpose. A tolerance interval
is constructed so that it would contain at least a specified proportion, say,
1 − γ of the population with a specified confidence, say, 1 − α. Such an
interval is usually referred to as the 1 − γ content – 1 − α coverage TI,
or simply a (1 − γ,1− α) TI. The ends of a tolerance interval are called
tolerance limits.

For normal populations, the two-sided interval is defined as

[X − ks, X + ks], k =

√√√√ (n2 − 1) z2
1−γ/2

n χ2
n−1,α

(7.11)

and interpreted as follows: With a confidence of 1− α, the proportion 1− γ
of population measurements will fall between the lower and upper bounds
in (7.11). The interval in (7.11) is called a (1− γ,1− α)-tolerance interval.

Example 7.12. (0.95, 0.99)-Tolerance Interval. For sample size n = 20, X =
12, s = 0.1, confidence 1− α = 99%, and proportion 1− γ = 95%, the toler-
ance factor k is calculated using the following MATLAB script:

n=20;

z = norminv(1-0.05/2) %proportion of 1-0.05=0.95

%z = 1.9600

xi = chi2inv(0.01, n-1) %confidence 1-0.01=0.99

%xi = 7.6327

k = sqrt( (n^2-1) * z^2/(n * xi) )

%k = 3.1687

[12-k*0.1 12+k*0.1]

%11.6831 12.3169
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and the (0.95,0.99)-tolerance interval is [11.6831,12.3169].
�

For an example of a tolerance interval for a binomial X, see Exercise
7.37.

Example 7.13. Distribution-Free Tolerance Intervals. When the distribu-
tion of observations X1, . . . , Xn is arbitrary, but continuous, and n is the
smallest integer satisfying

(1− γ/2)n − 1
2
(1− γ)n ≤ α

2
,

then the full range (X(1), X(n)) is a (1 − γ,1 − α) tolerance interval. For
example, for a (0.95,0.95) tolerance interval in MATLAB, n can be found as

beta=0.05; alpha=0.05;

fzero(@(n) (1-beta/2)^n - 1/2*(1-beta)^n - alpha/2, 100)

%145.2464

This means that (X(1), X(146)) is a (0.95,0.95) distribution-free tolerance in-
terval.
�

7.7 Confidence Intervals for Quantiles*

The confidence interval for a normal quantile is based on a noncentral t-
distribution. Let X1, . . . , Xn be a sample of size n with the sample mean X
and sample standard deviation s.

we want to find a confidence interval on the population’s pth quantile,
µ + zp × σ, with a confidence level of 1− α.

The confidence interval is given by [L,U], where

L = X + s · nct(α/2,n− 1,
√

n · zp)/
√

n,

U = X + s · nct(1− α/2,n− 1
√

n · zp)/
√

n,

and nct(q,d f ,nc) is the q-quantile of the noncentral t-distribution (page 264)
with df degrees of freedom and noncentrality parameter nc.

The confidence intervals for quantiles can be based on order statistics
when normality is not assumed. For example, instead of declaring the con-
fidence interval for the mean, we should report the confidence interval on
the median if the normality of the data is a concern. Let X(1), X(2), . . . , X(n)

be the order statistics of the sample. Then a (1− α)100% confidence interval
for the median Me is
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X(h) ≤ Me ≤ X(n−h+1).

The value of h is usually tabulated. For large n (n > 40), a good approxima-
tion for h is an integer part of

n− z1−α/2
√

n− 1
2

.

For example, if n = 300, the 95% confidence interval for the median is
[X(132), X(169)] as demonstrated below:

n = 300;

h = floor( (n - 1.96 * sqrt(n) - 1)/2 )

% h = 132

n - h + 1

% ans = 169

7.8 Confidence Intervals for the Poisson Rate*

Recall that an observation X coming from Poi(λ) has both a mean and
a variance equal to the rate parameter, EX = Var X = λ. Also, Poisson
random variables are additive in the rate parameter:

X1, X2, . . . , Xn ∼ Poi(λ) ⇒ nX =
n

∑
i=1

Xi ∼ Poi(nλ). (7.12)

The asymptotically shortest Wald-type (1− α)100% interval for λ is ob-

tained using the fact that Z =
√

n
λ (X − λ) is approximately the standard

normal. The inequality
√

n

λ
|X− λ| ≤ z1−α/2

leads to

λ2 − λ

(
2X +

z2
1−α/2

n

)
+ (X)2 ≤ 0,

which solves to
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X +

z2
1−α/2

2n
− z1−α/2

√
X

n
+

z2
1−α/2

4n2 ,

X +
z2

1−α/2

2n
+ z1−α/2

√
X

n
+

z2
1−α/2

4n2


 . (7.13)

Other Wald-type intervals are derived from the fact that
√

X−
√

λ√
1/(4n)

is ap-

proximately the standard normal. Then, the variance-stabilizing, modified
variance-stabilizing, and recentered variance-stabilizing (1− α)100% confi-
dence intervals are given as

X− z1−α/2

√
X

n
, X + z1−α/2

√
X

n


 ,


X +

z2
1−α/2

4n
− z1−α/2

√
X

n
, X +

z2
1−α/2

4n
+ z1−α/2

√
X

n


 , and


X +

z2
1−α/2

4n
− z1−α/2

√
X + 3/8

n
, X +

z2
1−α/2

4n
+ z1−α/2

√
X + 3/8

n


 .

Details can be found in Barker (2002).

An alternative approach is based on the link between Poisson and chi-
square distributions. Namely, if X ∼ Poi(λ), then

P(X > x) = P(Y < 2λ), for Y ∼ χ2
2x

and the (1− α)100% confidence interval for λ when X is observed is
[

1
2

χ2
2X,α/2,

1
2

χ2
2(X+1),1−α/2

]
,

where χ2
2X,α/2 and χ2

2(X+1),1−α/2 are α/2 and 1− α/2 quantiles of the χ2-
distribution with 2X and 2(X + 1) degrees of freedom, respectively. By
convention, χ2

0,α = 0. Due to the additivity property (7.12), the confidence
interval changes slightly for the case of an observed sample of size n,
X1, X2, . . . , Xn. One finds S = ∑

n
i=1 Xi, which is a Poisson with parameter nλ

and proceeds as in the single-observation case. Because the interval ob-
tained is for nλ, the bounds should be divided by n to get the interval for
λ:
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[
1

2n
χ2

2S,α/2,
1

2n
χ2

2(S+1),1−α/2

]
. (7.14)

The interval in (7.14) is sometimes referred to as Garwood’s interval (Gar-
wood, 1936).

Example 7.14. Counts of α-Particles. Rutherford et al. (1930, pp. 171–172)
provide descriptions and data on an experiment by Rutherford and Geiger
(1910) on the collision of α-particles emitted from a small bar of polonium
with a small screen placed at a short distance from the bar. The number
of such collisions in each of 2,608 eight-minute intervals was recorded. The
distance between the bar and screen was gradually decreased so as to com-
pensate for the decay of radioactive substance.

X 0 1 2 3 4 5 6 7 8 9 10 11 ≥ 12
Freq 57 203 383 525 532 408 273 139 45 27 10 4 2

It is postulated that because of the large number of atoms in the bar and
the small probability of any of them emitting a particle, the observed fre-
quencies should be well modeled by a Poisson distribution.

%Rutherford.m

X=[ 0 1 2 3 4 5 6 7 8 9 10 11 12 ];

fr=[ 57 203 383 525 532 408 273 139 45 27 10 4 2];

n = sum(fr); %number of experiments//time intervals

rfr = fr./n; %relative frequencies %n=2608

xbar = X * rfr’ ; %lambdahat = xbar = 3.8704

tc = X * fr’; %total number of counts tc = 10094

%Recentered Variance Stabilizing

[xbar + (norminv(0.975))^2/(4*n) - ...

norminv(0.975) * sqrt(( xbar + 3/8)/n )...

xbar + (norminv(0.975))^2/(4*n) + ...

norminv(0.975) * sqrt( (xbar+ 3/8)/n )]

% 3.7917 3.9498

% Garwood’s interval

[1/(2 *n) * chi2inv(0.025, 2 * tc) ...

1/(2 * n) * chi2inv(0.975, 2*(tc + 1))]

% 3.7953 3.9467

The estimator for λ is λ̂ = X = 3.8704, the Wald-type recentered variance
stabilizing interval is [3.7917,3.9498], and the Garwood confidence interval
is [3.7953,3.9467]. The intervals are very close to each other and quite tight
due to the large sample size.
�
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7.9 Exercises

7.1. Tricky Estimation. A publisher gives the proofs of a new book to two
different proofreaders, who read it separately and independently. The
first proofreader found 60 misprints, the second proofreader found 70
misprints, and 50 misprints were found by both. Estimate how many
misprints remain undetected in the book? Hint: Refer to Example 5.10.

7.2. Laplace’s Rule of Succession. Laplace’s Rule of Succession states that
if an event appeared X times out of n trials, the probability that it will
appear in a future trial is X+1

n+2 .
(a) If X+1

n+2 is taken as an estimator for binomial p, compare the MSE of
this estimator with the MSE of the traditional estimator, p̂ = X

n .
(b) Represent MSE from (a) as the sum of the estimator’s variance and
the bias squared.

7.3. Neurons Fire in Potter’s Lab. The data set neuronfires.mat was
compiled in Professor Steve Potter’s lab at Georgia Tech. It consists of
989 firing times of a cell culture of neurons. The recorded firing times
are time instances when a neuron sent a signal to another linked neu-
ron (a spike). The cells from the cortex of an embryonic rat brain were
cultured for 18 days on multielectrode arrays. The measurements were
taken while the culture was stimulated at a rate of 1 Hz. It was postu-
lated that firing times form a Poisson process; thus, the interspike inter-
vals should have an exponential distribution.
(a) Calculate the interspike intervals T using MATLAB’s diff command.
Check the histogram for T and discuss its resemblance to the exponen-
tial density. By the moment-matching estimator, argue that exponential
parameter λ is close to 1.
(b) According to (a), the model for interspike intervals is T ∼ E (1). You
are interested in the proportion of intervals that are shorter than 3, T≤ 3.
Find this proportion from the theoretical model E (1) and compare it to
the estimate from the data. For the theoretical model, use expcdf and for
empirical data use sum(T <= 3)/length(T).

7.4. Moment Matching Uniform. Let X1, X2, . . . , Xn be a sample from uni-
form U (µ− δ,µ + δ) distribution. Show that the moment-matching esti-
mators of µ and δ are

µ̂ = X and δ̂ =

√
3
(

X2 − (X)2
)

,

where X and X2 are first and second sample moments.
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7.5. The MLE in a Discrete Case. A sample−1,1,1,0,−1,1,1,1,0,1,1,0,−1,1,1
was observed from a population with a probability mass function of

X –1 0 1
Prob θ 2θ 1− 3θ

(a) What is the possible range for θ?
(b) What is the MLE for θ?
(c) How would the MLE look for a sample of size n?

7.6. Two Thetas. (a) A sample of size n = 10,

0,0,1,1,1,2,1,1,0, and 2,

is obtained from a partially specified discrete distribution

X 0 1 2
Prob θ 1/2 1/2− θ

How would you estimate θ given the sample?

(b) A sample of size n = 4,

1.1, 0.7, 0.5, and 1.7,

is obtained from normal N (θ,0.62) distribution. As a confidence interval
(CI) for θ, the interval [0,2] is proposed. With what confidence does this
interval contain θ?

7.7. MLE for Two Continuous Distributions. Find the MLE for parameter
θ if the model for observations X1, X2, . . . , Xn, is

(a) f (x|θ) = θ

x2 , 0 < θ ≤ x;

(b) f (x|θ) = θ − 1
xθ

, x ≥ 1, θ > 1.

7.8. Match the Moment. The geometric distribution (X is the number of
failures before the first success) has a probability mass function

f (x|p) = (1− p)x p, x = 0,1,2, . . . .

Suppose X1, X2, . . . , Xn are observations from this distribution. It is known
that EXi =

1−p
p .

(a) What would you report as the moment-matching estimator if the
sample X1 = 2, X2 = 6, X3 = 1 were observed?
(b) What is the MLE for p?



7.9 Exercises 319

7.9. Weibull Distribution. The two-parameter Weibull distribution is given
by the density

f (x) = aλaxa−1e−(λx)a
, a > 0,λ > 0, x ≥ 0,

with mean and variance

EX =
Γ(1 + 1/a)

λ
, and Var X =

1
λ2

[
Γ(1 + 2/a)− Γ(1 + 1/a)2

]
.

Assume that the “shape” parameter a is known and equal to 1/2.
(a) Propose two moment-matching estimators for λ.
(b) If X1 = 1, X2 = 3, X3 = 2, what are the values of the estimator?

Hint: Recall that Γ(n) = (n− 1)!

7.10. Rate Parameter of Gamma. Let X1, . . . , Xn be a sample from a gamma
distribution given by the density

f (x) =
λaxa−1

Γ(a)
e−λx, a > 0,λ > 0, x ≥ 0,

where shape parameter a is known and rate parameter λ is unknown
and of interest.
(a) Find the MLE of λ.
(b) Using the fact that X1 + X2 + · · ·+ Xn is also gamma distributed with
parameters na and λ, find the expected value of the MLE from (a) and
show that it is a biased estimator of λ.
(c) Modify the MLE so that it is unbiased. Compare MSEs for the MLE
and the modified estimator.

7.11. Estimating the Parameter of a Rayleigh Distribution. If two random
variables X and Y are independent of each other and normally dis-
tributed with variances equal to σ2, then the variable R =

√
X2 + Y2

follows the Rayleigh distribution with scale parameter σ. An example
of such a variable would be the distance of darts from the target in a
dart-throwing game where the deviations in the two dimensions of the
target plane are independent and normally distributed. The Rayleigh
random variable R has a density

f (r) =
r

σ2 exp
{
− r2

2σ2

}
, r ≥ 0,

ER = σ

√
π

2
ER2 = 2σ2.
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(a) Find the two moment-matching estimators of σ.
(b) Find the MLE of σ.
(c) Assume that R1 = 3, R2 = 4, R3 = 2, and R4 = 5 are Rayleigh-distributed
random observations representing the distance of a dart from the cen-
ter. Estimate the variance of the horizontal error, which is theoretically a
zero-mean normal.
(d) In Example 5.29, the distribution of a square root of an exponential
random variable with a rate parameter λ was Rayleigh with the follow-
ing density:

f (r) = 2λr exp{−λr2}.

To find the MLE for λ, can you use the MLE for σ from (b)?

7.12. Monocytes among Blood Cells. Eisenhart and Wilson (1943) report the
number of monocytes in 100 blood cells of a cow in 113 successive weeks.

Monocytes Frequency Monocytes Frequency
0 0 7 12
1 3 8 10
2 5 9 11
3 13 10 7
4 19 11 3
5 13 12 2
6 15 13+ 0

(a) If the underlying model is Poisson, what is the estimator of λ?
(b) If the underlying model is binomial Bin(100, p), what is the estimator
of p?
(c) For the models specified in (a) and (b) find theoretical or “expected”
frequencies.
Hint: Suppose the model predicts P(X = k) = pk, k = 0,1, . . . ,13. The
expected frequency of X = k is 113× pk. For a follow-up see Exercise
17.7.

7.13. Estimation of θ in U (0,θ). Which of the two estimators in Example 7.5
is unbiased? Find the MSE of both estimators. Which one has a smaller
MSE?

7.14. Estimating the Rate Parameter in a Double Exponential Distribution.
Let X1, . . . , Xn follow double exponential distribution with density

f (x|θ) = θ

2
e−θ|x|, −∞ < x < ∞, θ > 0.

For this distribution, EX = 0 and Var (X) = EX2 = 2/θ2. The double
exponential distribution, also known as Laplace’s distribution, is a model
frequently encountered in statistics, see page 207.
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(a) Find a moment-matching estimator for θ.
(b) Find the MLE of θ.
(c) Evaluate the two estimators from (a) and (b) for a sample X1 =
−2, X2 = 3, X3 = 2, and X4 = −1.

7.15. Reaction Times I. A sample of 20 students is randomly selected and
given a test to determine their reaction time in response to a given stim-
ulus. Assume that individual reaction times are normally distributed. If
the mean reaction time is determined to be X = 0.9 (in seconds) and the
standard deviation is s = 0.12, find the confidence intervals:
(a) 95% CI for the unknown population mean µ.
(b) 98.5% CI interval for the unknown population mean µ.
(c) 95% CI for the unknown population variance σ2.

7.16. Reaction Times II. Under the conditions in the previous problem, as-
sume that the population standard deviation was known to be σ = 0.12.
(a) Find the 98.5% CI for the unknown mean µ;
(b) Find the sample size necessary to produce a 95% CI for µ of
length 0.07.

7.17. Toxins. An investigation on toxins produced by molds that infect corn
crops was performed. A biochemist prepared extracts of the mold cul-
ture with organic solvents and then measured the amount of toxic sub-
stance per gram of solution. From 11 preparations of the mold culture,
the following measurements of the toxic substance (in milligrams) were
obtained: 3, 2, 5, 3, 2, 6, 5, 4.5, 3, 3, and 4.
Compute a 99% confidence interval for the mean weight of toxic sub-
stance per gram of mold culture. State the assumption you make about
the population.

7.18. Bias of s2
∗. For a sample X1, . . . , Xn from a N (µ,σ2) population, find the

bias of s2∗ =
1
n ∑i(Xi − X)2 as an estimator of variance σ2.

Using (7.3), show that the variance of s2
∗ is smaller than the variance of

unbiased estimator s2.

7.19. COPD Patients. Acute exacerbations of disease symptoms in patients
with chronic obstructive pulmonary disease (COPD) often lead to hospi-
talizations and impose a great financial burdens on healthcare systems.
A study by Ghanei et al. (2007) aimed to determine factors that may
predict rehospitalization in COPD patients.
A total of 157 COPD patients were randomly selected from all COPD
patients admitted to the chest clinic of Baqiyatallah Hospital during the
year 2006. Subjects were followed for 12 months to observe the occur-
rence of any disease exacerbation that might lead to hospitalization.
Over the 12-month period, 87 patients experienced disease exacerbation.
The authors found significant associations between COPD exacerbation
and monthly income, comorbidity score, and depression using logistic
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regression tools. We are not interested in these associations in this ex-
ercise, but we are interested in the population proportion of all COPD
patients that experienced disease exacerbation over a 12-month period,
p.
(a) Find an estimator of p based on the data available. What is an ap-
proximate distribution of this estimator?
(b) Find the 90% confidence interval for the unknown proportion p.
(c) How many patients should be sampled and monitored so that the
90% confidence interval as in (b) does not exceed 0.03 in length.
(d) The hospital challenges the claim by the local health system au-
thorities that half of the COPD patients experience disease exacerbation
in a 1-year period, claiming that the proportion is significantly higher.
Can the hospital support their claim based on the data available? Use
α = 0.05. Would you reverse the decision if α were changed to 10%?

7.20. Right to Die. A Gallup Poll estimated the support among Americans for
“right to die” laws. In the survey, 1528 adults were asked whether they
favor voluntary withholding of life-support systems from the terminally
ill. The results: 1238 said yes.
(a) Find the 99% confidence interval for the percentage of all adult Amer-
icans who are in favor of “right to die” laws.
(b) If the margin of error (half of the length of a 95% confidence interval,
see page 310) is to be smaller than 0.01, what sample size is needed to
achieve this requirement? Assume p̂ = 0.8.

7.21. Exponentials Parameterized by the Scale. A sample X1, . . . , Xn was se-
lected from a population that has an exponential E (λ) distribution with
a density of f (x|λ) = 1

λ e−
x
λ , x ≥ 0,λ > 0. We are interested in estimating

the parameter λ.
(a) What are the moment-matching and MLE estimators of λ based on
X1, . . . , Xn?
(b) Two independent observations Y1 ∼E (λ/2) and Y2 ∼E (2λ) are avail-
able. Combine them (make a specific linear combination) to obtain an
unbiased estimator of λ. What is the variance of the proposed estima-
tor?
(c) Two independent observations Z1 ∼ E (1.1λ) and Z2 ∼ E (0.9λ) are
available. An estimator of λ in the form λ̂ = pZ1 + (1− p)Z2, 0 ≤ p ≤ 1
is proposed. What p minimizes the magnitude of bias of λ̂? What p
minimizes the variance of λ̂?

7.22. Bias in Estimator for Exponential λ Distribution. If the exponential
distribution is parameterized with λ as the scale parameter, f (x|λ) =
1
λ exp{−x/λ}, x ≥ 0,λ > 0, (as in MATLAB), then λ̂ = X is an unbiased
estimator of λ. However, if it is parameterized with λ as a rate parameter,
f (x|λ) = λexp{−λx}, x ≥ 0,λ > 0, then λ̂ = 1/X is biased. Find the
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bias of this estimator. Hint: Argue that 1/∑
n
i=1 Xi has an inverse gamma

distribution with parameters n and λ and take the expectation.

7.23. Yucatan Miniature Pigs. Ten adult male Yucatan miniature pigs were
exposed to various durations of constant light (“Lighting”), then sac-
rificed after experimentally controlled time delay (“Survival”), as de-
scribed in Dureau et al. (1996). Following the experimental protocol,
entire eyes were fixed in Bouin’s fixative for 3 days. The anterior seg-
ment (cornea, iris, lens, ciliary body) was then removed and the posterior
segment divided into five regions: posterior pole (including optic nerve
head and macula) (“P”), nasal (“N”), temporal (“T”), superior (“S”), and
inferior (“I”). Specimens were washed for 2 days, embedded in paraffin,
and subjected to microtomy perpendicular to the retinal surface. Every
200 µm, a 10-µm-thick section was selected, and 20 sections were kept for
each retinal region. Sections were stained with hematoxylin. The outer
nuclear layer (ONL) thickness was measured by an image-analyzing sys-
tem (Biocom, Les Ulis, France), and three measures were performed for
each section at regularly spaced intervals so that 60 measures were made
for each retinal region. The experimental protocol for 11 animals was as
follows (Lighting and Survival times are in weeks):

Animal Lighting duration Survival time
Control 0 0

1 1 12
2 2 10
3 4 0
4 4 4
5 4 6
6 8 0
7 8 4
8 8 8
9 12 0

10 12 4

The data set pigs.mat contains the data structure pigs with
pigs.pc, pigs.p1,...,pigs.p10, representing the posterior pole measure-

ments for the 11 animals. This data set and complete data yucatanpigs.dat

can be found on the book’s website page.
Observe the data pigs.pc and argue that it deviates from normality by us-
ing MATLAB’s qqplot. Transform pigs.pc as x = (pigs.pc - 14)/(33 -14),
to confine x between 0 and 1 and assume a beta Be(a, a) distribution. The
MLE for a is complex (involves a numerical solution of equations with
digamma functions), but the moment-matching estimator is straightfor-
ward.
Find a moment-matching estimator for a.
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7.24. Computer Games. According to Hamilton (1990), certain computer
games are thought to improve spatial skills. A mental rotations test, mea-
suring spatial skills, was administered to a sample of school children af-
ter they had played one of two types of computer game. Construct 95%
confidence intervals based on the following mean scores, assuming that
the children were selected randomly and that the mental rotations test
scores had a normal distribution in the population.
(a) After playing the “Factory” computer game: X = 22.47, s = 9.44,n =
19.
(b) After playing the “Stellar” computer game: X = 22.68, s= 8.37,n= 19.
(c) After playing no computer game (control group): X = 18.63, s =
11.13,n = 19.

7.25. Effectiveness in Treating Cerebral Vasospasm. In a study on the effec-
tiveness of hyperdynamic therapy in treating cerebral vasospasm, Pritz
et al. (1996) reported on the therapy where success was defined as clini-
cal improvement in terms of neurological deficits. The study reported 16
successes in 17 patients.
(a) Using the methods discussed in the text, find 95% confidence inter-
vals for the success rate.
(b) Does any of the methods produce an upper bound larger than 1?
(c) How would you find the 95% confidence interval if the study reported
17 successes in 17 patients?

7.26. Alcoholism and the Blyth–Still Confidence Interval. Genetic markers
were observed for a group of 50 Caucasian alcoholics in a study that
aimed at determining whether alcoholism has (in part) a genetic basis.
The antigen (marker) B15 was present in 5 alcoholics. Find the Blyth–
Still 99% confidence interval for the proportion of Caucasian alcoholics
having this antigen.

If either p or q is close to 0, then a precise (1− α)100% confidence
interval for the unknown proportion p was proposed by Blyth and
Still (1983). For X ∼ Bin(n, p),
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7.27. Spores of Amanita Phalloides. Exercise 2.4 provides measurements in
µm of 28 spores of the mushroom Amanita phalloides.
Assuming normality of measurements, find the following:
(a) A point estimator for the unknown population variance σ2. What is
the sampling distribution of the point estimator?
(b) A 90% confidence interval for the population variance.
(c) (By MATLAB) the minimal sample size that ensures that the upper
bound U of the 90% confidence interval for the variance is at most 30%
larger than the lower bound L, that is, U/L≤ 1.3.
(d) Miller (1991) showed that the coefficient of variation in a normal
sample of size n has an approximately normal distribution:

s/X
approx∼ N

(
σ

µ
,

1
n− 1

(
σ

µ

)2
[

1
2
+

(
σ

µ

)2
])

.

Based on this asymptotic distribution, a (1− α)100% confidence interval
for the population coefficient of variation σ

µ is approximately
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This approximation works well if n exceeds 10 and the coefficient of
variation is less than 0.7. Find the 95% confidence interval for the popu-
lation coefficient of variation σ/µ based on 28 spores measurements.
(e) Standardly used (1− α)100% confidence interval for σ/µ is McKay’s
interval (McKay. 1932),
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 ,

where u1 = χ2
n−1,1−α/2, and u2 = χ2

n−1,α/2.
Find the McKay’s 95% confidence interval for σ/µ.

7.28. CLT-Based Confidence Interval for Normal Variance. Refer to Example
7.9. Using MATLAB, simulate a normal sample with mean 0 and vari-
ance 1 of size n = 50 and find if a 95% confidence interval for the popula-
tion variance contains a 1 (the true population variance). Check this cov-
erage for a standard confidence interval in (7.8) and for a CLT-based in-
terval from Example 7.9. Repeat this simulation M = 10000 times, keep-
ing track of the number of successful coverages. Show that the interval
(7.8) achieves the nominal coverage, while the CLT-based interval has a
smaller coverage of about 2%. Repeat the simulation for sample sizes of
n = 30 and n = 200.
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7.29. Stent Quality Control. A stent is a tube or mechanical scaffold used
to counteract significant decreases in vessel or duct diameter by acutely
propping open the conduit. Stents are often used to alleviate diminished
blood flow to organs and extremities beyond an obstruction in order to
maintain an adequate delivery of oxygenated blood.
In the production of stents, the quality control procedure aims to iden-
tify defects in composition and coating. Precision z-axis measurements
(10 nm and greater) are obtained, along with surface roughness and to-
pographic surface finish details, using a laser confocal imaging system
(an example is the Olympus LEXT OLS3000). Samples of 50 stents from
a production process are selected every hour. Typically, 1% of stents are
nonconforming. Let X be the number of stents in the sample of 50 that
are nonconforming. A production problem is suspected if X exceeds its
mean by more than three standard deviations.
(a) Find the critical value for X that will implicate a production problem.
(b) Find an approximation for the probability that in the next-hour batch
of 50 stents, the number X of nonconforming stents will be critical, i.e.,
will raise suspicion that the process has gone awry.
(c) Suppose now that the population proportion of nonconforming
stents, p, is unknown. How would one estimate p by taking a 50-stent
sample? Is the proposed estimator unbiased?
(d) Suppose now that a batch of 50 stents produced X = 1. Find the 95%
confidence interval for p.

7.30. Clopper–Pearson and 3/n-Rule Confidence Intervals. Using MATLAB,
compare the performance of Clopper–Pearson and 3/n-rule confidence
intervals when X = 0. Use α = 0.001,0.005,0.01,0.05,0.1 and n = 10 : 10 :
200. Which interval is superior and under what conditions?

7.31. Fluid Overload in Hemodialysis. The overload of fluid volume and
hypertension are known to contribute to high cardiovascular morbidity
and mortality seen in dialysis patients. The correct assessment of volume
status is especially important as only a small increase in extracellular
volume over prolonged periods of time can lead to a considerable cardiac
strain and, as a consequence, to left ventricular hypertrophy. In clinical
practice, volume overload is most often judged by a battery of clinical
signs such as edema, dyspnea, hypertension, and coughing. A study by
Ribitsch et al. (2012) compares volume overload in stable hemodialysis
(HD) patients assessed by standard clinical judgment with data obtained
from bioimpedance analysis.
Data set hemodialysis.dat|mat|xlsx provides measurements on 28 HD
patients (17 males and 11 females) from the dialysis unit of the Univer-
sity Medical Center Graz. The variables are described in the following
table:
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Column Variable Unit Description
1 M0 (kg) Pre-dialytic body mass
2 BMI (kg/m2) Body mass index
3 P0 (mmHg) Pre-dialytic mean arterial pressure
4 P1 (mmHg) Post-dialytic mean arterial pressure
5 VE (L) Extracelular volume
6 VO (L) Volume overload
7 VU (L) Delivered ultrafiltration volume
8 B0 (pg/ml) Pre-dialytic NT-pro-BNP
9 B1 (pg/ml) Post-dialytic NT-pro-BNP
10 SW Wizemann’s clinical score

(a) Find the 95% CI for the population mean of the difference D = P1− P0
in stable hemodialysis patients. Assume that this difference is normally
distributed.
(b) Find the 90% CI for the population variance of V0. Assume normality
of V0.
(c) Find the 99% CI for the population proportion of patients for which
B1 > B0.

7.32. Sensor Agreement. A company producing an approved medical sensor
A is applying to FDA for the approval of a new sensor B. Both sensors
are prone to errors, and a gold standard is absent. The FDA is requesting
that the new sensor is comparable to the one currently in use.
Data are

Sensor A
Result + Result −

Sensor B
Result + 208 22

Result − 11 5819

Find agreement rate p̂, that is, the proportion of cases where the sensors
agreed (both positive or both negative).
Calculate the 95% Clopper–Pearson CI for the population agreement rate
p, and report the lower bound. To establish equivalence, the FDA re-
quires for this lower bound to be at least 0.98. Is this the case?

7.33. Seventeen Pairs of Rats, Carbon Tetrachloride, and Vitamin B. In a
widely cited experiment by Sampford and Taylor (1959), 17 pairs of rats
were formed by selecting pairs from the same litter. All rats were given
carbon tetrachloride, and one rat from each pair was treated with vita-
min B12, while the other served as a control. In 7 of 17 pairs, the treated
rat outlived the control rat.
(a) Based on this experiment, estimate the population proportion p of
pairs in which the treated rat would outlive the control rat.
(b) If the estimated proportion in (a) is the “true” population probability,
what is the chance that in an independent replication of this experiment
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one will get exactly 7 pairs (out of 17) in which the treated rat outlives
the control?
(c) Find the 95% confidence interval for the unknown p. Does the interval
contain 1/2? What does p = 1/2 mean in the context of this experiment,
and what do you conclude from the confidence interval?
Would the conclusion be the same if in 140 out of 340 pairs the treated
rat outlived the control?
(d) The length of the 95% confidence interval based on n = 17 in (c) may
be too large. What sample size (number of rat pairs) is needed so that
the 95% confidence interval has a length not exceeding ℓ = 0.2?

7.34. Hemocytometer Counts. A set of 1,600 squares on a hemocytometer
is inspected, and the number of cells is counted in each square. The
number of squares with a particular count is given in the table below:

Count 0 1 2 3 4 5 6 7
# Squares 5 24 77 139 217 262 251 210
Count 8 9 10 11 12 13 14 15
# Squares 175 108 63 36 20 9 2 1

Assume that the count has a Poisson Poi(λ) distribution.
(a) Find an estimator of λ using method of moments.
(b) Find the 95% CI for λ. Compare solutions obtained by alternative
intervals in (7.13) and (7.14).

7.35. Predicting Alkaline Phosphatase. Refer to BUPA liver disorder data,
BUPA.dat|mat|xlsx. The second column gives measurements of alka-

line phosphatase among 345 male individuals affected by liver disorder.
If variable X represents the logarithm of this measurement, its distribu-
tion is symmetric and bell-shaped, so it can be assumed normal. From
the data, X = 4.21 and s2 = 0.0676.
Suppose that a new patient with liver disorder just checked in. Find the
95% prediction interval for his log-level of alkaline phosphatase in the
following cases:
(a) The population variance is known and equal to 1/15.
(b) The population variance is not known.
(c) Compare the interval in (b) with a 95% confidence interval for the
population mean. Why is the interval in (b) larger?

7.36. CNFL for DSP. Corneal nerve fiber length (CNFL), as measured using
corneal confocal microscopy (CCM), can be used to reliably rule diabetic
sensorimotor polyneuropathy (DSP) in or out, according to research pub-
lished online on February 8, 2012, in Diabetes Care, doi:10.2337/dc11-1396.
Part of the reported results can be summarized as follows:
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DSP No DSP Total

CNFL ≤ 140 (Positive) 28 20 48
CNFL > 140 (Negative) 5 100 105
Total 33 120 153

Find the 95% CI’s for population sensitivity and specificity using:
(a) Wald’s interval;
(b) Clopper–Pearson’s interval; and
(c) Anscombe’s ArcSin interval.
Which one is the shortest?
(d) It is desired to repeat the study and design sample sizes of DSP and
control subjects that would lead to Wald-type 95% confidence intervals
on sensitivity and specificity not exceeding 0.16 in length each.
Hint. Assume that data from the table can be used in assessing the
sensitivity/specificity needed in the expression for sample size. Use the
sample size formula in (7.10). Since the sensitivity gives sample size for
cases and specificity gives sample size for controls, the total sample size
for the new study should be the sum of the two sample sizes found.

7.37. Tolerance Interval for Binomial X. A (1− γ,1− α) tolerance interval
for binomial X ∼ Bin(n, p) is determined in two stages. In stage one, a
(1− α)100% confidence interval on p is found, (pL, pU). In stage two, the
tolerance bounds are determined via the quantiles of binomial distribu-
tion,

[
F−1

(γ

2
,n, pL

)
, F−1

(
1− γ

2
,n, pU

)]
.

Here F−1(α,n, p) is α-quantile of binomial Bin(n, p) distribution, binoinv(alpha,n,p).

In a previous experiment, the number of “successes” was 46 out of 100
trials. What is the (0.95, 0.95) tolerance interval for number of successes
in a future experiment with 100 trials?
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MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch7.Estim/

AmanitaCI.m, arcsinint.m, bickellehmann.m, clopperint.m, CLTvarCI.m,

confintscatterpillar.m, crouxrouss.m, crouxrouss2.m, cyclosporine.m,

dists2.m, estimweibull.m, ginimd.m, ginimd2.m, lfev.m, MaxwellMLE.m,

MixtureModelExample.m, muscaria.m, plotlike.m, Rutherford.m, simuCI.m,

tolerance.m, waldsimulation.m

amanita28.dat, hemodialysis.dat|xlsx, hypertension.dat,

neuronfires.dat|mat|xlsx
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Chapter 8

Bayesian Approach to Inference

In 1954 I proved that the only sound methods were Bayesian; yet you continue to use
non-Bayesian ideas without pointing out a flaw in either my premise or my proof, why?

– Leonard Jimmie Savage

WHAT IS COVERED IN THIS CHAPTER

• Bayesian Paradigm
• Likelihood, Prior, Marginal, Posterior, Predictive Distributions
• Conjugate Priors, Prior Elicitation
• Bayesian Computation
• Estimation, Credible Sets, Testing, Bayes Factor, Prediction

8.1 Introduction

Several paradigms provide a basis for statistical inference; the two most
dominant are the frequentist (sometimes called classical, traditional, or
Neyman–Pearsonian) and Bayesian. The term Bayesian refers to Reverend
Thomas Bayes, a nonconformist minister interested in mathematics whose
posthumously published essay (Bayes, 1763) is fundamental for this kind of
inference. According to the Bayesian paradigm, the unobservable parame-
ters in a statistical model are treated as random. Before data are collected,
prior distributions are elicited to quantify our knowledge about the param-

333
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eters. This knowledge comes from expert opinion, theoretical considera-
tions, or previous similar experiments. When data are available, the prior
distributions are updated to the posterior distributions. These are conditional
distributions that incorporate the observed data. The transition from the
prior to the posterior is possible via Bayes’ theorem.

The Bayesian approach is relatively modern in statistics; it became influ-
ential with advances in Bayesian computational methods in the 1980s and
1990s.

Before launching into a formal exposition of Bayes’ theorem, we revisit
Bayes’ rule for events (page 100). Prior to observing whether an event A has
appeared or not, we set the probabilities of n hypotheses, H1, H2, . . . , Hn,
under which event A may appear. We called them prior probabilities of the
hypotheses, P(H1), . . . ,P(Hn). Bayes’ rule showed us how to update these
prior probabilities to the posterior probabilities once we obtained informa-
tion about event A. Recall that the posterior probability of the hypothesis
Hi, given the evidence about A, was

P(Hi|A) =
P(A|Hi)P(Hi)

P(A)
.

Therefore, Bayes’ rule gives a recipe for updating the prior probabilities
of events to their posterior probabilities once additional information from
the experiment becomes available. The focus of this chapter is on how to
update prior knowledge about a model; however, this knowledge, or lack of
it, is expressed in terms of probability distributions rather than by events.

Suppose that before the data are observed, a description of the popula-
tion parameter θ is given by a probability density π(θ). The process of spec-
ifying the prior distribution is called prior elicitation. The data are modeled
via the likelihood, which depends on θ and is denoted by f (x|θ). Bayes’
theorem updates the prior π(θ) to the posterior π(θ|x) by incorporating
observations x summarized via the likelihood:

π(θ|x) = f (x|θ)π(θ)

m(x)
. (8.1)

Here, m(x) normalizes the product f (x|θ)π(θ) to be a density and is a con-
stant once the prior is specified and the data are observed. Given the data
x and the prior distribution, the posterior distribution π(θ|x) summarizes
all available information about θ.

Although the equation in (8.1) is referred to as a theorem, there is noth-
ing to prove there. Recall that the probability of intersection of two events A
and B was calculated as P(AB) = P(A|B)P(B) = P(B|A)P(B) [multiplica-
tion rule in (3.6)]. By analogy, the joint distribution of X and θ, h(x,θ),
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would have two representations, as in (5.11), depending on the order of
conditioning:

h(x,θ) = f (x|θ)π(θ) = π(θ|x)m(x),

and Bayes’ theorem solves this equation with respect to the posterior
π(θ|x).

To summarize, Bayes’ rule updates the probabilities of events when new
evidence becomes available, while Bayes’ theorem provides the recipe for
updating prior distributions of model’s parameters once experimental ob-
servations become available.

P(hypothesis) BAYES’ RULE−→ P(hypothesis|evidence)
π(θ)

BAYES’ THEOREM−→ π(θ|data)

The Bayesian paradigm has many advantages, but the two most impor-
tant are: (i) the uncertainty is expressed via the probability distribution and
the statistical inference can be automated; thus, it follows a conceptually
simple recipe embodied in Bayes’ theorem, and (ii) available prior infor-
mation is coherently incorporated into the statistical model describing the
data.

The FDA guidelines document (FDA, 2010) recommends the use of a
Bayesian methodology in the design and analysis of clinical trials for medi-
cal devices. This document eloquently outlines the reasons why a Bayesian
methodology is recommended.

• Valuable prior information is often available for medical devices because of their
mechanism of action and evolutionary development.

• The Bayesian approach, when correctly employed, may be less burdensome than
a frequentist approach.

• In some instances, the use of prior information may alleviate the need for a larger
sized trial. In some scenarios, when an adaptive Bayesian model is applicable, the
size of a trial can be reduced by stopping the trial early when conditions warrant.

• The Bayesian approach can sometimes be used to obtain an exact analysis when
the corresponding frequentist analysis is only approximate or is too difficult to
implement.

• Bayesian approaches to multiplicity problems are different from frequentist ones
and may be advantageous. Inferences on multiple endpoints and testing of multi-
ple subgroups (e.g., race or sex) are examples of multiplicity.

• Bayesian methods allow for great flexibility in dealing with missing data.

In the context of clinical trials, an unlimited look at the accumulated data,
when sampling is sequential in nature, will not affect the inference. In the
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frequentist approach, interim data analyses affect type I errors. The ability
to stop a clinical trial early is important from the moral and economic view-
points. Trials should be stopped early due to both futility, to save resources
or stop an ineffective treatment, and superiority, to provide patients with
the best possible treatments as fast as possible.

Bayesian models facilitate meta-analysis. Meta-analysis is a methodol-
ogy for the fusion of results of related experiments performed by different
researchers, labs, etc. An example of a rudimentary meta-analysis is dis-
cussed in Section 8.10.

8.2 Ingredients for Bayesian Inference

A density function for a typical observation X that depends on an un-
known, possibly multivariate, parameter θ is called a model and denoted
by f (x|θ). As a function of θ, f (x|θ) = L(θ) is called the likelihood. If a
sample x = (x1, x2, . . . , xn) is observed, the likelihood takes a familiar form,
L(θ|x1, . . . , xn) = ∏

n
i=1 f (xi|θ). This form was used in Chapter 7 to produce

MLEs for θ.
Thus both terms model and likelihood are used to describe the distribu-

tion of observations. In the standard Bayesian inference the functional form
of f is given in the same manner as in the classical parametric approach;
the functional form is fully specified up to a parameter θ. According to the
generally accepted likelihood principle, all information from the experimental
data is summarized in the likelihood function, f (x|θ) = L(θ|x1, . . . , xn).

For example, if each datum X|θ were assumed to be exponential with
the rate parameter θ and X1 = 2, X2 = 3, and X3 = 1 were observed, then
full information about the experiment would be given by the likelihood

θe−2θ × θe−3θ × θe−θ = θ3e−6θ.

This model is θ3 exp
{
−θ ∑

3
i=1 Xi

}
if the data are kept unspecified, but in

the likelihood function the expression ∑
3
i=1 Xi is treated as a constant term,

as was done in the maximum likelihood estimation (page 283).
The parameter θ, with values in the parameter space Θ, is not directly

observable and is considered a random variable. This is the key difference
between Bayesian and classical approaches. Classical statistics consider the
parameter to be a fixed number or vector of numbers, while Bayesians ex-
press the uncertainty about θ by considering it as a random variable. This
random variable has a distribution π(θ) called the prior distribution. The
prior distribution not only quantifies available knowledge, it also describes
the uncertainty about a parameter before data are observed. If the prior
distribution for θ is specified up to a parameter τ, π(θ|τ), then τ is called
a hyperparameter. Hyperparameters are parameters of a prior distribution,
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and they are either specified or may have their own priors. This may lead
to a hierarchical structure of the model where the priors are arranged in a
hierarchy.

The previous discussion can be summarized as follows:

The goal in Bayesian inference is to start with prior information on
the parameter of interest, θ, and update it using the observed data.
This is achieved via Bayes’ theorem, which gives a simple recipe for
incorporating observations x in the distribution of θ, π(θ|x), called
the posterior distribution. All information about θ coming from the
prior distribution and the observations are contained in the posterior
distribution. The posterior distribution is the ultimate summary of the
parameter and serves as the basis for all Bayesian inferences.

According to Bayes’ theorem, to find π(θ|x), we divide the joint distri-
bution of X and θ (h(x,θ) = f (x|θ)π(θ)) by the marginal distribution for
X, m(x), which is obtained by integrating out θ from the joint distribution
h(x,θ):

m(x) =
∫

Θ
h(x,θ)dθ =

∫

Θ
f (x|θ)π(θ)dθ.

The marginal distribution is also called the prior predictive distribution.
Thus, in terms of the likelihood and the prior distribution only, the Bayes
theorem can be restated as

π(θ|x) = f (x|θ)π(θ)∫
Θ

f (x|θ)π(θ)dθ
.

The integral in the denominator is a major hurdle in Bayesian computation,
since for complex likelihoods and priors it could be intractable.

The following table summarizes the notation:

Likelihood, model f (x|θ)
Prior distribution π(θ)

Joint distribution h(x,θ) = f (x|θ)π(θ)

Marginal distribution m(x) =
∫

Θ
f (x|θ)π(θ)dθ

Posterior distribution π(θ|x) = f (x|θ)π(θ)/m(x)

We illustrate these concepts by discussing a few examples in which the
posterior distribution can be explicitly obtained. Note that the marginal
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distribution has the form of an integral, and in many cases these integrals
cannot be found in a finite form. It is fair to say that the number of likeli-
hood/prior combinations that lead to an explicit posterior is rather limited.
However, in the general case, the posterior can be evaluated numerically
or, as we will see later, a sample can be simulated from the posterior dis-
tribution. All of the, admittedly abstract, concepts listed above will be ex-
emplified by several worked-out models. We start with the most important
model in which both the likelihood and prior are normal.

Example 8.1. Normal Likelihood with Normal Prior. The normal likeli-
hood and normal prior combination is important because it is frequently
used in practice. Assume that an observation X is normally distributed
with mean θ and known variance σ2. The parameter of interest, θ, is nor-
mally distributed as well, with its parameters µ and τ2. Parameters µ and
τ2 are hyperparameters, and we will consider them given. Starting with
our Bayesian model of X|θ ∼ N (θ,σ2) and θ ∼ N (µ,τ2), we will find the
marginal and posterior distributions. Before we start with a derivation of
the posterior and marginal, we need a simple algebraic identity:

A(x− a)2 + B(x− b)2 = (A + B)(x− c)2 +
AB

A + B
(a− b)2, (8.2)

for c = Aa+Bb
A+B .

We start with the joint distribution of (X,θ), which is the product of two
distributions:

h(x,θ) =
1√

2πσ2
exp

{
− 1

2σ2 (x− θ)2
}
× 1√

2πτ2
exp

{
− 1

2τ2 (θ− µ)2
}

.

�
The exponent in the joint distribution h(x,θ) is

− 1
2σ2 (x− θ)2 − 1

2τ2 (θ − µ)2,

which, after applying the identity in (8.2), can be expressed as

−σ2 + τ2

2σ2τ2

(
θ −

(
τ2

σ2 + τ2 x +
σ2

σ2 + τ2 µ

))2

− 1
2(σ2 + τ2)

(x− µ)2. (8.3)

Note that the exponent in (8.3) splits into two parts, one containing θ
and the other θ-free. Accordingly the joint distribution h(x,θ) splits into
the product of two densities. Since h(x,θ) can be represented in two ways,
as f (x|θ)π(θ) and as π(θ|x)m(x), and since we started with f (x|θ)π(θ),
the exponent in (8.3) corresponds to π(θ|x)m(x). Thus, the marginal distri-
bution simply resolves to X ∼ N (µ,σ2 + τ2) and the posterior distribution
of θ comes out to be
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θ|X ∼N
(

τ2

σ2 + τ2 X +
σ2

σ2 + τ2 µ,
σ2τ2

σ2 + τ2

)
.

�

Below is a specific example of our first Bayesian inference.

Example 8.2. Jeremy’s IQ. Jeremy, an enthusiastic bioengineering student,
posed a statistical model for his scores on a standard IQ test. He thinks
that, in general, his scores are normally distributed with unknown mean θ
(true IQ) and a variance of σ2 = 80. Prior (and expert) opinion is that the
IQ of bioengineering students in Jeremy’s school, θ, is a normal random
variable, with mean µ = 110 and variance τ2 = 120. Jeremy took the test
and scored X = 98. The traditional estimator of θ would be θ̂ = X = 98. The
posterior is normal with a mean of 120

80+120 × 98+ 80
80+120 × 110 = 102.8 and

a variance of 80×120
80+120 = 48. We will see later that the mean of the posterior is

Bayes’ estimator of θ, and a Bayesian would estimate Jeremy’s IQ as 102.8.
�

If n normal variates, X1, X2, . . . , Xn, are observed instead of a single ob-
servation X, then the sample is summarized as X and the Bayesian model
for θ is essentially the same as that for a single X, but with σ2/n in place
of σ2. In this case, the likelihood and the prior are

X|θ ∼ N
(

θ,
σ2

n

)
and θ ∼N (µ,τ2),

producing

θ|X ∼ N
(

τ2

σ2

n + τ2
X +

σ2

n
σ2

n + τ2
µ,

σ2

n τ2

σ2

n + τ2

)
.

Notice that the posterior mean

τ2

σ2

n + τ2
X +

σ2

n
σ2

n + τ2
µ

is a weighted average of the MLE X and the prior mean µ with weights
w = nτ2/(σ2 + nτ2) and 1− w = σ2/(σ2 + nτ2). When the sample size n
increases, the contribution of the prior mean to the estimator diminishes as
w→ 1. In contrast, when n is small and our prior opinion about µ is strong
(i.e., τ2 is small), the posterior mean remains close to the prior mean µ.
Later, we will explore several more cases in which the posterior mean has
a form of a weighted average of the MLE for the parameter and the prior
mean.
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Example 8.3. Likelihood, Prior, and Posterior. Suppose that n = 10 obser-
vations are coming from N (θ,102). Assume that the prior on θ is N (20,20).
For the observations
{2.944,−13.361,7.143,16.235,−6.917,8.580,12.540,−15.937,−14.409,5.711}
the posterior is N (6.835,6.667). The three densities: likelihood, prior, and
posterior, are shown in Figure 8.1.
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Fig. 8.1 The likelihood centered at MLE X = 0.2529, N (0.2529,102/10) (blue), N (20,20)
prior (red), and posterior for data {2.9441,−13.3618, . . . , 5.7115} (green).

�

8.3 Conjugate Priors

A major technical difficulty in Bayesian analysis is finding an explicit pos-
terior distribution, given the likelihood and prior. The posterior is propor-
tional to the product of the likelihood and prior, but the normalizing con-
stant, marginal m(x), is often difficult to find since it involves integration.

In Examples 8.1 and 8.3, where the prior is normal, the posterior dis-
tribution remains normal. In such cases, the effect of likelihood is only to
“update” the prior parameters and not to change the prior’s functional
form. We say that such priors are conjugate with the likelihood. Conjugacy
is popular because of its mathematical convenience; once the conjugate like-
lihood/prior pair is identified, the posterior is found without integration.
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The normalizing marginal m(x) is selected such that f (x|θ)π(θ) is a den-
sity from the same class to which the prior belongs. Operationally, one
multiplies “kernels” of likelihood and priors, ignoring all multiplicative
terms that do not involve the parameter. For example, a kernel of gamma
Ga(r,λ) density f (θ|r,λ) = λrθr−1

Γ(r)
e−λθ would be θr−1e−λθ . We would write:

f (θ|r,λ) ∝ θr−1e−λθ, where the symbol ∝ stands for “proportional to.” Sev-
eral examples in this chapter involve conjugate pairs (Examples 8.4 and 8.6).

In the pre-Markov chain Monte Carlo era, conjugate priors were exten-
sively used (and overused and misused) precisely because of this compu-
tational convenience. Today, the general agreement is that simple conjugate
analysis is of limited practical value since, given the likelihood, the conju-
gate prior has limited modeling capability.

There are quite a few instances of conjugacy. Table 8.1 gives several im-
portant cases. As a practice, you may want to derive the posteriors listed in
the third column of the table. It is recommended that you consult Chapter 5
on functional forms of densities involved in the Bayesian model.

Table 8.1 Some conjugate pairs. Here X stands for a sample of size n, X1, . . . , Xn. For
functional expressions of the densities and their moments refer to Chapter 5

Likelihood Prior Posterior

Xi|θ ∼ N (θ, σ2) θ ∼ N (µ, τ2) θ|X∼N
(

τ2

τ2+σ2/n
X + σ2/n

τ2+σ2/n
µ, τ2σ2/n

τ2+σ2/n

)

Xi|θ ∼ Bin(m, θ) θ ∼ Be(α, β) θ|X∼ Be(α + ∑
n
i=1 Xi, β + mn−∑

n
i=1 Xi)

Xi|θ ∼ Poi(θ) θ ∼ Ga(α, β) θ|X∼ Ga(α + ∑
n
i=1 Xi, β + n)

Xi|θ ∼ NB(m, θ) θ ∼ Be(α, β) θ|X∼ Be(α + mn, β + ∑
n
i=1 Xi)

Xi|θ ∼ Ga(1/2,1/(2θ)) θ ∼ IG(α, β) θ|X∼ IG(α + n/2, β + 1
2 ∑

n
i=1 Xi)

Xi|θ ∼ U (0, θ) θ ∼ Pa(θ0, α) θ|X∼ Pa(max{θ0, X1, . . . , Xn}, α + n)

Xi|θ ∼ N (µ, θ) θ ∼ IG(α, β) θ|X∼ IG(α + n/2, β + 1
2 ∑

n
i=1(Xi − µ)2)

Xi|θ ∼ Ga(ν, θ) θ ∼ Ga(α, β) θ|X∼ Ga(α + nν, β + ∑
n
i=1 Xi)

Xi|θ ∼ Pa(c, θ) θ ∼ Ga(α, β) θ|X∼ Ga(α + n, β + ∑
n
i=1 log(Xi/c))

Example 8.4. Binomial Likelihood with Beta Prior. An easy, yet important,
example of a conjugate structure is the binomial likelihood and beta prior.
Suppose that we observed X = x from a binomial Bin(n, p) distribution,
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f (x|θ) =
(

n

x

)
px(1− p)n−x,

and that the population proportion p is the parameter of interest. If the
prior on p is beta Be(α, β) with hyperparameters α and β and density

π(p) =
1

B(α, β)
pα−1(1− p)β−1,

the posterior is proportional to the product of the likelihood and the prior

π(p|x) = C · px(1− p)n−x · pα−1(1− p)β−1 = C · px+α−1(1− p)n−x+β−1

for some constant C. The normalizing constant C is free of p and is equal

to (n
x)

m(x)B(α,β), where m(x) is the marginal distribution.

By inspecting the expression px+α−1(1− p)n−x+β−1, it can be seen that
the posterior density remains beta; it is Be(x + α,n− x + β), and that the
normalizing constant resolves to C = 1/B(x + α,n− x + β). From the equal-
ity of constants, it follows that

(n
x)

m(x)B(α, β)
=

1
B(x + α,n− x + β)

,

and one can express the marginal density as

m(x) =
(n

x)B(x + α,n− x + β)

B(α, β)
,

which is known as a beta-binomial distribution.
�

8.4 Point Estimation

The posterior is the ultimate experimental summary for a Bayesian. The
posterior location measures, especially the mean, are of great importance.
The posterior mean is the most frequently used Bayes’ estimator for a pa-
rameter. The posterior mode and median are alternative Bayes’ estimators.

The posterior mode maximizes the posterior density in the same way
that the MLE maximizes the likelihood. When the posterior mode is used
as an estimator, it is called the maximum posterior (MAP) estimator. The
MAP estimator is popular in some Bayesian analyses in part because it is
computationally less demanding than the posterior mean or median. The
reason for this is simple: to find a MAP, the posterior does not need to
be fully specified because argmaxθπ(θ|x) = argmaxθ f (x|θ)π(θ), that is, the
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product of the likelihood and the prior as well as the posterior are maxi-
mized at the same point.

Example 8.5. Binomial-Beta Conjugate Pair. In Example 8.4 we argued that
for the likelihood X|θ ∼ Bin(n,θ) and the prior θ ∼ Be(α, β), the posterior
distribution is Be(x + α,n− x + β). The Bayes estimator of θ is the expected
value of the posterior

θ̂B =
α + x

(α + x) + (β + n− x)
=

α + x

α + β + n
.

This is actually a weighted average of the MLE, X/n, and the prior mean
α/(α + β),

θ̂B =
n

α + β + n
· X

n
+

α + β

α + β + n
· α

α + β
.

Notice that, as n becomes large, the posterior mean approaches the MLE
because the weight n

n+α+β tends to 1. In contrast, when α or β or both are
large compared to n, the posterior mean is close to the prior mean. Due to
this interplay between n and prior parameters, the sum α + β is called the
prior sample size, and it measures the influence of the prior as if additional
experimentation was performed and α + β trials have been added. This is
in the spirit of Wilson’s proposal to “add two failures and two successes”
to an estimator of proportion (page 305). Wilson’s estimator can be seen as
a Bayes estimator with a beta Be(2,2) prior.

Large α indicates a small prior variance, since for fixed β, the variance
of Be(α, β) is proportional to 1/α2, and the prior is concentrated about its
mean.
�

In general, the posterior mean will fall between the MLE and the prior
mean. This was demonstrated in Example 8.1. As another example, suppose
we flipped a coin four times and tails showed up on all four occasions.
We are interested in estimating the probability of showing heads, θ, in a
Bayesian fashion. If the prior is U (0,1), the posterior is proportional to
θ0(1− θ)4, which is a beta Be(1,5). The posterior mean shifts the MLE (0)
toward the expected value of the prior (1/2) to get θ̂B = 1/(1 + 5) = 1/6,
which is a more reasonable estimator of θ than the MLE. Note that the 3/n
rule produces a confidence interval for p of [0,3/4], which is too wide to
be useful (Section 7.5.4).

Example 8.6. Uniform/Pareto Model. In Example 7.5 we had the observa-
tions X1 = 2, X2 = 5, X3 = 0.5, and X4 = 3 from a uniform U (0,θ) dis-
tribution. We are interested in estimating θ in Bayesian fashion. Let the
prior on θ be Pareto Pa(θ0,α) for θ0 = 6 and α = 2. Then the posterior
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is also Pareto Pa(θ∗,α∗) with θ∗ = max{θ0, X(n)} = max{6,5} = 6, and

α∗ = α + n = 2 + 4 = 6. The posterior mean is α∗θ∗
α∗−1 = 36/5 = 7.2, and the

median is θ∗ · 21/α∗ = 6 · 21/6 = 6.7348.
Figure 8.2 shows the prior (dashed red line) with the prior mean as a

red dot. After observing X1, . . . , X4, the posterior mode did not change since
the elicited θ0 = 6 was larger than max Xi = 5. However, the posterior has
a smaller variance than the prior. The posterior mean is shown as a green
dot, the posterior median as a black dot, and the posterior (and prior) mode
as a blue dot.
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Fig. 8.2 Pareto Pa(6,2) prior (dashed red line) and Pa(6,6) posterior (solid blue line). The
red dot is the prior mean, the green dot is the posterior mean, the black dot is the posterior
median, and the blue dot is the posterior (and prior) mode.

�

Another widely used conjugate pair is Poisson–gamma pair.

Example 8.7. Poisson–Gamma Conjugate Pair. Let X1, . . . , Xn, given θ are
Poisson Poi(θ) with probability mass function

f (xi|θ) =
θxi

xi!
e−θ ,

and θ ∼ Ga(α, β) is given by π(θ) ∝ θα−1e−βθ. Then

π(θ|X1, . . . , Xn) = π(θ|∑ Xi) ∝ θ∑ Xi+α−1e−(n+β)θ,

which is Ga(∑i Xi + α,n + β). The mean is E(θ|X) = (∑ Xi + α)/(n + β),
and it can be represented as a weighted average of the MLE and the prior
mean:
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Eθ|X =
n

n + β

∑ Xi

n
+

β

n + β

α

β
.

Let us apply the this equation in a specific example. Let a rare dis-
ease have an incidence of X cases per 100,000 people, where X is mod-
eled as Poisson, X|λ ∼ Poi(λ), where λ is the rate parameter. Assume that
for different cohorts of 100,000 subjects, the following incidences are ob-
served: X1 = 2, X2 = 0, X3 = 0, X4 = 4, X5 = 0, X6 = 1, X7 = 3, and
X8 = 2. The experts indicate that λ should be close to 2 and our prior is
λ ∼ Ga(0.2,0.1). We matched the mean, since for a gamma distribution the
mean is 0.2/0.1= 2 but the variance 0.2/0.12 = 20 is quite large, thereby ex-
pressing our uncertainty. By setting the hyperparameters to 0.02 and 0.01,
for example, we would have variance of the gamma prior that is even larger.
The MLE of λ is λ̂mle = X = 3/2. The Bayes estimator is

λ̂B =
8

8 + 0.1
3/2 +

0.1
8 + 0.1

2 = 1.5062.

Note that since the prior was not informative, the Bayes estimator is quite
close to the MLE.
�

Normal-Inverse Gamma Conjugate Analysis. Let y1,y2, . . . ,yn be the ob-
servations from normal N (µ,σ2) distribution where both µ and σ2 are of
interest. For this problem there is a conjugate joint prior for (µ,σ2), normal-
inverse gamma NIG(µ0, c, a,b),

π(µ,σ2) = π(µ|σ2)π(σ2) =N (µ0,σ2/c)× IG(a,b).

Note that apriori µ and σ2 are not independent, their joint prior is not a
product of densities that fully separates the variables.

Instead of variance σ2, often the precision parameter τ = 1/σ2 is mod-
eled and estimated. In many cases the estimation of τ is more stable
than that of σ2. From the definition of inverse-gamma it follows that if
σ2 ∼ IG(a,b) then τ ∼ Ga(a,b). Thus,

π(µ,τ) = N
(

µ0,
1
cτ

)
×Ga(a,b)

=

√
cτ

2π
exp

{ cτ

2
(µ− µ0)

2
}
× baτa−1

Γ(a)
exp{−bτ}.

After observing y= (y1, . . . ,yn), all inference depends on y = 1/n ∑
n
i=1 yi

and s2 = ∑
n
i=1(yi − y)2/(n− 1). Denote

SS =
n

∑
i=1

(yi − y)2 +
nc

n + c
(y− µ0)

2 = (n− 1)s2 +
nc

n + c
(y− µ0)

2
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When the likelihood is normal, the problem is conjugate and the poste-
rior for (µ,σ2) is NIG(µ∗0 , c∗, a∗,b∗), or equivalently, NG(µ∗0 , c∗, a∗,b∗) for
(µ,τ).

The updated parameters (from prior to the posterior) are shown in the
following table:

Prior Posterior
µ0 µ∗0 = c

n+c µ0 +
n

n+c y
c c∗ = c + n
a a∗ = a + n/2
b b∗ = b + SS/2

Posterior expectations (Bayes’ estimators) and variances for µ,τ, and σ2

are:

E(µ|y) = µ∗0 =
c

n + c
µ0 +

n

n + c
y,

Var (µ|y) = 1
n + c

× SS + 2b

n + 2a− 2
, n > 2− 2a,

E(τ|y) = n + 2a

SS + 2b
,

Var (τ|y) = 2n + 4a

(SS + 2b)2 ,

E(σ2|y) = SS + 2b

n + 2a− 2
, n > 2− 2a, and

Var (σ2|y) = 2(SS + 2b)2

(n + 2a− 2)2(n + 2a− 4)
, n > 4− 2a.

Example 8.8. Jeremy and NIG Prior. Suppose that Jeremy took the IQ test
6 times. His scores (101,98,114,105,108,111) are assumed to be a sample
from a normal distribution with unknown mean µ and variance σ2.

The prior on (µ,σ2) is normal-inverse gamma with parameters µ0 = 110,
c = 1.5, a = 0.1 and b = 10.

Using exact conjugate calculations, we find Bayes’ estimators for µ and
σ2.

y = [ 101 98 114 105 108 111 ];

mu0 = 110; n=6; c=1.5; a=0.1; b=10;

ybar = mean(y);

ss = (n-1) * var(y) + n*c/(n+c) * (ybar - mu0)^2;

%

muhat= c/(n+c) * mu0 + n/(n+c) * ybar %106.9333

varmuhat = 1/(n+c) * (ss + 2*b)/(n + 2*a -2) %6.9989

stdmuhat = sqrt(varmuhat) %2.6456

tauhat = (n + 2 * a)/(ss + 2 * b) %0.0281

vartauhat = 2 * (n + 2 * a)/(ss + 2 * b)^2 %2.5511e-04
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stdtauhat = sqrt(vartauhat) %0.016

sigma2hat = (ss + 2 * b)/(n + 2*a - 2) %52.4921

varsigma2hat = 2 * (ss + 2 * b)^2 /...

((n + 2*a - 2)^2 * (n + 2* a - 4)) %2.5049e+03

stdsigma2hat = sqrt(varsigma2hat) %50.0492

Note that Bayes’ estimator of µ is µ̂B = 106.9333. The estimators of vari-
ance and precision are σ̂2

B = 52.4921 and τ̂B = 0.0281. In addition to estima-
tors of these parameters, Bayesian model gives us the estimators of their
variances varmuhat, varsigma2hat, and vartauhat and their standard deviations
stdmuhat, stdsigma2hat, and stdtauhat.
�

8.5 Prior Elicitation

Prior distributions are carriers of prior information that is coherently incor-
porated via Bayes’ theorem into an inference. At the same time, parameters
are unobservable, and prior specification is subjective in nature. The sub-
jectivity of specifying the prior is a fundamental criticism of the Bayesian
approach. Being subjective does not mean that the approach is nonscien-
tific, as critics of Bayesian statistics often insinuate. On the contrary, vast
amounts of scientific information coming from theoretical and physical
models, previous experiments, and expert reports guides the specification
of priors and merges such information with the data for better inference.

In arguing about the importance of priors in Bayesian inference, Garth-
white and Dickey (1991) state that “expert personal opinion is of great po-
tential value and can be used more efficiently, communicated more accu-
rately, and judged more critically if it is expressed as a probability distribu-
tion.”

In the last several decades Bayesian research has also focused on priors
that were noninformative and robust; this was in response to criticism that
results of Bayesian inference could be sensitive to the choice of a prior.

For instance, in Examples 8.4 and 8.5 we saw that beta distributions are
an appropriate family of priors for parameters supported in the interval
[0,1], such as a population proportion. It turns out that the beta family can
express a wide range of prior information. For example, if the mean µ and
variance σ2 for a beta prior are elicited by an expert, then the parameters
(a,b) can be determined by solving µ = a/(a+ b) and σ2 = ab/[(a+ b)2(a+
b + 1)] with respect to a and b:

a = µ

(
µ(1− µ)

σ2 − 1
)

, and b = (1− µ)

(
µ(1− µ)

σ2 − 1
)

. (8.4)

If a and b are not too small, the shape of a beta prior resembles a normal
distribution and the bounds [µ − 2σ,µ + 2σ] can be used to describe the
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range of likely parameters. For example, an expert’s claim that a proportion
is unlikely to be higher than 90% can be expressed as µ + 2σ = 0.9.

In the same context of estimating the proportion, Berry and Stangl (1996)
suggest a somewhat different procedure:

(i) Elicit the probability of success in the first trial, p1, and match it to
the prior mean α/(α + β).

(ii) Given that the first trial results in success, the posterior mean is
α+1

α+β+1 . Match this ratio with the elicited probability of success in a sec-
ond trial, p2, conditional upon the first trial’s resulting in success. Thus, a
system

p1 =
α

α + β
and p2 =

α + 1
α + β + 1

is obtained that solves to

α =
p1(1− p2)

p2 − p1
and β =

(1− p1)(1− p2)

p2 − p1
. (8.5)

See Exercise 8.15 for an application.
If one has no prior information, many noninformative choices are possi-

ble, such as invariant priors, Jeffreys’ priors, default priors, reference priors,
and intrinsic priors, among others. Informally speaking, a noninformative
prior is one which is dominated by the likelihood, or that is “flat” relative
to the likelihood.

Popular noninformative choices are the flat prior π(θ) = C for the lo-
cation parameter (mean) and π(θ) = 1/θ for the scale/rate parameter.
A vague prior for the population proportion is proportional to p−1(1 −
p)−1, 0 < p < 1. This prior is sometimes called Zellner’s prior and is equiv-
alent of setting a flat prior on the logit(p) = log p

1−p . The listed priors are
not proper probability distributions, that is, they are not bonafide densities
because their integrals are not finite. However, Bayes’ theorem usually leads
to posterior distributions that are proper densities and on which Bayesian
analysis can be carried out.

Jeffreys’ priors (named after Sir Harold Jeffreys, English statistician, geo-
physicist, and astronomer) are obtained from a particular functional of a
density (Fisher information), and they are also examples of vague and non-
informative priors. For a binomial proportion, Jeffreys’ prior is proportional
to p−1/2(1− p)−1/2, while for the rate of exponential distribution λ, Jef-
freys’ prior is proportional to 1/λ. For a normal distribution, Jeffreys’ prior
on the mean is flat, while for the variance σ2, it is proportional to 1

σ2 .

Example 8.9. Jeffreys’ Prior on Exponential Rate Parameter. If X1 = 1.7,
X2 = 0.6, and X3 = 5.2 come from an exponential distribution with a rate
parameter λ, find the Bayes estimator if the prior on λ is 1

λ .

The likelihood is λ3e−λ ∑
3
i=1 Xi and the posterior is proportional to
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1
λ
× λ3e−λ ∑

3
i=1 Xi = λ3−1e−λ ∑ Xi ,

which is recognized as gamma Ga
(

3,∑3
i=1 Xi

)
. The Bayes estimator, as a

mean of this posterior, coincides with the MLE, λ̂ = 3
∑

3
i=1 Xi

= 1
X
= 1/2.5 =

0.4.
�

Effective Sample Size in Prior Elicitation. In the previous discussion we
used the notion noninformative, as a prior attribute in quite informal man-
ner. For example, uniform, Jeffreys, and Zellner priors on binomial propor-
tions have all been called noninformative.

It is possible to calibrate the amount of information a prior is carrying
by assigning a sample size value to it. Informally, the information in a prior
is “worth” the information contained in a sample of size m. We will call m
the effective sample size (ESS).

The ESS is inferred mainly on conjugate pairs of distributions by com-
paring hyperparameters of the prior and posterior, or prior and posterior
means.

(i) When the model is binomial, and the prior is beta Be(a,b), the prior
mean is a/(a + b) and the posterior mean is (a + X)/(a + b + n), so ESS =
a + b is adopted.

(ii) Gamma Ga(a,b) prior on Poisson rate λ is conjugate and the Bayes
rule a/b without data goes to (∑i Xi + a)/(b + n) with the data, so ESS = b.

(iii) In gamma Ga(a,b) prior on normal precision τ = 1/σ2, the Bayes
rules are a/b and (a + n/2)/(b + 1/2 ∑i(Xi − µ)2), so ESS = 2a.

(iv) For the normal mean with normal prior, ESS is σ2/ξ2, where σ2 is
variance of the likelihood, and ξ2 is the variance of the prior.

Sometimes the historic data used to elicit priors and determine ESS are
not of the same quality, rigor, or importance as the data in the experiment
that is under analysis, and we may want to discount the ESS by a fac-
tor between 0 and 1, say k. That leads to replacing the priors above with
Be(ka,kb), Ga(ka,kb), or in the normal case, replacing ξ2 by kξ2.

For an example of use of ESS in prior elicitation, see Example 10.3.

An applied approach to prior selection was taken by Spiegelhalter et
al. (1994) in the context of clinical trials. They recommended a community
of priors elicited from a large group of experts. A crude classification of
community priors is as follows:

(i) Vague priors – noninformative priors, in many cases leading to pos-
terior distributions proportional to the likelihood.

(ii) Skeptical priors – reflecting the opinion of a clinician unenthusiastic
about the new therapy, drug, device, or procedure. This may be a prior of
a regulatory agency.



350 8 Bayesian Approach to Inference

(iii) Enthusiastic or clinical priors – reflecting the opinion of the propo-
nents of the clinical trial, centered around the notion that a new therapy,
drug, device, or procedure is superior. This may be the prior of the industry
involved or of clinicians running the trial.

For example, the use of a skeptical prior when testing for the superiority
of a new treatment would be a conservative approach. In equivalence tests,
both skeptical and enthusiastic priors may be used. The superiority of a
new treatment should be judged by a skeptical prior, while the superiority
of the old treatment should be judged by an enthusiastic prior.

8.6 Bayesian Computation and Use of WinBUGS

If the selection of an adequate prior is the major conceptual and model-
ing challenge of Bayesian analysis, the major implementational challenge is
computation. When the model deviates from the conjugate structure, find-
ing the posterior distribution and the Bayes rule is all but simple. A closed-
form solution is more the exception than the rule, and even for such ex-
ceptions, lucky mathematical coincidences, convenient mixtures, and other
tricks are needed to uncover the explicit expression.

If classical statistics relies on optimization, Bayesian statistics relies on
integration. The marginal needed to normalize the product f (x|θ)π(θ) is
an integral

m(x) =
∫

Θ
f (x|θ)π(θ)dθ,

while the Bayes estimator of h(θ) is a ratio of integrals,

δπ(x) =
∫

Θ
h(θ)π(θ|x)dθ =

∫
Θ

h(θ) f (x|θ)π(θ)dθ∫
Θ

f (x|θ)π(θ)dθ
.

The difficulties in calculating the above Bayes rule derive from the facts
that (i) the posterior may not be representable in a finite form and (ii) the
integral of h(θ) does not have a closed form even when the posterior distri-
bution is explicit.

The last two decades of research in Bayesian statistics has contributed
to broadening the scope of Bayesian models. Models that could not be han-
dled before by a computer are now routinely solved. This is done by Markov
chain Monte Carlo (MCMC) methods, and their introduction to the field of
statistics revolutionized Bayesian statistics.

The MCMC methodology was first applied in statistical physics (Metropo-
lis et al., 1953). Work by Gelfand and Smith (1990) focused on applications
of MCMC to Bayesian models. The principle of MCMC is simple: one de-
signs a Markov chain that samples from the target distribution. By simulat-
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ing long runs of such a Markov chain, the target distribution can be well ap-
proximated. Various strategies for constructing appropriate Markov chains
that simulate the desired distribution are possible: Metropolis–Hastings,
Gibbs sampler, slice sampling, perfect sampling, and many specialized
techniques. These are beyond the scope of this text, and the interested
reader is directed to Robert (2001), Robert and Casella (2004), and Chen
et al. (2000) for an overview and a comprehensive treatment.

In the examples that follow we will use WinBUGS for doing Bayesian
inference when the models are not conjugate. Chapter 19 gives a brief in-
troduction to the front end of WinBUGS. Three volumes of examples are
a standard addition to the software; in the Examples menu of WinBUGS,
see Spiegelhalter et al. (1996). It is recommended that you go over some
of those examples in detail because they illustrate the functionality and
modeling power of WinBUGS. A wealth of examples on Bayesian modeling
strategies using WinBUGS can be found in the monographs of Congdon
(2005, 2006, 2010, 2014), Lunn et al. (2013), and Ntzoufras (2009).

The following example is a WinBUGS solution of Example 8.2.

Example 8.10. Jeremy’s IQ in WinBUGS. We will calculate a Bayes esti-
mator for Jeremy’s true IQ, θ, using simulations in WinBUGS. Recall that
the model was X ∼N (θ,80) and θ ∼N (100,120). WinBUGS uses precision
instead of variance to parameterize the normal distribution. Precision is
simply the reciprocal of the variance, and in this example, the precisions
are 1/120 = 0.00833 for the prior and 1/80 = 0.0125 for the likelihood. The
WinBUGS code is as follows:

Jeremy in WinBUGS

model{

x ~ dnorm( theta, 0.0125)

theta ~ dnorm( 110, 0.008333333)

}

DATA

list(x=98)

INITS

list(theta=100)

Here is the summary of the MCMC output. The Bayes estimator for θ
is rounded to 102.8. It is obtained as a mean of the simulated sample from
the posterior.

mean sd MC error val2.5pc median val97.5pc start sample

theta 102.8 6.943 0.01991 89.18 102.8 116.4 1001 100000

Since this is a conjugate normal/normal model, the exact posterior dis-
tribution, N (102.8,48), was easy to find, (Example 8.2). Note that in these
simulations, the MCMC approximation, when rounded, coincides with the
exact posterior mean. The MCMC variance of θ is 6.9432 ≈ 48.2, which is
close to the exact posterior variance of 48.
�
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Example 8.11. Uniform/Pareto Model in WinBUGS. In Example 8.6, we
found that a posterior distribution of θ, in a uniform U (0,θ) model with a
Pareto Pa(6,2) prior, was Pareto Pa(6,6). From the posterior, we found the
mean, median, and mode to be 7.2, 6.7348, and 6, respectively. These are
reasonable estimators of θ as location measures of the posterior.

Uniform with Pareto in WinBUGS

model{

for (i in 1:n){

x[i] ~ dunif(0, theta);

}

theta ~ dpar(2,6)

}

DATA

list(n=4, x = c(2, 5, 0.5, 3) )

INITS

list(theta= 7)

Here is the summary of the WinBUGS output. The posterior mean was
found to be 7.196 and the median 6.736. Apparently, the mode of the pos-
terior was 6, as is evident from Figure 8.3. These approximations are close
to the exact values found in Example 8.6.

Fig. 8.3 Output from Inference>Samples>density shows MCMC approximation to the
posterior distribution.

mean sd MC error val2.5pc median val97.5pc start sample

theta 7.196 1.454 0.004906 6.025 6.736 11.03 1001 100000

�

Example 8.12. Jeremy, NIG Prior, and BUGS. Using conjugate structure
of the model in Example 8.8, we found the exact Bayes’ estimator of µ as
µ̂B = 106.9333, and the estimators of variance and precision as σ̂2

B = 52.4921
and τ̂B = 0.0281. In addition to estimators of these parameters, Bayesian
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model produced the estimators of their standard deviations: stdmuhat=2.6456,
stdsigma2hat=50.0492, and stdtauhat=0.016. The following WinBUGS script cal-
culates these estimators by MCMC simulation:

model{

for (i in 1:n){

y[i] ~ dnorm(mu, tau)}

tauc <- c*tau

mu ~ dnorm(mu0, tauc)

tau ~ dgamma(a, b)

sigma2 <- 1/tau

}

DATA

list( n=6, c=1.5, mu0=110, a=0.1, b=10,

y=c(101, 98, 114, 105, 108, 111))

INITS

list( tau=0.01, mu=100)

mean sd MC error val2.5pc median val97.5pc start sample

mu 106.9 2.646 0.002655 101.6 106.9 112.2 1001 1000000
sigma2 52.48 49.61 0.06046 14.92 39.75 166.2 1001 1000000
tau 0.02813 0.01599 1.764E-5 0.00601 0.02516 0.06701 1001 1000000

�

Zero-Tricks in WinBUGS. Although the list of built-in distributions for
specifying the likelihood or the prior in WinBUGS is rich (page 952), some-
times we encounter densities that are not on the list. How do we set the
likelihood for a density that is not built into WinBUGS?

There are several ways, the most popular of which is the so-called zero-
trick. Let f be an arbitrary model and ℓi = log f (xi|θ) the log-likelihood for
the ith observation. Then

n

∏
i=1

f (xi|θ) =
n

∏
i=1

eℓi =
n

∏
i=1

(−ℓi)
0e−(−ℓi)

0!
=

n

∏
i=1

P(Yi = 0),

where Yi are Poisson Poi(−ℓi) random variables.
The WinBUGS code for a zero-trick can be written as follows:

for (i in 1:n){

zeros[i] <- 0

lambda[i] <- -llik[i] + 10000

# Since lambda[i] needs to be positive as

# a Poisson rate, to ensure positivity

# an arbitrary constant C can be added.

# Here we added C = 10000.

zeros[i] ~ dpois(lambda[i])
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llik[i] <- ... write the log-likelihood function here

}

Example 8.13. A Zero-Trick for Maxwell. This example finds the Bayes
estimator of parameter θ in a Maxwell distribution with a density of

f (x|θ) =
√

2
π θ3/2 x2 e−θx2/2, x ≥ 0, θ > 0. The moment-matching estimator

and the MLE were discussed in Example 7.4. For a sample of size n = 3,
X1 = 1.4, X2 = 3.1, and X3 = 2.5 the MLE of θ was θ̂MLE = 0.5051. The same
estimator was found by moment-matching when the second moment was
matched. The Maxwell density is not implemented in WinBUGS and we
will use a zero-trick instead.

#Estimation of Maxwell’s theta

#Using a zero-trick

model{

for (i in 1:n){

zeros[i] <- 0

lambda[i] <- -llik[i] + 10000

zeros[i] ~ dpois(lambda[i])

llik[i] <- 1.5 * log(theta)-0.5 * theta * pow(x[i],2)

}

theta ~ dgamma(0.1, 0.1) #non-informative choice

}

DATA

list(n=3, x=c(1.4, 3.1, 2.5))

INITS

list(theta=1)

mean sd MC error val2.5pc median val97.5pc start sample

theta 0.5115 0.2392 8.645E-4 0.1559 0.4748 1.079 1001 100000

Note that the Bayes estimator with respect to a vague prior dgamma(0.1,

0.1) is 0.5115.
�

Example 8.14. Zero-Tricks for Priors. The preceeding examples showed
how to set a likelihood that is not supported in WinBUGS. Setting unsup-
ported priors via a zero-trick is similar to setting likelihoods. Since there are
no observations when setting the prior for parameter θ, we start with theta

˜ dflat(). The rest is analogous to zero-trick construction for the likelihood.
We illustrate setting of the normal likelihood and normal prior using

zero-tricks in Jeremy’s IQ from Example 8.2.
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#Jeremy with Zero-Tricks

model{

#normal likelihood

z1 <- 0

z1 ~ dpois(lambda1)

#lambda1: -log(likelihood) + constant

lambda1 <- log(sigma) + 0.5*pow((y - theta)/sigma, 2) + 1000

#setting normal prior

theta ~ dflat()

z2 <- 0

z2 ~ dpois(lambda2)

#lambda2: -log(prior) + constant

lambda2 <- log(tau) + 0.5*pow((theta-mu)/tau, 2) + 1000

}

DATA

list(y = 98, mu = 110, sigma = 8.944272, tau=10.954451)

INITS

list(theta=100)

mean sd MC error val2.5pc median val97.5pc start sample

theta 102.8 6.966 0.0436 89.19 102.7 116.5 1001 100000

Note that we added constant 1000 to both− log(likelihood) and− log(prior)
to ensure that lambda1 and lambda2 are nonnegative as rates in zero-trick Pois-
son distributions. In this case it was not necessary to add any constants
since log(sigma) and log(tau) were both positive, but care is needed if either
tau or sigma is small.
�

8.7 Bayesian Interval Estimation: Credible Sets

The Bayesian term for an interval estimator of a parameter is credible set.
Naturally, the measure used to assess the credibility of an interval esti-
mator is the posterior distribution. Students learning concepts of classical
confidence intervals often err by stating that “the probability that a partic-
ular confidence interval [L,U] contains parameter θ is 1− α.” The correct
statement seems more convoluted; one generates data from the underlying
model many times and, for each generated data set, calculates the con-
fidence interval. The proportion of confidence intervals covering the un-
known parameter “tends to” 1− α. The Bayesian interpretation of a credi-
ble set C is arguably more natural: the probability of a parameter belonging
to set C is 1− α. A formal definition follows.

Assume that set C is a subset of parameter space Θ. Then C is a credible
set with credibility (1− α)100% if

P(θ ∈ C|X) = E(I(θ ∈ C)|X) =
∫

C
π(θ|x)dθ ≥ 1− α.
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If the posterior is discrete, then the integral is a sum, and

P(θ ∈ C|X) = ∑
θi∈C

π(θi|x) ≥ 1− α.

This is the definition of a (1 − α)100% credible set. For a fixed posterior
distribution and a (1− α)100% credibility, a credible set is not unique. We
will consider two versions of credible sets: highest posterior density (HPD)
and equal-tail credible sets.

HPD Credible Sets. For a given credibility level (1− α)100%, the shortest
credible set has obvious appeal. To minimize size, the sets should corre-
spond to the highest posterior probability density areas.

Definition 8.1. The (1− α)100% HPD credible set for parameter θ is a set C,
a subset of parameter space Θ of the form

C = {θ ∈ Θ|π(θ|x) ≥ k(α)},

where k(α) is the largest constant for which

P(θ ∈ C|X) ≥ 1− α.

Geometrically, if the posterior density is cut by a horizontal line at the
height k(α), the credible set C is the projection on the θ-axis of the part of
the line that lies below the density (Fig. 8.4).
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Fig. 8.4 Highest posterior density (HPD) (1 − α)100% credible set (blue). The area in
yellow is 1− α.
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Example 8.15. Jeremy’s IQ, Continued. We are again back to Jeremy, the
enthusiastic bioengineering student from Example 8.2 who used Bayesian
inference in modeling his IQ test scores. For a score of X he was using a
N (θ,80) likelihood, while the prior on θ was N (110,120). After the score
of X = 98 was recorded, the resulting posterior was normal N (102.8,48).

Here, the MLE is θ̂ = 98, and a 95% confidence interval is [98 −
1.96
√

80, 98 + 1.96
√

80] = [80.4692,115.5308]. The length of this interval is
approximately 35. The Bayesian counterparts are θ̂ = 102.8, and [102.8−
1.96
√

48, 102.8 + 1.96
√

48] = [89.2207,116.3793]. The length of the 95%
credible set is approx. 27. The Bayesian interval is shorter because the pos-
terior variance is smaller than the likelihood variance; this is a consequence
of the presence of prior information. Figure 8.5 shows the credible set (in
blue) and the confidence interval (in red).
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Fig. 8.5 HPD 95% credible set based on a density of N (102.8,48) (blue). The interval in
red is a 95% confidence interval based on the observation X = 98 and likelihood variance
σ2 = 80.

�

From the WinBUGS output table in Jeremy’s IQ estimation example
(page 351), the 95% credible set is [89.18,116.4].

mean sd MC error val2.5pc median val97.5pc start sample

theta 102.8 6.943 0.01991 89.18 102.8 116.4 1001 100000

Other posterior quantiles that lead to credible sets of different credibility
levels can be specified in Sample Monitor Tool under Inference>Samples in Win-
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BUGS. The credible sets from WinBUGS are HPD only if the posterior is
symmetric and unimodal.

Equal-Tail Credible Sets. HPD credible sets may be difficult to find for
asymmetric posterior distributions, such as gamma and Weibull, for ex-
ample. Much simpler are equal-tail credible sets for which the tails have a
probability of α/2 each for a credibility of 1− α. An equal-tail credible set
may not be the shortest set, but to find it, we need only α/2 and 1− α/2
quantiles of the posterior. These two quantiles are the lower and upper
bounds [L,U]:

∫ L

−∞
π(θ|x)dθ = α/2,

∫ ∞

U
π(θ|x)dθ = 1− α/2.

Note that WinBUGS gives posterior quantiles from which one can directly
establish several equal-tail credible sets (95%, 90%, 80%, and 50%) by se-
lecting appropriate pairs of percentiles in the Sample Monitor Tool.

Example 8.16. Bayesian Amanita muscaria. Recall that in Example 7.8
(page 302) observations were summarized by X = 10.098 and s2 = 2.1702,
which are classical estimators of population parameters: mean µ and vari-
ance σ2. We also obtained the 95% confidence interval for the population
mean as [9.6836,10.5124] and the 90% confidence interval for the population
variance as [1.6074,3.1213].

By assuming noninformative priors for the mean and variance, we use
WinBUGS to find Bayesian counterparts of the estimators and confidence
intervals. As we pointed out, the mean is a location parameter, and nonin-
formative priors should be flat. WinBUGS allows for flat priors, mu∼dflat(),
but any prior with a large variance, or small precision, is a possibility. We
take a normal prior with a variance of 10,000. The inverse gamma dis-
tribution is traditionally used for a prior on variance; thus, for precision
as a reciprocal of variance, the gamma prior is appropriate. As we dis-
cussed earlier, gamma distributions with small parameters will have a large
variance, thereby making the prior vague/noninformative. We selected
prec∼dgamma(0.001, 0.001) as a noninformative choice. This prior is nonin-
formative because it is essentially flat; its variance is 0.001/(0.001)2 = 1000
(page 204). The WinBUGS program is simple:

model{

for ( i in 1:n ){

amuscaria[i] ~ dnorm( mu, prec )

}

mu ~ dnorm(0, 0.00001)

prec ~ dgamma(0.001, 0.001)

sig2 <- 1/prec

}

DATA
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list(n=51,amuscaria=c(10,11,12,9,10,11,13,12,10,11,11,13,9,10,

9,10,8,12,10,11,9,10,7,11,8,9,11,11,10,12,10,8,7,11,12,

10,9,10,11,10,8,10,10,8,9,10,13,9,12,9,9) )

INITS

list( mu =0, prec = 1 )

In WinBUGS’ Sample Monitor Tool we asked for 2.5% and 97.5% posterior
percentiles, which gives a 95% credible set and 5% and 95% posterior per-
centiles for the 90% credible set. The lower/upper bounds of the credible
sets are given in boldface and the sets are [9.684,10.51] for the mean and
[1.607,3.123] for the variance. The credible set for the mean is both HPD
and equal-tail, but the credible set for the variance is only an equal-tail.

mean sd MC error val2.5pc val5pc val95pc val97.5pc start sample

mu 10.1 0.2106 2.004E-4 9.684 9.752 10.44 10.51 1001 100000
prec 0.4608 0.09228 9.263E-5 0.2983 0.3202 0.6224 0.6588 1001 100000
sig2 2.261 0.472 4.716E-4 1.518 1.607 3.123 3.353 1001 100000

�

8.8 Learning by Bayes’ Theorem

Bayesian statisticians often say: “Today’s posterior is tomorrow’s prior.”
This phrase captures the learning ability of Bayesian paradigm. As more
data is acquired, Bayes’ theorem updates our knowledge in a coherent man-
ner.

We start with an example.

Example 8.17. Leukemia Remission and 6-MP. Freireich et al. (1963) con-
ducted a remission maintenance therapy to compare 6-MP with placebo
for prolonging the duration of remission in leukemia. From 42 patients af-
fected with acute leukemia, but in a state of partial or complete remission,
21 pairs were formed. One randomly selected patient from each pair was as-
signed the maintenance treatment 6-MP, while the other patient received a
placebo. Investigators monitored which patient stayed in remission longer.
If that was a patient from the 6-MP treatment arm, this was recorded as a
“success” (S); otherwise, it was a “failure” (F).

The results are given in the following table:

Pair 1 2 3 4 5 6 7 8 9 10
Outcome S F S S S F S S S S

11 12 13 14 15 16 17 18 19 20 21
S S S F S S S S S S S

The goal is to estimate p – the probability of success. Suppose we got
information only on the first 10 subjects: 8 successes and 2 failures. When
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the prior on p is uniform, and the likelihood binomial, the posterior is
proportional to p8(1− p)2 × 1, which is a beta Be(9,3).

Suppose now that the remaining 11 observations became available (10
successes and 1 failure). If the posterior from the first stage serves as a prior
in the second stage, the updated posterior is proportional to p10(1− p)1 ×
p8(1− p)2 which is a beta Be(19,4).

By sequentially updating the prior we arrive to the same posterior as
if all observations were available at the first place (18 successes and 3 fail-
ures). With a uniform prior, this would lead to the same beta Be(19,4) pos-
terior. The final posterior would be the same even if the updating was done
observation by observation. This exemplifies the learning ability of Bayes’
theorem.
�

Suppose that observations x1, . . . , xn from the model f (x|θ) are avail-
able and that prior on θ is π(θ). Then the posterior is

π(θ|x) = f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

,

where x = (x1, . . . , xn) and f (x|θ) = ∏
n
i=1 f (xi|θ).

Suppose an that additional observation xn+1 is collected. Then

π(θ|x, xn+1) =
f (xn+1|θ)π(θ|x)∫
f (xn+1|θ)π(θ|x)dθ

.

Bayes’ theorem updates inference in a natural way: the posterior based on
previous observations serves as a new prior.

8.9 Bayesian Prediction

Up to now, we have been concerned with Bayesian inference about pop-
ulation parameters. We are often faced with the problem of predicting a
new observation Xn+1 after X1, . . . , Xn from the same population have been
observed. Assume that the prior for parameter θ is elicited. The new ob-
servation would have a likelihood of f (xn+1|θ), while the observed sample
X1, . . . , Xn will lead to a posterior of θ, π(θ|X1, . . . , Xn).

Then, the posterior predictive distribution for Xn+1 can be obtained from
the likelihood after integrating out parameter θ using the posterior distri-
bution,
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f (xn+1|X1, . . . , Xn) =
∫

Θ
f (xn+1|θ)π(θ|X1, . . . , Xn)dθ,

where Θ is the domain for θ. Note that the marginal distribution also in-
tegrates out the parameter, but using the prior instead of the posterior,
m(x) =

∫
Θ

f (x|θ)π(θ)dθ. For this reason, the marginal distribution is some-
times called the prior predictive distribution.

The prediction for Xn+1 is the expectation EXn+1, taken with respect
to the predictive distribution,

X̂n+1 =
∫

R

xn+1 f (xn+1|X1, . . . , Xn)dxn+1,

while the predictive variance,
∫

R

(xn+1 − X̂n+1)
2 f (xn+1|X1, . . . , Xn)dxn+1,

can be used to assess the precision of the prediction.

Example 8.18. Exponential Survival Time. Consider the exponential dis-
tribution E (λ) for a random variable X representing survival time of
patients affected by a particular disease. The density for X is f (x|λ) =
λexp{−λx}, x ≥ 0.

Suppose that the prior for λ is gamma Ga(α, β) with a density of π(λ) =
βα

Γ(α)
λα−1 exp{−βλ}, λ ≥ 0.

The likelihood, after observing a sample X1, . . . , Xn from E (λ) popula-
tion, is

λe−λX1 · . . . · λe−λXn = λn exp

{
−λ

n

∑
i=1

Xi

}
,

and the posterior is proportional to

λn+α−1 exp{−(
n

∑
i=1

Xi + β)λ},

which can be recognized as a gamma Ga(α + n, β + ∑
n
i=1 Xi) distribution

and completed as

π(λ|X1, . . . , Xn) =
(∑n

i=1 Xi + β)n+α

Γ(n + α)
λn+α−1 exp{−(

n

∑
i=1

Xi + β)λ}, λ ≥ 0.

The predictive distribution for a new Xn+1 is
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f (xn+1|X1, . . . , Xn) =
∫ ∞

0
λexp{−λxn+1}π(λ|X1, . . . , Xn)dλ

=
(n + α)(∑n

i=1 Xi + β)n+α

(∑n
i=1 Xi + β + xn+1)n+α+1 , xn+1 > 0.

Note that Xn+1 +∑
n
i=1 Xi + β is a Pareto Pa(∑n

i=1 Xi + β,n+ α), see page 212.
The expected value for a new observation (a Bayesian prediction) is

X̂n+1 =
∫ ∞

0
xn+1 f (xn+1|X1, . . . , Xn)dxn+1 =

∑
n
i=1 Xi + β

n + α− 1
.

Also, the variance of the new observation is

σ̂2
Xn+1

=
∫ ∞

0
(xn+1 − X̂n+1)

2 f (xn+1|X1, . . . , Xn)dxn+1

=
(∑n

i=1 Xi + β)2(n + α)

(n + α− 1)2(n + α− 2)
.

For example, if X1 = 2.1, X2 = 5.5, X3 = 6.4, X4 = 8.7, X5 = 4.9, X6 = 5.1,
and X7 = 2.3 are the observations, and α = 2 and β = 1, then X̂8 = 9/2 and
σ̂2

X8
= 729/28 = 26.0357. Figure 8.6 shows the posterior predictive distri-

bution (solid blue line), observations (crosses), and prediction for the new
observation (blue dot). The position of the mean of the data, X = 5, is shown
as a dotted red line.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Fig. 8.6 Bayesian prediction (blue dot) based on the sample (black crosses) X = [2.1,

5.5, 6.4, 8.7, 4.9, 5.1, 2.3] from the exponential distribution E (λ). The parameter
λ is given a gamma Ga(2,1) distribution and the resulting posterior predictive distribu-
tion is shown as a solid blue line. The position of the sample mean is plotted as a dotted
red line.
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�

The prediction X̂n+1 can be found in an alternative manner that avoids
the need for explicit posterior predictive distribution. The following holds:

X̂n+1 =
∫

Θ
µ(θ)π(θ|X1, . . . , Xn)dθ, (8.6)

where µ(θ) = E
X|θX =

∫
x f (x|θ)dx is the mean of X, as a function of

the parameter.

When the parameter θ is in fact the the expectation, such as µ in N (µ,σ2)
or λ in Poi(λ), the Bayes prediction for Xn+1 is simply the posterior mean.

To find X̂n+1 from Example 8.18 by (8.6), note that µ(λ) = 1/λ and the
posterior is Ga(α + n, β + ∑

n
i=1 Xi). Thus,

X̂n+1 =
∫ ∞

0

1
λ
× λn−α−1(β + ∑

n
i=1 Xi)

n−α

Γ(α + n)
exp{−(β +

n

∑
i=1

Xi)λ}dλ

=
β + ∑

n
i=1 Xi

α + n− 1

∫ ∞

0

λ(n−α−1)−1(β + ∑
n
i=1 Xi)

n−α−1

Γ(α + n− 1)
exp{−(β +

n

∑
i=1

Xi)λ}dλ

=
β + ∑

n
i=1 Xi

α + n− 1
,

after using the identity Γ(a) = (a− 1)Γ(a− 1). To find the Bayesian predic-
tion in WinBUGS, one simply samples a new observation from a likelihood
that has updated parameters.

Example 8.19. Predicting the Exponential. The WinBUGS program below
implements Example 8.18; the observations are read within the for loop.
However, if a new variable is simulated from the same likelihood, this is
done for the current version of the parameter λ, and the mean of simula-
tions approximates the posterior mean of the new observation.

model{

for (i in 1:7){

X[i] ~ dexp(lambda)

}

lambda ~ dgamma(2,1)

Xnew ~ dexp(lambda)

}

DATA

list(X = c(2.1, 5.5, 6.4, 8.7, 4.9, 5.1, 2.3))

INITS

list(lambda=1, Xnew=1)
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The output is

mean sd MC error val2.5pc median val97.5pc start sample

Xnew 4.499 5.09 0.005284 0.1015 2.877 18.19 1001 100000
lambda 0.25 0.08323 8.343E-5 0.1142 0.2409 0.4378 1001 100000

Note that the posterior mean for Xnew is well approximated, 4.499≈ 4.5, and
that the standard deviation sd = 5.09 is close to

√
26.0357 = 5.1025.

�

8.10 Consensus Means*

Suppose that several labs are reporting measurements of the same quan-
tity and that a consensus mean should be calculated. This problem appears
in interlaboratory studies, as well as in multicenter clinical trials and var-
ious meta-analyses. In this section we provide a Bayesian solution to this
problem and compare it with some classical proposals.

Let Yij, j = 1, . . . ,ni; i = 1, . . . ,k be measurements made at k laboratories,
where ni measurements come from lab i. Let n = ∑i ni be the total sample
size.

We are interested in estimating the mean that would properly incor-
porate information coming from all the labs, called the consensus mean.
Why is the solution not trivial, and what is wrong with the average
Y = 1/n ∑i ∑j Yij?

There is nothing wrong, under the proper conditions: (a) variabilities
within the labs must be equal and (b) there must be no variability between
the labs.

When (a) is relaxed, proper pooling of the lab sample means is done via
a Graybill–Deal estimator:

Ygd =
∑

k
i=1 ωiYi

∑
k
i=1 ωi

, ωi =
ni

s2
i

.

When both conditions (a) and (b) are relaxed, there are many competing
classical estimators. For example, the Schiller–Eberhardt estimator is given
by

Yse =
∑

k
i=1 ωiYi

∑
k
i=1 ωi

, ωi =
1

s2
i /ni + s2

b

,

where s2
b is an estimator of the variance between the labs, s2

b =
(ȳmax−ȳmin)

2

12 .
The Mandel–Paule is the same as the Schiller–Eberhardt estimator but with
s2

b obtained iteratively.
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The Bayesian approach is conceptually simple. Individual means as
random variables are generated from a single distribution. The mean of
this distribution is the consensus mean. In somewhat convoluted wording,
the consensus mean is the mean of a hyperprior placed on the individual
means.

Example 8.20. Selenium in Powdered Milk. The data on selenium in non-
fat milk powder selenium.dat are adapted from Witkovsky (2001). Four
independent measurement methods are applied. The Bayes estimator of the
consensus mean is 108.8.

In the WinBUGS program below, the individual means theta[i] have
a t-prior with location mu, precision tau, and 5 degrees of freedom. The
choice of t-prior, instead of the usual normal, is motivated by robustness
considerations.

model{

for (i in 1:n)

{

sel[i] ~ dnorm( theta[lab[i]], prec[lab[i]])

}

for (i in 1:k)

{

theta[i] ~ dt(mu, tau,5) #individual means

prec[i] ~ dgamma(0.0001, 0.0001)

sigma2[i] <- 1/prec[i]

}

mu ~ dt(0,0.0001,5) #consensus mean

tau ~ dgamma(0.0001,0.0001)

si2 <-1/tau

}

DATA

list(lab=c(1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2,2,2,2,2,

3,3,3,3,3,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4),

sel = c(

115.7, 113.5, 103.3, 119.1, 114.2, 107.3, 91.2, 104.4,

108.6, 109.1, 107.2, 111.5, 100.6, 106.3, 105.9, 109.7,

111.1, 107.9, 107.9, 107.9,

107.6, 107.26,109.7, 109.7, 108.5, 106.5, 110.2, 108.3,

110.5, 108.5, 108.8, 110.1, 109.4, 112.4,

118.7, 109.7, 114.7, 105.4, 113.9, 106.3, 104.8, 106.3),

k=4, n=42)

INITS

list( mu=1, tau=1, prec=c(1,1,1,1), theta=c(1,1,1,1) )
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mean sd MC error val2.5pc median val97.5pc start sample

mu 108.8 0.6499 0.003674 107.6 108.9 110.0 5001 500000
si2 0.7252 9.456 0.02088 1.024E-4 0.01973 4.875 5001 500000
theta[1] 108.8 0.8593 0.003803 107.0 108.9 110.5 5001 500000
theta[2] 108.7 0.6184 0.004188 107.2 108.7 109.7 5001 500000
theta[3] 108.9 0.4046 0.00311 108.1 108.9 109.7 5001 500000
theta[4] 108.9 0.7505 0.003705 107.6 108.9 110.7 5001 500000

Next, we compare the Bayesian estimator with the classical Graybill–
Deal and Schiller–Eberhardt estimators, 108.8892 and 108.7703, respectively.
The Bayesian estimator falls between the two classical ones. A 95% credible
set for the consensus mean is [107.6, 110].

lab1=[115.7, 113.5, 103.3, 119.1, 114.2, 107.3, 91.2, 104.4];

lab2=[108.6, 109.1, 107.2, 111.5, 100.6, 106.3, 105.9, 109.7,...

111.1, 107.9, 107.9, 107.9];

lab3=[107.6, 107.26,109.7, 109.7, 108.5, 106.5, 110.2, 108.3,...

110.5, 108.5, 108.8, 110.1, 109.4, 112.4];

lab4=[118.7, 109.7, 114.7, 105.4, 113.9, 106.3, 104.8, 106.3];

m = [mean(lab1) mean(lab2) mean(lab3) mean(lab4)];

s = [std(lab1) std(lab2) std(lab3) std(lab4) ];

ni=[8 12 14 8]; k=length(m);

%Graybill-Deal Estimator

wei = ni./s.^2; %weights

m_gd = sum(m .* wei)/sum(wei) %108.8892

%Schiller-Eberhardt Estimator

z = sort(m);

sb2 = (z(k)-z(1))^2/12;

wei = 1./(s.^2./ni + sb2);%weights

m_se = sum(m .* wei)/sum(wei) %108.7703

�

Borrowing Strength and Vague Priors. As popularly stated, the model
in Example 8.20 allows for borrowing strength in the estimation of both the
means θi and the variances σ2

i . Even if some labs have extremely small
sample sizes (as low as n = 1), the lab variances can be estimated through
pooling via a hierarchical model structure. The prior distributions above are
vague, which is appropriate when prior information in the form of expert
opinion or historic data is not available.

Analyses conducted using vague priors can be considered objective and
are generally accepted by classical statisticians. When prior information is
available in the form of a mean and variance of µ, it can be included by
simply changing the mean and variance of its prior, in our case the normal
distribution. It is well known that Bayesian rules are sensitive with respect
to changes in hyperparameters in light-tailed priors (e.g., normal priors).
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If more robustness is required, a t-distribution with a small number of de-
grees of freedom can be substituted for the normal prior. Via MCMC sam-
pling in WinBUGS we get a full posterior distribution of µ as the ultimate
summary information.

8.11 Exercises

8.1. Exponential Lifetimes. A lifetime X (in years) of a particular device is
modeled by an exponential distribution with unknown rate parameter
θ. The lifetimes of X1 = 5, X2 = 6, and X3 = 4 are observed. Assume
that an expert familiar with this type of device suggests that θ has an
exponential distribution with a mean of 3.
(a) Write down the MLE of θ for those observations.
(b) Elicit a prior according to the expert assumptions.
(c) For the prior in (b), find the posterior. Is the problem conjugate?
(d) Find the Bayes estimator θ̂Bayes and compare it with the MLE from
(a). Discuss.
(e) Check if the following WinBUGS program gives an estimator of λ
close to the Bayes estimator in (d):

model{

for (i in 1:n){

X[i] ~ dexp(lambda)

}

lambda ~ dexp(1/3)

#note that dexp is parameterized

#in WinBUGS by the rate parameter

}

DATA

list(n=3, X=c(5,6,4))

INITS

list(lambda=1)

8.2. Fibrinogen. Fibrinogen is a soluble plasma glycoprotein, synthesized
by the liver, that is converted by thrombin into fibrin during blood coag-
ulation. Marnie takes a blood test and finds that her level of fibrinogen
is 217 mg/dL. The test results are accurate up to a random error, which
is normal with mean 0 and standard deviation of 9 mg/dL.
The normal range of fibrinogen in plasma is 150–400 mg/dL, and Marnie
puts a uniform prior over this range, dunif(150, 400).
(a) What is the Bayes estimator of the true level of fibrinogen given this
uniform prior?
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(b) Copy the Inference>Samples>stats output from WinBUGS. What is the
95% Credible Set for the parameter from (a)?
(c) What is the classical 95% CI for the parameter from (a)? (Hint: Sample
Size = 1, σ known.) Compare the parameter estimates and 95% CI with
Bayesian counterparts.

8.3. Uniform/Pareto. Suppose that X = (X1, . . . , Xn) is a sample from U (0,θ).
Let θ have a Pareto Pa(θ0,α) prior. Show that the posterior distribution
is Pa(max{θ0, x1, . . . , xn} α + n).

8.4. Nylon Fibers. Refer to Exercise 5.37, where times (in hours) between
blockages of the extrusion process, T, had an exponential E (λ) distribu-
tion. Suppose that the rate parameter λ is unknown, but there are three
measurements of interblockage times, T1 = 3, T2 = 13, and T3 = 8.
(a) Estimate parameter λ using the moment-matching procedure. Write
down the likelihood and find the MLE.
(b) What is the Bayes estimator of λ if the prior is π(λ) = 1√

λ
, λ > 0.

(c) Using WinBUGS find the Bayes estimator and 95% credible set if the
prior is lognormal with parameters µ = 10 and τ = 1

σ2 = 0.0001.
Hint: In (b) the prior is not a proper distribution, but the posterior is.
Identify the posterior from the product of the likelihood from (a) and
the prior.

8.5. Gamma–Inverse Gamma. Let X ∼ Ga
(

n
2 , 1

2θ

)
, so that X/θ is χ2

n. Let

θ ∼ IG(α, β). Show that the posterior is IG(n/2 + α, x/2 + β).

Hint: The likelihood is proportional to xn/2−1

(2θ)n/2 e−x/(2θ) and the prior to
βα

θα+1 e−β/θ. Find their product and match the distribution for θ. There is
no need to find the marginal distribution and apply Bayes’ theorem since
the problem is conjugate.

8.6. Normal Precision–Gamma. Suppose X =−2 was observed from a pop-

ulation distributed as N
(

0, 1
θ

)
, and an analyst wishes to estimate the

parameter θ. (Here θ is the reciprocal of the variance σ2 and is called a
precision parameter. Precision parameters are used in WinBUGS to param-
eterize the normal distribution). An MLE of θ does exist, but the analyst
is tempted to estimate θ as 1/σ̂2, which is troublesome since there is a
single observation. Suppose the analyst believes that the prior on θ is
Ga(1/2,1).
(a) What is the MLE of θ?
(b) Find the posterior distribution and the Bayes estimator of θ. If the
prior on θ is Ga(r,λ), can you represent the Bayes estimator as the
weighted average (sum of weights = 1) of the prior mean and the MLE?
(c) Find a 95% equal-tail credible set for θ. Use MATLAB to evaluate the
quantiles of the posterior distribution.
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(d) Using WinBUGS, numerically find the Bayes estimator from (b) and
credible set from (c).
Hint: The likelihod is proportional to θ1/2e−θx2/2 while the prior is pro-
portional to θr−1e−λθ.

8.7. Jeremy and a Variance from a Single Observation. Jeremy believes
that his IQ test scores follow a normal distribution with mean 110 and
unknown variance σ2. He takes a test and scores X = 98.
(a) Show that inverse gamma prior IG(r,λ) is the conjugate for σ2 if the
observation X is normal N (µ,σ2) with µ known. What is the posterior?
(b) Find a Bayes estimator of σ2 and its standard deviation in Jeremy’s
model if the prior on σ2 is an inverse gamma IG(3,100).
(c) Use WinBUGS to solve this problem and compare the MCMC ap-
proximations with exact values from (b).
Hint: Express the likelihood terms of precision τ with gamma Ga(r,λ)
prior, but then calculate and monitor σ2 = 1

τ . See also Exercise 8.6.

8.8. Negative Binomial–Beta. If X = (X1, . . . , Xn) is a sample from NB(m,θ)
and θ ∼ Be(α, β), show that the posterior for θ is a beta Be(α + mn, β +
∑

n
i=1 xi) distribution.

8.9. Poisson–Gamma Marginal. In Example 8.7 on page 344, show that
the marginal distribution for ∑

n
i=1 Xi is a generalized negative binomial,

NB(α, β/(n + β)).

8.10. Exponential–Improper. Find Bayes’ estimator for θ if a single obser-
vation X was obtained from a distribution with a density of f (x|θ) =
θ exp{−θx}, x > 0,θ > 0. Assume priors (a) π(θ) = 1 and (b) π(θ) = 1/θ.

8.11. Bayes’ Estimator in a Discrete Case. Refer to the likelihood and data in
Exercise 7.5.
(a) If the prior for θ is

θ 1/12 1/6 1/4
Prob 0.3 0.3 0.4

find the posterior and the Bayes estimator.
(b) What would the Bayes estimator look like for a sample of size n?

8.12. Histocompatibility. A patient who is waiting for an organ transplant
needs a histocompatible donor who matches the patient’s human leuko-
cyte antigen (HLA) type. For a given patient, the number of matching
donors per 1,000 National Blood Bank records is modeled as Poisson
with an unknown rate λ. If a randomly selected group of 1,000 records
showed exactly one match, estimate λ in a Bayesian fashion.
For λ assume the following:
(a) Gamma Ga(2,1) prior.
(b) Flat prior λ = 1, for λ > 0.
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(c) Invariance prior π(λ) = 1
λ , for λ > 0.

(d) Jeffreys’ prior π(λ) = 1√
λ

, for λ > 0.
Note that the priors in (b)–(d) are not proper densities (the integrals are
not finite); nevertheless, the resulting posteriors are proper.
Hint: In all cases (a)–(d), the posterior is gamma. Write the product
λ1

1! exp{−λ} × π(λ) and match the gamma parameters. The first part
of the product is the likelihood when exactly one matching donor was
observed.

8.13. Hemocytometer Counts Revisited. Refer to Exercise 7.36.
(a) Elicit gamma prior Ga(α, β) on λ for which the effective sample size
(ESS) is 100 and expectation is 6. (Hint: ESS = β; Eπλ = α/β).
(b) For the prior in (a), find an equal-tail credible set and compare it with
confidence intervals from Exercise 7.36(b).

8.14. Neurons Fire in Potter’s Lab 2. Data set neuronfires.mat consisting
of 989 firing times in a cell culture of neurons was analyzed in Exercise
7.3. From this data set, the count of firings in consecutive 20-ms time
intervals was recorded:

20 19 26 20 24 21 24 29 21 17
23 21 19 23 17 30 20 20 18 16
14 17 15 25 21 16 14 18 22 25
17 25 24 18 13 12 19 17 19 19
19 23 17 17 21 15 19 15 23 22

It is believed that the counts are Poisson distributed with unknown pa-
rameter λ. An expert believes that the number of counts in the 20-ms
interval should be about 15.
(a) What is the likelihood function for these 50 observations?
(b) Using the information the expert provided, elicit an appropriate
gamma prior. Is such a prior unique?
(c) For the prior suggested in (b), find the Bayes estimator of λ. How
does this estimator compare to the MLE?
(d) Suppose now that the prior is lognormal with a mean of 15 (e.g.,
one possible choice is µ = log(15) − 1/2 = 2.2081 and σ2 = 1). Using
WinBUGS, find the Bayes estimator for λ. Recall that WinBUGS uses the
precision parameter τ = 1/σ2 instead of σ2.

8.15. Eliciting a Beta Prior I. This exercise is based on an example from Berry
and Stangl (1996). An important prognostic factor in the early detection
of breast cancer is the number of axillary lymph nodes. The surgeon will
generally remove between 5 and 30 nodes during a traditional axillary
dissection. We are interested in making an inference about the propor-
tion of all nodes affected by cancer and consult the surgeon in order to
elicit a prior.
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The surgeon indicates that the probability of a selected node testing pos-
itive is 0.05. However, if the first node tested positive, the second will be
found positive with an increased probability of 0.2.
(a) Using equations (8.5), elicit a beta prior that reflects the surgeon’s
opinion.
(b) If, in a particular case, two out of seven nodes tested positive, what
is the Bayes estimator of the proportion of affected nodes when the prior
in (a) is adopted?

8.16. Eliciting a Beta Prior II. A natural question for the practitioner in the
elicitation of a beta prior is to specify a particular quantile. For example,
we are interested in eliciting a beta prior with a mean of 0.8 such that
the probability of exceeding 0.9 is 5%. Find hyperparameters a and b for
such a prior. Hint: See file belicitor.m

8.17. Eliciting a Weibull Prior. Assume that the average recovery time for pa-
tients with a particular disease enters a statistical model as a parameter
θ and that prior π(θ) needs to be elicited. Assume further that the func-
tional form of the prior is WeibullWei(r,λ), so the elicitation amounts to
specifying hyperparameters r and λ. A clinician states that the first and
third quartiles for θ are Q1 = 10 and Q3 = 20 (in days). Elicit the prior.
Hint: The CDF for the prior is Π(θ) = 1− e−λθr

, which with conditions
on Q1 and Q3 leads to two equations – e−λθr

= 0.75 and e−λθr
= 0.25. Take

the log twice to obtain a system of two equations with two unknowns r
and log λ.

8.18. Bayesian Yucatan Pigs. Refer to Example 7.23 (Yucatan Pigs). Using
WinBUGS, find the Bayesian estimator of a and plot its posterior distri-
bution.

8.19. Eliciting a Normal Prior. We elicit a normal prior N (µ,σ2) from an
expert who can specify percentiles. If the 20th and 70th percentiles are
specified as 2.7 and 4.8, respectively, how should µ and σ be elicited?
Hint: If xp is the pth quantile (100%pth percentile), then xp = µ + zpσ.
A system of two equations with two unknowns is formed with zps as
norminv(0.20) = -0.8416 and norminv(0.70) = 0.5244.

8.20. Is the Cloning of Humans Moral? A recent Gallup poll estimates that
about 88% of Americans oppose human cloning. Results are based on
telephone interviews with a randomly selected national sample of n =
1,000 adults, aged 18 and older. In these 1,000 interviews, 882 adults
opposed the cloning of humans.
(a) Write a WinBUGS program to estimate the proportion p of people
opposed to human cloning. Use a noninformative prior for p.
(b) Pretend that the original poll had n = 1,062 adults, whereby results
for 62 adults are missing. Estimate the number of people opposed to
cloning among the 62 missing in the poll.



372 8 Bayesian Approach to Inference

8.21. Poisson Observations with Truncated Normal Rate. A sample average
of n = 15 counting observations was found to be X = 12.45. Assume that
each count comes from a Poisson Poi(λ) distribution. Using WinBUGS,
find the Bayes estimator of λ if the prior on λ is a normal N (0,102)
constrained to λ ≥ 1.
Hint: nX = ∑ Xi is Poisson Poi(nλ).

8.22. Counts of Alpha Particles. In Example 7.14 we analyzed data from the
experiment of Rutherford and Geiger on counting α-particles.
The counts, given in the table below, can be well modeled by a Poisson
distribution.

X 0 1 2 3 4 5 6 7 8 9 10 11 ≥ 12
Freq 57 203 383 525 532 408 273 139 45 27 10 4 2

(a) Find sample size n and sample mean X. In calculations for X, take
≥ 12 as 12.
(b) Elicit a gamma prior for λ with rate parameter β = 5 and shape
parameter α selected in such a way that the prior mean is 7.
(c) Find the Bayes estimator of λ using the prior from (b). Is the problem
conjugate? Use the fact that ∑

n
i=1 Xi ∼ Poi(nλ).

(d) Write a WinBUGS script that simulates the Bayes estimator for λ and
compare its output with the analytic solution from (c).

8.23. Credible Sets for Alpha Particles. A Bayesian version of Garwood’s
interval in (7.14) is

[
1

2(n + b)
χ2

2(S+a,α/2,
1

2(n + b)
χ2

2(S+a+1),1−α/2

]
.

when the prior on λ is gamma Ga(a,b).
(a) For gamma prior in Exercise 8.22 (b), find the Garwood interval that
represents an equal-tail credible set.
(b) Compare the result in (a) with the credible set for λ from the Win-
BUGS output in Exercise 8.22 (d).

8.24. Hemocytometer Counts Revisited. In Exercise 7.36 the Poisson rate of
counts, λ, was estimated and 95% CIs were found.
(a) Elicit gamma Ga(α, β) prior on λ. Assume that the effective sample
size EES is 20, and the prior mean is 6.
(b) Using WinBUGS and the prior from (a) find a 95% credible set for λ,
and compare it to those from 7.36(b).
(c) Repeat calculations from (b) using normal N (0,102) prior on λ, con-
strained to λ ≥ 3. (Hint: lambda ˜ dnorm(0, 0.01) I(3,). )

8.25. Rayleigh Estimation by Zero Trick. Referring to Exercise 7.11, find the
Bayes estimator of σ2 in a Rayleigh distribution using WinBUGS.
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Since the Rayleigh distribution is not on the list of WinBUGS distribu-
tions, you may use a Poisson zero trick with a negative log-likelihood
as negloglik[i] <- C + log(sig2) + pow(r[i],2)/(2 * sig2), where sig2 is the
parameter and r[i] are observations.
Since σ is a scale parameter, it is customary to put an inverse gamma on
σ2. This can be achieved by putting a gamma prior on 1/σ2, as in
sig2 <- 1/isig2

isig2∼dgamma(0.1, 0.1)

where the choice of dgamma(0.1, 0.1) is noninformative.

8.26. Jack and Jill, Poisson, and Bayes’ Rule Revisited. In Exercise 5.19 we
assumed that Jack does exactly 40% of the work. This may be just an
approximation. We could instead elicit a prior on this proportion that is
beta with mean 0.4, say p∼ Be(4,6).
Write a WinBUGS script that will use this prior, and estimate the proba-
bilities in Exercise 5.19 (a) and (b). Are the results close?
Hint:

model {

y ~ dpois(lambda)

lambda <- pages * rate[index]

index <- T + 1 #1 or 2, 1 for Jill, 2 for Jack

T ~ dbern(p)

p ~ dbeta(4,6)

rate[1] <- 1/4

rate[2] <- 1

}

where number of errors y and number of pages pages are inputs.

8.27. Predictions in a Poisson/Gamma Model. For a sample X1, . . . , Xn from
a Poisson Poi(λ) distribution and a gamma Ga(α, β) prior on λ,
(a) Prove that the marginal distribution is Pólya (a negative binomial
with noninteger r, page 185), and identify its parameters.
(b) Show that the posterior predictive distribution for Xn+1 is also a
Pólya. Identify its parameters and find the prediction X̂4 for X1 = 4,
X2 = 5, and X3 = 4.2, α = 2, and β = 1.
(c) Calculate the posterior mean for the data in (b). According to (8.6),
this posterior mean is X̂4. Do the results from (b) and (c) agree?
(d) Support your findings in (b) and (c) with a WinBUGS simulation.

8.28. Estimating Chemotherapy Response Rates. An oncologist believes that
90% of cancer patients will respond to a new chemotherapy treatment
and that it is unlikely that this proportion will be below 80%. Elicit a
beta prior that models the oncologist’s beliefs.
Hint: µ = 0.9, µ− 2σ = 0.8, and use equations (8.4).
During the trial, of the 30 patients treated, 22 responded. What are the
likelihood and posterior distribution.
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(a) Using MATLAB, plot the prior, likelihood, and posterior in a single
figure.
(b) Using WinBUGS, find the Bayes estimator of the response rate and
compare it to the posterior mean.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch8.Bayes/

BAint.m, belicitor.m, betaplots.m, HPDfigure.m, jeremy.m, nornorplot.m,

ParetoUni.m, Predictive.m, selenium.m, [dir] matbugs

coin.odc, copd.odc, ExeTransplant.odc, histocompatibility.odc,

jeremy.odc|txt, jeremyminimal.odc, metalabs1.odc, metalabs2.odc,

muscaria.odc, neurons.odc, pareto.odc, poistrunorm.odc,

predictiveexample.odc, rayleigh.odc, rutherford.odc, selenium.odc,

zerotrickjeremy.odc, ztNN.odc, ztNN1.odc, ztcoshprior.odc, ztmaxwell.odc

selenium.dat
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Chapter 9

Testing Statistical Hypotheses

If one in twenty does not seem high enough odds, we may, if we prefer it, draw the line
at one in fifty (the 2 percent point), or one in a hundred (the 1 percent point). Personally,
the writer prefers to set a low standard of significance at the 5 percent point, and ignore
entirely all results which fail to reach this level. A scientific fact should be regarded as
experimentally established only if a properly designed experiment rarely fails to give this
level of significance.

– Ronald Aylmer Fisher

WHAT IS COVERED IN THIS CHAPTER

• Basic Concepts in Testing: Hypotheses, Errors of the First and
Second Kind, Rejection Regions, Significance Level, p-Value, Power
• Bayesian Approach to Testing
• Testing the Mean in a Normal Population: z and t Tests
• Testing the Variance in a Normal Population
• Testing the Population Proportion
•Multiple Testing, Bonferroni Correction, and False Discovery Rate

9.1 Introduction

The two main tasks of inferential statistics are parameter estimation and
testing statistical hypotheses. In this chapter we will focus on the latter.

377
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Although the expositions on estimation and testing are separate, the two
inference tasks are highly related, as it is possible to conduct testing by
inspecting confidence intervals or credible sets. Both tasks can be unified
via the so-called decision-theoretic approach in which both the estimator
and the selection of a hypothesis represent an optimal action given the
model, observations, and loss function.

Generally, any claim made about one or more populations of interest
constitutes a statistical hypothesis. These hypotheses usually involve popula-
tion parameters, the nature of the population, the relationsips between the
populations, and so on. For example, we could hypothesize that:

• The mean of a population, µ, is 2, or
• Two populations have the same variance, or
• A population is normally distributed, or
• The means in four populations are the same, or
• Two populations are independent.

Procedures leading to either the acceptance1 or rejection of statistical hy-
potheses are called statistical tests.

We will discuss two approaches: the frequentist (classical) approach,
which is based on the Neyman–Pearson lemma, and the Bayesian approach,
which assigns probabilities to hypotheses directly.

The Neyman–Pearson lemma is technical (details can be found in
Casella and Berger, 2001), and the testing procedure based on it will be
formulated as an algorithm or a testing “recipe.” In fact, this recipe is a mix
of Neyman–Pearson’s and Fisher’s approaches since it takes the best from
both: a framework for power analysis from the Neyman–Pearsonian ap-
proach and better sensitivity to the observations from the Fisherian method.

In the Bayesian framework, one simply finds and reports the probability
that a particular hypothesis is true given the observations. The competing
hypotheses are assigned probabilities, and those with the larger probabil-
ity are favored. Frequentist tests do not assign probabilities to hypotheses
directly but rather to the statistic on which the test is based. This point will
be emphasized later, since p-values are often mistaken for probabilities of
hypotheses.

We start by discussing the terminology and algorithm of the frequentist
testing framework.

1 The use of jargon such as accept a hypothesis in the testing context should be avoided.
The equivalent but conservative wording for accept would be: there is not enough statistical
evidence to reject. We will use the terms “reject” and “do not reject” when appropriate,
leaving the careful wording to practicing statisticians who could be liable for the unde-
sirable consequences of their straightforward recommendations.
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9.2 Classical Testing Problem

9.2.1 Choice of Null Hypothesis

The usual starting point in statistical testing is the formulation of statistical
hypotheses. There will be at least (in most cases, exactly) two competing
hypotheses. The hypothesis that reflects the current state of nature, adopted
standard, or believed truth is denoted by H0 and is termed the null hy-
pothesis. The competing hypothesis, H1, is called the alternative or research
hypothesis. Sometimes, the alternative hypothesis is denoted by Ha.

In the classical testing approach it is important to carefully select which
of the two hypotheses is assigned to be H0, since the subsequent testing
procedure depends on this assignment. The following “rule” describes the
choice of H0 and hints at the reason why it is termed the null hypothesis.

Rule: We want to establish an assertion about a population with sub-
stantive support obtained from the data. The negation of the assertion
is taken to be the null hypothesis H0, and the assertion itself is taken
to be the research or alternative hypothesis H1. In this context, the
term null can be interpreted as a void research hypothesis.

The following example illustrates several hypothetical testing scenarios.

Example 9.1. Hypothetical Testing Scenarios. (a) A biomedical engineer
wants to determine whether a new chemical agent provides a faster reac-
tion than the agent currently in use. The new agent is more expensive, so
the engineer would not recommend it unless its faster reaction is supported
by experimental evidence. The reaction times are observed in several exper-
iments prepared with the new agent. If the reaction time is denoted by the
parameter θ, then the two hypotheses can be expressed in terms of that
parameter. It is assumed that the reaction speed of the currently used agent
is known, θ = θ0. Null hypothesis H0: The new agent is not faster (θ = θ0).
Alternative hypothesis H1: The new agent is faster (θ > θ0).

(b) A state labor department wants to determine if the current rate of
unemployment varies significantly from the forecast of 8% made 2 months
ago. Null hypothesis H0: The current rate of unemployment is 8%. Alter-
native hypothesis H1: The current rate of unemployment differs from 8%.

(c) A biomedical company claims that a new treatment is more effec-
tive than the standard treatment for prolonging the lives of terminal can-
cer patients. The standard treatment has been in use for a long time, and
from reports in medical journals, the mean survival period is known to
be 5.2 years. Null hypothesis H0: The new treatment is as effective as the
standard one, that is, the survival time θ is equal to 5.2 years. Alternative
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hypothesis H1: The new treatment is more effective than the standard one,
that is, θ > 5.2.

(d) Katz et al. (1990) examined the performance of 28 students taking the
SAT who answered multiple-choice questions without reading the referred
passages. The mean score for the students was 46.6 (out of 100), with a
standard deviation of 6.8. The expected score in random guessing is 20.
Null hypothesis H0: The mean score is 20. Alternative hypothesis H1: The
mean score is larger than 20.

(e) A pharmaceutical company claims that its best-selling painkiller has
a mean effective period of at least 6 hours. Experimental data found that
the average effective period was actually 5.3 hours. Null hypothesis H0: The
best-selling painkiller has a mean effective period of 6 hours. Alternative
hypothesis H1: The best-selling painkiller has a mean effective period of
less than 6 hours.

(f) A pharmaceutical company claims that its generic drug has a mean
AUC response equivalent to that of the innovative (brand name) drug.
The regulatory agency considers two drugs bioequivalent if the population
means in their AUC responses differ for no more than δ. Null hypothe-
sis H0: The difference in mean responses in AUC between the generic and
innovative drugs is either smaller than −δ or larger than δ. Alternative hy-
pothesis H1: The absolute difference in the mean responses is smaller than
δ; that is, the generic and innovative drugs are bioequivalent.
�

When H0 is stated as H0 : θ = θ0, the alternative hypothesis can be any
of

θ < θ0, θ 6= θ0, θ > θ0.

The first and third alternatives are one-sided, while the middle one is two-
sided. Usually, the context of the problem indicates which one-sided alter-
native is appropriate. For example, if the pharmaceutical industry claims
that the proportion of patients allergic to a particular drug is p = 0.01, then
either p 6= 0.01 or p > 0.01 is a sensible alternative in this context, especially
if the observed proportion p̂ exceeds 0.01.

In the context of the bioequivalence trials, the research hypothesis H1
states that the difference between the responses is tolerable, as in (f). There
H0 : µ1− µ2 <−δ or µ1− µ2 > δ and the alternative is H1 :−δ≤ µ1− µ2 ≤
δ.
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9.2.2 Test Statistic, Rejection Regions, Decisions, and Errors
in Testing

Famous and controversial Cambridge astronomer Sir Fred Hoyle (1915–
2001) once said: “I don’t see the logic of rejecting data just because they
seem incredible.” The calibration of the credibility of data is done with
respect to some theory or model; instead of rejecting data, the model should
be questioned.

Suppose that a hypothesis H0 and its alternative H1 are specified, and a
random sample from the population under research is obtained. As in the
estimation context, an appropriate statistic is calculated from the random
sample. Testing is carried out by evaluating the realization of this statistic.
If the realization appears unlikely under the assumption stipulated by H0,
H0 is rejected, since the experimental support for H0 is lacking.

If a null hypothesis is rejected when it is actually true, then a type I
error, or error of the first kind, is committed. If, however, an incorrect null
hypothesis is not rejected, then a type II error, or error of the second kind, is
committed. It is customary to denote the probability of a type I error as α
and the probability of a type II error as β.

This is summarized in the table below:
Decide H0 Decide H1

True H0 Correct action Type I error
probability 1− α α

True H1 Type II error Correct action
probability β power = 1− β

We will also use the notation α = P(H1|H0) to denote the probability
that hypothesis H1 is decided when in fact H0 is true. Analogously, β =
P(H0|H1).

A good testing procedure minimizes the probabilities of errors of the
first and second kind. However, minimizing both errors simultaneously,
for a fixed sample size, is impossible. Controlling the errors is a trade-off;
when α decreases, β increases, and vice versa. For this and other practical
reasons, α is chosen from among several typical values: 0.01, 0.05, and 0.10.

Sometimes within testing problems there is no clear dichotomy: the es-
tablished truth versus the research hypothesis, and both hypotheses may seem
to be research hypotheses. For instance, the statements “The new drug is
safe” and “The new drug is not safe” are both research hypotheses. In such
cases H0 is selected in such a way that the type I error is more severe than
the type II error. If the hypothesis “The new drug is not safe” is chosen as
H0, then the type I error (rejection of a true H0, “use unsafe drug”) is more
serious (at least for the patient) than the type II error (keeping a false H0,
“do not use a safe drug”).

That is another reason why α is fixed as a small number; the probability
of a more serious error should be controlled. The practical motivation for
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fixing a few values for α was originally the desire to keep the statistical
tables needed to conduct a given test brief. This reason is now outdated
since the “tables” are electronic and their brevity is not an issue.

9.2.3 Power of the Test

Recall that α = P(reject H0|H0 true) and β = P(reject H1|H1 true) are the
probabilities of first- and second-type errors. For a specific alternative H1,
the probability P(reject H0|H1 true) is the power of the test.

Power = 1− β ( = P(reject H0|H1 true) )

In plain terms, the power is measured by the probability that the test
will reject a false H0. To find the power, the alternative must be specific.
For instance, in testing H0 : θ = 0, the alternative H1 : θ = 2 is specific but
H1 : θ > 0 is not. A specific alternative is needed for the evaluation of the
probability P(reject H0|H1 true). The specific null and alternative hypothe-
ses lead to the definition of effect size, a quantity that researchers want to
set as a sensitivity threshold for a test.

Usually, the power analysis is prospective in nature. One plans the sam-
ple size and specifies the parameters in H0 and H1. This allows for the
calculation of an error of the second kind β and the power as 1− β. This
prospective power analysis is desirable and often required. In the real world
of research and drug development, for example, no regulating agency will
support a proposed clinical trial if the power analysis was not addressed.

Test protocols need sufficient sample sizes for the test to be sensitive
enough to discrepancies from the null hypotheses. However, the sample
sizes should not be unnecessarily excessive because of financial and ethical
considerations (expensive sampling, experiments that involve laboratory
animals). Also, overpowered tests may detect the effects of sizes irrelevant
from a clinical or engineering standpoint.

The calculation of the power after data are observed and the test
was conducted, known as retrospective power, is controversial (Hoenig and
Heisey, 2001). After the sampling is done, more information is available.
If H0 was not rejected, the researcher may be interested in knowing if the
sampling protocol had enough power to detect effect sizes of interest. Inclu-
sion of this new information in the power calculation and the perception
that the goal of retrospective analysis is to justify the failure of a test to
reject the null hypothesis lead to the controversy referred to earlier. Some
researchers argue that retrospective power analysis should be conducted
in cases where H0 was rejected “in order not to declare H1 true if the test
was underpowered.” However, this argument only emphasizes the need for
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the power analysis to be done beforehand. Calculating effect sizes from the
collected data may also lead to a low retrospective power of well-powered
studies.

9.2.4 Fisherian Approach: p-Values

A lot of information is lost by reporting only that the null hypothesis should
or should not be rejected at some significance level. Reporting a measure
of support for H0 is much more desirable. For this measure of support, the
p-value is routinely reported despite controversy surrounding its mean-
ing and use. The p-value approach was favored by Fisher, who criticized
the Neyman–Pearsonian approach for reporting only a fixed probability of
errors of the first kind, α, no matter how strong the evidence against H0
was. Fisher also criticized the Neyman–Pearsonian paradigm for its need
of an alternative hypothesis and for a power calculation that depends on
unknown parameters.

A p-value is the probability of obtaining a value of the test statistic as
extreme or more extreme (from the standpoint of the null hypothesis)
than that actually obtained, given that the null hypothesis is true.

Equivalently, the p-value can be defined as the lowest significance level at
which the observed statistic would be significant.

Advantage of Reporting p-Values. When a researcher reports a p-value
as part of their research findings, users can judge the findings according to
the significance level of their choice.

Decisions from a p-value:
• The p-value is less than α: reject H0.
• The p-value is greater than α: do not reject H0.

In the Fisherian approach, α is not connected to the error probability;
it is a significance level against which the p-value is judged. The most fre-
quently used value for α is 5%, though values of 1% or 10% are sometimes
used as well. The recommendation of α = 0.05 is attributed to Fisher (1926),
whose “one-in-twenty” quote is provided at the beginning of this chapter.
Although philosophically the p-values and error probabilities are quite dif-
ferent, there is a link. Since under H0 the p-value is uniformly distributed
on [0,1], the probability of rejecting H0 when p < 0.05 is equivalent to the
statement that true H0 was rejected with probability not exceeding 0.05.
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A hypothesis may be rejected if the p-value is less than 0.05; however,
a p-value of 0.049 is not the same evidence against H0 as a p-value of
0.000001. Also, it would be incorrect to say that for any non-small p-value
the null hypothesis is accepted. A large p-value indicates that the model
stipulated under the null hypothesis is merely consistent with the observed
data and that there could be many other such consistent models. Thus, the
appropriate wording would be that the null hypothesis is not rejected. This
point is further elaborated in Section 10.9.

Many researchers argue that the p-value is strongly biased against H0
and that the evidence against H0 derived from p-values not substantially
smaller than 0.05 is rather weak. In Section 9.4 we discuss the calibration of
p-values against Bayes factors and errors in testing.

The p-value is often confused with the probability of H0, which it does
not represent. As we stated, it is the probability that the test statistic will be
more extreme than observed when H0 is true. If the p-value is small, then
an unlikely statistic has been observed that casts doubt on the validity of
H0.

9.3 Bayesian Approach to Testing

In frequentist tests, it was customary to formulate H0 as H0 : θ = 0 versus
H1 : θ > 0 instead of H0 : θ ≤ 0 versus H1 : θ > 0, as one might expect. The
reason was that we calculated the p-value under the assumption that H0 is
true, and this is why a precise null hypothesis was needed.

Bayesian testing is conceptually straightforward: The hypothesis with a
higher posterior probability is favored. There is nothing special about the
“null” hypothesis, and for a Bayesian, H0 and H1 are interchangeable.

Assume that Θ0 and Θ1 are two nonoverlapping sets for parameter θ.
We assume that Θ1 = Θc

0, although arbitrary nonintersecting sets Θ0 and
Θ1 are easily handled. Let θ ∈ Θ0 be the statement of the null hypothesis
H0 and let θ ∈ Θ1 = Θc

0 be the same for the alternative hypothesis H1:

H0 : θ ∈ Θ0 H1 : θ ∈ Θ1.

Bayesian tests amount to a comparison of posterior probabilities of Θ0
and Θ1, the regions corresponding to the two competing hypotheses. If
π(θ|x) is the posterior distribution, then the hypothesis corresponding to
the smaller of
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p0 = P(H0|X) =
∫

Θ0

π(θ|x)dθ,

p1 = P(H1|X) =
∫

Θ1

π(θ|x)dθ,

is rejected. Here P(Hi|X) is the notation for the posterior probability of
hypothesis Hi, i = 0,1.

Conceptually, this approach differs from frequentist testing, where the
p-value measures the agreement of data with the model postulated by H0,
but not the probability of H0.

Example 9.2. A Bayesian Test for Jeremy’s IQ. We return to Jeremy (Ex-
amples 8.2 and 8.10) and consider the posterior for the parameter θ,
N (102.8,48). Jeremy claims he had a bad day, and his true IQ is at least
105. The posterior probability of θ ≥ 105 is

p0 = P(θ ≥ 105|X) = P

(
Z ≥ 105− 102.8√

48

)
= 1−Φ(0.3175) = 0.3754,

less than 1/2, so his claim is rejected in favor of θ < 105.
�

We represent the prior and posterior odds in favor of the hypothesis H0,
respectively, as

π0

π1
=

P(H0)

P(H1)
and

p0

p1
=

P(H0|X)

P(H1|X)
.

The Bayes factor in favor of H0 is the ratio of the corresponding posterior to
prior odds:

Bπ
01(x) =

P(H0|X)

P(H1|X)

/
P(H0)

P(H1)
=

p0/p1

π0/π1
. (9.1)

In the context of Bayes’ rule in Chapter 3 we discussed the Bayes factor
(page 103). Its meaning here is analogous: the Bayes factor updates the
prior odds of hypotheses to their posterior odds, after an experiment was
conducted.

Example 9.3. Jeremy Continued. In the context of Example 9.2, the poste-
rior odds in favor of H0 are 0.3754

1−0.3754 = 0.4652, less than 1.

�
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�
When the hypotheses are simple (i.e., H0 : θ = θ0 versus H1 : θ = θ1) and

the prior is just the two-point distribution π(θ0) = π0 and π(θ1) = π1 =
1− π0, then the Bayes factor in favor of H0 becomes the likelihood ratio:

Bπ
01(x) =

P(H0|X)

P(H1|X)

/
P(H0)

P(H1)
=

f (x|θ0)π0

f (x|θ1)π1
/

π0

π1
=

f (x|θ0)

f (x|θ1)
.

If the prior is a mixture of two priors, ξ0 under H0 and ξ1 under H1, then
the Bayes factor is the ratio of two marginal (prior-predictive) distributions
generated by ξ0 and ξ1. Thus, if π(θ) = π0ξ0(θ)1(θ ∈ Θ0) + π1ξ1(θ)1(θ ∈
Θ1), then

Bπ
01(x) =

∫
Θ0

f (x|θ)π0ξ0(θ)dθ
∫

Θ1
f (x|θ)π1ξ1(θ)dθ

π0
π1

=
m0(x)

m1(x)
.

As noted earlier, the Bayes factor measures the relative change in prior
odds once the evidence is collected. Table 9.1 offers practical guidelines for
Bayesian testing of hypotheses depending on the value of the log-Bayes
factor (Jeffreys, 1961, Appendix B). One could use Bπ

01(x), but then a <

log B10(x) ≤ b becomes −b ≤ log B01(x) < −a. Negative values of the log-
Bayes factor are handled by using symmetry and appropriately changed
wording.

Table 9.1 Treatment of H0 according to log-Bayes factor values: Jeffreys’ scale (Jeffreys,
1961, page 432)

Value (log 10) Evidence against H0 is
0≤ log10 B10(x)≤ 0.5 Poor

0.5 < log10 B10(x) ≤ 1 Substantial

1 < log10 B10(x)≤ 1.5 Strong

1.5 < log10 B10(x) ≤ 2 Very strong

log10 B10(x)> 2 Decisive

Suppose X|θ ∼ f (x|θ) is observed and we are interested in testing

H0 : θ = θ0 v.s. H1 : θ <, 6=,> θ0.

�
If the priors on θ are continuous distributions, Bayesian testing of precise

hypotheses in the manner we just discussed is impossible. With continuous
priors, and subsequently continuous posteriors, the probability of a single-
ton θ = θ0 is always 0, and the precise hypothesis is always rejected.
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The Bayesian solution is to adopt a prior where singleton θ0 has a prob-
ability of π0 and the rest of the probability is spread on Θ\{θ0} by a dis-
tribution ξ(θ) that is the prior under H1. Thus, the prior on θ is a mixture
of the point mass at θ0 with a weight π0 and a continuous density ξ(θ)
on Θ\{θ0}, with a weight of π1 = 1− π0. One can show that the marginal
density for X is

m(x) = π0 f (x|θ0) + π1m1(x),

where

m1(x) =
∫

θ∈Θ\{θ0}
f (x|θ)ξ(θ)dθ. (9.2)

The posterior probability of the null hypothesis uses this marginal dis-
tribution and is equal to

π(θ0|x) =
f (x|θ0)π0

m(x)
=

π0 f (x|θ0)

π0 f (x|θ0) + π1m1(x)

=

(
1 +

π1

π0
· m1(x)

f (x|θ0)

)−1

. (9.3)

Example 9.4. Improvement of Surgical Procedure. In a disease in which
the postoperative mortality is usually 10%, a surgeon devises a novel sur-
gical technique. He implements the technique on 15 patients and has no
fatalities.

A Bayesian wants to test a precise null hypothesis

H0 : θ = 0.1 versus H1 : θ < 0.1.

and adopts prior

π(θ) = π0 · 1(θ = 0.1) + π1 · 10 · 1(0≤ θ < 0.1),

with equal prior probabilities of the hypotheses π0 = π1 = 1/2. What is the
posterior probability of H0? What is the Bayes factor B01?

Here, the number of fatalities is binomial Bin(15,θ), the observed num-
ber of fatalities is x = 0, θ0 = 0.1, the likelihood is f (x|θ) = (15

x )θ
x(1− θ)15−x,

and ξ from (9.2) is uniform on [0,0.1). Note also that the parameter space
is Θ = [0,1] and that Θ0 = {0.1} and Θ1 = [0,0.1). Then,

m1(0) =
∫ 0.1

0

(
15
0

)
θ0(1− θ)15 · 10 dθ = 10/16 · (1− 0.916) = 0.5092,
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and by (9.3)

π(θ0|x) =
[

1 +
0.509186

0.10(1− 0.1)15

]−1

= 0.2879.

Since π0/π1 = 1, the Bayes factor B01 = p0/p1 = 0.2879/(1− 0.2879) =
0.4043. The logarithm for basis 10 of B01 is approximately −0.39, that is,
log10 B10 = 0.39. Thus, the evidence against H0 is poor (Table 9.1), or as
Jeffreys (1961) phrases it: “not worth more than a bare mention.”

The surgeon’s claim is not substantiated by the evidence. Even if one
finds the exact frequentist p-value, which in this case is P(X ≤ 0) = 0.915 =
0.2059 (see Exercise 9.23), the null hypothesis is not rejected at any reason-
able significance level.
�

There is an alternate way of testing the precise null hypothesis in a
Bayesian fashion. One could test the hypothesis H0 : θ = θ0 against the two-
sided alternative by credible sets for θ. If θ0 belongs to a 95% credible set for
θ, then H0 is not rejected. One-sided alternatives can be accommodated as
well by one-sided credible sets. This approach is natural and mimics testing
by confidence intervals; however, the posterior probabilities of hypotheses
are not calculated.

Testing Using WinBUGS. WinBUGS generates samples from the poste-
rior distribution. Testing hypotheses is equivalent to finding the relative
frequencies of a posterior sample falling in competing regions Θ0 and Θ1.
For example, if

H0 : θ ≤ 1 versus H1 : θ > 1

is tested in the WinBUGS program, the command ph1<-step(theta-1) will
calculate the proportion of the simulated chain falling in Θ1, that is, satis-
fying θ > 1. The step(x) is equal to 1 if x ≥ 0 and 0 if x < 0.

9.4 Criticism and Calibration of p-Values*

In a provocative article, Ioannidis (2005) states that many published research
findings are false because statistical significance by a particular team of re-
searchers is found. Ioannidis lists several reasons: “. . . a research finding
is less likely to be true when the studies conducted in a field are smaller;
when effect sizes are smaller; when there is a greater number and lesser
pre-selection of tested relationships; where there is greater flexibility in de-
signs, definitions, outcomes, and analytical modes; when there is greater
financial and other interest and prejudice; and when more teams are in-
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volved in a scientific field in case of statistical significance.” Certainly great
responsibility for an easy acceptance of research (alternative) hypotheses
can be attributed to the p-values. There are many objections to the use of
raw p-values for testing purposes.

Since the p-value is the probability of obtaining the statistic as large or
more extreme than observed, when H0 is true, the p-values measure how
consistent the data are with H0, and they may not be a measure of support
for a particular H0.

�
Misinterpretation of the p-value as the error probability leads to a

strong bias against H0. What is the posterior probability of H0 in a test
for which the reported p-value is p? Berger and Sellke (1987) and Sellke et
al. (2001) show that the minimum Bayes factor (in favor of H0) for a null
hypothesis having a p-value of p is −e p log p. The Bayes factor transforms
the prior odds π0/π1 into the posterior odds p0/p1, and if the prior odds
are 1 (H0 and H1 equally likely a priori, π0 = π1 = 1/2), then the posterior
odds of H0 are not smaller than −e p log p for p < 1/e≈ 0.368:

p0

p1
≥ −ep log p, p < 1/e, p0 + p1 = 1.

By solving this inequality with respect to p0, we obtain a posterior prob-
ability of H0 as

p0 ≥
1

1 + (−e p log p)−1 ,

which also has a frequentist interpretation as a type I error, α(p). Now, the
effect of bias against H0, when judged by the p-value, is clearly visible. The
type I error, α, always exceeds (1 + (−e p log p)−1)−1.

It is instructive to look at specific numbers. Assume that a particular
test yielded a p-value of 0.01, which led to the rejection of H0 with decisive
evidence. However, if a priori we do not have a preference for either H0 or
H1, the posterior odds of H0 always exceed 12.53%. The frequentist type I
error or, equivalently, the posterior probability of H0 is never smaller than
11.13% – certainly not strong evidence against H0.

Figure 9.1 (generated by SBB.m) compares a p-value (dotted line) with
a lower bound on the Bayes factor (red line) and a lower bound on the
probability of a type I error α (blue line).

%SBB.m

sbb = @(p) - exp(1) * p .* log(p);

alph = @(p) 1./(1 + 1./(-exp(1)*p.*log(p)) );

%

pp = 0.0001:0.001:0.15

plot(pp, pp, ’:’, ’linewidth’,lw)

hold on
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Fig. 9.1 Calibration of p-values. A p-value (dotted line) is compared with a lower bound
on the Bayes factor (red line) and a lower bound on the frequentist type I error α (blue
line). The bound on α is also the lower bound on the posterior probability of H0 when
the prior probabilities for H0 and H1 are equal. For the p-value of 0.05, the type I error
is never smaller than 0.2893, while the Bayes factor in favor of H0 is never smaller than
0.4072.

plot(pp, sbb(pp), ’r-’,’linewidth’,lw)

plot(pp, alph(pp), ’-’,’linewidth’,lw)

The interested reader is directed to Berger and Sellke (1987), Schervish
(1996), and Goodman (1999a,b, 2001), among many others, for a construc-
tive criticism of p-values.

We start description of some important testing procedures by first dis-
cussing testing for the normal mean.

9.5 Testing the Normal Mean

Testing the normal mean is arguably the most important and fundamental
statistical test. In this testing, we will distinguish between two cases de-
pending on whether the population variance is known in advance (z-test)
or not known (t-test). We will start with the case of known variance. Sce-
narios in which the population mean is unknown but the population vari-
ance would be known are not common, but not unrealistic. For example, a
particular measuring equipment generating data has well-known precision
characteristics specified by the factory but is not well calibrated.
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9.5.1 z-Test

Let us assume that we are interested in testing the null hypothesis H0 : µ =
µ0 on the basis of a sample X1, . . . , Xn from a normal distribution N (µ,σ2),
where the variance σ2 is assumed known.

We know (page 248) that X ∼ N (µ,σ2/n) and that Z = X−µ0
σ/
√

n
has the

standard normal distribution if the null hypothesis is true, that is, if µ = µ0.
This statistic, Z, is used to test H0, and the test is called a z-test. Statistic Z
is compared to quantiles of the standard normal distribution.

The test can be performed using either (i) the rejection region or (ii) the
p-value.

(i) The rejection region depends on the level α and the alternative hy-
pothesis. For one-sided hypotheses, the tail of the rejection region follows
the direction of H1. For example, if H1 : µ > 2 and the level α is fixed,
the rejection region is [z1−α,∞). For the two-sided alternative hypothesis
H1 : µ 6= µ0 and significance level of α, the rejection region is two-sided,
(−∞,zα/2]∪ [z1−α/2,∞). Since the standard normal distribution is symmet-
ric about 0 and zα/2 =−z1−α/2, the two-sided rejection region is sometimes
given as (−∞,−z1−α/2] ∪ [z1−α/2,∞).

The test is now straightforward. If statistic Z, calculated from the obser-
vations X1, . . . , Xn, falls within the rejection region, the null hypothesis is
rejected. Otherwise, we say that hypothesis H0 is not rejected.

(ii) As discussed earlier, the p-value gives a more refined analysis in test-
ing than the “reject–do not reject” decision rule. The p-value is the probabil-
ity of the rejection-region-like area cut by the observed Z (and, in the case
of a two-sided alternative, by −Z and Z) where the probability is calculated
by the distribution specified by the null hypothesis.

The following table summarizes the z-test for H0 : µ = µ0 and Z = X−µ0
σ/
√

n
:

Alternative α-level rejection region p-value (MATLAB)
H1 : µ > µ0 [z1−α,∞) 1-normcdf(z)

H1 : µ 6= µ0 (−∞,zα/2] ∪ [z1−α/2,∞) 2*normcdf(-abs(z))

H1 : µ < µ0 (−∞,zα] normcdf(z)

9.5.2 Power Analysis of a z-Test

The power of a test is found against a specific alternative, H1 : µ = µ1. In
a z-test, the variance σ2 is known and µ0 and µ1 are specified by their
respective H0 and H1.
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The power is the probability that a z-test of level α will detect the effect

of size e and, thus, reject H0. The effect size is defined as e= |µ0−µ1|
σ . Usually,

µ1 is selected such that effect e has a medical or engineering relevance.

Power of the z-test for H0 : µ = µ0 when µ1 is the actual mean.
• One-sided test:

1− β = Φ

(
zα +

|µ0 − µ1|
σ/
√

n

)
= Φ

(
−z1−α +

|µ0 − µ1|
σ/
√

n

)
.

• Two-sided test:

1− β = Φ

(
−z1−α/2 +

(µ0 − µ1)

σ/
√

n

)
+ Φ

(
−z1−α/2 +

(µ1 − µ0)

σ/
√

n

)

≈ Φ

(
−z1−α/2 +

|µ0 − µ1|
σ/
√

n

)
.

Typically the sample size is selected prior to the experiment. For exam-
ple, it may be of interest to decide how many respondents to interview in
a poll or how many tissue samples to process. We already selected sample
sizes in the context of interval estimation to achieve a given interval size
and confidence level.

In a testing setup, consider a problem of testing H0 : µ = µ0 using X
from a sample of size n. Let the alternative have a specific value µ1, i.e.,
H1 : µ = µ1(> µ0). Assume a significance level of α = 0.05. How large should
n be so that the power 1− β is 0.90?

Recall that the power of a test is the probability that a false null will be
rejected, P(reject H0|H0 false). The null is rejected when X > µ0 + 1.645 ·

σ√
n

. We want the power of 0.90 leading to P(X > µ0 + 1.645 · σ√
n
|µ = µ1) =

0.90, that is,

P

(
X− µ1

σ/
√

n
>

µ0 − µ1

σ/
√

n
+ 1.645

)
= 0.9.

Since P(Z > −1.282) = 0.9, it follows that µ0−µ1
σ/
√

n
= 1.282 − 1.645⇒ n =

8.567·σ2

(µ1−µ0)2 .
In general terms, if we want to achieve the power 1− β within the sig-

nificance level of α for the alternative µ = µ1, we need n ≥ (z1−α+z1−β)
2σ2

(µ0−µ1)2

observations. For two-sided alternatives α is replaced by α/2.
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The sample size for fixed α, β, σ, µ0, and µ1 is

n =
σ2

(µ0 − µ1)2 (z1−α + z1−β)
2,

where σ is either known, estimated from a pilot experiment, or elicited
from experts. If the alternative is two-sided, then z1−α is replaced by
z1−α/2. In this case, the sample size is approximate.

If σ is not known and no estimate exists, one can elicit the effect size, e =
|µ0 − µ1|/σ, directly. This number is the distance between the competing
means in units of σ. For example, for e = 1/2 we would like to find a sample
size such that the difference between the true and postulated mean equal
to σ/2 is detectable with a probability of 1− β.

9.5.3 Testing a Normal Mean When the Variance Is Not
Known: t-Test

To test a normal mean when the population variance is unknown, we use
the t-test. We are interested in testing the null hypothesis H0 : µ = µ0 against
one of the alternatives H1 : µ >, 6=,< µ0 on the basis of a sample X1, . . . , Xn

from the normal distribution N (µ,σ2), where the variance σ2 is unknown.
If X and s are the sample mean and standard deviation, then under

H0, which states that the true mean is µ0, the statistic t =
X−µ0
s/
√

n
has a t-

distribution with n − 1 degrees of freedom; see arguments on page 297.

The test can be performed either using (i) the rejection region or (ii) the
p-value. The following table summarizes the test.

Alternative α-level rejection region p-value (MATLAB)
H1 : µ > µ0 [tn−1,1−α,∞) 1-tcdf(t, n-1)

H1 : µ 6= µ0 (−∞, tn−1,α/2] ∪ [tn−1,1−α/2,∞) 2*tcdf(-abs(t),n-1)

H1 : µ < µ0 (−∞, tn−1,α] tcdf(t, n-1)

It is sometimes argued that the z-test and the t-test are an unnecessary
dichotomy and that only the t-test should be used. The population variance
in the z-test is assumed “known,” but this can be too strong an assumption.
Most of the time when µ is not known, it is unlikely that the researcher
would have definite knowledge about the population variance. Also, the
t-test is more conservative and robust to deviations from normality than
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the z-test. However, the z-test has an educational value since the testing
process and power analysis are easily formulated and explained. Moreover,
when the sample size is large, say, larger than 100, the z− and t-tests are
practically indistinguishable, due to the Central Limit Theorem.

Example 9.5. The Moon Illusion. Kaufman and Rock (1962) stated
that the commonly observed fact that the moon near the horizon appears
larger than does the moon at its zenith (highest point overhead) could be
explained on the basis of the greater apparent distance of the moon when at
the horizon. The authors devised an apparatus that allowed them to present
two artificial moons, one at the horizon and one at the zenith. Subjects
were asked to adjust the variable horizon moon to match the size of the
zenith moon, and vice versa. For each subject the ratio of the perceived
size of the horizon moon to the perceived size of the zenith moon was
recorded. A ratio of 1.00 would indicate no illusion, whereas a ratio other
than 1.00 would represent an illusion. For example, a ratio of 1.50 would
mean that the horizon moon appeared to have a diameter 1.50 times that
of the zenith moon. Evidence in support of an illusion would require that
we reject H0 : µ = 1.00 in favor of H1 : µ > 1.00.

Obtained ratio: 1.73 1.06 2.03 1.40 0.95 1.13 1.41 1.73 1.63 1.56

For these data,

x = [1.73, 1.06, 2.03, 1.40, 0.95, 1.13, 1.41, 1.73, 1.63, 1.56];

n = length(x)

t = (mean(x)-1)/(std(x)/sqrt(n))

% t= 4.2976

crit = tinv(1-0.05, n-1)

% crit=1.8331. RR = (1.8331, infinity)

pval = 1-tcdf(t, n-1)

% pval = 9.9885e-004 < 0.05

As evident from the MATLAB output, the data do not support H0, and H0
is rejected.

A Bayesian solution implemented in WinBUGS is provided next. Each
parameter in a Bayesian model should be assigned a prior distribution.
Here we have two parameters, the mean µ, which is the population ra-
tio, and σ2, the unknown variance. The prior on µ is normal with mean 0
and variance 1/0.00001 = 100,000. We also restricted the prior to be on the
nonnegative domain (since negative ratios are not possible) by WinBUGS
option mu∼dnorm(0,0.00001)I(0,). Such a large variance makes the normal
prior essentially flat over µ ≥ 0. This means that our prior opinion on µ is
vague, and the adopted prior is noninformative.

The prior on the precision, 1/σ2, is gamma with parameters 0.0001 and
0.0001. As we argued in Example 8.16, this selection of hyperparameters
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makes the gamma prior essentially flat, and we are not injecting any prior
information about the variance.

model{

for (i in 1:n){

X[i] ~ dnorm(mu, prec)

}

mu ~ dnorm(0, 0.00001) I(0, )

prec ~ dgamma(0.0001, 0.0001)

sigma <- 1/sqrt(prec)

#TEST

prH1 <- step(mu - 1)

}

DATA

list(n=10, X=c(1.73, 1.06, 2.03, 1.40, 0.95,

1.13, 1.41, 1.73, 1.63, 1.56) )

INITS

list(mu = 0, prec = 1)

mean sd MC error val2.5pc median val97.5pc start sample

mu 1.463 0.1219 1.26E-4 1.219 1.463 1.707 1001 100000
prH1 0.999 0.03115 3.188E-5 1.0 1.0 1.0 1001 100000
sigma 0.3727 0.101 1.14E-4 0.2344 0.354 0.6207 1001 100000

�

Note that the MCMC output in the previous example produced P(H0) =
0.001 and P(H1) = 0.999 and the Bayesian solution agrees with the classical.
Moreover, the posterior probability of hypothesis H0 of 0.001 is quite close
to the p-value of 0.000998, which is often the case when the priors in the
Bayesian model are noninformative. Note also that posterior probability of
H1 was estimated by the relative frequency of step(mu-1), that is, by the pro-
portion of cases in which mu-1 resulted as positive in MCMC simulations.

Example 9.6. Hypersplenism and White Blood Cell Count. Hypersplenism
is a disorder that causes the spleen to rapidly and prematurely destroy
blood cells. In the general population the count of white blood cells per
mm3 is normal with a mean of 7,200 and standard deviation of σ = 1,500.

It is believed that hypersplenism decreases the leukocyte count. In a
sample of 16 persons affected by hypersplenism, the mean white blood
cell count was found to be X = 5,213. The sample standard deviation was
s = 1,682.

Using WinBUGS, find the posterior probability of H1 and estimate the
mean and variance in the affected population. The program in WinBUGS
will operate on the summaries X and s since the original data are not avail-
able. The sample mean is normal and the precision (reciprocal of the vari-
ance) of the mean is n times the precision of a single observation. In this
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case, knowledge of the population standard deviation σ will guide the set-
ting of an informative prior on the precision. To keep the numbers man-
ageable, we will express the counts in 1,000’s, and X and s will be coded as
5.213 and 1.682, respectively. Since s = 1.682, s2 = 2.8291, and prec = 0.3535,
it is tempting to set the prior on the precision as precx∼dgamma(0.3535,1) or
precx∼dgamma(3.535,10) since the mean of these priors will match the ob-
served precision. However, this would be a “data-built” prior in the spirit
of the empirical Bayes approach. We will use the fact that in the popu-
lation σ was 1.5 and we will elicit the prior precx∼dgamma(4.444,10) since
1/1.52 = 0.4444.

model {

precxbar <- n * precx

xbar ~ dnorm(mu, precxbar)

mu ~ dnorm(0, 0.0001) I(0, )

# sigma = 1.5, s^2 = 2.25, prec = 0.4444

# X gamma(a,b) -> EX=a/b, Var X = a/b^2

precx ~ dgamma(4.444, 10 )

indh1 <- step(7.2 - mu)

sigx <- 1/sqrt(precx)

}

DATA

list(xbar = 5.213, n=16)

INITS

list(mu=1.000, precx=1.000)

mean sd MC error val2.5pc median val97.5pc start sample

indh1 0.9997 0.01643 3.727E-5 1.0 1.0 1.0 1001 200000
mu 5.212 0.4263 9.842E-4 4.367 5.212 6.064 1001 200000
sigx 1.644 0.4486 0.001081 1.032 1.561 2.749 1001 200000

Note that the posterior probability of H1 is 0.9997 and this hypothesis is
a clear winner.
�

9.5.4 Power Analysis of a t-Test

When an experiment is planned, the data are not available. Even if the vari-
ance is unknown, as in the case of a t-test, it would be elicited. Alternatively,
the absolute difference |µ0 − µ1| that we want to consider as significant can
be expressed in units of standard deviation, so an explicit knowledge of
σ may not be necessary. Thus, at the pre-experimental stage, the power
analysis applicable to the z-test is also applicable to the prospective t-test.
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Once the data are available and the test is performed, the sample mean
and sample variance are available, and it becomes possible to assess the
power retrospectively. We have already discussed controversies surround-
ing retrospective power analyses.

In a retrospective evaluation of the power, it is not recommended to re-
place |µ0 − µ1| by |µ0 − X|, as is sometimes done, but to simply update
the elicited σ2 with the observed variance. When σ is replaced by s, the ex-
pressions for calculating the power involve t and noncentral t-distributions.
Here is an illustration.

Example 9.7. Power in the t-Test. Suppose that we are testing H0 : µ = 10
versus H1 : µ > 10, at a level α = 0.05. A sample of size n = 20 gives X = 12
and s = 5. We are interested in finding the power of the test against the
alternative H1 : µ = 13.

The exact power is P(t ∈ RR|t∼ nct(d f = n− 1,ncp = (µ1− µ0)
√

n/σ)),
since under H1, t has a noncentral t-distribution with n− 1 degrees of free-

dom and a noncentrality parameter (µ1−µ0)
√

n
σ . “RR” denotes the rejection

region.

n=20; mu0 = 10; s=5; mu1= 13; alpha=0.05;

pow1 = nctcdf( -tinv(1-alpha, n-1), n-1,-abs(mu1-mu0)*sqrt(n)/s)

% or pow1=1-nctcdf(tinv(1-alpha, n-1),n-1,abs(mu1-mu0)*sqrt(n)/s)

% pow1 = 0.8266

%

pow = normcdf(-norminv(1-alpha) + abs(mu1-mu0)*sqrt(n)/s)

% or pow = 1-normcdf(norminv(1-alpha)-abs(mu1-mu0)*sqrt(n)/s)

% pow = 0.8505

For a large sample size, the power calculated as in the z-test approxi-
mates the exact power, but from the “optimistic” side, that is, by always
overestimating it. In this MATLAB script we find a power of approx. 85%,
which in an exact calculation (as above) drops to 82.66%.

For the two-sided alternative H1 : µ 6= 10, the exact power decreases,

pow2 = nctcdf(tinv(1-alpha/2, n-1), n-1,-abs(mu1-mu0)*sqrt(n)/s) ...

-nctcdf(tinv(1-alpha/2, n-1), n-1, abs(mu1-mu0)*sqrt(n)/s)

%pow2 =0.7210

When calculation of the noncentral t CDF is not available, a good ap-
proximation for the power is

1−Φ




tn−1,α− |µ1 − µ0|
√

n/s√
1 +

t2
n−1,1−α

2(n−1)


 .
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In our example,

1-normcdf((tinv(1-alpha,n-1)- ...

(mu1-mu0)/s * sqrt(n))/sqrt(1 + (tinv(1-alpha,n-1))^2/(2*n-2)))

%ans = 0.8209

�

The summary of retrospective power calculations for the t-test us listed
below:

Power of the t-test for H0 : µ = µ0, when µ1 is the actual mean.

• One-sided test:

1− β = 1-nctcdf

(
tn−1,1−α, n− 1,

|µ1 − µ0|
s/
√

n

)
.

• Two-sided test:

1− β = nctcdf

(
tn−1,1−α/2, n− 1,

−|µ1 − µ0|
s/
√

n

)

−nctcdf

(
tn−1,1−α/2, n− 1,

|µ1 − µ0|
s/
√

n

)
.

Here nctcdf(x,df,δ) is the CDF of a noncentral t-distribution, with df
degrees of freedom and noncentrality parameter δ, evaluated at x. In
MATLAB this function is nctcdf(x,df,delta), see page 264

Example 9.8. Sample Size in t-Test. In Example 9.7 we were testing H0 :
µ = 10 versus H1 : µ > 10, at a level α = 0.05, where, for sample size n = 20
and s = 5, we found the power against the alternative H1 : µ = 13 to be
82.66%. What sample size is needed to increase this power to 95% in a
future one-sided test with the same alternative, α and s?

mu0 = 10; mu1= 13; s=5; alpha=0.05; beta=0.05;

a = @(n) nctcdf( -tinv(1-alpha, n-1), n-1,-abs(mu1-mu0)*sqrt(n)/s)-(1-beta);

ssize=fzero(a, 20) %31.4694

Thus, the sample of size 32 would ensure power of 95% in repeating the
test from Example 9.7.
�
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9.6 Testing the Multivariate Normal Mean∗

Testing in the domain of multivariate data generalizes well-known uni-
variate techniques. Conducting the univariate inference on the components
of an observed data vector is not adequate since it ignores the covariance
structure of observations. This naïve approach can lead to various biases.
For example, the tests for individual component means H0 : µ1 = 3 and
H′0 : µ2 = −1 may not be significant, while the test H′′0 : (µ1,µ2) = (3,−1)
may turn out to be significant. This is because the evidence may accumulate
across the components. On the other hand, in some situations a test on an
individual component may turn significant, while the multivariate test in-
volving that component may not be significant due to, again, the interplay
with other components. In addition to this “borrowing of strength” from
component to component, controlling the family-wise error of first kind is
built in, whereas it could represent a problem when components are tested
individually.

In this section we look at the multivariate extensions of a t-test, Hotelling’s
T-square test.

9.6.1 T-Square Test

Assume that a p-dimensional sample X1, . . . , Xn is coming from multivari-
ate normal distribution,

Xi ∼MVN p (µ,Σ) ,

where µ is the parameter of interest, and the population covariance matrix
Σ is unknown.

For some fixed µ0, the testing H0 : µ = µ0 versus H1 : µ 6= µ0 is based on
T2 statistics,

T2 = n(X − µ0)
′ S−1 (X − µ0),

where X and S are sample mean and sample covariance matrix. This statis-
tic is sometimes called the Hotelling T-square in honor of Harold Hotelling,
one of the pioneers in multivariate statistical inference. When H0 is true, the
scaled statistic n−p

p(n−1)T2 follows an F-distribution with p and n− p degrees
of freedom.
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The null hypothesis is rejected if T2 ≥ p(n−1)
n−p Fp,n−p,1−α, where

Fp,n−p,1−α is the (1− α) quantile of F-distribution with p and n − p
degrees of freedom.

A 100(1− α)% confidence region for µ consists of all such µ for which

(X − µ)′S−1(X − µ) ≤ p(n− 1)
n(n− p)

Fp,n−p,1−α.

Remark. If p = 1, we recover the standard t-statistic and CI. Indeed, note

that for t = X−µ0
s/
√

n
,

t2 =

(
X− µ0

s/
√

n

)2

= n(X− µ0)(s
2)−1(X− µ0),

which is the one-dimensional counterpart of T2. The inference is also recov-
ered since t and F distributions are connected, i.e., distributions t2

n and F1,n
coincide. The confidence regions become standard t-confidence intervals as
well, since for the quantiles, (tn,1−α/2)

2 = F1,n,1−α.

A simultaneous 100(1− α)% confidence interval for all linear combi-
nations a′µ = a1µ1 + a2µ2 + · · ·+ apµp is

[
a′X −

√
p (n− 1)

n− p
Fp,n−p,1−α

√
1
n

a′Sa ,

a′X +

√
p (n− 1)

n− p
Fp,n−p,1−α

√
1
n

a′Sa

]
.

These simultaneous bounds are true for any number of arbitrary vectors
a. By properly choosing vector a, various linear combinations of component
means can be monitored.

Example 9.9. Hook-Billed Kites. Data set bird.dat|mat|xlsxwas analyzed
by Johnson and Wichern (2002) and contains bivariate measurements on
n = 45 female hook-billed kites. The data set contains three columns: bird
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number, tail length X1, and wing length X2. A bivariate normal distribution
is assumed for (X1, X2)

′. We are interested in testing H0 : µ = (190,275)′

versus H1 : µ 6= (190,275)′.
For this data set the sample mean is X = (193.6222,279.7778)′ and

the sample covariance matrix is S =

[
120.6949 122.3460
122.3460 208.5404

]
. MATLAB script

bird.m performs the test and explores the relationship between individ-
ual and simultaneous testing.

%bird.m

load ’bird.mat’

x1 = bird(:,2); x2 = bird(:,3);

X=[x1 x2];

[n p]=size(X);

Xbar =transpose(mean(X)) %[193.6222; 279.7778]

S = cov(X)

% 120.6949 122.3460

% 122.3460 208.5404

mu0 = [190; 275];

T2 = n * (Xbar - mu0)’* inv(S) * (Xbar - mu0) %5.5431

F = (n-p)/(p*(n-1)) * T2 %2.7086

pval = 1-fcdf(F, p, n-p) %0.078

We fail to reject H0 at 5% significance level. However, if t-tests are per-
formed on the individual components, the tests are significant.

%bird.m continued

t1 = (Xbar(1)-mu0(1))/sqrt(S(1,1)/n) %2.2118

t2 = (Xbar(2)-mu0(2))/sqrt(S(2,2)/n) %2.2194

p1 = 2*tcdf(-abs(t1), n-2) %0.0323

p2 = 2*tcdf(-abs(t2), n-2) %0.0318

If instead of mu0=[190; 275] we tested for mu0=[192; 283], the significance
statements will be reversed. The T-square test will be significant, whereas
the individual t-tests will not be significant. This situation was alluded to
in the introduction of this section. The reasons for this discrepancy are
illustrated in Figure 9.2.

Here, the 95% simultaneous confidence ellipse for population mean µ =
(µ1,µ2)

′ is plotted together with individual 95% confidence intervals for µ1
and µ2.

The green dot corresponds to mu0=[190; 275] falls outside individual in-
tervals and the corresponding componentwise t-tests are both significant.
However, this point falls inside the confidence ellipse and the T-square test
is not significant.

If the test is about mu0=[192; 283], then this point (red dot) falls outside
the ellipse, but inside the individual confidence intervals.

%bird.m modified

mu0=[192; 283];
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Fig. 9.2 Comparison of simultaneous and individual 95% confidence sets. The confi-
dence ellipse contains mu0=[190; 275] (green dot); thus the individual tests are signifi-
cant but not the multivariate. For mu0=[192; 283] (red dot), the significance results are
reversed.

T2 = n * (Xbar - mu0)’* inv(S) * (Xbar - mu0) %13.5909

F = (n-p)/(p*(n-1)) * T2 %6.6410

pval = 1-fcdf(F, p, n-p) %0.0031

%

t1 = (Xbar(1)-mu0(1))/sqrt(S(1,1)/n) %0.9905

t2 = (Xbar(2)-mu0(2))/sqrt(S(2,2)/n) %-1.4968

p1 = 2*tcdf(-abs(t1), n-2) %0.3275

p2 = 2*tcdf(-abs(t2), n-2) %0.1417

�

9.6.1.1 Power Analysis for T-Square Test

Suppose that we need to find the power of T-square test for testing H0 : µ =
µ0 = (0.3,0.3)′ against the alternative H1 : µ = µ1 = (0.4,0.4)′ if the sample

size of n = 930 is planned, and elicited covariance matrix is Σ =

[
1 0.2

0.2 1

]
.

The effect size

D =
√
(µ1 − µ0)′Σ−1(µ1 − µ0).

is a multivariate analogue of Cohen’s d = |µ1− µ0|/σ, while the noncentral-
ity parameter for F statistic (connected with T2 via F = (n− p)/p T2/(n−
1),d f = (p,n− p)) is λ = n · D2.

%Power of T^2 test

sigma=[1 0.2; 0.2 1];
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n=930;

D2=[0.1; 0.1]’ * inv(sigma) * [0.1; 0.1]

%D2 = 0.01667

%effect is D = sqrt(D2) = 0.1291

lambda = n * D2 %lambda = 15.5

power=1-ncfcdf( finv(1-0.05, 2, 930-2), 2, 930-2, lambda)

%power = 0.9501

Next, we will find the sample size so that effect D = 0.2 is found signif-
icant with the power of 1− β = 0.90 for p = 2 and α = 0.05.

ssize=ceil(fzero(@(n) ncfcdf( finv(1-0.05, 2, n-2), ...

2, n-2, n*0.2^2)-(1-0.90), 1000))

%ssize = 320

The MATLAB script powerT2.m contains the calculations.

9.6.2 Test for Symmetry

In a multivariate context, tests for the equality of component means are
called tests of symmetry. Let µ = (µ1,µ2, . . . ,µp)′ be the mean ofMVN p(µ,Σ)
from which a sample X1, X2, . . . , Xn is obtained. Assume that p≥ 2.

The hypothesis of symmetry

H0 : µ1 = µ2 = · · · = µp ,

can be expressed as

H0 : Cµ = 0 versus H1 : Cµ 6= 0

where C is any (p− 1)× p matrix, of rank p− 1 (rows are linearly indepen-
dent), such that

C1 = 0, for 1 = (1,1, . . . ,1)′.

Popular choices for C are,

C =




1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

0 0 0 . . . −1 0
0 0 0 . . . 1 −1




or C =




1 −1 0 . . . 0 0
1 0 −1 . . . 0 0
1 0 0 . . . 0 0
...

1 0 0 . . . −1 0
1 0 0 . . . 0 −1




.

The test is based on
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T2 = n X
′

C′(CSC′)−1C X .

In this case,

n− (p− 1)
(p− 1) (n− 1)

T2 ∼ Fp−1,n−(p−1),

which is used for the inference.

Example 9.10. Cork Boring Data Revisited. Consider data from Exercise
2.23 consisting of the weights of cork boring for 28 trees. We will test for
the equality of component means (four directions: north, east, south, and
west). In the MATLAB file below, we show that for two valid choices of C
(rows sum up to 0) the value of the T2 statistic remains the same.

%Rao’s Cork Data

X =[ 72 66 76 77; 60 53 66 63; 56 57 64 58; 41 29 36 38; ...

32 32 35 36; 30 35 34 26; 39 39 31 27; 42 43 31 25; ...

37 40 31 25; 33 29 27 36; 32 30 34 28; 63 45 74 63; ...

54 46 60 52; 47 51 52 43; 91 79 100 75; 56 68 47 50; ...

79 65 70 61; 81 80 68 58; 78 55 67 60; 46 38 37 38; ...

39 35 34 37; 32 30 30 32; 60 50 67 54; 35 37 48 39; ...

39 36 39 31; 50 34 37 40; 43 37 39 50; 48 54 57 43];

[n p]=size(X);

Xbar = mean(X)’; S=cov(X);

%N E S W

C=[ 1 -1 -1 1; 0 0 1 -1; 1 0 -1 0 ];

T2 = n * Xbar’ * C’ * inv(C * S * C’)* C * Xbar %20.7420

pval = 1-fcdf( (n-p+1)/((p-1)*(n-1)) * T2, p-1, n-p+1) %0.0023

%invariance wrt C

C1 =[1 -1 0 0; 1 0 -1 0; 1 0 0 -1];

T2 = n * Xbar’ * C1’ * inv(C1 * S * C1’)* C1 * Xbar %20.7420

�

9.7 Testing the Normal Variances

When we discussed the estimation of the normal variance (Section 7.4.2),
we argued that the statistic (n − 1)s2/σ2 had a χ2-distribution with n −
1 degrees of freedom. The test for the normal variance is based on this
statistic and its distribution.

Suppose we want to test H0 : σ2 = σ2
0 versus H1 : σ2 >, 6=,<,σ2

0 . The test
statistic is

χ2 =
(n− 1)s2

σ2
0

.
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The testing procedure at the α level can be summarized by

Alternative α-level rejection region p-value (MATLAB)
H1 : σ > σ0 [χ2

n−1,1−α, ∞) 1-chi2cdf(chi2,n-1)

H1 : σ 6= σ0 [0, χ2
n−1,α/2] ∪ [χ2

n−1,1−α/2, ∞) 2*chi2cdf(min(chi2,1/chi2),n-1)

H1 : σ < σ0 [0, χ2
n−1,α] chi2cdf(chi2,n-1)

The power of the test against the specific alternative is the probability of
the rejection region evaluated as if H1 were a true hypothesis. For example,
if H1 : σ2 > σ2

0 , and specifically if H1 : σ2 = σ2
1 , σ2

1 > σ2
0 , then the power is

1− β = P

(
(n− 1)s2

σ2
0

≥ χ2
1−α,n−1

∣∣∣H1

)
= P

(
(n− 1)s2

σ2
1

· σ2
1

σ2
0
≥ χ2

1−α,n−1

∣∣∣H1

)

= P

(
χ2 ≥ σ2

0

σ2
1

χ2
1−α,n−1

)
,

or in MATLAB:
power=1-chi2cdf(sigmasq0/sigmasq1*chi2inv(1-alpha,n-1),n-1).

For the one-sided alternative in the opposite direction and for the two-sided
alternative, the procedure for finding the power is analogous. The sample
size necessary to achieve a preassigned power can be found by trial and
error or by using MATLAB’s function fzero.

Example 9.11. LDL-C Levels. A new handheld device for assessing choles-
terol levels in blood is presented for approval to the FDA. The variability of
measurements obtained by the device for people with normal levels of LDL
cholesterol is one of the measures of interest. A calibrated sample of size
n = 224 of serum specimens with a fixed 130-level of LDL-C is measured
by the device. The variability of measurements is assessed.

(a) If s2 = 2.47 was found, test the hypothesis that the population vari-
ance is 2 (as achieved by a clinical computerized Hitachi 717 analyzer, with
enzymatic, colorimetric detection schemes) against the one-sided alterna-
tive. Use α = 0.05.

(b) Find the power of this test against the specific alternative, H1 : σ2 =
2.5.

(c) What sample size ensures the power of 90% in detecting the effect
σ2

0 /σ2
1 = 0.8 as significant.
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n = 224; s2 = 2.47; sigmasq0 = 2; sigmasq1 = 2.5; alpha = 0.05;

%(a)

chisq = (n-1)*s2 /sigmasq0

%test statistic chisq = 275.4050.

%The alternative is H_1: sigma2 > 2

chi2crit = chi2inv( 1-alpha, n-1 )

%one sided upper tail RR = [258.8365, infinity)

pvalue = 1 - chi2cdf(chisq, n-1) %pvalue = 0.0096

%(b)

power = 1-chi2cdf(sigmasq0/sigmasq1 * chi2inv(1-alpha, n-1), n-1 )

%power = 0.7708

%(c)

ratio = sigmasq0/sigmasq1 %0.8

pf = @(n) 1-chi2cdf( ratio * chi2inv(1-alpha, n-1), n-1 ) - 0.90;

ssize = fzero(pf, 300) %342.5993 approx 343

�

9.8 Testing the Proportion

When discussing the CLT, and in particular the de Moivre theorem, we saw
that the binomial distribution can be well approximated with the normal if
n is large and np(1− p) > 5.

Suppose that we observe n Bernoulli Ber(p) random variables Y1,Y2, . . . ,Yn,
with p to be tested. The sum X = Y1 + · · · + Yn is Bin(n, p) and sample
proportion of Y’s, p̂ = X

n is the MLE of p. By the CLT, sample propor-
tion p̂ has an approximately normal distribution with mean p and variance
p(1− p)/n. This approximate normality will be used to construct the test.

Suppose that we are interested in testing H0 : p = p0 versus one of the
three possible alternatives. When H0 is true, the test statistic

Z =
p̂− p0√

p0(1− p0)/n

has approximately a standard normal distribution. The testing procedure
is summarized in the following table:

Alternative α-level rejection region p-value (MATLAB)
H1 : p > p0 [z1−α,∞) 1-normcdf(z)

H1 : p 6= p0 −∞,zα/2] ∪ [z1−α/2,∞) 2*normcdf(-abs(z))

H1 : p < p0 (−∞,zα] normcdf(z)



9.8 Testing the Proportion 407

Using the normal approximation one can derive that the power against
the specific alternative H1 : p = p1 is

1− β = Φ

[√
n|p1 − p0| − z1−α

√
p0(1− p0)√

p1(1− p1)

]
,

for the one-sided test. In the case of two-sided alternative, z1−α is replaced
by z1−α/2. The sample size needed to find the effect |p0 − p1| significant
(1 − β)100% of the time (i.e., the one-sided test would have a power of
1− β) is

n =

(√
p0(1− p0) z1−α +

√
p1(1− p1) z1−β

)2

(p0 − p1)2 .

For the two sided alternative, z1−α is replaced by z1−α/2. Note that speci-
fying only |p1 − p0| is not sufficient for sample size determination; both p0
and p1 need to be specified.

Example 9.12. Proportion of Hemorrhagic-Type Strokes among American
Indians. The study described in the American Heart Association’s news
release of September 22, 2008, included 4,507 members of 13 American In-
dian tribes in Arizona, Oklahoma, and North and South Dakota. It found
that American Indians have a stroke rate of 679 per 100,000, compared to
607 per 100,000 for African Americans and 306 per 100,000 for Caucasians.
None of the participants, ages 45 to 74, had a history of stroke when they
were recruited for the study from 1989 to 1992. Almost 60% of the volun-
teers were women.

During more than 13 years of follow-up, 306 participants suffered a first
stroke, most of them in their mid-60s when it occurred. There were 263
strokes of the ischemic type, caused by a blockage that cuts off the blood
supply to the brain, and 43 hemorrhagic (bleeding) strokes.

It is believed that in the general population one in five of all strokes is
hemorrhagic.

(a) Test the hypothesis that the proportion of hemorrhagic strokes in
the population of American Indians that suffered a stroke is lower than the
national proportion of 0.2.

(b) What is the power of the test in (a) against the alternative H1 : p =
0.15?
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(c) What sample size ensures a power of 90% in detecting p = 0.15, if H0
states p = 0.2?

Since 306× 0.2 > 10, a normal approximation can be used.

z = (43/306 - 0.2)/sqrt(0.2 *(1- 0.2)/306)

% z = -2.6011

pval = normcdf(z)

% pval = 0.0046

%(b)

p0=0.2; p1=0.15; alpha=0.05; n=306;

power = normcdf((sqrt(n)*abs(p1-p0) - ...

norminv(1-alpha)*sqrt(p0*(1-p0)))/sqrt(p1*(1-p1)) )

%0.7280

%(c)

beta = 0.1;

n=( sqrt(p0*(1-p0)) * norminv(1-alpha) + ...

sqrt(p1*(1-p1)) * norminv(1-beta) )^2/(p1-p0)^2

%497.7779 approx 498

�

9.8.1 Exact Test for Population Proportions

In the previous section we used a normal approximation to the binomial
distribution to test the population proportion via the familiar z-test. Since
we assume a binomial model for the data, it is possible (and in the case of
small np(1− p), e.g., < 5, necessary) to test for the proportion in an exact
manner.

Here we operate not with p̂ = X/n but with X that, under H0 : p = p0,
has binomial Bin(n, p0) distribution. Thus, the statistic X takes a value k
with probability

p0,n,k =

(
n

k

)
pk

0(1− p0)
n−k, k = 0,1, . . . ,n.

For the one-sided alternative, say H1 : p < p0, we find k∗ that is the
maximum k for which P(X ≤ k) ≤ α. The hypothesis H0 is rejected for X
less than or equal to k∗, that is, the rejection region is X ∈ {0,1, . . . ,k∗}. The
level of this test is α∗ = P(X≤ k∗). For the alternative H1 : p > p0 the critical
region is X ≥ k∗, where k∗ is the minimum k for which P(X ≥ k) ≤ α.

One of the difficulties in exact testing is that the significance level α∗ can
take only discrete values, since X is a discrete statistic, and none of these
discrete values may match or even be close to the preassigned significance
level α, say 0.05.
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For the two-sided alternative, H0 : p 6= p0, the rejection region is {X ≤
k∗1}∪ {X≥ k∗2}, where k∗1 ,k∗2 are selected such that P(X≤ k∗1)+P(X≥ k∗2)≤
α. The pair k∗1 ,k∗2 is not unique, however, the choice where the probabilities
of the two tails are similar (close to α/2) is preferred.

It would be helpful to look at some numbers. For example, assume that
in n = 27 trials we found X successes and are interested in testing H0 : p =
0.3 at α = 0.05. Under H0, statistic X ∼ Bin(27,0.3).

If the alternative is H1 : p> 0.3, then the test with critical region {X≥ 14}
would have the level of 1-binocdf(13-1, 27, 0.3)=0.0359. For the alternative
H1 : p < 0.3, the critical region {X ≤ 3} would have the level of binocdf(3,

27, 0.3) = 0.0202, while the test with critical region {X ≤ 4} would have the
level of binocdf(4, 27, 0.3) = 0.0591, thus slightly exceeding 0.05. The exact
α = 0.05 level test is not possible here, so the test with k∗ = 3 will be used
since 0.0202 < 0.05. We note that the exact tests could be randomized so
that any α is achieved, but this theory is beyond the scope of this text.

If, for instance, X = 5 is observed, H0 is not rejected since X > k∗ = 3.
The p-value is binocdf(5, 27, 0.3) = 0.1358.

For the two-sided alternative, H1 : p 6= 0.3, and α = 0.05, the values for
k∗1 and k∗2 are 3 and 14, respectively, since 1-binocdf(14-1, 27, 0.3) = 0.0143,
and again X is not in rejection region. For this alternative, the achieved
significance level is 0.0202 + 0.0143 = 0.0345 < 0.5. The p-value is 2*min(

binocdf(5, 27, 0.3), 1- binocdf(5-1, 27, 0.3)) = 0.2716, so H0 is not rejected.
These results are summarized in the table below where p0,n,i = (n

i )pi
0(1−

p0)
n−i are probabilities of X = i under H0.

Alternative Critical region p-value (MATLAB)
H1 : p < p0 X ≤ k∗ = maxk : ∑

k
i=0 p0,n,i ≤ α binocdf(X,n,p0)

H1 : p 6= p0 X ≤ k∗1 = maxk : ∑
k
i=0 p0,n,i ≤ α/2, or 2* min(binocdf(X,n,p0),

X ≥ k∗2 = min k : ∑
n
i=k p0,n,i ≤ α/2 1-binocdf(X-1,n,p0))

H1 : p > p0 X ≥ k∗ = min k : ∑
n
i=k p0,n,i ≤ α 1-binocdf(X-1,n,p0)

Example 9.13. Proportion of Hemorrhagic Strokes: Exact Test. In a follow-
up study discussed in Example 9.12, out of 306 participants suffering a
stroke, 43 of the strokes were of hemorrhagic type, and the rest of the is-
chemic type. We tested hypotheses H0 : p = 0.2 versus H1 : p < 0.2 at
α = 0.05 level using the normal approximation, and found a p-value of
0.0046.

The results for the exact test are summarized in the annotated MATLAB
code below:

pvalue = binocdf(43, 306, 0.20) %0.0044

k=binoinv(0.05, 306, 0.2) %k=50
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kstar = k-1; %RRegion X <= k*; k*=49

alphastar = binocdf(kstar, 306, 0.2) %alpha*=0.0445<0.05

pow=binocdf(kstar, 306, 0.15) %power against H1: p=0.15

%pow = 0.7220

Note that the exact p-value (0.0044) is quite close to the p-value obtained
by the normal approximation (0.0046). The achieved significance level α∗

is 0.0445 < 0.05. Note also that the power is 0.7220, which is slightly less
than the power found using the normal approximation. In general, power
analyses based on the normal approximation are more “optimistic.”
�

Exact Sample Size in Testing the Proportion. Let p1,n,k = (n
k)pk

1(1− p1)
n−k

be the probabilities of X = k under the precise alternative H1 : p = p1.
The power of an α-level test of H0 : p = p0 versus H1 : p = p1 for sample

size n is

n

∑
k=0

[
p1,n,k 1

(
n

∑
i=k

p0,n,i ≤ α

)]
, when H1 : p = p1 > p0,

n

∑
k=0

[
p1,n,k 1

(
k

∑
i=0

p0,n,i ≤ α

)]
, when H1 : p = p1 < p0, and

n

∑
k=0

[
p1,n,k 1

(
2 ·min

{
k

∑
i=0

p0,n,i,
n

∑
i=k

p0,n,i

}
≤ α

)]
, when H1 : p = p1 6= p0.

Here, 1 is an indicator, and p0,n,i = (n
i )pi

0(1− p0)
n−i are binomial probabili-

ties of X = i under the null hypothesis. The sample size is now determined
by increasing n until the power reaches the preassigned level of 1− β.

Example 9.14. Proportion of Hemorrhagic Strokes: Exact Power and Sam-
ple Size. In Example 9.13, we tested hypotheses H0 : p = 0.2 versus
H1 : p < 0.2 at α = 0.05 level using the exact binomial test. We also found
the exact power, against the one-sided specific alternative p = 0.15, to be
0.7220.

Here, we repeat the power calculation in a more systematic fashion
and also find the sample size necessary to achieve the power of 90% in
a prospective test of the same hypotheses, at α = 0.05 level.

n = 306; p0 = 0.2; p1 = 0.15; alpha = 0.05;

kargs = 0:n;

u = binocdf(kargs, n, p0) <= alpha; %indicator

exactpower = sum( binopdf(kargs, n, p1).*u ) %0.7220

%sample size

beta = 0.1; %preset power of 90%

exactpower = 0; n = 10;
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while exactpower < 1-beta

n=n+1;

kargs = 0:n;

ind = binocdf(kargs, n, p0) <= alpha; %indicator

exactpower = sum( binopdf(kargs, n, p1).* ind ) ;

end

disp([’samplesize = ’ num2str(n)])

%samplesize = 501

Thus, a sample of size 501 would be required to achieve the desired
power. Note that in Example 9.12, a sample size of 498 was found using nor-
mal approximation. Show that, if the test is two-sided, for the same α, p0, p1,
and n, the power would be 0.6078. Show also that, for the two-sided testing,
with the same α, p0, p1 and 1− β = 90%, the necessary sample size would
be 619. For the two-sided test the indicator is ind = 2*min(binocdf(kargs, n,

p0),1-binocdf(kargs-1, n, p0)) <= alpha;

�

9.8.2 Bayesian Test for Population Proportions

A Bayesian test for binomial proportion was already discussed in Example
9.4 on page 387.

In its simplest form, a Bayesian test requires a prior on population pro-
portion p. In Example 9.4 the prior was uniform on [0,0.1] with a point
mass at p = 0.1.

In the context of Example 9.13, a beta prior with parameters 1 and 4 is
elicited, so that the prior mean Eπ p = 1/(1 + 4) = 0.2 matches the mean
under H0. The following simple WinBUGS script conducts the test

H0 : p≤ 0.2 versus H1 : p > 0.2.

model{

X ~ dbin(p, n)

p ~ dbeta(1,4)

pH1 <- step(0.2-p)

}

DATA

list(n=306, X=43)

#Generate Inits

The output variable pH1 gives the posterior probability of H1.

mean sd MC error val2.5pc median val97.5pc start sample

p 0.1415 0.01974 1.9158E-5 0.1051 0.1407 0.1823 1001 1000000
pH1 0.9967 0.05694 5.675E-5 1.0 1.0 1.0 1001 1000000
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Since population proportions are in [0,1], typical prior on p is beta. Dis-
cussion on eliciting beta priors can be found on page 348. The following
example uses Zellner’s prior on p. Zellner’s prior is in fact a flat prior on
logit(p) and it was also discussed on page 348.

Example 9.15. eBay Story. You decided to purchase a new Orbital Shaking
Incubator for your research lab on eBay. A single seller is offering this item.
The seller has positive feedback from 223 out of 230 responders.

(a) What is the 95% credible set for the population satisfaction rate with
this seller, p?

(b) Test hypotheses (i) H′0 : p ≤ 0.98 vs. H′1 : p > 0.98 and (ii) H′′0 : 0.96≤
p ≤ 0.99 vs. H′′1 = (H′′0 )

c.

model{

Positives ~ dbin(p,n)

# Zellner’s 1/[p (1-p)] improper prior

# set as flat prior on logit

logit(p) <- eta

eta ~ dflat()

pH1prime <- step(0.98-p)

pH1second <- 1-step(p-0.96)*step(0.99-p)

}

DATA

list(n=230, Positives=223)

INITS

list(eta=0)

The output variables pH1prime and pH1second give the posterior probabili-
ties of corresponding H1’s.

mean sd MC error val2.5pc median val97.5pc start sample

eta 3.533 0.3975 4.07E-4 2.823 3.508 4.379 1001 1000000
p 0.9696 0.01129 1.153E-5 0.9439 0.9709 0.9876 1001 1000000
pH1prime 0.8222 0.3823 3.77E-4 0.0 1.0 1.0 1001 1000000
pH1second 0.1956 0.3967 4.065E-4 0.0 0.0 1.0 1001 1000000

The 95% credible set for p is [0.9439,0.9876]. The classical 95% Wald’s
confidence interval in this case is [0.9474,0.9918], which is slightly shifted
right. The posterior for p is slightly skewed to the left, indicating that sym-
metry of likelihood assumed in normal approximation biases the interval;
see Figure 9.3.

Note that H′1 and H′′0 have higher posterior probabilities, 0.8222 and
1− 0.1956, and should be favored.
�

The following example emphasizes the conditional nature of Bayesian
inference and its conformity to the likelihood principle, which states that all
information about the experimental results are summarized only in the
likelihood.
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Fig. 9.3 Output from ebaystory0.odc. Posterior distribution for p appears slightly
skewed to the left indicating that Wald type confidence intervals are biased. The bot-
tom two bar-plots represent the posterior probabilities of hypotheses H′0, H′1 and H′′0 , H′′1 ,
respectively.

Example 9.16. Savage’s Disparity. A Bayesian inference is based on data
observed and not on data that could possibly be observed, or on the manner
in which the sampling was conducted. This is the crux of the likelihood
principle.

This is not the case in classical testing, and the argument first put forth
by Jimmie Savage at the Purdue Symposium in 1962 emphasizes the differ-
ence.

Suppose a coin is flipped 12 times and 9 heads and 3 tails are obtained.
Let p be the probability of heads. We are interested in testing whether the
coin is fair against the alternative that it is more likely to come heads up,
or

H0 : p = 1/2 versus H1 : p > 1/2.

The p-value for this test is the probability that one observes 9 or more
heads if the coin is fair, that is, when H0 is true.

Consider the following two scenarios:
(a) Suppose that the number of flips n = 12 was decided a priori. Then

the number of heads X is binomial and under H0 (fair coin) the p-value is

P(X ≥ 9) = 1−∑
8
k=0 (

12
k )pk(1− p)12−k = 1− binocdf(8,12,0.5) = 0.0730.

At a 5% significance level H0 is not rejected.
(b) Suppose that the flipping is carried out until 3 tails have appeared.

Let us call tails “success” and heads “failures.” Then, under H0, the number
of failures (heads) Y is a negative binomial NB(3,1/2) and the p-value is
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P(Y ≥ 9) = 1−∑
8
k=0 (

3+k−1
k )(1− p)3 pk = 1− nbincdf(8,3,1/2) = 0.0327.

At a 5% significance level H0 is rejected.
Thus, two Fisherian tests recommend opposite actions for the same data

simply because of how the sampling was conducted.
Note that in both (a) and (b) the likelihoods are proportional to p9(1−

p)3, and for a fixed prior on p there is no difference in any Bayesian infer-
ence.

Edwards et al. (1963, p. 193) note “. . . the rules governing when data col-
lection stops are irrelevant to data interpretation. It is entirely appropriate
to collect data until a point has been proven or disproven, or until the data
collector runs out of time, money, or patience.”
�

9.9 Multiplicity in Testing, Bonferroni Correction, and False
Discovery Rate

Recall that when testing a single hypothesis H0, a type I error is made if
it is rejected, when it is actually true. The probability of making a type I
error in a test is usually controlled to be smaller than a certain level of α,
typically equal to 0.05.

When there are several null hypotheses, H01, H02, . . . , H0m, and all of
them are tested simultaneously, one may want to control the type I error at
some level α as well. In this scenario, a type I error is then made if at least
one true hypothesis in the family of hypotheses being tested is rejected. Be-
cause it pertains to the family of hypotheses, this significance level is called
the familywise error rate (FWER).

If the hypotheses in the family are independent, then

FWER = 1− (1− αi)
m,

where FWER and αi are overall and individual significance levels, respec-
tively.

For arbitrary, possibly dependent, hypotheses, the Bonferroni inequality
(page 415) translates to

FWER≤ mαi.

Suppose m = 15 tests are conducted simultaneously. For an individual
αi of 0.05, the FWER is 1− 0.9515 = 0.5367. This means that the chance of
claiming a significant result when there should not be one is larger than
1/2. For possibly dependent hypotheses, the upper bound of FWER in-
creases to 0.75.
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Bonferroni Correction: To control FWER≤ α, one should re-
ject all H0i among H01, H02, . . . , H0m for which the p-value is
found smaller than α/m.

Thus, if for n = 15 arbitrary hypotheses we want an overall significance
level of FWER≤ 0.05, then the individual test levels should be set to 0.05/15
= 0.0033.

Testing for significance with gene expression data from DNA microarray
experiments involves simultaneous comparisons of hundreds or thousands
of genes, and controlling the FWER by the Bonferroni method would re-
quire very small individual αis. Yet, setting such small α levels decreases
the power of individual tests and many false H0 are not rejected. Therefore
the Bonferroni correction is considered by many practitioners as overly con-
servative. Some call it a “panic approach.”

Remark. If, in the context of interval estimation, k simultaneous interval
estimates are desired with an overall confidence level (1 − α)100%, then
each interval can be constructed with a confidence level (1− α/k)100%,
and the Bonferroni inequality would ensure that the overall confidence is
at least (1− α)100%.

Bonferroni–Holm Method. The Bonferroni–Holm method is an iterative
procedure in which individual significance levels are adjusted to increase
power and still control the FWER. One starts by ordering the p-values of all
tests for H01, H02, . . . , H0m and then compares the smallest p-value to α/m.
If that p-value is smaller than α/m, then one should reject that hypothesis
and compare the second ranked p-value to α/(m − 1). If this hypothesis
is rejected, one should proceed to the third ranked p-value and compare
it with α/(m− 2). This should be continued until the hypothesis with the
smallest remaining p-value cannot be rejected. At this point the procedure
stops and all hypotheses that have not been rejected at previous steps are
retained.

Let H(1), H(2), . . . , H(m) correspond to ordered p-values
p(1), p(2), . . . , p(m). For a given α, find minimum k such that

p(k) >
α

m + 1− k
.

Reject hypotheses H(1), . . . , H(k−1), and keep H(k), . . . , H(m).
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To better see this, let us assume that five hypotheses are to be tested with
a FWER of 0.05. The five p-values are 0.09, 0.01, 0.04, 0.012, and 0.004. The
smallest of these is 0.004. Since this is less than 0.05/5, hypothesis four is
rejected. The next smallest p-value is 0.01, which is also smaller than 0.05/4.
So this hypothesis is also rejected. The next smallest p-value is 0.012, which
is smaller than 0.05/3, and this hypothesis is rejected. The next smallest
p-value is 0.04, which is not smaller than 0.05/2. Therefore, the hypotheses
with p-values of 0.004, 0.01, and 0.012 are rejected while those with p-values
of 0.04 and 0.09 are not rejected.

False Discovery Rate. The false discovery rate paradigm (Benjamini and
Hochberg, 1995) considers the proportion of falsely rejected null hypothe-
ses (false discoveries) among the total number of rejections.

Controlling the expected value of this proportion, called the false dis-
covery rate (FDR), provides a useful alternative that addresses low-power
problems of the traditional FWER methods when the number of tested hy-
potheses is large. The test statistics in these multiple tests are assumed to
be independent or positively correlated. Suppose that we are looking at
the result of testing m hypotheses, among which m0 are true. In the table
that follows, V denotes the number of false rejections, and the FWER is
P(V ≥ 1) :

H0 not rejected H0 rejected Total
H0 true U V m0
H1 true T S m1

Total W R m

If R denotes the number of rejections (declared significant genes, discov-
eries), then V/R, for R > 0, is the proportion of false rejected hypotheses.
The FDR is

E

(
V

R

∣∣∣R > 0
)

P(R > 0).

Let p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered, observed p-values for the m
hypotheses to be tested. Algorithmically, the FDR method finds k such that

k = max
{

i|p(i) ≤ (i/m)α
}

. (9.4)

The FDR is controlled at the α level if the hypotheses corresponding to
p(1), . . . , p(k) are rejected. If no such k exists, no hypothesis from the family
is rejected. When the test statistics in the multiple tests are possibly nega-
tively correlated as well, the FDR is modified by replacing α in (9.4) with
α/(1 + 1/2 + · · ·+ 1/m). The following MATLAB script ( FDR.m) finds the
critical p-value p(k). If p(k) = 0, then no hypothesis is rejected.

function pk = FDR(p,alpha)
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%Critical p-value pk for FDR <= alpha.

%All hypotheses with p-value less than or equal

%to pk are rejected.

%if pk = 0 no hypothesis is to be rejected

m = length(p); %number of hypotheses

po = sort(p(:)); %ordered p-values

i = (1:m)’; %index

pk = po(max(find( po < i./m * alpha)));

%critical p-value

if ( isempty(pk)==1 )

pk=0;

end

Suppose that we have 1,000 hypotheses and all hypotheses are true.
Then their p-values represent a random sample from the uniform U (0,1)
distribution. About 50 hypotheses would have a p-value of less than 0.05.
However, for reasonable FDR levels (0.05–0.2) p(k) = 0, as it should be since
we do not want false discoveries.

p = rand(1000,1);

[FDR(p, 0.05), FDR(p, 0.2), FDR(p, 0.6), FDR(p, 0.92)]

%ans = 0 0 0.0022 0.0179

9.10 Exercises

9.1. Public Health. A manager of public health services in an area down-
wind of a nuclear test site wants to test the hypothesis that the mean
amount of radiation in the form of strontium-90 in the bone marrow
(measured in picocuries) for citizens who live downwind of the site does
not exceed that of citizens who live upwind from the site. It is known
that “upwinders” have a mean level of strontium-90 of 1 picocurie. Mea-
surements of strontium-90 radiation for a sample of n = 16 citizens who
live downwind of the site were taken, giving X = 3. The population stan-
dard deviation is σ = 4. Assume normality and use a significance level
of α = 0.05.
(a) State H0 and H1.
(b) Calculate the appropriate test statistic.
(c) Determine the critical region of the test.
(d) State your decision.
(e) What would constitute a type II error in this setup? Describe this in
one sentence.

9.2. Testing IQ. We wish to test the hypothesis that the mean IQ of the
students in a school system is 100. Using σ = 15, α = 0.05, and a sample
of 25 students the sample value X is computed. For a two-sided test find:
(a) The range of X for which we would not reject the hypothesis.
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(b) If the true mean IQ of the students is 105, find the probability of
falsely not rejecting H0 : µ = 100.
(c) What are the answers in (a) and (b) if the alternative is one-sided,
H1 : µ > 100?

9.3. Bricks. A purchaser of bricks suspects that the quality of bricks is de-
teriorating. From past experience, the mean crushing strength of such
bricks should be 400 pounds. A sample of n = 100 bricks yields a mean
of 395 pounds and standard deviation of 20 pounds.
(a) Test the hypothesis that the mean quality has not changed against the
alternative that it has deteriorated. Choose α = 0.05.
(b) What is the p-value for the test in (a)?
(c) Suppose that the producer of the bricks contests your findings in (a)
and (b). Their company suggests that you construct the 95% confidence
interval for µ with a total length of no more than 4. What sample size is
needed to construct such a confidence interval?

9.4. Soybeans. According to advertisements, a strain of soybeans planted
on soil prepared with a specific fertilizer treatment has a mean yield of
500 bushels per acre. Fifty farmers planted the soybeans. Each used a 40-
acre plot and reported the mean yield per acre. The mean and variance
for the sample of 50 farms are x = 485 and s2 = 10,045. Use the p-value
for this test to determine whether the data provide sufficient evidence
to indicate that the mean yield for the soybeans is different from that
advertised.

9.5. Great White Shark. One of the most feared predators in
the ocean is the great white shark Carcharodon carcharias. Although it
is known that the great white shark grows to a mean length of 14 ft.
(record: 23 ft.), a marine biologist believes that the great white sharks
off the Bermuda coast grow significantly longer due to unusual feeding
habits. To test this claim, a number of full-grown great white sharks are
captured off the Bermuda coast, measured, and then set free. However,
because the capture of sharks is difficult, costly, and very dangerous,
only five are sampled. Their lengths are 16, 18, 17, 13, and 20 ft.
(a) What assumptions must be made in order to carry out the test?
(b) Do the data provide sufficient evidence to support the marine biolo-
gist’s claim? Formulate the hypotheses and test at a significance level of
α = 0.05. Provide solutions using both the rejection-region approach and
the p-value approach.
(c) Find the power of the test against the specific alternative H1 : µ = 17.
(d) What sample size is needed to achieve the power of 0.90 in testing
the preceding hypothesis if µ1 − µ0 = 2 and α = 0.05. Pretend that the
described experiment was a pilot study to assess the variability in data
and adopt σ = 2.5.
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(e) Provide a Bayesian solution using WinBUGS with noninformative
priors on µ and 1/σ2 (precision). Compare with results from (b) and
discuss.

9.6. Serum Sodium Levels. A data set compiled by Queen Elizabeth Hospi-
tal, Birmingham, and referenced in Andrews and Herzberg (1985), pro-
vides the results of analysis of 20 samples of serum measured for their
sodium content. The average value for the method of analysis used is
140 ppm.

140 143 141 137 132 157 143 149 118 145
138 144 144 139 133 159 141 124 145 139

Is there evidence that the mean level of sodium in this serum is different
from 140 ppm?

9.7. Weight of Quarters. The US Department of the Treasury claims that the
procedure it uses to mint quarters yields a mean weight of 5.67 g with a
standard deviation of 0.068 g. A random sample of 30 quarters yielded
a mean of 5.643 g. Use an α = 0.05 significance to test the claim that the
mean weight is 5.67 g.
(a) What alternatives make sense in this setup? Choose one sensible al-
ternative and perform the test.
(b) State your decision in terms of rejection region.
(c) Find the p-value and confirm your decision from (b).
(d) Would you change the decision if α were 0.01?

9.8. Dwarf Plants. A genetic model suggests that three-fourths of the plants
grown from a cross between two given strains of seeds will be of the
dwarf variety. After breeding 200 of these plants, 136 were of the dwarf
variety.
(a) Does this observation strongly contradict the genetic model?
(b) Construct a 95% confidence interval for the true proportion of dwarf
plants obtained from the given cross.
(c) Answer (a) and (b) using Bayesian arguments and WinBUGS.

9.9. Eggs in a Nest. The average number of eggs laid per nest each season
by the Eastern Phoebe bird is a parameter of interest. A random sam-
ple of 70 nests was examined and the following results were obtained
(Hamilton, 1990):

Number of eggs/nest 1 2 3 4 5 6
Frequency f 3 2 2 14 46 3

Test the hypothesis that the true average number of eggs laid per nest by
the Eastern Phoebe bird is equal to five versus the two-sided alternative.
Use α = 0.05.
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9.10. Penguins. A researcher is interested in testing whether the mean height
of Emperor penguins (Aptenodytes forsteri) from a small island is less than
µ = 45 in., which is believed to be the average height for the whole Em-
peror penguin population. The heights were measured of 14 randomly
selected adult birds from the island with the following results:

41 44 43 47 43 46 45 42 45 45 43 45 47 40

State the assumptions and hypotheses. Perform the test at the level α =
0.05.

9.11. Hypersplenism and White Blood Cell Count. In Example 9.6, the belief
was expressed that hypersplenism decreased the leukocyte count, so a
Bayesian test was conducted. In a sample of 16 people affected by hy-
persplenism, the mean white blood cell count per mm3 was found to be
X = 5,213. The sample standard deviation was s = 1,682.
(a) With this information, test H0 : µ = 7,200 versus the alternative H1 :
µ < 7,200 using both the rejection region and the p-value. Compare the
results with the WinBUGS output.
(b) Find the power of the test against the alternative H1 : µ = 5,800.
(c) What sample size is needed if, in a repeated study, a difference of
|µ1 − µ0| = 600 is to be detected with a power of 80%? Use the estimate
s = 1,682.

9.12. Jigsaw. An experiment with a sample of 18 nursery-school children
involved the elapsed time required to put together a small jigsaw puzzle.
The times in minutes were as follows:

3.1 3.2 3.4 3.6 3.7 4.2 4.3 4.5 4.7
5.2 5.6 6.0 6.1 6.6 7.3 8.2 10.8 13.6

(a) Calculate the 95% confidence interval for the population mean.
(b) Test the hypothesis H0 : µ = 5 against the two-sided alternative. Take
α = 10%.

9.13. Anxiety. A psychologist has developed a questionnaire for assessing
levels of anxiety. The scores on the questionnaire range from 0 to 100.
People who obtain scores of 75 and greater are classified as anxious. The
questionnaire has been given to a large sample of people who have been
diagnosed with an anxiety disorder, and scores are well described by a
normal model with a mean of 80 and a standard deviation of 5. When
given to a large sample of people who do not suffer from an anxiety
disorder, scores on the questionnaire can also be modeled as normal
with a mean of 60 and a standard deviation of 10.
(a) What is the probability that the psychologist will misclassify a
nonanxious person as anxious?
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(b) What is the probability that the psychologist will erroneously label a
truly anxious person as nonanxious?

9.14. Aptitude Test. An aptitude test should produce scores with a large
amount of variation so that an administrator can distinguish between
people with low aptitude and those with high aptitude. The standard
test used by a certain university has been producing scores with a stan-
dard deviation of 5. A new test given to 20 prospective students pro-
duced a sample standard deviation of 8. Are the scores from the new test
significantly more variable than scores from the standard? Use α = 0.05.

9.15. Rats and Mazes. Eighty rats selected at random were taught to run
through a new maze. All rats eventually succeeded in learning the maze,
and the number of trials to perfect their performance was normally dis-
tributed with a sample mean of 15.4 and sample standard deviation of 2.
Long experience with populations of rats trained to run a similar maze
shows that the number of trials to attain success is normally distributed
with a mean of 15.
(a) Is the new maze harder for rats to learn than the older one? Formulate
the hypotheses and perform the test at α = 0.01.
(b) Report the p-value. Would the decision in (a) be different if α = 0.05?
(c) Find the power of this test for the alternative H1 : µ = 15.6.
(d) Assume that the experiment above was conducted to assess the stan-
dard deviation, and the result was 2. Design a sample size for a new
experiment that will detect the difference |µ0− µ1|= 0.6 with a power of
90%. Here α = 0.01, and µ0 and µ1 are postulated means under H0 and
H1, respectively.

9.16. Hemopexin in DMD Cases I. Refer to data set dmd.dat|mat|xls from
Exercise 2.19. The measurements of hemopexin are assumed normal.
(a) Form a 95% confidence interval for the mean response of hemopexin
h in a population of all female DMD carriers (carrier=1).
Although the level of pyruvate kinase seems to be the strongest single
predictor of DMD, it is an expensive measure. Instead, we will explore
the level of hemopexin, a protein that protects the body from oxidative
damage. The level of hemopexin, in a general population of women of
comparable age, is believed to be 85.
(b) Test the hypothesis that the mean level of hemopexin in the pop-
ulation of woman DMD carriers significantly exceeds 85. Use α = 5%.
Report the p-value as well.
(c) What is the power of the test in (b) against the alternative H1 : µ1 = 89.
(d) The data for this exercise come from a study conducted in Canada.
If you wanted to replicate the test in the United States, what sample size
would guarantee a power of 99% if H0 were to be rejected whenever
the difference from the true mean was 4, (|µ0 − µ1| = 4)? A small pilot
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study conducted to assess the variability of hemopexin level estimated
the standard deviation as s = 12.
(e) Find the posterior probability of the hypothesis H1 : µ > 85 using
WinBUGS. Use noninformative priors. Also, compare the 95% credible
set for µ that you obtained with the confidence interval in (a).
Hint: The commands
%file dmd.mat should be on path

load ’dmd.mat’; hemo = dmd( dmd(:,6)==1, 3);

will distill the levels of hemopexin in carrier cases.

9.17. Haden’s Data.

In the past, the blood counts were performed manu-
ally using the hemocytometers with microscopic grid
scoring. By properly diluting blood, counting all cells
in specified squares, and multiplying by the proper
conversion factor, the number of cells per cubic mil-
limeter can be approximated.
The Coulter principle2 led to the availability of Coulter counters and
thereafter, the development of sophisticated automated blood-cell ana-
lyzers. The level of sophistication has been rising ever since.
The data set in MATLAB file haden.m comes from Haden (1923, Tables
1, 2, p. 770). It provides red blood cell count for 40 healthy men aged
18–50.

4.27 4.32 4.40 4.52 4.56 4.58 4.64 4.70 4.72 4.73
4.80 4.80 4.80 4.80 4.84 4.87 4.89 4.93 4.97 4.98
4.99 5.00 5.02 5.05 5.09 5.09 5.10 5.15 5.16 5.20
5.20 5.20 5.26 5.28 5.36 5.46 5.49 5.50 5.57 5.62

(a) Find 95% CI for the population mean.
(b) Test the hypothesis that the population mean from which Haden’s
sample was taken is 5.1, versus the alternative that it is less than 5.1.

H0 : µ = 5.1 versus H1 : µ < 5.1

Find both the rejection region and the p-value.
(c) What is the power of this test against the alternative H1 : µ = 4.9?
(d) You are to determine the sample size for Haden’s project so that a
0.05 level, two sided test rejects the null hypothesis with probability 0.95
whenever the true mean differs from 5.1 by more than 0.1. By assuming
that the population variance is σ2 = 0.16, determine the sample size that
achieves the required power.

2 The Coulter principle states that particles pulled through an orifice by an electric
current produce a change in electrical impedance that is proportional to the size of the
particle traversing the orifice. This is based on the principle that cells are relatively poor
conductors of electricity in relation to the diluent fluid.
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9.18. Retinol and a Copper-Deficient Diet. The liver is the main storage site
of vitamin A and copper. Inverse relationships between copper and vita-
min A liver concentrations have been suggested. In Rachman et al. (1987)
the consequences of a copper-deficient diet on liver and blood vitamin A
storage in Wistar rats was investigated. Nine animals were fed a copper-
deficient diet for 45 days from weaning. Concentrations of vitamin A
were determined by isocratic high-performance liquid chromatography
using UV detection. Rachman et al. (1987) observed in the liver of the
rats fed a copper-deficient diet a mean level of retinol, in micrograms/g
of liver, was X = 3.3 and s = 1.4. It is known that the normal level of
retinol in a rat liver is µ0 = 1.6.
(a) Find the 95% confidence interval for the mean level of liver retinol in
the population of copper-deficient rats. Recall that the sample size was
n = 9.
(b) Test the hypothesis that the mean level of retinol in the population of
copper-deficient rats is µ0 = 1.6 versus a sensible alternative, either one-
sided or two-sided, at the significance level α = 0.05. Use both rejection
region and p-value approaches.
(c) What is the power of the test in (b) against the alternative H1 : µ =
µ1 = 2.4? Comment.
(d) Suppose that you are designing a new, larger study in which you
are going to assume that the variance of observations is σ2 = 1.42, as
the limited nine-animal study indicated. Find the sample size so that the
power of rejecting H0 when an alternative H1 : µ = 2.1 is true is 0.80. Use
α = 0.05.
(e) Provide a Bayesian solution using WinBUGS.

9.19. Rubidium. Meltzer et al. (1973) demonstrated that there is a large vari-
ability in the amount of rubidium excreted each day, even when the
amount of potassium ingested is controlled. However, when the rubid-
ium excretion is computed as a ratio to potassium excretion, this vari-
ability is markedly diminished. Meltzer et al. concluded that the factors
that normally control potassium flux operate at the same time to control
rubidium flux.
The data consists of measurements on 17 hospitalized patients and rep-
resent the mean of naturally occurring rubidium-to-potassium ratio, in
hundreds of mEq of Ru to mEq of K.

0.028 0.032 0.031 0.041 0.028
0.039 0.042 0.036 0.037 0.029
0.048 0.037 0.037 0.044 0.039
0.029 0.038

Two published studies state that the ratio in healthy subjects is approx
µ0 = 0.036.
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(a) Assuming the normality of the ratio, test the hypothesis that popula-
tion mean µ does not significantly differ from µ0. Use α = 0.05.
(b) How does your finding in (a) agree with the 95% CI for the popula-
tion mean ratio? Is µ0 in the confidence interval?

9.20. Aniline. Organic chemists often purify organic compounds by a method
known as fractional crystallization. An experimenter wanted to prepare
and purify 5 grams of aniline. It is postulated that 5 grams of aniline
would yield 4 grams of acetanilide. Ten 5-gram quantities of aniline were
individually prepared and purified.
(a) Test the hypothesis that the mean dry yield differs from 4 grams if
the mean yield observed in a sample was X = 4.21. The population is
assumed normal with known variance σ2 = 0.08. The significance level
is set to α = 0.05.
(b) Report the p-value.
(c) For what values of X will the null hypothesis be rejected at the level
α = 0.05?
(d) What is the power of the test for the alternative H1 : µ = 3.6 at α =
0.05?
(e) If you are to design a similar experiment but would like to achieve a
power of 90% versus the alternative H1 : µ = 3.6 at α = 0.05, what sample
size would you recommended?

9.21. DNA Random Walks. DNA random walks are numerical transcriptions
of a sequence of nucleotides. The imaginary walker starts at 0 and goes
one step up (s = +1) if a purine nucleotide (A, G) is encountered, and
one step down (s =−1) if a pyramidine nucleotide (C, T) is encountered.
Peng et al. (1992) proposed identifying coding/noncoding regions by
measuring the irregularity of associated DNA random walks. A standard
irregularity measure is the Hurst exponent H, an index that ranges from
0 to 1. Numerical sequences with H close to 0 are irregular, while the
sequences with H close to 1 appear more smooth.
Figure 9.4 shows a DNA random walk in the DNA of a spider monkey
(Ateles geoffroyi). The sequence is formed from a noncoding region and
has a Hurst exponent of H = 0.61.
A researcher wishes to design an experiment in which n nonoverlapping
DNA random walks of a fixed length will be constructed, with the goal
of testing to see if the Hurst exponent for noncoding regions is 0.6.
The researcher would like to develop a test so that an effect e = |µ0 −
µ1|/σ will be detected with a probability of 1− β = 0.9. The test should
be two-sided with a significance level of α = 0.05. Previous analyses of
noncoding regions in the DNA of various species suggest that exponent
H is approximately normally distributed with a variance of approxi-
mately σ2 = 0.032. The researcher believes that |µ0 − µ1| = 0.02 is a bi-
ologically meaningful difference. In statistical terms, a 5%-level test for
H0 : µ = 0.6 versus the alternative H1 : µ = 0.6± 0.02 should have a power
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Fig. 9.4 A DNA random walk formed by a noncoding region from the DNA of a spider
monkey. The Hurst exponent is 0.61.

of 90%. The preexperimentally assessed variance σ2 = 0.032 leads to an
effect size of e = 2/3.
(a) Argue that a sample size of n = 24 satisfies the power requirements.
The experiment is conducted, and the following 24 values for the Hurst
exponent are obtained:

H =[0.56 0.61 0.62 0.53 0.54 0.60 0.56 0.59 ...

0.60 0.60 0.62 0.60 0.58 0.57 0.61 0.64 ...

0.60 0.61 0.58 0.59 0.55 0.59 0.60 0.65 ];

% [mean(H) std(H)] %%% 0.5917 0.0293

(b) Using the t-test, test H0 against the two-sided alternative at the level
α = 0.05 using both the rejection-region approach and the p-value ap-
proach.
(c) What is the retrospective power of your test? Use the formula with a
noncentral t-distribution and s found from the sample.

9.22. Binding of Propofol. Serum protein binding is a limiting factor in the
access of drugs to the central nervous system. Disease-induced modifi-
cations of the degree of binding may influence the effect of anaesthetic
drugs.
The protein binding of propofol, an intravenous anaesthetic agent that is
highly bound to serum albumin, has been investigated in patients with
chronic renal failure. Protein binding was determined by the ultrafiltra-
tion technique using an Amicon Micropartition System, MPS-1.
The mean proportion of unbound propofol in healthy individuals is 0.96,
and it is assumed that individual proportions follow a beta distribution,
Be(96,4). Based on a sample of size n = 87 patients with chronic renal
failure, the average proportion of unbound propofol was found to be
0.93 with a sample standard deviation of 0.12.
(a) Test the hypothesis that the mean proportion of unbound propofol
in a population of patients with chronic renal failure is 0.96 versus the
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one-sided alternative. Use α = 0.05 and perform the test using both the
rejection-region approach and the p-value approach. Would you change
the decision if α = 0.01?
(b) Even though the individual measurements (proportions) follow a
beta distribution, the normal theory could be used in (a). Why?

9.23. Improvement of Surgical Procedure. Refer to Example 9.4.
(a) What is the probability of the surgeon having no fatalities in treating
15 patients if the mortality rate is 10%?
(b) The surgeon claims that his new surgical technique significantly im-
proves the survival rate. Is his claim justified? Conduct the test and re-
port the p-value. Note that np0 here is small, so the z test based on
normal approximation may not be accurate.
(c) What is the minimum number of patients the surgeon needs to treat
without a single fatality in order to convince you that his procedure is
a significant improvement over the old technique? Specify your criteria
and justify your answer.
(d) Conduct the test in a Bayesian manner as in Example 9.4. Find the
posterior probability of H0 if the prior ξ on [0,0.1) is ξ(θ) = 200 θ.

9.24. Cancer Therapy. Researchers in cancer therapy often report only the
number of patients who survive for a specified period of time after treat-
ment rather than the patients’ actual survival times. Suppose that 40% of
the patients who undergo the standard treatment are known to survive
5 years. A new treatment is administered to 200 patients, and 92 of them
are still alive after a period of 5 years.
(a) Formulate the hypotheses for testing the validity of the claim that the
new treatment is more effective than the standard therapy.
(b) Test with α = 0.05 and state your conclusion; use the rejection-region
method.
(c) Perform the test by finding the p-value.
(d) What is the power of the test in (a) against the alternative H1 : p = 0.5?
(e) What sample size is needed so that effect p1 − p0 = 0.1 is found sig-
nificant in the α = 0.05 level testing with the power of 90%? As before,
p0 = 0.4.

9.25. Is the Cloning of Humans Moral? The Gallup Poll estimates that 88% of
Americans believe that cloning humans is morally unacceptable. Results
are based on telephone interviews with a randomly selected national
sample of n = 1,000 adults, aged 18 and older.
(a) Test the hypothesis that the true proportion is 0.9, versus the two-
sided alternative, based on the Gallup data. Use α = 0.05.
(b) Does 0.9 fall in the 95% confidence interval for the proportion?
(c) What is the power of this test against the alternative H1 : p = 0.85?
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9.26. Smoking Illegal? In a recent Gallup poll of Americans, fewer than a
third of respondents thought smoking in public places should be made
illegal, a significant decrease from the 39% who thought so in 2001.
The question used in the poll was: Should smoking in all public places be
made totally illegal? In the poll, 497 people responded and 154 answered
yes. Let p be the proportion of people in the US voting population sup-
porting the idea that smoking in public places should be made illegal.
(a) Test the hypothesis H0 : p = 0.39 versus the alternative H1 : p < 0.39
at the level α = 0.05.
(b) What is the 90% confidence interval for the unknown population
proportion p?

9.27. Spider Monkey DNA. An 8,192-long nucleotide sequence segment
taken from the DNA of a spider monkey (Ateles geoffroyi) is provided
in the file dnatest.m.
(a) Find the relative frequency of adenine p̂A as an estimator of the over-
all population proportion, pA.
(b) Find a 99% confidence interval for pA and test the hypothesis H0 :
pA = 0.2 versus the alternative H1 : pA > 0.2. Use α = 0.05.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch9.Testing/

bayestestprecise.m, bird.m, ConfidenceEllipse.m, corkraotest.m,

dnarw.m, dnatest.m, exactpowerprop.m, FDR.m, hemopexin1.m, hemoragic.m,

hypersplenism.m, LDLCLevels.m, moon.m, powerT2.m, powers.m, SBB.m

bird.odc, hemopexin.odc, hemorrhagic.odc, hypersplenism.odc,

moonillusion.odc, retinol.odc, shark.odc, spikes.odc, systolic.odc

bird.dat|mat|xlsx, dnadat.mat|txt, haden.mat, spid.dat

http://statbook.gatech.edu/Ch9.Testing/
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Chapter 10

Two Samples

Given a choice between two theories, take the one which is funnier.

– Blore’s Razor

WHAT IS COVERED IN THIS CHAPTER

• Testing the Equality of Normal Means and Variances
• Bayesian Approach to a Two-Sample Problem
• Paired t-Test
• Testing the Equality of Two Proportions
• Risk Jargon: Risk Differences, Risk Ratios, and Odds Ratios
• Two Poisson Means
• Equivalence Testing

10.1 Introduction

A two-sample inference is one of the most common statistical procedures
used in practice. For example, a colloquial use of “t-test” usually refers to
the comparison of means from two independent normal populations rather
than a single-sample t-test. In this chapter we will test the equality of two
normal means for independent and dependent (paired) populations as well
as the equality of two variances and proportions. In the context of compar-
ing proportions, we will discuss the risk and odds ratios. In testing the

429
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equality of means in independent normal populations, we will distinguish
two cases: (i) when the underlying population variances are the same and
(ii) when no assumption about the variances is made. In this second case
the population variances may be different, or even equal, but simply no
assumption about their equality enters the test. Each of the tests involves
the difference or ratio of the parameters (means, proportions, variances),
and for each difference/ratio we provide the (1− α)100% confidence inter-
val. For selected tests we will include the power analysis. This chapter is
intertwined with parallel Bayesian solutions whenever appropriate.

It is important to emphasize that the normality of populations and large
samples for the proportions (for the CLT to hold) are critical for some tests.
Later in the text, in Chapter 18, we discuss distribution-free counterpart
tests that relax the assumption of normality (sign test, Wilcoxon signed-
rank test, Wilcoxon–Mann–Whitney test) at the expense of efficiency if the
normality holds.

10.2 Means and Variances in Two Independent Normal
Populations

We start with an example that motivates the testing of two population
means.

Example 10.1. Lead Exposure. It is hypothesized that blood levels of lead
tend to be higher for children whose parents work in factories that use
lead in manufacturing processes. Researchers examined lead levels in the
blood of 12 children whose parents work in a battery manufacturing fac-
tory. The results for the exposed children X11, X12, . . . , X1,12 were compared
to those of the control sample X21, X22, . . . , X2,15 consisting of 15 children se-
lected randomly from families where the parents do not work in a factory
that uses lead. It is assumed that the measurements are independent and
come from normal populations. The resulting sample means and sample
standard deviations are X1 = 0.010, s1 = 0.004, X2 = 0.006, and s2 = 0.006.

Obviously, the sample mean for the exposed children is higher than the
sample mean in the control sample. But is this difference significant?

To state the problem in more general terms, we assume that two samples
X11, X12, . . . , X1,n1 and X21, X22, . . . , X2,n2 are observed from populations
with normal N (µ1,σ2

1 ) and N (µ2,σ2
2 ) distributions, respectively. We are

interested in testing the hypothesis H0 : µ1 = µ2 versus the alternative H1 :
µ1 >, 6=,< µ2 at a significance level α.

For the lead exposure example, the null hypothesis being tested is that
the parents’ workplace has no effect on their children’s lead concentration;
that is, the two population means will be the same:

H0 : µ1 = µ2.
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Here the populations are defined as all children that are exposed or not
exposed. The alternative hypothesis H1 may be either one- or two-sided.
The two-sided alternative is simply H1 : µ1 6= µ2; the population means are
not equal, and the difference can go either way. The choice of a one-sided
hypothesis should be guided by the problem setup, and sometimes by the
observations. In the context of this example, it would not make sense to take
the one-sided alternative as H1 : µ1 < µ2, stating that the concentration in
the exposed group is smaller than that in the control. In addition, X1 = 0.010
and X2 = 0.006 are observed. Thus, the sensible one-sided hypothesis in this
context is H1 : µ1 > µ2.

There are two testing scenarios of population means that depend on an
assumption about associated population variances. .

Scenario 1: Variances unknown but assumed equal. In this case, the joint
σ2 is estimated by both s2

1 and s2
2. The weighted average of s2

1 and s2
2 with

weights w and 1− w depending on group sample sizes n1 and n2,

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

=
n1 − 1

n1 + n2 − 2
s2

1 +
n2 − 1

n1 + n2 − 2
s2

2 = ws2
1 + (1− w)s2

2,

is called the pooled sample variance, and it better estimates the population
variance than any individual s2. The square root of s2

p is called the pooled
sample standard deviation and is denoted by sp. It can be shown that when
H0 is true, that is, when µ1 = µ2, the statistic

t =
X1 − X2

sp
√

1/n1 + 1/n2
(10.1)

has a t-distribution with df = n1 + n2 − 2 degrees of freedom.

Scenario 2: No assumption about the variances (Behrens–Fisher Prob-
lem). In this case, when H0 is true, that is, when µ1 = µ2, the statistic

t =
X1 − X2√

s2
1/n1 + s2

2/n2

has an approximate t-distribution with

df =
(s2

1/n1 + s2
2/n2)

2

(s2
1/n1)2/(n1 − 1) + (s2

2/n2)2/(n2 − 1)
(10.2)
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degrees of freedom. This is a special case of the so-called Welch–Satterthwaite
formula, which approximates the degrees of freedom for a linear combi-
nation of chi-square random variables (Satterthwaite, 1946; Welch, 1948).
When no assumptions about population variances are made, the two sam-
ple t-test is often refereed to as the Welch–Satterthwaite test.

For both scenarios:

Alternative α-level rejection region p-value
H1 : µ1 > µ2 [td f ,1−α,∞) 1-tcdf(t, df)

H1 : µ1 6= µ2 (−∞, tdf,α/2] ∪ [td f ,1−α/2,∞) 2*tcdf(-abs(t), df)

H1 : µ1 < µ2 (−∞, td f ,α] tcdf(t, df)

with df = n1 + n2 − 2 for Scenario 1, and df given by (10.2) for Scenario 2.
When the population variances are known, the proper statistic is Z:

Z =
X1 − X2√

σ2
1 /n1 + σ2

2 /n2

,

with a normal N (0,1) distribution, and the proper statistical analysis in-
volves normal quantiles as in the z-test. Given the fact that in realistic ex-
amples the variances are likely not known when the means are tested, the
z-test is mainly used as an asymptotic test. When sample sizes n1 and n2
are large, the z-statistic can be used instead of t even if the variances are
not known, due to the CLT. This approximation was more interesting in the
past when computing was expensive, but these days there is no need for
approximation; a t-test should be used for any sample size when popula-
tion variances are not known.

In Example 10.1, the variances are not known. We may assume that they
are either equal or possibly not equal based on the nature of the experiment,
sampling, and some other nonexperimental factors. However, we may also
formally test whether the population variances are equal prior to deciding
on the testing scenario.

We briefly interrupt our discussion of testing the equality of means with
an exposition on how to test the equality of variances in two normal popu-
lations.

Testing the Equality of Two Normal Variances. Selecting the “scenario”
for testing the equality of normal means requires an assumption about the
associated variances. This assumption can be guided by an additional test
for the equality of two normal variances prior to testing the means. The
variance-before-the-means testing is criticized mainly on the grounds that
tests for variances are not as robust (with respect to deviations from nor-
mality) compared to the test for means, especially when the sample sizes
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are small or unbalanced. Note, also, that failing to reject the hypothesis of
equality of variances does not imply that this hypothesis is confirmed, see
the discussion at the beginning of Section 10.9. Although we agree with
these criticisms, it should be noted that choosing the scenario seldom in-
fluences the resulting inference, except perhaps in borderline cases. See
also the discussion on page 512. When in doubt, one should not make any
assumptions about variances and should use the more conservative Sce-
nario 2.

Suppose the samples X11, X12, . . . , X1,n1 and X21, X22, . . . , X2,n2 come from
normal populations with distributions N (µ1,σ2

1 ) and N (µ2,σ2
2 ), respec-

tively. To choose the strategy for testing the means, the following test of
variances with the two-sided alternative is helpful:

H0 : σ2
1 = σ2

2 versus H1 : σ2
1 6= σ2

2 .

The testing statistic is the ratio of sample variances, F = s2
1/s2

2, that has an
F-distribution with n1 − 1 and n2 − 1 degrees of freedom when H0 is true.
The decision can be made based on a p-value that is equal to

p = 2 * min( fcdf(F, n1-1, n2-1), 1-fcdf(F, n1-1, n2-1) )

Remark. The most popular method (recommended in many texts) for
calculating the p-value in two-sided testing uses either the expression
2*fcdf(F,n1-1,n2-1) or 2*(1-fcdf(F,n1-1,n2-1)), depending on whether F<1 or
F>1. Although this approach leads to a correct p-value most of the time, it
can lead to a p-value that exceeds 1 when the observed values of F are close
to 1. This is clearly wrong since the p-value is a probability. Exercise 10.4
demonstrates such a case.

MATLAB has a built-in function, vartest2, for testing the equality of two
normal variances.

Guided by the outcome of this test, either we assume that the popula-
tion variances are the same, and for testing the equality of means, use a
t-statistic with a pooled standard deviation and df = n1 + n2 − 2 degrees
of freedom, or we use the t-test without making an assumption about the
population variances and the degrees of freedom determined by the Welch–
Satterthwaite formula in (10.2).

Next, we summarize the test for both the one- and two-sided alterna-
tives. When H0 : σ2

1 = σ2
2 and F = s2

1/s2
2, the following table summarizes

the test of the equality of normal variances against the one- or two-sided
alternatives. Let df1 = n1 − 1 and df2 = n2 − 1.
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Alternative α-level rejection region p-value
H1 : σ2

1 > σ2
2 [Fd f1,d f2,1−α, ∞) 1-fcdf(F,df1,df2)

H1 : σ2
1 6= σ2

2 [0, Fd f1,d f2,α/2] ∪ [Fd f1,d f2,1−α/2, ∞)
2*min( fcdf(F,df1,df2),

(1-fcdf(F,df1,df2))
H1 : σ2

1 < σ2
2 [0, Fd f1,d f2,α] fcdf(F,df1,df2)

The F-test for testing the equality of variances assumes independent
samples. Glass and Hopkins (1984, Sect. 13.9) give a test statistic for testing
the equality of variances obtained from paired samples with a correlation
coefficient r. The test statistic has a t-distribution with n − 2 degrees of
freedom,

t =
s2

1 − s2
2

2s1s2
√
(1− r2)/(n− 2)

,

where s2
1, s2

2 are the two sample variances, n is the number of pairs of ob-
servations, and r is the correlation between the two samples. This test was
first discussed in Pitman (1939).

Example 10.2. Lead Exposure Continued. In Example 10.1, the F-statistic
for testing the equality of variances is 0.4444 and the hypothesis of equality
of variances is not rejected at a significance level of α = 0.05; the p-value is
0.1825.

n1 = 12; X1bar = 0.010; s1 = 0.004; % Exposed

n2 = 15; X2bar = 0.006; s2 = 0.006; % Nonexposed

% Testing equality of variances

Fstat = s1^2/s2^2 % Fstat = 0.4444

% The p-value is

pval = 2*min(fcdf(Fstat,n1-1,n2-1), 1-fcdf(Fstat,n1-1,n2-1))

% pval = 0.1825

�

Back to Testing Two Normal Means. Guided by the previous test, we as-
sume that the population variances are the same, and for the original prob-
lem of testing the means, we use the t-statistic normalized by the pooled
standard deviation. The test statistic is

t =
X1 − X2

sp
√

1/n1 + 1/n2
, where sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,

and it is t-distributed with n1 + n2 − 2 degrees of freedom.
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%Lead Exposure Example Continued

sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2 )/(n1 + n2 - 2)) % sp =0.0052

df= n1 + n2 - 2 % df = 25

tstat = (X1bar - X2bar)/(sp * sqrt(1/n1 + 1/n2)) % tstat=1.9803

pvalue = 1 - tcdf(tstat, n1+n2-2) % pvalue = 0.0294

The null hypothesis of equality of the means is rejected at the 5% level
since p = 0.0294 < 0.05.

Suppose that one wants to test H0 using rejection regions. Since the alter-
native hypothesis is one-sided and right-tailed, as µ1 − µ2 > 0, the rejection
region is RR = [tn1+n2−2,1−α,∞).

tinv(1-0.05, df) %ans =1.7081

By rejection-region arguments, the hypothesis H0 is rejected since t >
tn1+n2−2,1−α; that is, the observed value of statistic t = 1.9803 exceeds the
critical value 1.7081.

Remark. Cochran and Cox (1957) proposed a method of testing two normal
means with unequal variances by which the rejection region is based on a
linear combination of t quantiles,

f1−α =
(s2

1/n1)tn1−1,1−α + (s2
2/n2)tn2−1,1−α

s2
1/n1 + s2

2/n2
,

for one-sided alternatives. For the two-sided alternative, 1− α is replaced
by 1− α/2. This test is conservative, with the achieved level of significance
smaller than the stated α.

10.2.1 Confidence Interval for the Difference of Means

Sometimes we might be interested in the (1− α)100% confidence interval
for the difference of the population means. Such confidence intervals are
easy to obtain, and they depend, as do the tests, on the assumption about
the population variances. In general, the interval is

[
X1 − X2 − td f ,1−α/2 s∗, X1 − X2 + td f ,1−α/2 s∗

]
,

where for the equal variance case, df= n1 +n2− 2 and s∗= sp
√

1/n1 + 1/n2,
and, for no assumption about the population variances case, df is the

Welch–Satterthwaite value in (10.2) and s∗ =
√

s2
1/n1 + s2

2/n2.
For the lead exposure example, the 95% confidence interval for µ1−µ2 is

[−0.00016,0.0082]:

%Lead Exposure Example Continued
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sp=sqrt(((n1-1)*s1^2 + (n2-1)*s2^2 )/(n1+n2-2)) % sp = 0.0052

df = n1 + n2 - 2 % df = 25

LB=X1bar-X2bar-tinv(0.975,df)*sp*sqrt(1/n1+1/n2) % LB =-0.00016

UB=X1bar-X2bar+tinv(0.975,df)*sp*sqrt(1/n1+1/n2) % UB = 0.0082

Note that this interval barely covers 0. A test for the equality of two
means against the two-sided alternative can also be conducted by inspect-
ing the confidence interval for their difference. For a two-sided test of level
α, one finds the (1− α)100% confidence interval, and if this interval con-
tains 0, the null hypothesis is not rejected. What may be concluded from
the interval [−0.00016,0.0082] is the following: If instead of the one-sided
alternative, that was found to be significant at the 5% level (the p-value was
about 3%), we carry out the test against the two-sided alternative, the test
of the same level would fail to reject H0.
�

MATLAB’s toolbox “stats” has a built-in function, ttest2, that performs
two sample t-tests.

10.2.2 Power Analysis for Testing Two Means

In testing H0 : µ1 = µ2 against the two-sided alternative H1 : µ1 6= µ2, for the
specific alternative |µ1 − µ2| = ∆, an approximation of power is

1− β = Φ


zα/2 +

∆√
σ2

1
n1

+
σ2

2
n2


+ 1−Φ


z1−α/2 +

∆√
σ2

1
n1

+
σ2

2
n2


 . (10.3)

If the alternative is one-sided, say H1 : µ1 > µ2, then ∆ = µ1− µ2 and the
power is

1− β = 1−Φ


z1−α −

∆√
σ2

1
n1

+
σ2

2
n2


 = Φ


zα +

∆√
σ2

1
n1

+
σ2

2
n2


 . (10.4)

The approximation is good if n1 and n2 are large, but it tends to overesti-
mate the power for small to moderate values of n1 and n2.

Equations (10.3) and (10.4) are standardly used but are somewhat ob-
solete since the noncentral t-distribution (page 264) needed for an exact
power is readily available.

We state the formulas in terms of MATLAB code:
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1 - nctcdf(tinv(1-alpha/2,n1+n2-2), ...

n1+n2-2,Delta/(sp*sqrt(1/n1+1/n2)))...

+ nctcdf(tinv(alpha/2,n1+n2-2), ...

n1+n2-2,Delta/(sp*sqrt(1/n1+1/n2)))

For the one-sided alternative H1 : µ1 > µ2 the code is

1 - nctcdf(tinv(1-alpha,n1+n2-2), ...

n1+n2-2,Delta/(sp*sqrt(1/n1+1/n2)))

In testing the equality of means in two normal populations using in-
dependent samples, H0 : µ1 = µ2, versus the one-sided alternative, the
group sample size for fixed α, β is

n ≥ 2σ2

|µ1 − µ2|2
(z1−α + z1−β)

2,

where σ2 is the common population variance. If the alternative is two-
sided, then z1−α is replaced by z1−α/2. In that case, the sample size is
approximate.

It is assumed that the group sample sizes are equal, namely, that
the total sample size is N = 2n. If the variances are not the same, then

n ≥ σ2
1 + σ2

2
|µ1 − µ2|2

(z1−α + z1−β)
2.

In the context of Example 10.1, let us find the power of the test against
the alternative H1 : µ1 − µ2 = 0.005.

The power for a one-sided α-level test against the alternative H1 : µ1 −
µ2 = 0.005(= ∆) is given in (10.4). The normal approximation is used and
s2

1 and s2
2 are plugged into the place of σ2

1 and σ2
2 .

%Lead Exposure Example Continued

power = 1-normcdf(norminv(1-0.05)-0.005/sqrt(s1^2/n1+s2^2/n2) )

%power= 0.8271

power = normcdf(norminv(0.05)+0.005/sqrt(s1^2/n1+s2^2/n2) )

%power= 0.8271

Thus, the power is roughly 83%. This is an approximation that tends to
overestimate the power. The exact power uses noncentral t calculations and
is about 81%,
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power=1-nctcdf(tinv(1-0.05,n1+n2-2),n1+n2-2,0.005/sqrt(s1^2/n1+s2^2/n2))

%power = 0.8084

Suppose that we plan to design a future experiment to test the same
phenomenon. When data are collected and analyzed, we would like for the
α = 5% test to achieve a power of 1− β = 90% against the specific alternative
H1 : µ1− µ2 = 0.005. What sample size will be necessary? Since determining
the sample size to meet a preassigned power and precision is prospective
in nature, we assume that the previous data were obtained in a pilot study
and that σ2

1 and σ2
2 are “known” and equal to the observed s2

1 and s2
2. The

sample size formula is ,

n =
(σ2

1 + σ2
2 )(z1−α + z1−β)

2

∆2 ,

which in MATLAB gives
ssize = (s1^2 + s2^2)*(norminv(0.95)+norminv(0.9))^2/(0.005^2)

% ssize = 17.8128 approx 18 each

The number of children is 18 per group if one wishes for the sample
sizes to be the same, n1 = n2. In the following section we discuss the design
with n2 = k× n1, for some k. Such designs can be justified by different costs
of sampling, where the meaning of “cost” may be more general than only
the financial one.

Example 10.3. Camera for Cataract. The following problem is modified
from Rosner (2010). A camera has been developed to detect the presence of
a cataract more accurately. Using this camera, the gray level of each point
(or pixel) in the lens of a human eye can be characterized into 256 grad-
uations, where a gray level of 1 represents black and a gray level of 256
represents white. To test the camera, photographs were taken of 12 ran-
domly selected normal eyes and 8 randomly selected cataractous eyes. The
two groups consist of different people. The median gray level of each eye
was computed over the 10,000+ pixels in the lens. The data are given below

Control 158 182 182 191 177 145 156 170 152 164 169 141
Cataract 161 140 136 171 116 149 143 152

Under the normality assumption we want to test if there is a significant
difference in the gray levels between cataractous and normal eyes. Assume
equal variances in the two populations.

(a) Can you find any statistical evidence showing that the two gray levels
are significantly different? Report the p-value.

(b) Pretend that a new study is to be conducted for which the sam-
ple size is needed. From previous experiments you adopt σ = 16 for both
groups. What sample size is needed to detect a difference of 10, in a 0.05-
level testing against the two sided alternative, with power 1− β = 80%.
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%Camera for Cataract

Control = [158, 182, 182, 191, 177, 145, 156, 170, 152, 164, 169, 141];

Cataract = [161, 140, 136, 171, 116, 149, 143, 152];

m1 = mean(Control) %165.5833

m2 =mean(Cataract) %146

n1 = 12; n2=8;

var1=var(Control) %246.4470

var2=var(Cataract) %277.1429

std1=std(Control) %15.6986

std2=std(Cataract) %16.6476

sp = sqrt( ((n1-1)*var1+ (n2-1)*var2)/(n1+n2-2) )

% sp=16.0743

t = (m1 - m2)/(sp * sqrt(1/n1 + 1/n2)) %2.6692

%(a)H1: mu_cataract ~= mu_control (two sided alternative)

pval = 2 * tcdf(-abs(t), n1+n2-2) %0.0156

%(b)Sample size

sigma=16; diff=10; alpha = 0.05; beta=0.2;

n = 2*sigma^2/diff^2 * (norminv(1-alpha/2)+norminv(1-beta))^2

%n=40.1863 approx 41.

How sure are we in the n = 41 recommendation?
We are sure that the wanted difference to be found is 10, but not sure

about the common population variance σ2. Thus, we elicit a prior on the
precision τ = 1/σ2 as gamma Ga(a,b). The number of observation used to
set σ2 = 162 was 20, so we set “effective sample size” as 2a = 20, i.e., a = 10.

Elicited precision was a/b = 1/256, leading to b = 2560. The following
WinBUGS file conducts the inference on the sample size

model{

n <- 2*pow((0.8416 + 1.96)*sigma/theta, 2) #n for 80% power

tau ~ dgamma(10, 2560)

sigma <- 1/sqrt(tau)

power <- phi(sqrt(41/2)*theta/sigma - 1.96) #power for n=41

p80 <- step(power - 0.8)

}

DATA

list(theta=10)

INITS

list(tau=1)

mean sd MC error val2.5pc median val97.5pc start sample

n 44.68 15.74 0.04698 23.41 41.66 83.57 1001 100000
p80 0.48 0.4996 0.001512 0.0 0.0 1.0 1001 100000
power 0.7766 0.1216 3.652E-4 0.501 0.7937 0.9597 1001 100000
sigma 16.64 2.789 0.008333 12.21 16.29 23.07 1001 100000

Notice that classical power analysis for which a sample of size of
n = 41 “ensured” the power of 80% is not adequate when the uncer-
tainty about σ2, or equivalently about precision τ = 1/σ2, is present. If
σ = 16 is exactly specified, then the precision is 1/256. Note that the un-
certainty about precision in the Bayesian approach was introduced by a
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gamma Ga(10,2560) prior that has a mean of 1/256 and a small variance of
10/25602 = 1.5259e− 06. Hyperparameter a was a surrogate for the effec-
tive sample size (ESS), which is to say, we value the prior information about
τ as if 10 observations had been used. See page 349 for detailed discussion
about ESS.

In the presence of uncertainty about σ, the sample size increased to 45.
Moreover, the classical sample size of 41 will achieve the power of 80% with
probability of only 0.48.

Fig. 10.1 Posterior distributions for sample size n, probability that power exceeds 80%,
the power, and sigma are estimated in WinBUGS.

�

10.2.3 More Complex Two-Sample Designs

Suppose that we are interested in testing the equality of normal population
means when the underlying variances in the two populations are σ2

1 and
σ2

2 , and not necessarily equal. Let us assume that the desired proportion
of sample sizes to be determined is k = n2/n1, whereby, n2 = k× n1. This
proportion may be dictated by the cost of sampling or by the abundance of
the populations. When equal group samples are desired, then k = 1,

n1 =
(σ2

1 + σ2
2 /k)(z1−α/2 + z1−β)

2

|µ1 − µ2|2
, n2 = k× n1. (10.5)
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As before, µ1, µ2, σ2
1 , and σ2

2 are unknown, and in the absence of any
data, we can express |µ1 − µ2|2 in units of σ2

1 + σ2
2 /k to elicit the effect size,

d2. However, if preliminary or historic samples are available, then µ1, µ2,
σ2

1 , and σ2
2 can be estimated by X1, X2, s2

1, and s2
2, respectively, and plugged

into formula (10.6).

Example 10.4. Two Amanitas. Suppose that two independent samples of
m = 12 and n = 15 spores of A. pantherina (“Panther”) and A. rubescens
(“Blusher”), respectively, are only a pilot study. It was found that the means
are X1 = 6.3 and X2 = 7.5 with standard deviations of s1 = 2.12 and s2 =
1.94. All measures are in µm. Suppose that Blushers are twice as common
as Panthers.

Determine the sample sizes for a future study that will find the dif-
ference obtained in the preliminary samples to be significant at the level
α = 0.05 with a power of 1− β = 0.90.

Here, based on the abundance of mushrooms, 2n1 = n2 and k = 2. Sub-
stituting X1, X2, s2

1, and s2
2 into (10.6), we get

n1 =
(2.122 + 1.942/2)(z0.975 + z0.9)

2

|6.3− 7.5|2 = 46.5260≈ 47.

Thus, the effect size was |6.3− 7.5|/
√

2.122 + 1.942/2 = 0.4752, which cor-
responds to d = 0.4752

√
2.

�

The “plug-in” strategy applied above is in fact quite controversial. Pro-
ponents argue that in the absence of any information on µ1, µ2, σ2

1 , and σ2
2 ,

the “natural” approach is to use their MLEs, X1, X2, s2
1, and s2

2. Opponents
say that one is looking for a sample size that will find the pilot difference
to be significant at a level α with a preassigned power. They further argue
that, due to routinely small sample sizes in pilot studies, the estimators for
population means and variances can be unreliable. This unreliability is fur-
ther compounded by the ratios and powers taken in calculating the sample
size.

10.2.4 A Bayesian Test for Two Normal Means

Bayesian testing of two means simply analyzes the posterior distribution
of the means difference, given the priors and the data. We will illustrate a
Bayesian approach for a simple noninformative prior structure.

Let X11, X12, . . . , X1,n1 and X21, X22, . . . , X2,n2 be samples from normal
N (µ1,σ2

1 ) and N (µ2,σ2
2 ) distributions, respectively. We are interested in

the posterior distribution of θ = µ2 − µ1 when σ2
1 = σ2

2 = σ2. If the priors on
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µ1 and µ2 are flat, π(µ1) = π(µ2) = 1, and the prior on the common σ2 is
noninformative, π(σ2) = 1/σ2, then the posterior of θ, after integrating out
σ2, is a t-distribution. That is to say, if X1 and X2 are the sample means and
sp is the pooled standard deviation, then

t =
θ − (X2 − X1)

sp
√

1/n1 + 1/n2
(10.6)

has a t-distribution with n1 +n2− 2 degrees of freedom (Box and Tiao, 1992,
p. 103). Compare (10.6) with the distribution in (10.1). Although the two
distributions coincide, they are conceptually different; (10.1) is the sampling
distribution for the difference of sample means, whereas (10.6) gives the
distribution for the difference of parameters.

In this case, the results of Bayesian inference coincide with frequentist
results in the estimation of θ, in the confidence/credible intervals for θ, and
in testing, as is usually the case when the priors are noninformative.

When σ2
1 and σ2

2 are not assumed equal and each has its own nonin-
formative prior, finding the posterior in the previous model coincides with
the Behrens–Fisher problem. The posterior is usually approximated (Patil’s
approximation method, as discussed by Box and Tiao, 1992, p. 107; Lee,
2004, p. 145).

When MCMC and WinBUGS are used in testing two normal means, we
may entertain more flexible models. The testing becomes quite straightfor-
ward. We provide such an example next.

Example 10.5. Microdamage in Bones. Bone is a hierarchical composite
material that provides our bodies with mechanical support and facilitates
mobility, among other functions. Figure 10.2 shows the structure of bone
tubecules. Damage in bone, in the form of microcracks, occurs naturally
during daily physiological loading. The normal bone remodeling process
repairs this microdamage, restoring, if not improving, biomechanical prop-
erties. Numerous studies have shown that microdamage accumulates as we
age due to impaired bone remodeling. This accumulation contributes to a
reduction in bone biomechanical properties such as strength and stiffness
by disrupting the local tissue matrix.

In order to better understand the role of microdamage in bone tissue
matrix properties as we age, a study was conducted in the lab of Dr. Robert
Guldberg at the Georgia Institute of Technology. The interest was in the
changes in microdamage progression in human bone between young and
old female donors.

The data showing the score of normalized damage events are shown
in the table below. There were n1 = 13 donors classified as young (≤45
years old) and n2 = 17 classified as old (>45 years old). To calculate the
microdamage progression score, the counts of damage events (extensions,
surface originations, widenings, and combinations) are normalized to the
bone area and summed.
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Fig. 10.2 Bone tubecules.

Young Old
0.790 1.264 1.374 1.327
0.944 1.410 0.601 1.325
0.958 1.160 1.029 2.012
1.011 0.179 1.264 1.026
0.714 1.183 1.130
0.256 1.856 0.605
0.406 1.899 0.870
0.135 0.486 0.820
0.316 0.813

Assuming that the microdamage scores are normally distributed, test
the hypothesis of equality of the population means, for young and old,
against the one-sided alternative. The sensible one-sided alternative here is
H1 : µ1 < µ2, or equivalently, H1 : µ1− µ2 < 0. When posterior samples from
µ1 and µ2 are obtained in WinBUGS, to assess the posterior probability of
H1, we will find the proportion of cases when θ = µ1 − µ2 is negative. This
can be done by WinBUGS function step(-theta).
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#microdamage.odc

model{

for (i in 1:n){

score[i] ~ dnorm(mu[age[i]], prec[age[i]])

}

mu[1] ~ dnorm(0, 0.00001)

mu[2] ~ dnorm(0, 0.00001)

prec[1] ~ dgamma(0.001, 0.001)

prec[2] ~ dgamma(0.001, 0.001)

theta <- mu[1] - mu[2]

r <- prec[1]/prec[2]

ph1 <- step(-theta) #ph1=1 if theta < 0

ph0 <- 1-ph1

}

DATA

list(n=30,score=c(0.790, 0.944, 0.958, 1.011, 0.714, 0.256, 0.406,

0.135, 0.316, 0.179, 1.264, 1.410, 1.160, 1.374,

0.601, 1.029, 1.264, 1.183, 1.856, 1.899, 0.486,

0.813, 0.820, 1.327, 1.325, 2.012, 1.026, 1.130,

0.605, 0.870),

age = c(1,1,1,1,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2))

INITS

list( mu = c(1,1), prec=c(1,1))

mean sd MC error val2.5pc median val97.5pc start sample

theta –0.4194 0.1771 5.438E-4 –0.7688 –0.4192 –0.071 1001 100000
mu[1] 0.7339 0.1326 4.099E-4 0.4703 0.7338 0.9968 1001 100000
mu[2] 1.153 0.118 3.685E-4 0.9188 1.153 1.389 1001 100000
ph0 0.01011 0.1 3.112E-4 0.0 0.0 0.0 1001 100000
ph1 0.9899 0.1 3.112E-4 1.0 1.0 1.0 1001 100000
r 1.244 0.7517 0.002553 0.3456 1.071 3.155 1001 100000

The posterior probability of H1 is 0.9899, so H0 is rejected. Note that
the credible interval for the difference θ is all negative, suggesting that
the two-sided test would be significant (in Bayesian terms). The ratio of
precisions (and variances) r has a credible set that contains 1; thus, the
variances could be assumed equal. This assumption has no bearing on the
Bayesian procedure, unlike the classical approach.
�

Remark. When the assumption σ2
1 = σ2

2 is not appropriate, the following
independent priors can be assumed,

π(µ1) = 1, π(µ2) = 1, π(σ2
1 ) = 1/σ2

1 , and π(σ2
2 ) = 1/σ2

2 .

This leads to posterior distributions for µ1 and µ2 which are, in fact, inde-
pendent t-distributions,
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µ1 − X1

s1/
√

n1
∼ tn1−1, and

µ2 − X2

s2/
√

n2
∼ tn2−1.

The inference about θ = µ1 − µ2 can now be carried out by Bayesian simu-
lation, as in Example 10.5.

10.3 Testing the Equality of Normal Means When Samples
Are Paired

When comparing two treatments, it is desirable that the experimental units
be as alike as possible so that the difference in responses can be attributed
chiefly to the treatment. If a number of the relevant factors (age, gender,
body mass index, presence of risk factors, etc.) vary in an uncontrolled
manner, a large portion of variability in the response could be attributed to
these factors rather than to the treatments. The concept of pairing, match-
ing, or blocking is critical to eliminate nuisance variability and obtain better
experimental designs.

Consider a sample consisting of paired elements, so that every element
from population 1 has its match in population 2. A sample from popula-
tion 1, X11, X12, . . . , X1,n, is thus paired with a sample from population 2,
X21, X22, . . . , X2,n, so that a pair (X1i, X2i) represents the ith observation.
Usually, observations in a pair are taken on the same subject, such as
pretest–posttest or placebo–treatment, or on dependent subjects, such as
brother–sister or two subjects with matching demographic characteristics.
The examples are numerous, but most applications involve subjects with
measurements taken at two different time points, during two different treat-
ments, and so on. Sometimes, especially in industrial experimental design,
this matching is called “blocking.”

It is typically assumed that the samples come from normal populations
with possibly different means µ1 and µ2 (subject to test) and with unknown
variances σ2

1 and σ2
2 . As linear combinations of normals, the differences

di = X1i − X2i are also normal,

di ∼N (µ1 − µ2,σ2
1 + σ2

2 − 2 · σ12),

where σ12 = ρσ1σ2 is the covariance, E [(X1 −EX1)(X2 −EX2)] , as in (6.2).
Let us define

t =
d

sd/
√

n
, (10.7)

where d is an average of the differences di and sd is the sample standard
deviation of the differences. Here the sample size n relates to the number
of pairs and not the total number of observations, which is 2n.



446 10 Two Samples

Note that we can express sd as
√

s2
1 + s2

2 − 2s12 , where s12 is the estima-
tor of covariance between the samples:

s12 =
1

n− 1

n

∑
i=1

(X1i − X1)(X2i − X2).

Also, s12 can be expressed as s1s2r, as on page 32.
For example, in MATLAB,

x1 = [2 4 5 6 5 7 8];

x2 = [6 8 6 5 3 4 2];

d = x1 - x2;

sd = std(d) %ans =3.6904

co=cov(x1, x2)

%co = 3.9048 -2.7857

% -2.7857 4.1429

sqrt(co(1,1) + co(2,2) - 2 * co(1,2)) %ans =3.6904

We remark that, for the paired samples problem, the assumption on
the individual population variances is not necessary because we operate
with the differences, and the population variance of the differences, σ2

d =

σ2
1 + σ2

2 − 2σ12, is unknown.
We are interested in testing the means, H0 : µ1 = µ2, versus one of the

three alternatives H1 : µ1 >, 6=,< µ2. Under H0 the test statistic t has a t-
distribution with n− 1 degrees of freedom. Thus, the test coincides with the
one-sample t-test, where the sample consists of all differences and where
H0 is the hypothesis that the mean in the population of differences is equal
to 0. The popular name for this test is the paired t-test, which can be sum-
marized as follows:

Alternative α-level rejection region p-value
H1 : µ1 > µ2 [tn−1,1−α,∞) 1-tcdf(t, n-1)

H1 : µ1 6= µ2 (−∞, tn−1,α/2] ∪ [tn−1,1−α/2,∞) 2*tcdf(-abs(t), n-1)

H1 : µ1 < µ2 (−∞, tn−1,α] tcdf(t, n-1)

We can generalize this test to testing H0 : µ1 − µ2 = d0 versus the appro-
priate one- or two-sided alternative. The only modification needed is in the
t-statistic (10.7), which now takes the form

t =
d− d0

sd/
√

n
,

and which under H0 has a t-distribution with n− 1 degrees of freedom.
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If δ = µ1 − µ2 is the difference between the population means, then the
(1− α)100% confidence interval for δ is

[
d− tn−1,1−α/2

sd√
n

, d + tn−1,1−α/2
sd√

n

]
.

Since matching (blocking) the observations eliminates the variability be-
tween the subjects entering the inference, the paired t-test is preferred to
a two-sample t-test whenever such a design is possible. For example, the
case-control study design selects one observation or experimental unit as
the “case” variable and obtains as “matched controls” one or more addi-
tional observations or experimental units that are similar to the case, except
for the variable(s) under study. When the treatments are assigned after sub-
jects have been paired, this assignment should be random to avoid any
potential systematic influences.

Example 10.6. Psoriasis. Woo and McKenna (2003) investigated the effect
of broadband ultraviolet B (UVB) therapy and topical calcipotriol cream
used together on areas of psoriasis. One of the outcome variables is the
Psoriasis Area and Severity Index (PASI), where a lower score is better.
The following table gives PASI scores for 20 subjects measured at baseline
and after 8 treatments. Do these data provide sufficient evidence, at a 0.05
level of significance, to indicate that the combination therapy reduces PASI
scores?

Subject Baseline After 8 treatments Subject Baseline After 8 treatments
1 5.9 5.2 11 11.1 11.1
2 7.6 12.2 12 15.6 8.4
3 12.8 4.6 13 9.6 5.8
4 16.5 4.0 14 15.2 5.0
5 6.1 0.4 15 21.0 6.4
6 14.4 3.8 16 5.9 0.0
7 6.6 1.2 17 10.0 2.7
8 5.4 3.1 18 12.2 5.1
9 9.6 3.5 19 20.2 4.8

10 11.6 4.9 20 6.2 4.2

The data set is available as pasi.dat|xls|mat.
We will import the data into MATLAB and test the hypothesis that the

PASI significantly decreased after treatment at a significance of α = 0.05.
We will also find a 95% confidence interval for the difference between the
population means δ = µ1 − µ2.

%psoriasis.m

baseline = [5.9 7.6 12.8 16.5 6.1 14.4 6.6 5.4 ...
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9.6 11.6 11.1 15.6 9.6 15.2 21 5.9 10 12.2 20.2 6.2];

after = [5.2 12.2 4.6 4 0.4 3.8 1.2 3.1 3.5 4.9 ...

11.1 8.4 5.8 5 6.4 0 2.7 5.1 4.8 4.2];

d = baseline - after;

n = length(d);

dbar = mean(d) %dbar = 6.3550

sdd= sqrt(var(d)) %sdd = 4.9309

tstat = dbar/(sdd/sqrt(n)) %tstat = 5.7637

% Test using RR

critpt = tinv(0.95, n-1) %critpt =1.7291

% Rejection region (1.7291, infinity). Reject H_0 since

% tstat=5.7637 falls in the rejection region.

% Test using the p-value

p_value = 1-tcdf(tstat, n-1) %p_value = 7.4398e-006

% Reject H_0 at the level alpha=0.05

% since the p_value = 0.00000744 < 0.05.

alpha = 0.05

LB = dbar - tinv(1-alpha/2, n-1)*(sdd/sqrt(n))

% LB = 4.0472

UB = dbar + tinv(1-alpha/2, n-1)*(sdd/sqrt(n))

% UB = 8.6628

% 95% CI is [4.0472, 8.6628]

Alternatively, we can use d1=after-baseline, but then we must be careful
about choosing the “direction” of the H1 and p-value calculations. In this
case, the rejection region is (−∞,−1.7291) and the 95% confidence interval
is [−8.6628,−4.0472].
A Bayesian solution is given next:

model{

for(i in 1:n){

d[i] <- baseline[i] - after[i]

d[i] ~ dnorm(mu, prec)

}

mu ~ dnorm(0, 0.00001)

pH1 <- step(mu-0)

prec ~ dgamma(0.001, 0.001)

sigma2 <- 1/prec;

sigma <- 1/sqrt(prec)

}

DATA

list(n=20,

baseline = c(5.9, 7.6, 12.8, 16.5, 6.1, 14.4, 6.6,

5.4, 9.6, 11.6 ,11.1, 15.6, 9.6, 15.2, 21, 5.9,

10, 12.2, 20.2, 6.2),

after = c(5.2, 12.2, 4.6, 4, 0.4 , 3.8, 1.2, 3.1, 3.5,

4.9, 11.1, 8.4, 5.8, 5, 6.4, 0, 2.7, 5.1, 4.8, 4.2))

INITS

list(mu=0, prec=1)
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mean sd MC error val2.5pc median val97.5pc start sample

pH1 1.0 0.0 3.162E-13 1.0 1.0 1.0 1001 100000
mu 6.352 1.169 0.003657 4.043 6.351 8.666 1001 100000
prec 0.04108 0.01339 4.498E-5 0.01927 0.03959 0.07149 1001 100000
sigma 5.142 0.8912 0.003126 3.74 5.026 7.203 1001 100000
sigma2 27.23 10.0 0.03528 13.99 25.26 51.88 1001 100000

Let us compare the classical and Bayesian solutions. The estimator for
the difference between population means is 6.3550 in the classical case and
6.352 in the Bayesian case. The standard deviations of the difference are
close as well: the classical is 4.9309/

√
20 = 1.1026 and the Bayesian is 1.169.

The 95% confidence interval for the difference is [4.0472,8.6628], while
the 95% credible set is [4.043,8.666]. The posterior probability of H1 is ap-
prox. 1, while the classical p-value (support for H0) is 0.000007439. This
closeness of classical and Bayesian results is expected given that the priors
mu∼dnorm(0,0.00001) and prec∼dgamma(0.001,0.001) are fairly noninformative.
�

Next, we provide an example in which the measurements are taken
on different subjects, but the subjects are matched with respect to some
characteristics that can influence the response. Because of such matching,
the sample is considered paired, and we say that the characteristics used
for matching are “controlled.” This is often done when the application of
both treatments to a single subject is either impossible or leads to biased
responses.

Example 10.7. IQ-Test Pairing. In a study concerning memorizing verbal
sentences, children were first given an IQ test. One of the two children with
the lowest scores was randomly assigned to a “noun-first” task, and the
other to a “noun-last” task. The two next lowest IQ children were similarly
assigned, one to a “noun-first” task, the other to a “noun-last” task, and
so on, until all children were assigned. The data, recorded as scores on a
word-recall task, are shown here, listed in order from lowest to highest IQ
score:

Noun-first 12 21 12 16 20 39 26 29 30 35 38 34
Noun-last 10 12 23 14 16 8 16 22 32 13 32 35

Let µ1 and µ2 be the population means corresponding to “noun-first”
and “noun-last” tasks. We will test the hypothesis H0 : µ1 − µ2 = 0 against
the two-sided alternative. The significance level is set to α = 5%.

Note that the two samples are not independent since the pairing is based
on an ordered joint attribute, children’s IQ scores. Thus, even though the
subjects in the two groups are different, the paired t-test is appropriate.

% IQ Test Pairing

disp(’Noun First Example’)
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nounfirst = [12 21 12 16 20 39 26 29 30 35 38 34];

nounlast = [10 12 23 14 16 8 16 22 32 13 32 35];

d=nounfirst - nounlast;

dbar = mean(d) %dbar = 6.5833

sd = std(d) %sd = 11.0409

n = length(d) %n = 12

t = dbar/(sd/sqrt(n)) %t = 2.0655

pval = 2 * (1-tcdf(t, n-1)) %pval = 0.0633

The null hypothesis is not rejected against the two-sided alternative
H1 : µ1 6= µ2 at the 5% level. However, for the one-sided alternative, in this
case H1 : µ1 > µ2, the p-value would be less than 5% and the null would be
rejected. The testing is equivalent to a one-sample t-test against the alter-
native µ1 − µ2 > 0.

pval = 1-tcdf(t, n-1) %pval = 0.0316

�

10.3.1 Sample Size in Paired t-Test

If in the paired t-test the variance of the differences, σ2
d , is known, then

under the alternative H1 : µ1 − µ2 = d∗,

Z =
d− d∗

σd/
√

n

would have a standard normal distribution. Thus, to achieve a power of
1− β by an α-level test that would reject H0 if the effect size is e = d∗/σd,
the one-sided test would require

n ≥ (z1−α + z1−β)
2

e2 (10.8)

observations.
As discussed on page 398, use of normal quantiles as in in (10.8) gives

an approximate sample size, which in fact underestimates it. More precise
calculations involve the noncentral t-distribution, as in the following exam-
ple.

Example 10.8. Sample Size for SBP Experiment. Suppose that a study is to
be designed for assessing the effect of a blood-pressure-lowering drug in
middle-aged men. Each subject will have his systolic blood pressure (SBP)
taken at the onset of the trial and after a 14-day regimen with the drug.
In previous studies of related drugs, the variance of difference between the
two measurements was found to be 300 (mmHg)2. The new drug would be
of interest if it reduced the SBP by 5 mmHg or more.
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What sample size is needed so that a 5% level test detects a difference
of 5 mmHg at least 90% of time?

Direct application of (10.8) with σ2
d = 300, d∗ = 5, α = 0.05, and β =

0.1 gives a sample size of 103 subjects. More precise calculations (using
noncentral t from page 398) give a necessary sample size of 105.

n = (300 * (norminv(0.95) + norminv(0.9))^2 )/(5^2) % 102.7662

%using nctcdf

effect = 5/sqrt(300) %0.2887

pf = @(n) 1-nctcdf( tinv(0.95, n-1), n-1, sqrt(n) * 0.2887) - 0.9

n = fzero(pf, 100) %104.1163

�

10.3.2 Difference-in-Differences (DiD) Tests

Suppose that there are two treatment groups consisting of different and
independent subjects. In each group two measurements are taken on each
subject (e.g., at two time points, before an intervention and after the inter-
vention). Let the first measurement serve as a baseline. We are interested
in the change, that is in the difference between the second measurement
and the baseline. For example, if the intervention is administration of a
blood-pressure-lowering drug, then the difference between the post- and
pre-intervention measurement can be attributed to the effect of the drug
and is of interest. The two groups may be defined by a treatment level,
demographic characteristics (gender, age, socioeconomic status), history of
hypertension, etc.

Besides investigating the effect of the drug within each group, we might
be interested in comparing the efficacy of the drug between the groups,
which amounts to compare the differences as two sets of independent ob-
servations, thus the name difference-in-differences (DiD) test.

A DiD test is a two-sample t-test performed on the differences within
the two groups.

Let the number of subjects in the first group be n1 and in the second
n2. Next, let (X11, X21), (X12, X22), . . . , (X1,n1 , X2,n1) be the pairs of measure-
ments in the group 1, and (Y11,Y21), (Y12,Y22), . . . , (Y1,n2 ,Y2,n2) be the pairs
for the group 2. We find the differences d1i = X2i−X1i, i = 1, . . . ,n1 for group
1, and d2i = Y2i − Y1i, i = 1, . . . ,n2, for group 2. The two sample t test is ap-
plied on d11, . . . ,d1,n1 and d21, . . . ,d2,n2 . The scenarios could be either with
the assumption of equal difference variances or without this assumption as
in the two versions of t-test on page 431.
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Let d1 , d2, s1, and s2 be the sample means and standard deviations of the
corresponding differences. Then, under the assumption of equal population
difference variances,

t =
d1 − d2

sp
√

1/n1 + 1/n2
,

has a t-distribution with n1 + n2 − 2 degrees of freedom. Here sp is the
pooled sample standard deviation,

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
.

The described DiD test is one of many possible tests involving the dif-
ferences. There are experimental designs that lead to paired t-tests, more
generally to ANOVA and repeated measure designs as we will see in Chap-
ter 11 involving differences of measurements.

Example 10.9. Blood Pressure and Calcium Supplementation. Lyle et al.
(1987) provide data on a randomized, double-blind, placebo-controlled
trial that was conducted to examine the effect of calcium supplementa-
tion on blood pressure in normotensive African American (n = 21) and
Caucasian (n = 54) men, aged 19 to 52 years. After a four-week baseline
period of weekly blood pressure measurement, subjects were randomly as-
signed within racial groups to either a treatment (calcium, 1500 mg/day)
or placebo group for a 12-week period. The authors state that calcium sup-
plementation, in comparison with placebo, resulted in lower mean arterial
pressure in normotensive men of both races during a 12-week period.

For the part of data consisting of n = 21 normotensive African Ameri-
can men, verify the authors’ claim at significance level α = 0.05. State your
hypotheses, select the procedure, state assumptions, and conduct the test.

Calcium Group Begin 107 110 123 129 112 111 107 112 136 102
n1 = 10 End 100 114 105 112 115 116 106 102 125 104
Placebo Group Begin 123 109 112 102 98 114 119 112 110 117 130
n2 = 11 End 124 97 113 105 95 119 114 114 121 118 133

Assume that Begin and End data for both calcium and placebo groups are
coming from normal distributions.

%lyle.m

CaBegin = [107 110 123 129 112 111 107 112 136 102];

CaEnd = [100 114 105 112 115 116 106 102 125 104];

%

PlaBegin = [123 109 112 102 98 114 119 112 110 117 130];

PlaEnd = [124 97 113 105 95 119 114 114 121 118 133];
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d1 = CaEnd-CaBegin; n1=length(d1);

d2 = PlaEnd - PlaBegin; n2=length(d2);

d1bar = mean(d1) %-5

sd1=std(d1) %8.7433

d2bar = mean(d2) %0.6364

sd2=std(d2) %5.8698

F=sd1^2/sd2^2 %2.2187

pval = 2*min(fcdf( F, n1-1, n2-1), 1-fcdf(F, n1-1, n2-1)) %0.2304

%

sdp = sqrt( ((n1-1)*sd1^2 + (n2-1)*sd2^2)/(n1+n2-2)) %7.3719

t = (d1bar - d2bar)/( sdp * sqrt(1/n1 + 1/n2)) %-1.7499

pval= tcdf(t, n1+n2-2) %0.0481

�

10.4 Two Multivariate Normal Means*

Consider now the comparison of two multivariate normal means. We are
interested in testing

H0 : µ1 = µ2 versus H1 : µ1 6= µ2,

when samples of p-dimensional observations, X11, . . . , X1n1 and X21, . . . ,
X2n2 , are obtained from two populations distributed asMVN (µ1, Σ1) and
MVN (µ2, Σ2), respectively.

The covariance matrices Σ1 and Σ2 are assumed not known and are
estimated from the samples via sample covariance matrices S1 and S2, as
in page 36. However, if they are assumed equal, Σ1 = Σ2 (= Σ), then the
estimator of the common Σ is the pooled sample covariance matrix

S =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
.

The statistic

T2 =
n1n2

n1 + n2
(X1 − X2)

′S−1(X1 − X2)

is formed. The properly scaled T2 statistic follows F-distribution with p and
n1 + n2 − p− 1 degrees of freedom, that is,

n1 + n2 − p− 1
p (n1 + n2 − 2)

T2 ∼ Fp,n1+n2−p−1.

Thus,
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H0 : µ1 = µ2 is rejected at level α when

T2 ≥ p (n1 + n2 − 2)
n1 + n2 − p− 1

Fp,n1+n2−p−1,1−α.

where Fp,n1+n2−p−1,1−α is the (1− α)-quantile of F-distribution with p
and n1 + n2 − p− 1 degrees of freedom.

When T2 is observed, the p-value is given as

p-value = P

(
F >

n1 + n2 − p− 1
p (n1 + n2 − 2)

T2
)

,

for some F being Fp,n1+n2−p−1 distributed. In MATLAB,
pval = 1-fcdf((n1+n2-p-1)/(p*(n1+n2-2))*T2, p, n1+n2-p-1).

Remark. It can be shown that for p = 1 the above procedures recover tra-
ditional univariate two sample inferences when the variances are unknown
but assumed equal.

Example 10.10. Leptoconops – Biting Flies. In Exercise 2.22, a data set con-
sisting of morphological characteristics of two species of biting flies Lep-
toconops torrens and Leptoconops carteri was analyzed. This data set con-
tains 35 multivariate observations of each species given as a structure
field leptoconops.morpho in MATLAB’s data file leptoconops.mat. The
field leptoconops.names contains names of seven recorded morphological
measures: winglen, wingwid, papl3len, palp3wid, palp4len, ant12len, and
ant14len. The two species are identified in field leptoconops.spec where
0’s correspond to L.torrens and 1’s to L.carteri.

We are interested in testing the equality of multivariate means.

load leptoconops

taxom = leptoconops.morpho;

spec = leptoconops.spec;

X1 = taxom(spec==0,:);

X2 = taxom(spec==1,:);

varnames = ’winglen’ ; ’wingwid’ ; ’papl3len’; ...

’palp3wid’; ’palp4len’; ’ant12len’ ; ’ant14len’ ;

[n1 p1] = size(X1); [n2 p2]=size(X2);

if (p1 ~= p2)

error(’Dimensions different!’)

end

p=p1

%--------------------------------------------

X1bar = mean(X1)’;

X2bar = mean(X2)’;

S1 = cov(X1); S2 = cov(X2);
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S = ( (n1-1)*S1 + (n2 - 1)*S2 )/(n1 + n2 - 2);

%H0: mu1 = mu2 H1: mu1 =/= mu2

T2 = n1*n2/(n1+n2) * (X1bar-X2bar)’ * inv(S) * (X1bar-X2bar)

%106.1348

pval = 1 - fcdf((n1+n2-p-1)/(p*(n1+n2-2))*T2, p, n1+n2-p-1)

%1.2325 e-010

�

10.4.1 Confidence Intervals for Arbitrary Linear
Combinations of Mean Differences

Suppose we are interested in confidence intervals for a′(µ1 − µ2), where
a is an arbitrary p × 1 vector of constants. This may be of interest when
Hotelling’s T2 test rejected H0 and we are interested to find which compo-
nents of the mean vectors are different. The bounds
[

a′(X1 − X2)−
√

p (n1 + n2 − 2)
n1 + n2 − p− 1

Fp,n1+n2−p−1,1−α

√
n1 + n2

n1n2
a′Sa ,

a′(X1 − X2) +

√
p (n1 + n2 − 2)
n1 + n2 − p− 1

Fp,n1+n2−p−1,1−α

√
n1 + n2

n1n2
a′Sa

]

provide (1− α)100% simultaneous CIs for the components of a′(µ1 − µ2).
By properly choosing vector a, various differences can be monitored.

When Σ1 and Σ2 are not assumed equal, it is impossible to use T2 statis-
tic. However, if n1 and n2 are not small, and not very different from each
other, approximate CIs are obtained as

[
a′(X1 − X2)−

√
χ2

p,1−α

√
a′
(

1
n1

S1 +
1

n2
S2

)
a ,

a′(X1 − X2) +
√

χ2
p,1−α

√
a′
(

1
n1

S1 +
1
n2

S2

)
a

]
,

where χ2
p,1−α is the (1 − α) quantile of a chi-square distribution with p

degrees of freedom.

Example 10.11. Leptoconops, Continued. Continuing Example 10.10, we
find CIs for differences between the individual mean components for which
95% confidence level simultaneously holds. Figure 10.3 shows 95% CIs for
individual component differences: µ1,1 − µ2,1, . . . ,µ1,7 − µ2,7.
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figure(1)

alpha = 0.05;

for i= 1:7

a=[0 0 0 0 0 0 0]’;

a(i) = 1;

lb=a’ * (X1bar - X2bar) - sqrt( (n1 +n2)/(n1 * n2) * a’ * S * a * ...

p*(n1+n2-2)/(n1+n2-p-1) * finv(1-alpha, p, n1+n2-p-1) );

ub=a’ * (X1bar - X2bar) + sqrt( (n1 +n2)/(n1 * n2) * a’ * S * a * ...

p*(n1+n2-2)/(n1+n2-p-1) * finv(1-alpha, p, n1+n2-p-1) );

[lb, ub]

plot([i i],[lb ub],’r-’,’linewidth’,lw)

hold on

end

plot([0 8],[0 0],’k--’)

xlabel(’Coordinate’); ylabel(’95% CI for Differences’)

�
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Fig. 10.3 CIs for individual component differences: µ1,1 − µ2,1, . . . , µ1,7 − µ2,7.

10.4.2 Profile Analysis With Two Independent Groups*

When plotted componentwise so that component index falls on the x-axis
and sample averages of the components on the y-axis, profiles of means
are visualized. Suppose that it is of interest to compare profiles for two
independent populations.
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• (i) First, are the shapes of the profiles similar? That is, are the segments
connecting adjacent means parallel?

To answer this question, consider (p− 1)× p matrix C as discussed on
page 403. In particular, focus on

C =




1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

0 0 0 . . . −1 0
0 0 0 . . . 1 −1




,

where each row contains a pair (1,−1) propagating with a shift. If µ =
(µ1, . . . ,µp)′, then Cµ = (µ1 − µ2,µ2 − µ3, . . . ,µp−1 − µp)′.

The profiles for the two populations can be tested as to whether they
are parallel:

H0 : Cµ1 = Cµ2 versus H1 : Cµ1 6= Cµ2.

The test is based on

T2 =
n1n2

n1 + n2
(X1 − X2)

′ C′(CSC′)−1C (X1 − X2),

where S is pooled covariance matrix. In this case,

n1 + n2 − p

(p− 1) (n1 + n2 − 2)
T2 ∼ Fp−1,n1+n2−p.

If the hypothesis of parallel profiles is not rejected, then we may be
interested in:
• (ii) Whether the profiles are shifted?
• (iii) Whether the profiles are flat?
The hypothesis in (ii) is

H0 : 1′µ1 = 1′µ2

for 1′ = (1,1, . . . ,1), while the hypothesis in (iii) is

H0 : C(µ1 + µ2) = 0.

10.4.3 Paired Multivariate Samples*

We will now discuss a multivariate extension of the paired t-test. This test
is adequate in a range of situations involving pharmaceutical, educational,
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medical, or engineering practice. For example, one may need to compare
multivariate results obtained in “pre” and “post” regime on the same sub-
jects.

Assume that two p-dimensional samples, X11, . . . , X1n and X21, . . . , X2n,
are paired as (X11, X21), . . . , (X1n, X2n), and that the differences

Di = X1i − X2i, i = 1, . . . ,n

are formed. When the two samples are coming from multivariate normal
distributions, the differences D1, . . . , Dn are also multivariate normal,

Di ∼MVN p (δ,Σd) ,

where δ = µ1 − µ2.
For some fixed δ0, the test H0 : µ1 = µ2 + δ0 versus H1 : µ1 6= µ2 + δ0

becomes a one-sample test H0 : δ = δ0 versus H0 : δ 6= δ0, so Hotelling’s T2

is applicable.
One forms

T2 = n(D− δ0)
′ S−1

d (D− δ0),

where D and Sd are the sample mean and sample covariance matrix of
the differences. When H0 is true, the scaled statistic n−p

p(n−1)T2 follows an
F-distribution with p and n− p degrees of freedom.

The null hypothesis is rejected when T2 ≥ p(n−1)
n−p Fp,n−p,1−α, where

Fp,n−p,1−α is (1− α) quantile of F-distribution with p and n − p degrees
of freedom. Of most interest is the case δ0 = 0, in which H0 translates to the
equality of population means.

A 100(1− α)% confidence region for δ consists of all such δ for which

(D− δ)′S−1
d (D− δ) ≤ p(n− 1)

n(n− p)
Fp,n−p,1−α.

Also, 100(1− α)% simultaneous confidence intervals for individual δi =
µ1,i − µ2,i are


Di −

√
p(n− 1)

n− p
Fp,n−p,1−α

√
s2

i

n
, Di +

√
p(n− 1)

n− p
Fp,n−p,1−α

√
s2

i

n


 ,

where Di is the ith component sample mean and s2
i = sii is ith diagonal

element of Sd.

Example 10.12. Effluent Data. Municipal wastewater treatment plants are
required by law to monitor their discharges to rivers and streams on a reg-



10.4 Two Multivariate Normal Means* 459

ular basis. Concerns about reliability of data from one self-monitoring plant
led to a study in which the samples of effluent were divided and sent to two
labs for testing. One set of samples (X1) was sent to a governmental lab and
second (X2) to a lab that the plant uses on a regular basis. Measurements
of biochemical oxygen demand (BOD) and suspended solids (SS) were ob-
tained from n = 11 independent sample splits. (Johnston & Wichern, Table
6.1).

Do the chemical analyses agree?

X1 = [6 27; 6 23; 18 64; 8 44; 11 30; 34 75; ...

28 26; 71 124; 43 54; 33 30; 20 14];

X2 = [25 15; 28 13; 36 22; 35 29; 15 31; 44 64; ...

42 30; 54 64; 34 56; 29 20; 39 21];

D=X1-X2;

[n p]=size(D) %[11 2]

Dbar = mean(D)’ %[-9.3636; 13.2727]

Sd = cov(D) %[199.2545 88.3091; 88.3091 418.6182]

T2 = n * Dbar’* inv(Sd) * Dbar %13.6393

%Critical Region Regect H0: delta = 0 if T2 > CR

CR = p*(n-1)/(n-p)*finv(0.95, p, n-p) %9.4589

pval = 1-fcdf( (n-p)/(p*(n-1)) * T2 , p, n-p) %0.0208

[Dbar - sqrt(p*(n-1)/(n-p)*finv(0.95, p, n-p))*sqrt(diag(Sd)/n) ...

Dbar + sqrt(p*(n-1)/(n-p)*finv(0.95, p, n-p))*sqrt(diag(Sd)/n) ]

%[-22.4533 3.7260]; [-5.7001 32.2456]

The analyses are not in agreement; the p-value found is about 2%.
In contrast, note that componentwise 95% CIs of [−22.4533,3.7260] and
[−5.7001,32.2456] both contain 0, making it impossible to state componen-
twise differences. This emphasizes the need to look at the problem as mul-
tivariate.

Next, a WinBUGS solution is provided. The file is available as effluent.odc.
The T2-like statistic is formed from the posterior counterparts, so it can be
viewed as a posterior Mahalonobis distance between the populations.

model{

for (i in 1:n){

D[i,1] <- X1[i,1]-X2[i,1]; D[i,2] <- X1[i,2]-X2[i,2];

D[i,1:p] ~ dmnorm(mu[], T[,]) }

T[1:p , 1:p] ~ dwish(R[ , ], p)

S[1:p , 1:p] <- inverse(T[ , ])

mu[1:p] ~ dmnorm(mn[1:p],prec[,])

# Distance counterpart of T2

for (k in 1:p) {a[k] <- inprod(T[k,],mu[])}

T2 <- n*inprod(mu[],a[])

# Simulating random F0 ~ F(p, n-p)

num<-p; denom<-n-p
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chisq1 ~ dchisqr(num); chisq2 ~ dchisqr(denom)

F0 <- (chisq1/num)/(chisq2/denom)

# Comparing distance F with F0

F <- (n-p)*T2/(p*(n-1))

prob <- step(F0-F)

#prop of times distance F < F0 = "expected" under H0

}

DATA

list(p=2, n=11,

X1 = structure(.Data=c( 6, 27, 6, 23, 18, 64, 8, 44,

11, 30, 34, 75, 28, 26, 71,124,

43, 54, 33, 30, 20, 14), .Dim=c(11,2)),

X2 = structure(.Data=c(25, 15, 28, 13, 3, 22, 35, 29,

15, 31, 44, 64, 42, 30, 54, 64,

34, 56, 29, 20, 39, 21), .Dim=c(11,2)),

R = structure(.Data = c(1, 0,

0, 1), .Dim = c(2, 2)),

mn = c(0,0),

prec = structure(.Data = c(0.0001,0,

0,0.0001), .Dim = c(2,2)))

INITS

#Just generate Inits

The output from the WinBUGS is given below. Note that Bayes’ estima-
tors µ and S are close to the classical, however the closeness measures F
and T2 differ. The Bayesian counterpart of classical p-value is prob. Its value
of 0.03869 < 5% is in agreement with the significance results in the classical
approach. Notice, however, that 95% credible set for mu[2] does not contain
0, unlike the classical componentwise 95% confidence interval.

mean sd MC error val2.5pc median val97.5pc start sample

F 8.826 5.051 0.01607 1.443 8.024 20.78 1001 100000
S[1,1] 267.8 141.2 0.476 110.2 233.9 626.7 1001 100000
S[1,2] 202.5 147.5 0.5175 17.54 171.0 576.3 1001 100000
S[2,1] 202.5 147.5 0.5175 17.54 171.0 576.3 1001 100000
S[2,2] 463.4 241.6 0.7971 191.9 404.0 1090.0 1001 100000
T2 19.61 11.22 0.03571 3.206 17.83 46.19 1001 100000
mu[1] -6.384 4.937 0.01415 -16.27 -6.374 3.442 1001 100000
mu[2] 13.21 6.476 0.02033 0.2454 13.21 26.08 1001 100000
prob 0.03869 0.1929 5.927E-4 0.0 0.0 1.0 1001 100000

�

10.5 Two Normal Variances

We have already seen the test for the equality of variances from two normal
populations when we discussed testing the equality of two independent
normal means. We will not repeat the summary table (page 433) but will
discuss how to find a confidence interval for the ratio of population vari-
ances, conduct power analyses, and provide some Bayesian considerations.
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Let s2
1 and s2

2 be sample variances based on samples X11, X12, . . . , X1,n1

and X21, X22, . . . , X2,n2 from normal populations N (µ,σ2
1 ) and N (µ2,σ2

2 ),

respectively. The fact that the sampling distribution of s2
1

σ2
1

/ s2
2

σ2
2

is F, with

df1 = n1 − 1 and df2 = n2 − 1 degrees of freedom was used in testing the
equality of variances. The same statistic and its sampling distribution lead
to a (1− α)100% confidence interval for σ2

1 /σ2
2 , as

[
s2

1/s2
2

Fn1−1,n2−1,1−α/2
,

s2
1/s2

2
Fn1−1,n2−1,α/2

]
.

This follows from

P

(
Fn2−1,n1−1,α/2 ≤

s2
2

σ2
2

/ s2
1

σ2
1
≤ Fn2−1,n1−1,1−α/2

)
= 1− α (10.9)

and the property of F quantiles,

Fm,n,α =
1

Fn,m,1−α
.

Power Analysis for the Test of Two Variances.∗ For the case where
F = s2

1/s2
2 is observed, and n1 and n2 are sample sizes, Desu and Raghavarao

(1990) provide an approximation of the power of the test for the variance
ratio,

1− β≈ Φ



√

2(n1 − 1)(n2 − 2)
n1 + n2 − 2

| log(F)| − z1−α


 , (10.10)

where z1−α is the 1− α-quantile of the standard normal distribution. If the
alternative is two-sided, the quantile z1−α/2 is used instead of z1−α.

The sample size necessary to achieve a power of 1− β if the effect eff =
σ2

1 /σ2
2 6= 1 is to be detected by a test of level α is

n =

(
z1−α + z1−β

log(eff)

)2

+ 2. (10.11)

This size is for each sample, so the total number of observations is 2n. If
unequal sample sizes are desired, the reader is referred to Zar (2010) and
Desu and Raghavarao (1990).
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Example 10.13. Powers and Sample Sizes for Some Variance Tests. In the
context of Example 10.1, we next approximate the power of the two-sided,
5% level test of equality of variances against the specific alternative H1 :
σ2

1 /σ2
2 = 1.8. Recall that the group sample sizes were n1 = 12 and n2 = 15.

According to (10.10),

n1 = 12; n2=15; alpha = 0.05; F = 1.8;

normcdf( sqrt(2 * (n1-1)*(n2 -2)/(n1 + n2 -2 )) ...

* abs(log(F)) - norminv(1-alpha/2) )

% 0.5112

and the power is about 51%.
Next we find the retrospective power of the test in Example 10.2.

n1 = 12; n2=15; alpha = 0.05;

s12 = 0.004^2; s22 = 0.006^2;

F=s12^2/s22^2; %0.1975

normcdf( sqrt(2 * (n1-1)*(n2 -2)/(n1 + n2 -2 )) ...

* abs(log(F)) - norminv(1-alpha/2) )

% 0.9998

The retrospective power of the test is quite high at 99.98%.
If the lead exposure trial from Example 10.1 were to be repeated, we

would find the sample size that would guarantee that an effect of size 1.5
would be detected with a power of 90% in a two-sided 5% level test. Here
the effect is defined as the ratio of population variances that is different
than 1 and of interest to detect.

alpha = 0.05; beta = 0.1; eff = 1.5;

n = ( (norminv(1-alpha/2) + norminv(1-beta))/log(eff))^2 + 2

% n=66 (65.9130)

Therefore, each group will need 66 children.
�

A Noninformative Bayesian Solution. If the priors on the parameters
are noninformative π(µ1) = π(µ2) = 1,π(σ2

1 ) = 1/σ2
1 , and π(σ2

2 ) = 1/σ2
2 ,

one can show that the posterior distribution of (σ2
1 /σ2

2 )/(s
2
1/s2

2) is F with
n2 − 1 and n1 − 1 degrees of freedom. Since

σ2
1 /σ2

2

s2
1/s2

2
=

s2
2

σ2
2

/ s2
1

σ2
1

,

the posterior distribution for σ2
1 /σ2

2
s2

1/s2
2

(σ2
1 ,σ2

2 random variables and s2
1, s2

2 con-

stants) and a sampling distribution of s2
2

σ2
2

/ s2
1

σ2
1

(s2
1, s2

2 random variables and
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σ2
1 ,σ2

2 constants) coincide. Thus, a credible set based on this posterior coin-
cides with a confidence interval by taking into account relation (10.9). If the
priors on the parameters are more general, then the MCMC method can be
used.

Example 10.14. The Discovery of Argon. Lord Rayleigh, following an ob-
servation by Henry Cavendish, performed a series of experiments mea-
suring the density of nitrogen and recognized that atmospheric measure-
ments give consistently higher results than chemical measurements (mea-
surements from ammonia, oxides of nitrogen, etc.). This discrepancy of the
order of 1/100 g was too large to be explained by the measurement er-
ror, which was of the order of approx. 2/10,000 g. Rayleigh postulated that
atmospheric nitrogen contains a heavier constituent, and this led to the dis-
covery of argon in 1895 (Ramsay and Rayleigh). Rayleigh’s data, published
in the Proceedings of the Royal Society in 1893 and 1894, are provided in the
table below and shown as back-to-back histograms (Fig. 10.4).

6 4 2 0 2 4 6
2.3

2.3

2.3

2.31

2.31

2.31

2.31

Fig. 10.4 Back-to-back histogram of Rayleigh’s measurements. Measurements from the
air are given on the left-hand side, while the measurements obtained from chemicals are
on the right.

From air 2.31035 2.31026 2.31024 2.31012
2.31027 2.31017 2.30986 2.31010
2.31001 2.31024 2.31010 2.31028

From chemicals 2.30143 2.29890 2.29816 2.30182
2.29869 2.29940 2.29849 2.29889
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Assume that measurements are normal with means µ1 and µ2 and vari-
ances σ2

1 and σ2
2 , respectively. Using WinBUGS and noninformative priors

on the normal parameters, find 95% credible sets for
(a) θ = µ1 − µ2 − 0.01 and

(b) ρ =
σ2

2
σ2

1
.

(c) Estimate the posterior probability of ρ > 1.
We are particularly interested in (b) and (c) since Figure 10.4 indicates

that the variability in the measurements obtained from chemicals is much
higher than in measurements obtained from the air.

The WinBUGS file argon.odc solves (a)–(c).

#Discovery of Argon

model{

for(i in 1:n1) {

fromair[i] ~ dnorm(mu1, prec1)

}

for (j in 1:n2){

fromchem[j] ~ dnorm(mu2, prec2)

}

mu1 ~ dflat()

mu2 ~ dflat()

prec1 ~ dgamma(0.0001, 0.0001)

prec2 ~ dgamma(0.0001, 0.0001)

theta <- mu1 - mu2 - 0.01

sig2air <- 1/prec1

sig2chem <- 1/prec2

rho <- sig2chem/sig2air

ph1 <- step(rho - 1)

}

DATA

list(n1=12, n2 = 8,

fromair = c(2.31035, 2.31026, 2.31024, 2.31012, 2.31027,

2.31017, 2.30986, 2.31010, 2.31001,

2.31024, 2.31010, 2.31028),

fromchem = c(2.30143, 2.29890, 2.29816, 2.30182,

2.29869, 2.29940,

2.29849, 2.29889) )

INITS

list(mu1 = 0, mu2 = 0, prec1 = 10, prec2 = 10)

mean sd MC error val2.5pc median val97.5pc start sample

ph1 0.786 0.4101 4.473E-4 0.0 1.0 1.0 1001 1000000
rho 2.347 2.333 0.002684 0.4456 1.736 7.925 1001 1000000
theta 6.971E-4 0.002683 2.584E-6 –0.004626 6.983E-4 0.006017 1001 1000000

It is instructive to compare a frequentist test for the variance ratio with
the WinBUGS output. The statistic F = s2

1/s2
2 = 0.0099 is strongly significant

with a p-value of the order 10−9. At the same time, the posterior probability
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of ρ > 1, a Bayesian equivalent to the F test, is only 0.786. The posterior
probability of ρ ≤ 1 is 0.214. Also, the 95% credible set for ρ contains 1.
Even though a Bayesian would favor the hypothesis ρ > 1, the evidence
against ρ ≤ 0 is not as strong as in the classical approach.
�

10.6 Comparing Two Proportions

Comparing two population proportions is inarguably one of the most im-
portant tasks in statistical practice. For example, statistical support in clini-
cal trials for new drugs, procedures, or medical devices almost always con-
tains tests and confidence intervals involving two proportions: proportions
of positive outcomes in control and treatment groups, proportions of read-
ings within tolerance limits for proposed and currently approved medical
devices, or proportions of cancer patients for which new and old treatment
regimes manifested drug toxicity, to list just a few.

Sample proportions involve binomial distributions, and if sample sizes
are not too small, the CLT implies their approximate normality. Let X1 ∼
Bin(n1, p1) and X2 ∼ Bin(n2, p2) be the observed numbers of “events”
and p̂1 and p̂2 be the sample proportions. Then the difference p̂1 − p̂2 =
X1/n1 −X2/n2 has an approximately normal distribution, when n1 and n2
are not too small, say, >20, with mean p1− p2 and variance p1(1− p1)/n1 +
p2(1− p2)/n2.

A Wald-type confidence interval can be constructed using this normal
approximation. Specifically, the (1 − α)100% confidence interval for the
population proportion difference p1 − p2 is


 p̂1 − p̂2 − z1−α/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

p̂1 − p̂2 + z1−α/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2


 .

In testing H0 : p1 = p2 against one of the alternatives, the test statistic is

Z =
p̂1 − p̂2√

p̂(1− p̂)
n1

+ p̂(1− p̂)
n2

=
p̂1 − p̂2√

p̂(1− p̂)
√

1
n1

+ 1
n2

,
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where

p̂ =
X1 + X2

n1 + n2
=

n1

n1 + n2
p̂1 +

n2

n1 + n2
p̂2

is the pooled sample proportion. The pooled sample proportion is used
since under H0 the population proportions coincide and this common pa-
rameter should be estimated by all available data. By the CLT, the statistic
Z has an approximately standard normal N (0,1) distribution.

Alternative α-level rejection region p-value
H1 : p1 > p2 [z1−α,∞) 1-normcdf(z)

H1 : p1 6= p2 (−∞,zα/2] ∪ [z1−α/2,∞) 2*normcdf(-abs(z))

H1 : p1 < p2 (−∞,zα] normcdf(z)

Example 10.15. Vasectomies and Prostate Cancer. Several studies have been
conducted to analyze the relationship between vasectomy and prostate can-
cer. The study by Giovannucci et al. (1993) states that of 21,300 men who
had not had a vasectomy, 69 were found to have prostate cancer, while of
22,000 men who had a vasectomy, 113 were found to have prostate cancer.
Formulate hypotheses and perform a test at the 1% level.

x1=69; x2 = 113; n1 = 21300; n2 = 22000;

p1hat = x1/n1; p2hat = x2/n2; phat = (x1 + x2)/(n1 + n2);

z=(p1hat - p2hat)/(sqrt(phat*(1-phat))*sqrt(1/n1 + 1/n2))

% z = -3.0502

pval = normcdf(-3.0502)

% pval = 0.0011

We tested H0 : p1 = p2 versus H1 : p1 < p2, where p1 is the proportion
of subjects with prostate cancer in the population of all subjects who had
a vasectomy, while p2 is the proportion of subjects with prostate cancer in
the population of all subjects who did not have a vasectomy. Since the p-
value was 0.0011, we concluded that vasectomy is a significant risk factor
for prostate cancer.
�

The Sample Size for Testing the Two Proportions. The sample size re-
quired for a two-sided α-level test to detect the difference δ = |p1 − p2|,
with a power of 1− β, is
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n≥ (z1−α/2 + z1−β)
2 × 2p(1− p)

δ2 ,

where p = (p1 + p2)/2. The sample size n is for each group, so that the
total number of observations is 2n. If the alternative is one-sided, z1−α/2
is replaced by z1−α. This formula requires some preliminary knowledge
about p. In the absence of any information about the proportions, the most
conservative choice for p is 1/2.

Example 10.16. Sample Size for Two Proportions. An investigator believes
that a control group would have an annual event rate of 30% and that the
treatment would reduce this rate to 20%. She wants to design a study to be
one-sided with a significance level of α = 0.05 and a power of 1− β = 0.85.
The necessary sample size per group is

n = 2 *(norminv(1-0.05)+norminv(1-0.15))^2 *0.25*(1-0.25)/0.1^2

% n = 269.5988

This number is rounded to 270, so that the total sample size is 2× 270= 540.
More precise sample sizes are

n′ =

(
z1−α/2

√
2p(1− p) + z1−β

√
p1(1− p1) + p2(1− p2)

)2

δ2 ,

with z1−α/2 replaced by z1−α for the one-sided alternative.
Casagrande et al. (1978) proposed a correction to n′ as

n′′ = n′/4×
(

1 +

√
1 +

4
n′δ

)2

,

while Fleiss et al. (1980) suggest n′′′ = n′ + 2
δ .

In all three scenarios, however, preliminary knowledge about p1 and p2
is needed.

%Sample Size for Each Group:

n1 = (norminv(1-0.05) * sqrt(2 * 0.25 * 0.75)+ ...

norminv(1-0.15) * sqrt(0.3*0.7+0.2*0.8))^2/0.1^2

%n1 = 268.2064

%Casagrande et al. 1978

n2 = n1/4 * (1 + sqrt(1 + 4/(n1 * 0.1)))^2 %n2 =287.8590

%Fleiss et al. 1980

n3 = n1 + 2/0.1 %n3 = 288.2064
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The outputs n′, n′′, and n′′′ are rounded to 267, 288, and 289, so that the
total sample sizes are 534, 576, and 578, respectively.
�

10.7 Risk Differences, Risk Ratios, and Odds Ratios

In epidemiological and population disease studies it is often the case that
the findings are summarized as a table

Disease (D) No disease (C) Total
Exposed (E) a b n1 = a + b

Unexposed (Ec) c d n2 = c + d

Total m1 = a + c m2 = b + d n = a + b + c + d

In clinical trial studies, the risk factor status (E/Ec) can be replaced by a
treatment/control or new treatment/old treatment, while the disease status
(D/Dc) can be replaced by an improvement/nonimprovement.

Remark. In biostatistics, chiefly in the context of epidemiology, compar-
ative studies leading to tabulated data can be prospective and retrospective.
In a prospective study, a group of n disease-free individuals is identified
and followed over a period of time. At the end of the study, the group,
typically called the cohort, is assessed and tabulated with respect to disease
development and exposure to the risk factor of interest.

In a retrospective study, groups of m1 individuals with the disease
(cases) and m2 disease-free individuals (controls) are identified and their
prior exposure histories are assessed. In this case, the table summarizes
the numbers of exposure to the risk factor under consideration among the
cases and controls. The retrospective studies are fast and less expensive,
but sometimes the reliability of exposure history may be questionable.

10.7.1 Risk Differences

Let p1 and p2 be the population risks of a disease for exposed and un-
exposed (control) subjects. These are probabilities that the subjects will
develop the disease during the fixed interval of time for the two groups,
exposed and unexposed.

Let p̂1 = a/n1 be an estimator of the risk of a disease for exposed subjects
and p̂2 = c/n2 be an estimator of the risk of that disease for control subjects.
The (1− α)100% confidence interval for the risk difference coincides with
the confidence interval for the difference of proportions from page 465:
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p̂1 − p̂2 ± z1−α/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
.

Sometimes, better precision is achieved by a confidence interval with
continuity corrections:


 p̂1 − p̂2 ± (1/(2n1) + 1/(2n2))− z1−α/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

p̂1 − p̂2 ± (1/(2n1) + 1/(2n2)) + z1−α/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2


 ,

where the sign of the correction factor 1/(2n1) + 1/(2n2) is taken as “+” if
p̂1 − p̂2 < 0 and as “−” if p̂1 − p̂2 > 0. The recommended sample sizes for
the validity of the interval should satisfy min{n1 p1(1− p1),n2 p2(1− p2)}≥
10. For large sample sizes, the difference between “continuity-corrected”
and uncorrected intervals is negligible.

10.7.2 Risk Ratio

The risk ratio in a population is the quantity R = p1/p2. It is estimated by
r = p̂1/ p̂2 =

a/n1
c/n2

. The empirical distribution of r does not have a simple
form, and, moreover, it is typically skewed (Fig. 10.5b). If the logarithm is
taken, the risk ratio is “symmetrized,” the log ratio is equivalent to the dif-
ference between logarithms, and, given the independence of populations,
the CLT applies. It is evident in Figure 10.5c that the log risk ratios are
approximated well by a normal distribution.

The following MATLAB code ( simulrisks.m) simulates 10,000 pairs
from Bin(80,0.21) and Bin(60,0.25) populations representing exposed and
unexposed subjects. From each pair risks are assessed and histograms of
risk differences, risk ratios, and log risk ratios are shown in Figure 10.5a–c.

disexposed = binornd(60, 0.25, [1 10000]);

disnonexposed = binornd(80, 0.21, [1 10000]);

p1s = disexposed/60; p2s =disnonexposed/80;

figure; hist(p1s - p2s, 25)

figure; hist(p1s./p2s, 25)
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Fig. 10.5 Two samples of size 10,000 are generated from Bin(80,0.21) and Bin(60,0.25)
populations and risks p̂1 and p̂2 are estimated for each pair. The panels show histograms
of (a) risk differences, (b) risk ratios, and (c) log risk ratios.

figure; hist( log( p1s./p2s ), 25 )

Thus,

log r
appr∼ N (log R,σ2

log r),

where σ2
log r is estimated by s2

log r =
b

an1
+ d

cn2
. This estimator of variance is

derived using the representation log r = log p̂1 − log p̂2 and

Var (log p̂1) =

(
1
p̂1

)2

·Var p̂1 =
b

an1
,

by (5.17).
The (1− α)100% CI for the population log risk ratio log R is

[
log r− z1−α/2

√
b

an1
+

d

cn2
, log r + z1−α/2

√
b

an1
+

d

cn2

]
.

The confidence interval for the population risk ratio R is obtained by
taking the exponents of the bounds:

[
r exp

{
−z1−α/2

√
b

an1
+

d

cn2

}
, r exp

{
z1−α/2

√
b

an1
+

d

cn2

}]
.
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Example 10.17. Polio Vaccine Trial Revisited. As an illustration, consider
Example 1.4 on page 5. The risk ratio pvac/ppla was estimated to be
33/200745

115/201229 = 0.2876. This represents almost a fourfold reduction in risk of
polio for vaccinated children in comparison with the placebo. The 95% con-
fidence interval for population R is [0.1953,0.4236], which is well separated
from 1. Recall, risk ratio of 1 represents no effect, and in this case the effect
of vaccine is significant.
�

10.7.3 Odds Ratios

For a particular proportion, p, the odds are defined as p
1−p , see page 85. For

two proportions p1 and p2, the odds ratio is defined as O = p1/(1−p1)
p2/(1−p2)

, and

its sample counterpart is o = p̂1/(1− p̂1)
p̂2/(1− p̂2)

= ad
bc

As evident in Figure 10.6, the odds ratio is symmetrized by the log trans-
formation, and it is the log domain where the normal approximations are
used. The sample variance for log o is s2

log o =
1
a +

1
b +

1
c +

1
d . The derivation

of s2
log o is beyond the scope of this text, and it is due to Woolf (1955).
The (1− α)100% confidence interval for the log odds ratio is

[
logo− z1−α/2

√
1
a
+

1
b
+

1
c
+

1
d

, logo + z1−α/2

√
1
a
+

1
b
+

1
c
+

1
d

]
.

Of course, the confidence interval for the odds ratio is obtained by taking
the exponents of the bounds:

[
o exp

{
−z1−α/2

√
1
a
+

1
b
+

1
c
+

1
d

}
, o exp

{
z1−α/2

√
1
a
+

1
b
+

1
c
+

1
d

}]
.

For small sample sizes replacing counts a,b, c, and d by a + 1/2,b+ 1/2, c+
1/2, and d + 1/2 leads to a more stable inference.

Some researchers argue that only odds ratios should be reported and
used due to their superior properties over risk differences and risk ratios
(Edwards, 1963; Mosteller, 1968). When risks p̂1 and p̂2 are small, the risk
ratio and odds ratio are close, as in Example 1.4 where they almost coincide.
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Fig. 10.6 For the data leading to Figure 10.5, the histograms of (a) odds ratios and (b)
log odds ratios are shown.

However, if p̂1 and p̂2 are close to 1, risk differences and risk ratios can
be very different. For example, if p̂1 = 0.99 and p̂2 = 0.97, r = 1.0206, but
o = 3.0619.

The following table summarizes the estimators of three risk parameters:

Risk difference Risk ratio Odds ratio

Parameter D = p1 − p2 R = p1/p2 O = p1/(1−p1)
p2/(1−p2)

Estimator d = a/n1 − c/n2 r = (a/n1)/(c/n2) o = (ad)/(bc)

St. deviation sd =
√

ab
n3

1
+ cd

n3
2

slogr =
√

b
an1

+ d
cn2

slog o =
√

1
a + 1

b + 1
c +

1
d

Interpretation of values for r or o are provided in the following table:

Value in Effect of exposure
[0,0.4) Strong benefit
[0.4,0.6) Moderate benefit
[0.6,0.9) Weak benefit
[0.9,1.1] No effect
(1.1,1.6] Weak hazard
(1.6,2.5] Moderate hazard
> 2.5 Strong hazard

Example 10.18. Framingham Data. The table below gives the coronary heart
disease status after 18 years, by level of systolic blood pressure (SBP). Levels
of SBP ≥ 165 are considered as exposure to a risk factor.

SBP (mmHg) Coronary disease No coronary disease Total
≥ 165 95 201 296
< 165 173 894 1067

Total 268 1095 1363
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Find 95% confidence intervals for the risk difference, risk ratio, and odds
ratio. The function risk.m calculates confidence intervals for risk differ-
ences, risk ratios, and odds ratios and will be used in this example.

function [stats] = risk(matr, alpha)

%

% Example of Use: Framingham Data

% > [stats] = risk([95 201; 173 894])

a=matr(1,1); b=matr(1,2); c=matr(2,1); d=matr(2,2);

%

if nargin < 5

alpha=0.05;

end

%--------

n1 = a + b;

n2 = c + d;

hatp1 = a/n1; hatp2 = c/n2;

stats.p1 = hatp1; stats.p2 = hatp2;

%---------risk difference (d) and CI [rdl, rdu] ---------

rd = hatp1 - hatp2;

stdrd = sqrt(hatp1 * (1-hatp1)/n1 + hatp2 * (1- hatp2)/n2 );

rdl = rd - norminv(1-alpha/2) * stdrd;

rdu = rd + norminv(1-alpha/2) * stdrd;

stats.rd=rd;

stats.rdint = [rdl rdu];

%----------risk ratio (r) and CI [rrl, rru] ---------

rr = hatp1/hatp2;

lrr = log(rr);

stdlrr = sqrt(b/(a * n1) + d/(c*n2));

lrrl = lrr - norminv(1-alpha/2)*stdlrr;

rrl = exp(lrrl);

lrru = lrr + norminv(1-alpha/2)*stdlrr;

rru = exp(lrru);

stats.rr = rr;

stats.rrint =[rrl rru];

%---------odds ratio (o) and CI [orl, oru] -----------

or = ( hatp1/(1-hatp1) )/(hatp2/(1-hatp2));

lor = log(or);

stdlor = sqrt(1/a + 1/b + 1/c + 1/d);

lorl = lor - norminv(1-alpha/2)*stdlor;

orl = exp(lorl);

loru = lor + norminv(1-alpha/2)*stdlor;

oru = exp(loru);

stats.or=or;

stats.orint=[orl oru];

The solution is:

[stats] = risk([95 201; 173 894])

%stats =

% p1: 0.3209

% p2: 0.1621
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% rd: 0.1588

% rdint: [0.1012 0.2164]

% rr: 1.9795

% rrint: [1.5971 2.4534]

% or: 2.4424

% orint: [1.8215 3.2750]

�

Estimation of risk parameters in Bayesian fashion is conceptually straight-
forward: posterior distributions for d, r and o are obtained and analyzed.

Example 10.19. Retrospective Analysis of Smoking Habits. This example
is adopted from Johnson and Albert (1999), who use data collected in a
study by Dorn (1954). A sample of 86 lung-cancer patients and a sample
of 86 controls were questioned about their smoking habits. The two groups
were chosen to represent random samples from a subpopulation of lung-
cancer patients and an otherwise similar population of cancer-free individ-
uals. Of the cancer patients, 83 out of 86 were smokers; among the control
group, 72 out of 86 were smokers. The scientific question of interest was to
assess the difference between the smoking habits in the two groups. Uni-
form priors on the population proportions were used as a noninformative
choice.

model{

for(i in 1:2){

r[i] ~ dbin(p[i],n[i])

p[i] ~ dunif(0,1)

}

RD <- p[1] - p[2]

RD.gt0 <- step(RD)

RR <- p[1]/p[2]

RR.gt1 <- step(RR - 1)

OR <- (p[1]/(1-p[1]))/(p[2]/(1-p[2]))

OR.gt1 <- step(OR - 1)

}

DATA

list(r=c(83,72),n=c(86,86))

INITS

#Generate Inits

mean sd MC error val2.5pc median val97.5pc start sample

OR 5.818 4.556 0.01398 1.556 4.613 17.29 1001 100000
OR.gt1 0.9978 0.04675 1.469E-4 1.0 1.0 1.0 1001 100000
RD 0.125 0.0455 1.478E-4 0.0385 0.1237 0.2179 1001 100000
RD.gt0 0.9978 0.04675 1.469E-4 1.0 1.0 1.0 1001 100000
RR 1.153 0.06276 2.038E-4 1.044 1.148 1.291 1001 100000
RR.gt1 0.9978 0.04675 1.469E-4 1.0 1.0 1.0 1001 100000
p[1] 0.9546 0.02209 7.06E-5 0.9022 0.958 0.9873 1001 100000
p[2] 0.8296 0.03991 1.26E-4 0.7444 0.8322 0.9002 1001 100000
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Note that 95% credible sets for the risk ratio and odds ratio are above 1,
and that the set for the risk difference does not contain 0. By all three
measures the proportion of smokers among subjects with cancer is signif-
icantly larger than the proportion among the controls. In Bayesian testing

the hypotheses H′1 : p1 > p2, H′′1 : p1/p2 > 1, and H′′′1 : p1
1−p1

/
p2

1−p2
> 1 have

posterior probabilities of 0.9978 each. Therefore, in this retrospective study,
smoking status is indicated as a significant risk factor for lung cancer.
�

10.7.4 Two Proportions from a Single Sample

The previous analysis for difference between population proportions as-
sumes that the samples are independent. However, in some situations only
one sample is available, and we are interested in inference about propor-
tions of two attributes estimated form a single sample. For example, in a
sample of 578 school age children, 466 are vaccinated against hepatitis B
and 477 against varicella. We are interested in inference about the differ-
ence of the corresponding population proportions, p1 − p2. The standard
deviation of p̂1 − p̂2 is equal to

σp̂1− p̂2 = σp̂′1− p̂′2
=

√
p′1 + p′2 − (p′1 − p′2)

2

n
, (10.12)

where p′1 is the proportion of children who are vaccinated against hepatitis
B but not against varicella, while p′2 is the population proportion of children
vaccinated against varicella but not against hepatitis B. It is easy to verify
p̂1 − p̂2 = p̂′1 − p̂′2, The plug-in estimator of σp̂1− p̂2 is

sp̂1− p̂2 =

√
p̂′1 + p̂′2 − ( p̂′1 − p̂′2)

2

n
, (10.13)

Thus, for a correct inference in the children’s vaccination example, the
marginal sums 466 and 477 are not sufficient. It is necessary to know the
number of children who are vaccinated against both hepatitis B and vari-
cella, since when this is known, the proportions p̂′1 and p̂′2 are unique
and can be easily found. Suppose the number of children vaccinated
against both hepatitis B and varicella is 458. Using this information we
find p̂′1 = (466− 458)/578 = 8/578 and p̂′2 = (477 − 458)/578 = 19/578.
The standard deviation of p̂′1 − p̂′2 is 0.0228. The 95% confidence interval
for the difference is

[0.019− 1.96 · 0.0228,0.019+ 1.96 · 0.0228] = [0.0015,0.0366].
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Note that this interval does not contain 0, so we infer that the difference is
significant.

If the proportions are treated as independent, the 95% CI is [−0.0257,0.0637]
from which we would infer that the difference is not significant. This would
be wrong.

This example is intimately related to McNemar’s test discussed in
Chapter 12. In the context of paired tables, each individual gives a pair
of indices: indicators of hepatitis B and varicella vaccinations. This results
in the following table:

Varicella
Yes No Total

Yes 458 8 466
Hepatitis B No 19 93 112

Total 477 101 578

Here the entry 458 is often called “pivotal cell.” The “bolded” marginal
sums are fixed.

If we are interested in testing H0 : p1 = p2, a slight modification to sp̂1− p̂2
is needed. In this case the estimator for the standard deviation of proportion
difference is

sp̂1− p̂2 =

√
p̂′1 + p̂′2

n
, (10.14)

since under H0 the difference p′1 − p′2 = p1 − p2 is 0. For the two-sided
alternative the p-value is 0.0343, which agrees with conclusions based on a
CI.

The MATLAB file vaccination.m constructs a range of paired tables
consistent with the marginal sums 466 and 477. Some of these tables result
in significant differences among proportions and some do not, emphasizing
the need to know the “pivotal cell.”

Figure 10.7 shows the upper and lower bounds of a 95% CI for the
problem for possible values of a “pivotal cell” that ranges between 365 and
466 under the fixed marginal sums. Note that when the pivotal cell exceeds
455 the corresponding CI does not contain 0. The intervals that contain 0
are presented with black end points while the intervals that do not contain
0 and lead to significant differences are plotted in red.

Example 10.20. DNA from Spider Monkey. An 8,196-long nucleotide se-
quence from spider monkey Ateles geoffroyi was obtained from the EMLB
Nucleotide sequence alignment DNA database. It is of interest to test
whether the proportion of A nucleotides, p1, is the same as the proportion
of T nucleotides, p2, against the one-sided alternative H1 : p1 < p2. Since
the samples are not independent, equation (10.14) for finding the estimator
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Fig. 10.7 Confidence interval for the difference in vaccination proportions. If the pivotal
cell consistent with marginal sums is 456 or larger, the confidence interval does not
contain 0 (plotted with red end-points).

of variance of the difference of proportions needs to be used. An annotated
part of the script dnatest2.m contains the code for the test and finds a CI.

%excerpt from dnatest2.m

dna = ...

[’gatctcttcttcgtggttagtattctttgtgttctgctaaagaactctttgcctaccctc’...

’aggtttgcttaggtctacaatctactgtgagttgatttttttaatggacagtgagatgta’...

’ggaattgtttctttcttatggatttccagtcattcagcaccatttattaaaaagagcccc’...

...

’ctgtgagcccctggtcttggtgccttctgtgttataaatcaggtgttcctgtgtgtctat’...

’agcgaagcccagatcccagcctgggagactctccagacggccagcatcctccaccggggg’...

’gtgtgctacccccgccatggccatgctgacctccgcccctcggtggggactgccctgcct’...

’gggacaggggccccagctggttttcccctgtg’];

% Point estimates

n = length(dna); %8192

pahat = sum( dna == ’a’)/n; %0.2144

pthat = sum( dna == ’t’)/n; %0.2301

% H0: pa = pt H1: pa < pt

% Var(pahat - pthat) = pa*qa/n + pt*qt/n + 2*pa*pt/n

% = [pa + pt - (pa - pt)^2]/n

% = (pa + pt)/n [under (a) H0]

Zat = sqrt(n) * (pahat - pthat)/sqrt(pahat + pthat); %-2.1379

pat = normcdf(Zat); %0.0163

%--------------------------------

% For confidence intervals we use

% std(pahat - pthat)=sqrt [pa + pt - (pa - pt)^2]/n ,

% evaluated at pa=pahat and pt=pthat.

sat=sqrt((pahat + pthat - (pahat - pthat)^2)/n) %0.0074



478 10 Two Samples

[pahat - pthat - sat*norminv(0.975) ...

pahat - pthat + sat*norminv(0.975)]

% -0.0302 -0.0013

The estimated standard deviation for the difference of proportions is
0.0074 leading to a significant z-test for H0 : p1 = p2 versus H1 : p1 < p2
with p-value 0.0163 and to a 95% confidence interval for the difference of
proportions as [−0.0302,−0.0013]. Treating the proportions as independent
leads to a CI of [−0.0285,−0.0030].

If this problem is approached from a paired table point of view, the piv-
otal cell is 0 since nucleotides A and T are exclusive; that is, one nucleotide
cannot be A and T at the same time. An alternative approach to find the
estimator of the variance for difference of proportions that are obtained
from exclusive but dependent counts is to use Multinomial distribution,
see Exercises 5.20 and 10.30.
�

10.8 Two Poisson Rates*

There are several methods for devising confidence intervals on the differ-
ences or the ratios of two Poisson rates. We will focus on the method for
the ratio that modifies well-known binomial confidence intervals.

Let X1 ∼Poi(λ1t1) and X2 ∼Poi(λ2t2) be two Poisson counts with rates
λ1 and λ2 observed during time intervals of length t1 and t2. We are inter-
ested in the confidence interval for the ratio λ = λ1/λ2.

Since X1, given the sum X1 + X2 = n, is binomial Bin(n, p) with p =
λ1t1

λ1t1+λ2t2
(Exercise 5.7), the strategy is to find the confidence interval for p

and, from its confidence bounds LBp and UBp, work out the bounds for the
ratio λ :

LBλ =
LBp

1− LBp

t2

t1
, UBλ =

UBp

1−UBp

t2

t1
.

For finding the LBp and UBp several methods were covered in Chap-
ter 7. Note that in Chapter 7, p̂ = X1/n and n = X1 + X2.

The design question can be addressed as well, but the sample size for-
mulation needs to be expressed in terms of sampling durations t1 and t2.
The sampling time frames t1 and t2, if assumed equal, can be determined
on the basis of elicited precision for the confidence interval and prelimi-
nary estimates of the rates. Let λ1 and λ2 be pre-experimental assessments
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of the rates, and let the precision be elicited in the form of (a) the length of
the interval UBλ− LBλ = w or (b) the ratio of the bounds UBλ/LBλ = w.

Then, for achieving (1− α)100% confidence with an interval of length
w, the sampling time frame required is

(a)

t (= t1 = t2) =
z2

1−α/2

(
1/λ1 + 1/λ2

)

arcsin
(

λ2
λ1
× w

2

)

and
(b)

t (= t1 = t2) =
4z2

1−α/2

(
1/λ1 + 1/λ2

)

log2(w)
.

Example 10.21. Wire Failures. Price and Bonett (2000) provide an example
with data from Gardner and Ringlee (1968), who found that bare wire had
X1 = 69 failures in a sample of t1 = 1,079.6 thousand foot-years, and a
polyethylene-covered tree wire had X2 = 12 failures in a sample of t2 =
467.9 thousand foot-years. We are interested in a 95% confidence interval
for the ratio of population failure rates.

The associated MATLAB file ratiopoissons.m calculates the 95% con-
fidence interval for the ratio λ = λ1/λ2 using Wilson’s proposal (“add two
successes and two failures”). There, p̂ = (X1 + 2)/(n + 4), and the interval
for p is [0.7564,0.9141]. After transforming the bounds to the λ domain, the
final interval is [1.3461,4.6147].

Suppose that we want to replicate this study using a new shipment
of each type of wire. We want to estimate the failure rate ratio with 99%
confidence and UBλ/LBλ = 2. Using λ1 = 69/1079.6 = 0.0691 and λ2 =
12/467.9= 0.0833 as our planning estimates of λ1 and λ2, we would sample

t = 4(2.5758)2 (1/0.0691+1/0.0833)
log2(2)

= 3018 foot-years from each shipment. If we

want to complete the study in k years, then we would sample 3018/k linear
feet of wire from each shipment.
�

%CI for Ratio of Two Poissons

X1=69; t1 = 1079.6;

X2=12; t2=467.9;

n=X1 + X2;

phat = X1/n; %0.8519

phat1 = (X1 +2)/(n + 4); %0.8353

qhat1 = 1 - phat1; %0.1647

% Agresti-Coull CI for prop was selected.

LBp=phat1-norminv(0.975)*sqrt(phat1*qhat1/(n+4)) %0.7564
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UBp=phat1+norminv(0.975)*sqrt(phat1*qhat1/(n+4)) %0.9141

LBlam = LBp/(1 - LBp) * t2/t1; %back to lambda

UBlam = UBp/(1 - UBp) * t2/t1;

[LBlam, UBlam] %[1.3461 4.6147]

%Frame size in Poisson Sampling

lambar1 = 69/1079.6; %0.0639

lambar2 = 12/467.9; %0.0256

w = 2;

td =4* norminv(0.995)^2 *(1/lambar1+1/lambar2)/...

(asin(lambar2/lambar1 * w/2)); %3511.8

tr = 4 * norminv(0.995)^2 *...

( 1/lambar1 + 1/lambar2 )/(log(w))^2; %3018.1

Cox (1953) gives an approximate test and confidence interval for the
ratio that uses an F-distribution. He shows that the statistic

F =
t1λ1

t2λ2

X2 + 1/2
X1 + 1/2

has an approximate F-distribution with 2X1 + 1 and 2X2 + 1 degrees of
freedom. From this, an approximate (1 − α)100% confidence interval for
λ1/λ2 is

[
t2

t1

X1 + 1/2
X2 + 1/2

F2X1+1,2X2+1,α/2,
t2

t1

X1 + 1/2
X2 + 1/2

F2X1+1,2X2+1,1−α/2

]
.

In the context of Example 10.21, the 95% confidence interval for the ratio
λ1/λ2 is [1.3932,4.7497].

%Cox

LBlamc= t2/t1*(X1+1/2)/(X2+1/2)*finv(0.025, 2*X1+1, 2*X2+1);

UBlamc= t2/t1*(X1+1/2)/(X2+1/2)*finv(0.975, 2*X1+1, 2*X2+1);

[LBlamc, UBlamc] %1.3932 4.7497

Note that this interval does not contain 1, which is equivalent to a rejection
of H0 : λ1 = λ2 in a 5%-level test against the two-sided alternative.

The test of H0 : λ1 = λ2 can be conducted using the statistic

F =
t1

t2

X2 + 1/2
X1 + 1/2

,

which under H0 has an F-distribution with d f1 = 2X1 + 1 and d f2 = 2X2 + 1
degrees of freedom.

Alternative α-level rejection region p-value
H1 : λ1 < λ2 [Fd f1,d f2,1−α, ∞) 1-fcdf(F,df1,df2)

H1 : λ1 6= λ2 [0, Fd f1,d f2,α/2] ∪ [Fd f1,d f2,1−α/2, ∞) 2*fcdf(min(F,1/F),df1,df2)

H1 : λ1 > λ2 [0, Fd f1,d f2,α] fcdf(F,df1,df2)
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In Example 10.21, the failure rate λ1 for the bare wire is found to be
significantly larger, with a p-value of 0.00066, than that of polyethylene-
covered wire, λ2.
%test against H_1: lambda1 > lambda2

pval =fcd(t1/t2*(X2+1/2)/(X1+1/2), 2*X1 + 1, 2*X2 + 1)

%6.6417e-004

10.9 Equivalence Tests*

In standard testing of two means, the goal is to show that one population
mean is significantly smaller, larger, or different than the other. The null
hypothesis is that there is no difference between the means. By not rejecting
the null, the equality of means is not established – the test simply did not
find enough statistical evidence for the alternative hypothesis. Absence of
evidence is not evidence of absence.

United States Pharmacopeia (USP) <1033> Biological Assay Validation
guidelines for compliance testing recommend equivalence testing, stating:

“... a standard statistical approach used to demonstrate conformance to expecta-
tion and is called an equivalence test. It should not be confused with the practice
of performing a significance test, such as a t-test, which seeks to establish a differ-
ence from some target value (e.g., 0% relative bias). A significance test associated
with a p-value > 0.05 (equivalent to a confidence interval that includes the target
value for the parameter) indicates that there is insufficient evidence to conclude
that the parameter is different from the target value. This is not the same as con-
cluding that the parameter conforms to its target value. The study design may
have too few replicates, or the validation data may be too variable to discover a
meaningful difference from target. Additionally, a significance test may detect a
small deviation from target that is practically insignificant.”

Thus, in many situations (drug and medical procedure testing, device
performance, etc.), one wishes to test the equivalence hypothesis, which
states that the population means or population proportions differ for no
more than a small tolerance value preset by a regulatory agency. If, for ex-
ample, manufacturers of a generic drug are able to demonstrate bioequiva-
lence to the brand-name product, they do not need to conduct costly clinical
trials in order to demonstrate the safety and efficacy of their generic prod-
uct. More important, established bioequivalence protects the public from
unsafe or ineffective drugs.

In this kind of inference it is desired that no difference constitutes the re-
search hypothesis H1 and that significance level α relates to the probability
of falsely rejecting the hypothesis that there is a difference when in fact the
means are equivalent. In other words, we want to control the type I error
and design the power properly in this context.

In drug equivalence testing, typical measurements are the area under
the concentration curve (AUC) or maximum concentration (Cmax). The two
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drugs are bioequivalent if the population means of the AUC and Cmax are
sufficiently close.

Let ηT denote the population mean AUC for the generic (test) drug and
let ηR denote the population mean for the brand-name (reference) drug. We
are interested in testing

H0 : ηT/ηR < δL or ηT/ηR > δU versus H1 : δL ≤ ηT/ηR ≤ δU ,

where δL and δU are the lower and upper tolerance limits, respectively. The
FDA recommends δL = 4/5 and δU = 5/4 (FDA, 2001).

This hypothesis can be tested in the domain of original measurements
(Berger and Hsu, 1996) or after taking the logarithm. This second approach
is more common in practice since (i) AUC and Cmax measurements are
consistent with the lognormal distribution (the pharmacokinetic rationale
based on multiplicative compartmental models) and (ii) normal theory can
be applied to logarithms of observations. The FDA also recommends a log-
transformation of data by providing three rationales: clinical, pharmacoki-
netic, and statistical (FDA, 2001, Appendix D).

Since for lognormal distributions the mean η is connected with the
parameters of the associated normal distribution, µ and σ2 (page 265),
by assuming equal variances, we get ηT = exp{µT + σ2/2} and ηR =
exp{µR + σ2/2}. The equivalence hypotheses for the log-transformed data
now take the form

H0 : µT − µR ≤ θL or µT − µR ≥ θU, versus H1 : θL < µT − µR < θU,

where θL = log(δL) and θU = log(δU) are known constants. Note that if
δU = 1/δL, then the bounds θL and θU are symmetric about zero, θL =−θU .

Equivalence testing is an active research area, and many classical and
Bayesian solutions exist, as dictated by experimental designs in practice.
The monograph by Wellek (2010) provides comprehensive coverage. We
focus only on the case of testing the equivalence of two population means
when the unknown population variances are the same.

TOST. Schuirmann (1981) proposed two one-sided tests (TOSTs) for test-
ing bioequivalence. Two t-statistics are calculated:

tL =
XT − XR − θL

sp
√

1/n1 + 1/n2
and tU =

XT − XR − θU

sp
√

1/n1 + 1/n2
,

where XT and XR are test and reference means, n1 and n2 are test and
reference sample sizes, and sp is the pooled sample standard deviation, as
on page 431. Note that here, the test statistic involves the acceptable bounds
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θL and θU in the numerator, unlike the standard two-sample t-test, where
the numerator would be XT − XR.

The TOST is now carried out as follows.

(i) Using the statistic tL, test H′0 : µT − µR = θL versus H′1 : µT − µR > θL.

(ii) Using the statistic tU , test H′′0 : µT − µR = θU versus H′′1 : µT − µR < θU .

(iii) Reject H0 at level α; that is, declare the drugs equivalent if both hypotheses H′0
and H′′0 are rejected at level α, which is, if

tL > tn1+n2−2,1−α and tU < tn1+n2−2,α.

Equivalently, if pL and pU are the p-values associated with statistics tL and tU , H0
is rejected when max{pL, pU} < α.

Westlake’s Confidence Interval. An equivalent methodology to test for
equivalence is Westlake’s confidence interval (Westlake, 1976). Bioequiv-
alence is established at significance level α if a t-interval of confidence
(1− 2α)100% is contained in the interval (θL,θU):

[
XT − XR − tn1+n2−2,1−α sp

√
1/n1 + 1/n2,

XT − XR + tn1+n2−2,1−α sp

√
1/n1 + 1/n2

]
∈ (θL,θU).

Here, the usual tn1+n2−2,1−α/2 is replaced by tn1+n2−2,1−α, and Westlake’s
interval coincides with the standard (1− 2α)100% confidence interval for a
difference of normal means.

Example 10.22. Equivalence of Generic and Brand-Name Drugs. A man-
ufacturer wishes to demonstrate that its generic drug for a particular
metabolic disorder is equivalent to a brand-name drug. One indication of
the disorder is an abnormally low concentration of levocarnitine, an amino
acid derivative, in the plasma. Treatment with the brand-name drug sub-
stantially increases this concentration.

A small clinical trial is conducted with 43 patients, 18 in the brand-name
drug arm and 25 in the generic drug arm. The following increases in the
log-concentration of levocarnitine are reported:

Increase for 7 8 4 6 10 10 5 7 9 8
brand-name drug 6 7 8 4 6 10 8 9

Increase for 6 7 5 9 5 5 3 7 5 10
generic drug 2 5 8 4 4 8 6 11 7 5

5 5 7 4 6

The FDA declares that bioequivalence among the two drugs can be es-
tablished if the difference in response to the two drugs is within two units of
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the log-concentration. Assuming that the log-concentration measurements
follow normal distributions with equal population variance, can these two
drugs be declared bioequivalent within a tolerance of ±2 units?

brandname = [7 8 4 6 10 10 5 7 9 ...

8 6 7 8 4 6 10 8 9 ];

generic = [6 7 5 9 5 5 3 7 5 ...

10 8 5 8 4 4 8 6 11 ...

7 5 5 5 7 4 6 ];

xbar1 = mean(brandname) %7.3333

xbar2 = mean(generic) %6.2000

s1 = std(brandname) %1.9097

s2 = std(generic) %1.9791

n1 = length(brandname) %18

n2 = length(generic) %25

%

sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2)/(n1 + n2 - 2)) % 1.9506

tL = (xbar1 - xbar2 -(-2))/(sp * sqrt( 1/n1 + 1/n2 )) % 5.1965

tU = (xbar1 - xbar2 - 2 )/(sp * sqrt( 1/n1 + 1/n2 )) %-1.4373

pL = 1-tcdf(tL, n1+ n2 - 2) %2.9745e-006

pU = tcdf(tU, n1 + n2 - 2) %0.0791

max(pL, pU) %0.0791 > 0.05, no equivalence

alpha = 0.05;

[xbar1-xbar2 - tinv(1-alpha, n1+n2-2)*sp*sqrt(1/n1+1/n2),...

xbar1-xbar2 + tinv(1-alpha, n1+n2-2)*sp*sqrt(1/n1+1/n2)]

% 0.1186 2.1481

% (0.1186, 2.1481) is not contained in (-2,2), no equivalence

Note that the equivalence of the two drugs was not established. The
TOST did not simultaneously reject null hypotheses H′0 and H′′0 , or, equiva-
lently, Westlake’s interval failed to be fully included in the preset tolerance
interval (−2,2).

Bayesian Solution. A Bayesian solution is conceptually straightforward.
One finds the posterior distribution for the difference of the means, and
evaluates the posterior probability of this difference falling in the interval
(−2,2). The posterior probability of (−2,2) should be close to 1 (say, 0.95)
in order to declare equivalence.

model{

for(i in 1:n) {

increase[i] ~ dnorm(mu[type[i]], prec)

}

mu[1] ~ dnorm( 10, 0.00001)

mu[2] ~ dnorm( 10, 0.00001)

mudiff <- mu[1]-mu[2]

prec ~ dgamma(0.001, 0.001)
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probint <- step( mudiff + 2) * step(2 - mudiff)

}

DATA

list( n=43, increase = c(7, 8, 4, 6, 10, 10, 5, 7, 9,

8, 6, 7, 8, 4, 6, 10, 8, 9, 6, 7, 5, 9, 5, 5, 3, 7, 5,

10, 8, 5, 8, 4, 4, 8, 6, 11, 7, 5, 5, 5, 7, 4, 6 ),

type = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2))

INITS

list( mu = c(10, 10), prec = 1)

mean sd MC error val5.0pc median val95.0pc start sample

mudiff 1.133 0.6179 6.238E-4 0.117 1.133 2.147 10001 1000000
probint 0.9213 0.2693 2.766E-4 0.0 1.0 1.0 10001 1000000

The Bayesian analysis closely matches the findings by TOST and West-
lake’s interval. Note that the posterior probability of the tolerance interval
(−2,2) is 0.9213, short of 0.95. Also, the 90% credible set (0.117,2.147) is
close to Westlake’s interval (0.1186,2.1481). This closeness is expected be-
cause of the noninformative priors on the means and precision.
�

10.10 Exercises

10.1. Testing Piaget. Two groups of elementary school students are taught
mathematics by two different methods: traditional (group 1) and small
group interactive teaching by discovery based on Piagetian theory (group
2). The results of a learning test are analyzed to test the difference in
mean scores using the two methods. Group 1 had 16 students, while
group 2 had 14 students. The scores are given below:

Groups Scores
Traditional 80, 69, 85, 87, 74, 85, 95, 84, 87, 86, 82, 91, 79, 100, 83, 85
Piagetian 100, 89, 87, 76, 93, 68, 99, 100, 78, 99, 100, 74, 76, 97

Test the hypothesis that the methods have no influence on test scores
against the alternative that the students in group 2 have significantly
higher scores. Take α = 0.05.

10.2. Smoking and COPD. It is well established that long-term cigarette
smoking is associated with the activation of a cascade of inflammatory
responses in the lungs that lead to tissue injury and dysfunction. This is
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manifested clinically as chronic obstructive pulmonary disease (COPD).
It is believed that smoking causes approx. 80 to 90% of COPD cases.

Nine life-long nonsmoking, healthy volunteers (5 men and 4 women;
mean age 22.0± 1.9 years [±SD]) and 11 healthy volunteers (5 men and
6 women; mean age 23.4± 0.9 years) with a 2.0± 1.2 pack-year cigarette
smoking history were recruited from students attending the University
of Illinois at Chicago. No participants had a history of chronic respira-
tory tract disorders, including asthma and COPD, and all denied symp-
toms of acute respiratory illness within 4 weeks preceding the study.

The study by Garey et al. (2004) found various summaries involving
proteins, nitrite, and other inflammatory cascade signatures in exhaled
breath condensate (EBC). Average nitrite concentration in EBC of non-
smokers was found to be X1 = 16,156 (nmol/L) and the sample standard
deviation was s1 = 7,029 (nmol/L). For smokers, the mean nitrite con-
centration was X2 = 24,672 (nmol/L) and the sample standard deviation
was s2 = 7,534 (nmol/L).

Assuming that the population variances are the same, test the hypothesis
that the nitrite concentration in EBC for smokers and nonsmokers are the
same versus the one-sided alternative. Use α = 5%.

10.3. Noradrenergic Activity. Although loss of noradrenergic neurons in
the locus ceruleus has been consistently demonstrated postmortem in
Alzheimer’s disease, several studies suggest that indexes of central no-
radrenergic activity increase with the severity of Alzheimer’s disease
in living patients. The research by Elrod et al. (1997) estimated the ef-
fect of Alzheimer’s disease severity on central noradrenergic activity
by comparing the CSF norepinephrine concentrations of subjects with
Alzheimer’s disease in early and advanced stages. Lumbar punctures
were performed in 29 subjects with Alzheimer’s disease of mild or mod-
erate severity and 17 subjects with advanced Alzheimer’s disease. Ad-
vanced Alzheimer’s disease was defined prospectively by a mini-mental
state score of less than 12. Norepinephrine was measured by radioenzy-
matic assay, and it is assumed that the measurements followed a normal
distribution.
The CSF norepinephrine concentration for Alzheimer’s-free subjects has
a mean of 170 pg/ml. The patients with advanced Alzheimer’s disease
had a mean CSF norepinephrine concentration of 279 pg/ml, with a sam-
ple standard deviation of 122, while in those with mild to moderate
severity the mean was 198 pg/ml with a standard deviation of 89. In
both cases normality is assumed.
(a) Let µ1 and µ2 be the population means for CSF norepinephrine con-
centration for patients with advanced and mild-to-moderate severity, re-
spectively. Test the hypotheses H′0 : µ1 = 170 and H′′0 : µ2 = 170 based on
the available information.
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(b) Test the hypothesis that the population variances are the same, H0 :
σ2

1 = σ2
2 , versus the two-sided alternative.

(c) Test the hypothesis H0 : µ1 = µ2. Choose the type of t-test based on
the decision in (b).
In all cases use α = 0.05.

10.4. Testing Variances. Consider the following annotated MATLAB file.

%The two samples x and y are:

x = [0.34 0.52 -0.67 -0.98 -2.46 0.05 1.12 ...

1.80 -0.51 0.88 0.29 0.29 0.66 0.06 -0.29];

y = [0.70 -0.61 -1.09 1.68 -0.62 -0.57 0.41];

%Test the equality of population variances

%against the two sided alternative.

%The built-in MATLAB function

[h p]=vartest2(x, y)

gives: %h=0 (choose H0) and p-value p=0.9727.

(a) Find the p-value using the MATLAB code in the table on page 433.
Does it coincide with the vartest2 result?
(b) Show that F = s2

1/s2
2 > 1. In such a case the standard recommendation

is to calculate the two-sided p-value as p = 2 * (1 - fcdf(F,n1-1, n2-1)),
where n1=length(x) and n2=length(y). Show that for the samples from this
exercise, this “p-value” exceeds 1. Can you explain what the problem is?

10.5. Mating Calls. In a study of mating calls in the gray tree frogs Hyla
hrysoscelis and Hyla versicolor, Gerhart (1994) reports that in a location in
Lousiana the following data on the length of male advertisement calls
have been collected:

Sample Average SD of Duration
size duration duration range

Hyla chrysoscelis 43 0.65 0.18 0.36–1.27
Hyla versicolor 12 0.54 0.14 0.36–0.75

The two species cannot be distinguished by external morphology, but H.
chrysoscelis are diploids while H. versicolor are tetraploids. The triploid
crosses exhibit high mortality in larval stages, and if they attain sexual
maturity, they are sterile. Females responding to the mating calls try to
avoid mismatches.
Based on the data summaries provided, test whether the length of call is
a discriminatory characteristic? Use α = 0.05.

10.6. Fatigue. According to the article “Practice and fatigue effects on the
programming of a coincident timing response,” published in the Journal
of Human Movement Studies in 1976, practice under fatigued conditions
distorts mechanisms that govern performance. An experiment was con-
ducted using 15 college males who were trained to make a continuous
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horizontal right- to left-arm movement from a microswitch to a barrier,
knocking over the barrier coincident with the arrival of a clock’s sec-
ond hand to the 6 o’clock position. The absolute value of the difference
between the time, in milliseconds, that it took to knock over the bar-
rier and the time for the second hand to reach the 6 o’clock position
(500 ms) was recorded. Each participant performed the task five times
under prefatigue and postfatigue conditions, and the sums of the abso-
lute differences for the five performances were recorded as follows:

Absolute time differences
(ms)

Subject Prefatigue Postfatigue
1 158 91
2 92 59
3 65 215
4 98 226
5 33 223
6 89 91
7 148 92
8 58 177
9 142 134

10 117 116
11 74 153
12 66 219
13 109 143
14 57 164
15 85 100

An increase in the mean absolute time differences when the task is per-
formed under postfatigue conditions would support the claim that prac-
tice under fatigued conditions distorts mechanisms that govern perfor-
mance. Assuming the populations to be normally distributed, test this
claim at level α = 0.01.

10.7. Body Mass Index and Hirsutism. Hirsutism is a condition that affects
5–10% of women and results in excessive terminal hair growth with a
typical male pattern distribution. It is caused by an excessive production
of androgen in fat tissue as well as increased insulin resistance. In a
study by Fatermi et al. (2012) it was observed that hirsutism is more
common in patients with a higher Body Mass Index. The study involved
a large number of women (800), but here the summaries for 26 cases and
30 controls are provided. The sample sizes, sample means and standard
deviations of BMI for case and control cases are:

Cases Controls
n1 = 26, X1 = 24.57, s1 = 3.04 n2 = 30, X2 = 22.92, s2 = 1.98
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(a) What hypotheses are of interest here and what test is appropriate?
Write down the hypotheses to be tested.
(b) Are the population variances the same? Test the hypothesis of equal-
ity of variances against the two-sided alternative and decide on the test-
ing scenario for the means. Use α = 0.05.
(c) Test the equality of the means against the alternative that you believe
is appropriate for this context. Report the p-value.
(d) You are interested in designing a follow-up test that will be sensitive
to finding the difference in mean BMIs larger than 1.5. If population
variances are σ2

1 = 32 and σ2
2 = 22, what sample size (per group) will

achieve a power of 90% in one-sided testing at level α = 0.05? Hint: Use
the formula on page 438, with ∆ = 1.5.

10.8. Mosaic Virus. A single leaf is taken from each of 11 different tobacco
plants. Each leaf is then divided in half and given one of two prepara-
tions of mosaic virus. Researchers wanted to examine if there is a differ-
ence in the mean number of lesions from the two preparations.
Here are the raw data:

Plant Prep 1 Prep 2 Plant Prep 1 Prep 2
1 38 29 7 41 22
2 40 35 8 36 25
3 26 31 9 12 12
4 33 31 10 34 25
5 21 14 11 28 17
6 27 37

(a) Is this experiment in accordance with a paired t-test setup?
(b) Test the hypothesis that the difference between the two population
means, µ1 − µ2, is significantly positive. Assume normality and use α =
0.05.
(c) What happens with the test in (b) if you assume that the two sam-
ples are independent, coming from normal populations with the same
variance?

10.9. Dopamine β-hydroxylase Activity. Postmortem brain specimens from
nine chronic schizophrenic patients and nine controls were assayed for
activity of dopamine β-hydroxylase (DBH), the enzyme responsible for
the conversion of dopamine to norepinephrine (Wyatt et al., 1975).
The means and standard deviations of DBH activity in the hippocampus
part of the brain are provided in the table. Assume that the data come
from two normally distributed and independent populations.

Schizophrenic Control
subjects subjects

Sample size n1 = 9 n2 = 9
Sample mean X1 = 35.5 X2 = 39.8
Sample standard deviation s1 = 6.93 s2 = 8.16
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(a) Test to determine if the mean activity is significantly lower for the
schizophrenic subjects than for the control subjects. Use α = 0.05.
(b) Construct a 99% confidence interval for the mean difference in en-
zyme activity between the two groups.
Solve the above in two ways: (i) by assuming that σ1 = σ2 and (ii) without
such an assumption.

Wyatt et al. (1975) report that one of the control subjects with low DBH
activity had unusually long death-to-morgue time (27 hours) and sug-
gested excluding the subject from the study. The data for controls after
exclusion were n2 = 8, X2 = 41.2, and s2 = 7.52. Repeat the test in (a) and
(b) with these control data.

10.10. 5-HIAA Levels. A rare and slow-growing form of cancer, carcinoid
tumors, may develop anywhere in the body where neuroendocrine
(hormone-producing) cells exist. Serotonin is one of the key body chemi-
cals released by carcinoid tumors that are associated with carcinoid syn-
drome. The 5-hydroxyindoleacetic acid (5-HIAA) test is a 24-hour urine
test that is specific to carcinoid tumors. Elevated levels of 5-HIAA, a
by-product of serotonin decomposition, can be detected from a urine
sample.
Ross and Roberts (1985) provide results of a case/control study of a mor-
phologically specific type of carcinoid disorder that involves the mural
and valvular endocardium on the right side of the heart, known as carci-
noid heart disease. Out of a total of 36 subjects they investigate, urinary
excretion of 5-hydroxyindoleacetic acid (5-HIAA) was measured on 28
subjects, 16 cases with carcinoid heart disease and 12 controls. The data
recorded as level of 5-HIAA in milligrams per 24 hours, also discussed
in Dawson–Saunders and Trapp (1994), are provided in the table below:

Patients 263 288 432 890
450 1270 220 350
283 274 580 285
524 135 500 120

Controls 60 119 153 588
124 196 14 23

43 854 400 73

Assuming that the data come from respective normal distributions, com-
pare the means of the two populations in both a classical and a Bayesian
fashion. For the Bayes model use noninformative priors.

10.11. Stress, Diet, and Acids. In the study “Interrelationships between Stress,
Dietary Intake, and Plasma Ascorbic Acid during Pregnancy,” discussed
by Walpole et al. (2007, p. 359), the plasma ascorbic acid levels of preg-
nant women were compared for smokers versus nonsmokers. Thirty-two
healthy women, between 15 and 32 years old, in the last 3 months of
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pregnancy were selected for the study. Eight of the women were smok-
ers. Prior to the lab tests, the participants were told to avoid food and
vitamin supplements. From the blood samples, the following plasma
ascorbic acid values of each subject were determined in milligrams per
100 ml:

Plasma ascorbic acid values
Nonsmokers Smokers

0.97 1.06 0.48
0.72 0.86 0.71
1.00 0.85 0.98
0.81 0.58 0.68
0.62 0.57 1.18
1.32 0.64 1.36
1.24 0.98 0.78
0.99 1.09 1.64
0.90 0.92
0.74 0.78
0.88 1.24
0.94 1.18

(a) Using WinBUGS, test the hypothesis of equality of levels of plasma
ascorbic acid for the two populations. Use noninformative priors on pop-
ulation means and variances (precisions).
(b) Compare the results in (a) with a classical two-sample t-test with no
assumption of equality of variances.

10.12. A. pantherina and A. rubescens. Making spore prints is an enormous
help in identifying genera and species of mushrooms. To make a spore
print, mushroom fans take a fresh, mature cap and lay it on a clean
piece of glass. Left overnight or possibly longer, the cap should give you
a good print. The Amanitas family is one that has the most poisonous
(A. phalloides, A. verna, A. virosa, A. pantherina, etc.), as well as the most
delicious (A. cesarea, A. rubescens) species. Two independent samples of
m = 12 and n = 15 spores of A. pantherina (“Panther”) and A. rubescens
(“Blusher”), respectively, were analyzed. In both species of mushrooms
the spores are smooth and elliptical, and the largest possible measure-
ment was taken at the great axis of the ellipse. It was found that the
means were X1 = 6.3 microns and X2 = 7.5 microns, with standard de-
viations of s1 = 2.12 µm and s2 = 1.94 µm.
(a) A researcher is interested in testing the hypothesis that the popula-
tion mean sizes of spores for these two mushrooms, µ1 and µ2, are the
same, versus the two-sided alternative. Use α = 0.05.
(b) What sample sizes are needed so that the researcher is able to reject
the null hypothesis of no effect (no difference between the population
means) with the power of 0.90%, versus the “medium” standardized
effect size of d = 0.5? The significance α is, as in (a), 0.05.



492 10 Two Samples

10.13. Blood Volume in Infants. The total blood volume of normal new-
born infants was estimated by Schücking (1879) who took into account
the addition of placental blood to the circulation of the newborn infant
when clamping of the umbilical cord is delayed. Demarsh et al. (1942)
further studied the importance of early and late clamping. For 16 babies
in whom the cord was clamped early the total blood, as a percentage of
weight, on the third day is listed below:

13.8 8.0 8.4 8.8 9.6 9.8 8.2 8.0
10.3 8.5 11.5 8.2 8.9 9.4 10.3 12.6

For 16 babies in whom the cord was not clamped until the placenta
began to descend, the corresponding figures are listed below:

10.4 13.1 11.4 9.0 11.9 16.2 14.0 8.2
13.0 8.8 14.9 12.2 11.2 13.9 13.4 11.9

(a) Do these two samples provide evidence of a significant difference
between the blood volumes? Perform the test at α = 0.05.
(b) Using WinBUGS, find the posterior probability of the hypothesis that
there is no difference in blood volumes. Use noninformative priors.

10.14. Biofeedback. In the past, many bodily functions were thought to be be-
yond conscious control. However, recent experimentation suggests that
it may be possible for a person to control certain bodily functions if that
person is trained in a program of biofeedback exercises. An experiment is
conducted to show that blood pressure levels can be consciously reduced
in people trained in this program. The blood pressure measurements (in
millimeters of mercury) listed in the table represent readings before and
after the biofeedback training of five subjects.

Subject Before After
1 137 130
2 201 180
3 167 150
4 150 153
5 173 162

(a) If we want to test whether the mean blood pressure decreases after
the training, what are the appropriate null and alternative hypotheses?
(b) Perform the test in (a) with α = 0.05.
(c) What assumptions are needed to assure the validity of the results?
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10.15. Geriatric Assessment. Morrison (2004) reports the unpublished results
of Perlin and Butler, two well-known geropsychologists.1 Forty-nine el-
derly men participating in a study of aging were classified in two diag-
nostic categories: “senile factor present” and “no senile factor present”
on the basis of comprehensive psychiatric examination. The Wechsler
Adult Intelligence Scale had been administered to all subjects by an in-
dependent investigator, and certain subtests showed differences between
the two groups.

Group
No senile factor Senile factor

n1 = 37 n2 = 12
Information 12.57 8.75
Similarities 9.57 5.33
Arithmetic 11.49 8.50
Picture completion 7.97 4.75

The pooled sample covariance matrix S was found to be

S =




11.2553 9.4042 7.1489 3.3830
13.5318 7.3830 2.5532

11.5744 2.6170
5.8085


 .

after the assumption that variances/covariances in the two populations
coincide.
(a) To test for the significance of the observed differences, it was pro-
posed as the null hypothesis that the two groups arose from populations
with a common mean vector. Assuming normality, test this hypothesis.
(b) Let µ3,1 and µ3,2 be the coordinates corresponding to the score in the
arithmetic for the two groups. Show that 0 does not fall in individual 95%
CI for µ3,1− µ3,2, but falls in the simultaneous CI for the same difference.

10.16. Hypertension. Dernellis and Panaretou (2002) examined a small num-
ber of subjects with hypertension and healthy control subjects. One of
the variables of interest was the aortic stiffness index. Measures of this
variable were calculated from the aortic diameter evaluated by M-mode
echocardiography and blood pressure measured by a sphygmomanome-
ter. Generally, physicians wish to reduce aortic stiffness. From n1 = 15
patients with hypertension (group 1), the mean aortic stiffness index was
X1 = 16.16 with a standard deviation of s1 = 4.29. In the n2 = 16 control
subjects (group 2), the mean aortic stiffness index was X2 = 10.53 with a
standard deviation of s2 = 3.33.

1 Dr Seymour Perlin MD, is well known for his research in suicide prevention; and Dr
Robert N. Butler, MD is was founding director of NIA in 1976 and author of the bestseller
book Why Survive. He coined the term ageism.
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(a) Test the hypothesis that the population mean aortic stiffness indexes
for the two groups differ using the two-sided alternative. Perform the
test by both the rejection-region and p-value methods. Take α = 0.05 and
assume that the population variances are the same.
(b) What is the observed (retrospective) power of this test versus the
specific alternative ∆ = |µ2 − µ1| = 3? Keep α = 0.05.
(c) Pretend that this study was only a pilot study needed to design more
elaborate clinical trials of the same type. What group sample sizes are
needed to assure a 99% power versus the fixed alternative ∆ = |µ2 −
µ1|= 3?

10.17. Hemopexin in DMD Cases II. Refer to Exercises 2.19 and 9.16 and data
set dmd.dat|mat|xls.
(a) Form a 95% confidence interval for the difference in mean re-
sponses of hemopexin h in two populations: population 1 consisting of
all women who are not DMD (Duchenne muscular dystrophy) carriers
(carrier=0) and population 2 consisting of all women who are DMD
carriers (carrier=1).
(b) It is believed that the mean level of hemopexin in the population of
women DMD carriers exceeds the mean level in women noncarriers by
10.
Test the one-sided alternative that the mean levels of hemopexin for the
two populations differ by more than 10, that is, H0 : µ1− µ2 =−10 versus
H1 : µ1 − µ2 < −10. Use α = 5%. Report the p-value as well. Compare
the population variances prior to deciding how to test the difference of
means.
Hint: In testing the hypothesis H0 : µ1 − µ2 = C, the associated t-statistic
has X1 − X2 − C as its numerator instead of X1 − X2.

10.18. Risk of Stroke. Abbott et al. (1986) evaluate the risk of stroke among
smokers and nonsmokers in a 12-year prospective Honolulu Heart Pro-
gram study. The data are given in the table below:

Stroke yes Stroke no Total
Smoker 171 3264 3435
Nonsmoker 117 4320 4437

Total 288 7584 7872

Estimate
(a) the risk difference, and find the 95% confidence interval for the pop-
ulation risk difference;
(b) the risk ratio, and find the 95% confidence interval for the population
risk ratio; and
(c) the odds ratio, and find the 95% confidence interval for the popula-
tion odds ratio.
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10.19. CBG Test. In cardiovascular bypass grafting (CBG), patients’ blood
platelet reactivity was monitored prior to and 5 days after the operation.
P-selectin expression was measured as the marker of platelet function in
resting platelets, as well as in the cells agonized in vitro by thrombin. The
goal of the research was to test if CBG operation affects blood platelet
reactivity.
For n = 20 patients the P-selectin expressions before and 5-days after the
surgery were recorded as

before = [44.2 73.8 70.5 60.8 58.7 52.1 45.7 67.2 61.3 71.4 ...

61.2 64.0 57.4 55.7 54.7 52.5 63.7 67.8 53.6 48.5];

after = [38.8 73.6 55.5 51.5 64.1 30.3 49.5 55.7 54.7 52.5 ...

51.6 55.0 68.5 45.5 58.2 61.8 29.7 42.2 54.2 62.3];

Is the operation affecting platelet reactivity?
(a) Assume normal distributions for the two sets of measurements with
means µb and µa. Test H0 : µb = µa against one-sided alternative H1 : µb >

µa.
(b) Find the 95% CI for the difference µb − µa.
(c) What sample size is needed to reject the null hypothesis in a one-
sided α = 0.05 level testing, with power of 90% whenever the true differ-
ence between the means exceeds 5? Assume that the standard deviations
for Before and After measurements are 10 each and that correlation ρ be-
tween the measurements is 0.3. To express variance for the difference σ2

d ,
use σ2

d = σ2
b + σ2

a − 2σbσaρ.

10.20. Cell Counts. Refer to Example 1.2 and assume that the data is approx-
imately normal.
(a) Do automated and manual counts significantly differ for a fixed con-
fluency level? Use a paired t-test with a two-sided alternative at signifi-
cance level α = 0.05.
(b) What are 95% confidence intervals for the population differences?
(c) If the difference between automated and manual counts constitutes
an error, are the errors comparable for the two confluency levels? This is
a DiD (difference-in-differences) test and is equivalent to a two-sample
t-test when measurements are the differences. Use the two-sided alter-
native and α = 0.05.

10.21. Impulses from Crayfish. The crayfish is utilized in numerous neuro-
science labs in order to explore the role of the central pattern generator
(CPG) in locomotion. In an experiment with crayfish, you design glass
electrodes to record from the abdominal ganglia nerves that contribute
to the return and power strokes of the swimmerets. What this means is
that the nerves you are recording from contain the motor output signals
that tell the swimmerets to move water around their abdomen anterior
or posterior. In the experimental setup, glass extracellular electrodes are
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used to measure the action potentials or voltage waveform. Due to this
being a CPG, you normally expect bursting activity, but when you suc-
tion onto the nerve cord, you notice what seems to be regular spiking.
A spike detector was applied on the voltage time trace, and the inter-
spike intervals were recorded. The data were obtained under two treat-
ments: (1) Carbachol (also known as carbamylcholine), a drug that binds
and activates the acetylcholine receptor, was added to possibly induce
faster spiking; and (2) control group. The data files carbachol.dat and

control.dat containing the respective interspike times can be found
at the book’s Web site. Also, you can load both files by importing

frankdata.mat or frankdata.xls. All interspike time measurements
are given in seconds. (Thanks to Dr. Frank Lin for making the data avail-
able.)
(a) Find fundamental descriptive statistics for both samples carbachol

and control. Is normality a reasonable assumption for the two popula-
tions?
(b) Find the 95% confidence interval for the population mean interspike
time in the control case.
(c) It is believed that the spiking in the control population has a fre-
quency of 5 Hz. Test this hypothesis by testing that the mean population
interspike time is 0.2, versus the proper one-sided alternative. Use both
RR and p-value approaches; α = 0.05.
(d) Test the hypothesis that the mean interspike time in the control and
carbachol populations are the same versus the one-sided alternative that
states that carbachol increases the frequency of spikes (decreases the
interspike times); α = 0.05.
(e) Do (b) and (c) in a Bayesian fashion building on spikes.odc, which
contains control data and hints on how to set the priors. Compare and
discuss the 95% confidence interval from (b) and the 95% credible set
from BUGS. Compare tests, the p-value from (c), and the probability of
H0 from WinBUGS.

10.22. Aerobic Capacity. The peak oxygen intake per unit of body weight,
called the aerobic capacity of an individual performing a strenuous activ-
ity, is a measure of work capacity. For comparative study, measurements
of aerobic capacities are recorded (Frisancho, 1975) for a group of 20
Peruvian highland natives and for a group of 10 Peruvian lowlanders
acclimatized as adults to high altitudes. The measurements are taken on
a bicycle ergometer at high altitude (ml kg−1 min−1).

Peruvian Peruvian lowlanders
highland natives acclimatized as adults

Sample mean 46.3 38.0
Sample st. deviation 5.0 5.2
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(a) Test the hypothesis that the population mean aerobic capacities are
the same versus the one-sided alternative. Assume an equality of popu-
lation variances and take α = 0.05.
(b) If you were to repeat this experiment, what sample size (per group)
would give you a power of 90% to detect the difference between the
means of magnitude 4, if you assumed that the common population
variance was σ2 = 52 = 25? The level of the test, α, is to be kept at 5%.

10.23. Ibuprofen and Acute Sepsis. Bernard et al. (1997) describe a random-
ized, double-blind, placebo-controlled trial of intravenous ibuprofen in
455 patients who had sepsis, defined as fever, tachycardia, tachypnea,
and acute failure of at least one organ system.
The mortality rate was 92 out of 231 in the placebo group compared to
83 out of 224 in the ibuprofen group (at dose 10 mg per kilogram of body
weight, given every six hours).
The authors conclude: “In patients with sepsis, treatment with ibupro-
fen reduces levels of prostacyclin and thromboxane and decreases fever,
tachycardia, oxygen consumption, and lactic acidosis, but it does not
prevent the development of shock or the acute respiratory distress syn-
drome and does not improve survival.”
Can you confirm that ibuprofen regimen did not significantly improve
the survival rate, by analyzing the risk difference, and risk and odds
ratios?

10.24. Cataract and Diabetes. Hiller and Kahn (1976) consider diabetes as a
risk factor for cataracts and provide the results of a case/control study.

Diabetes Cataract cases No cataract Total

Present 56 84 140
Absent 552 1927 2479

Total 608 2011 2619

Find 95% confidence intervals for the risk difference, risk ratio, and odds
ratio.

10.25. Beginnings of Antiseptic Surgeries. Sir Joseph Lister (1827–1912), Pro-
fessor of Surgery at Glasgow University, influenced by Pasteur’s ideas,
found that a wound wrapped in bandages treated by carbolic acid (phe-
nol) would often not become infected. Here are Lister’s data on treating
open fractures and amputations:

Period Carbolic acid Results
1864–1866 No Treated 34 patients, 15 died and 19 recovered
1867–1870 Yes Treated 40 patients, 6 died and 34 recovered

(a) Find and interpret the risk difference, risk ratio, and odds ratio.
(b) Find the 95% CIs for population parameters estimated in (a).
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10.26. Reaction Times. Researchers are interested in reactions times to differ-
ent color light stimuli, specifically, green and red. A randomized design
is proposed – each subject is given a number of trials, such as GGR-
RGRRG, for example. As a measurement of reaction time for a subject
we report an average speed of reaction to each color. The table below
contains the measurements.

Subject X (red) Y (green)
1 18 22
2 16 20
3 23 29
4 30 35
5 32 27
6 30 29
7 31 33
8 25 29
9 27 31

10 21 24

Are the reaction times to red and green lights the same? Use a two-sided
alternative and α = 0.05.

10.27. Kawasaki Disease Clinical Trials. The team of researchers from RAISE
Study Group (2012) report on a multicenter, prospective, randomized,
open-label, blinded-endpoints trial in 74 hospitals in Japan between
2008 and 2010. Patients with severe Kawasaki disease were randomly
assigned to receive either intravenous immunoglobulin (2 g/kg for 24
h and aspirin 30 mg/kg per day) or intravenous immunoglobulin plus
prednisolone 2 mg/kg (instead of aspirin) per day. The outcome of inter-
est was the development of coronary abnormalities (CA) over the study
period. The following 2× 2 table summarizes the results of the trial:

Treatment group CA No CA Total
Immunoglobulin + Prednisolone 4 121 125
Immunoglobulin + Aspirin 28 95 123
Total 32 216 248

Report and interpret (in the context of this problem) the (a) risk dif-
ference, (b) risk ratio, and (c) odds ratio. Find the corresponding 95%
confidence intervals.

10.28. GREAT Trial. Pocock and Spiegelhalter (1992a,b) examine the effect of
anistreplase (a thrombolytic agent) on recovery from myocardial infrac-
tion. A total of 311 patients were randomized in two arms anistreplase
and placebo (conventional treatment). The number of deaths (during 3
months following acute MI) in each arm is given in the table below
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Event Total
Death No death

Treatment Anistreplase 14 149 163
Placebo 23 125 148

Total 37 274 311

(a) Find 95% confidence intervals for the risk difference, risk ratio, and
odds ratio. You can use file risk.m from the text’s website.
(b) Argue that the anistreplase treatment significantly lowers 3-month
mortality. Base your arguments on confidence intervals from (a); no test
is necessary.

10.29. High/Low Protein Diet in Rats. Armitage and Berry (1994, p. 111)
report data on the weight gain of 19 female rats between 28 and 84 days
after birth. The rats were placed on diets with high (12 animals) and low
(7 animals) protein content.

High protein Low protein
134 70
146 118
104 101
119 85
124 107
161 132
107 94

83
113
129

97
123

We want to test the hypothesis on dietary effect. Did a low protein diet
result in significantly lower weight gain?
(a) What test should be used?
(b) Perform the test at an α = 0.05 level.
(c) What sample size is needed (per diet) if σ2

1 = σ2
2 = 450 and we are

interested in detecting the difference ∆ = |µ1 − µ2| = 20 as a significant
deviation from H0 95% of the time (power = 0.95). Use α = 0.05.

10.30. Spider Monkey DNA. In Example 10.20 we tested for the difference of
proportions of nucleotides. Using the fact that nucleotides are exclusive
(e.g., one nucleotide cannot be at the same time A and T) and that the
numbers of nucleotides follow multinomial distribution,
(a) Test that proportion pA is significantly smaller than pT.
(b) Demonstrate that proportions pG and pC are not significantly differ-
ent.
Use α = 0.05.
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Hint: Since this is a multinomial model, the variance for difference
p̂A− p̂T needed for Z statistic is Var ( p̂A− p̂T) = pA(1− pA)/n+ pT(1−
pT)/n + 2pA pT/n. Under H0 from (a), both pA and pT are estimated by
( p̂A + p̂T)/2, which leads to Z =

√
n( p̂A − p̂T)/

√
p̂A + p̂T.

10.31. PBSC versus BM for Unrelated Donor Allogeneic Transplants. We
are interested in determining whether bone marrow (BM) is equivalent
to peripheral blood stem cells (PBSC) in myeloablative unrelated donor
transplantation, using the data from Eapen et al. (2007). The greater
graft-versus-host disease burden of PBSC might make clinicians less
likely to use PBSC in this context.
By using equivalence margins of ±10%, and proportions of relapse
within 6 months, test whether PBSC and BM are equivalent at level
α = 0.05.

Method Number of patients Relapsed after 6 months
BM 583 93 (16%)

PBSC 328 58 (18%)

Hint: By mimicking Example 10.22, devise a TOST using a normal ap-
proximation to the binomial:

zL =
p̂BM − p̂PB − (−δ)√

p̂BM(1− p̂BM)
n1

+ p̂PB(1− p̂PB)
n2

, pL = 1−Φ(zL),

zU =
p̂BM − p̂PB − δ√

p̂BM(1− p̂BM)
n1

+ p̂PB(1− p̂PB)
n2

, pU = Φ(zU),

p-value = max{pL, pU}.

10.32. Risk Ratio Paradox. A clinical trial is being conducted to study the
benefits of fluoridation in reducing chances of caries in school children.
In a control group, the number of children who developed caries over
a 4-year period was X1 ∼ Bin(n1, p1), while in the treatment group, the
number of children who developed caries over the same 4-year period
was X2 ∼ Bin(n2, p2). The researchers believe that fluoridation is bene-
ficial, but take flat priors for p1, p2 as independent beta Be(1,1). In the
clinical trial, it is obtained that n1 = 21, X1 = 5, and n2 = 14, X2 = 3; thus,
data indicate that the fluoridation reduces the risk of caries by 2.38%,
and the prior is neutral. Using WinBUGS find the posterior mean for the
risk ratio p2/p1 and show that it is approximately 1.10. Thus, the Bayes
estimate indicates that fluoridation increases chances of caries by 10%.
Can you explain why this counterintuitive result is obtained?

10.33. Hydrogels. It has been demonstrated that poly(ethylene glycol) di-
acrylate (PEG-DA)-based hydrogels could serve as direct cell carriers
for engineering soft orthopedic tissues. Recent studies have also shown
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that PEG-DA can be rendered degradable by introducing an enzyme-
sensitive peptide sequence into the polymer chains.
The data from Dr. Temenoff’s lab at Georgia Tech represent proportions
of surviving cells after gel degradation by the enzyme, a bacterial colla-
genase, in durations of 30 and 60 minutes.
It is postulated that the proportions of live cells after 30 minutes and
60 minutes of exposure to the enzyme are equivalent. The data collected
in eight independent experiments represent the number of cells alive
among the total number of cells recovered, as in the table below.

30 minutes 60 minutes
Alive Total Alive Total

20,250 44,250 40,500 69,750
51,000 126,000 42,750 76,500
77,250 100,500 78,750 155,250
39,000 58,500 42,750 67,500

Form ratios alive/total for the two durations. The ratios could be as-
sumed as approximately normal given the large number of cells recov-
ered. Show that H0 : µ1 = µ2 is not rejected against one- or two-sided
alternatives. This, however, is not evidence of equivalence. Test the hy-
pothesis of equivalence with equivalence margins θU = −θL = 0.1, that
is, H0 : µ1− µ2 <−0.1 or µ1− µ2 > 0.1 versus H1 :−0.1< µ1− µ2 < 0.1.
Use a Westlake interval and α = 0.05.

10.34. Bumpus’ Sparrows Data. After an unusually severe storm in February
of 1898, a number of house sparrows, Passer domesticus, were brought
to the Anatomical Laboratory of Brown University, Providence, Rhode
Island. Seventy-two of these birds revived; sixty-four perished. This
event is described by Hermon Carey Bumpus, the first PhD graduate
of Clark University, whose paper (Bumpus, 1898) has served as an ex-
ample of natural selection in action. The data set provided by Bumpus
included several anatomic measurements on 136 birds (as data structure

bumpus.mat) and had been analyzed since by many diverse researches.

surv 1 if survived, 0 if perished
sex 11 = male young; 12 = male adult; 2 = female
lbt Length (mm) from tip of the beak to the tip of the tail
ae Alar extent (mm) from tip to tip of the extended wings
wei Weight (g)
lbh Length of beak and head (mm), from tip of the beak to the occiput
hum Length of humerus [arm/wing bone] (in)
fem Length of femur [thigh bone] (in)
tib Length of tibiotarsus [leg bone linked to femur] (in)
wos Width of skull (in), from the postorbital bone of

one side to the postorbital bone of the other
kos Length of keel of sternum [an extension of breastbone] (in)
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By using 2-sample T2 test find whether there exists a significant anatomic
difference between the birds from the two groups defined by the survival
status. Use the components sex, lbt, ae, wei, lbh, hum, fem, tib, wos, and kos.
There is an agreement that lighter and shorter birds have a higher chance
of survival. How this can be formally tested?

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch10.Two/

argon.m, bihist.m, dnatest2.m, equivalence1.m, hemoc.m, hemopexin2.m,

HIAA.m, leadexposure.m, miammt.m, microdamage.m, neanderthal.m,

nounfirst.m, piaget.m, plazmaacid.m, plazmaacid2.m, ponvexam.m,

psoriasis.m, ratiopoissons.m, risk.m, schizo.m, simulrisks.m, temenoff.m,

vaccination.m

argon.odc, braintissue.odc, cancerprop.odc, eBay.odc, equivalence.odc,

microdamage.odc, plasma1.odc, plasma2.odc, psoriasis.odc, spikes.odc,

stressacids.odc, twovars.odc

carbachol.dat, control.dat, dmd.dat|mat|xls, frankdata.mat|xlsx,

lice.xls, pasi.dat|mat|xls, PONV.mat|xlsx
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Chapter 11

ANOVA and Elements of Experimental
Design

Design is art optimized to meet objectives.

– Shimon Shmueli

WHAT IS COVERED IN THIS CHAPTER

• ANOVA Model Formulation
• Contrasts and Multiple Comparisons
• Factorial Designs
• Randomized Block Designs and Repeated Measures Designs
• Nested Designs
• Sample Sizes in ANOVA
• Functional ANOVA
• Analysis of Means (ANOM)
• Gauge R&R ANOVA
• Testing Equality of Proportions and Poisson Means

11.1 Introduction

In Chapter 10 we discussed the test of equality of means from two popula-
tions, H0 : µ1 = µ2. Under standard assumptions of normality and indepen-
dence, the proper test statistic followed a t-distribution, and several tests
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(equal/different variances, paired/unpaired samples) shared the common
name “two-sample t-tests.”

Many experimental protocols involve more than two populations. For
example, an experimenter may be interested in comparing the sizes of cells
grown under several experimental conditions. At first glance, it seems that
we can apply the t-test on all possible pairs of means. This “solution” would
not be satisfactory since the probability of type I error for such a procedure
is unduly large. For example, if the equality of four means is tested by
testing the equality of (4

2) = 6 different pairs, each at the level of 5%, then
the probability of finding a significant difference when in fact all means are
equal is about 26.5%. We already discussed in Section 9.9 the problems of
controlling type I error in multiple tests.

An appropriate procedure for testing hypotheses of equality of several
means is the analysis of variance (ANOVA). ANOVA is probably one of the
most frequently used statistical procedures, and the reasoning behind it is
applicable to several other, seemingly different, problems.

11.2 One-Way ANOVA

ANOVA is an acronym for analysis of variance. Even though we are testing
for differences among population means, the variability among the group
means and the variability of the data within the treatment group are com-
pared. This technique of splitting the total variability in data to between and
within variabilities was first introduced by Fisher (1918, 1921).

Suppose we are interested in testing the equality of k means µ1, . . . ,µk

characterizing k independent populations P1, . . . ,Pk. From the ith popula-
tion Pi a sample

yi1,yi2, . . . ,yini

of size ni is taken. Let N = ∑
k
i=1 ni be the total sample size. The responses

yij are modeled as

yij = µi + ǫij, 1≤ j≤ ni; 1≤ i ≤ k, (11.1)

where ǫij represents the “error” and quantifies the stochastic variability
of difference between observation yij and the mean of the corresponding
population, µi. Sometimes the µis are called treatment means, with index i
representing one of the treatments.

The null hypothesis is that all population means µi are equal, and the
procedure to test it is called one-way ANOVA. The assumptions underlying
one-way ANOVA are as follows:

(i) All populations are normally distributed.
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(ii) The variances in all populations are the same and constant, This is
also known as the assumption of homoscedasticity.

(iii) The samples are mutually independent.
The assumptions (i)–(iii) can be expressed by the requirement that all

yij in (11.1) must be i.i.d. normal N (µi,σ2) or, equivalently, all ǫijs must be
i.i.d. normal N (0,σ2).

Normal population
1 2 . . . k

Population mean µ1 µ2 . . . µk

Common variance σ2 σ2 . . . σ2

If the sample sizes are the same, i.e., n1 = n2 = · · ·= nk = N/k, then the
ANOVA is called balanced. It is often the case that many experiments are
designed as a balanced ANOVA. During an experiment it may happen that
a particular measurement is missing due to a variety of reasons, resulting
in an unbalanced layout. Balanced designs are preferable because they lead
to simpler computations and interpretations.

In terms of model (11.1), the null hypothesis to be tested is

H0 : µ1 = µ2 = · · · = µk,

and the alternative is

H1 : (H0)
c (or µi 6= µj, for at least one pair i, j).

Note that the alternative H1 ≡ (H0)
c is any negation of H0. Thus, for

example, µ1 > µ2 = µ3 = · · · = µk or µ1 = µ2 6= µ3 = µ4 = · · · = µk are valid
alternatives. Later we will discuss how to assess the alternative if H0 is
rejected.

We can reparameterize the population mean µi as µi = µ + αi. Simply
stated, the treatment mean is equal to the mean common for all treatments,
called the grand mean µ, plus the effect of the population group, known
as the treatment effect αi. The hypotheses now can be restated in terms of
treatment effects:

H0 : α1 = α2 = · · · = αk = 0.

The alternative is H1: Not all αis are equal to 0.
The representation µi = µ + αi is not unique. We usually assume that

∑i αi = 0. This is an identifiability assumption needed to ensure the unique-
ness of the decomposition µi = µ + αi. Indeed, by adding and subtracting
any number c, µi becomes µ + αi = (µ+ c) + (αi− c) = µ′+ α′, and unique-
ness is assured by ∑i αi = 0. This kind of constraint is sometimes called the
sum-to-zero (STZ) constraint. There are other ways to ensure uniqueness; a
sufficient assumption is, for example, to set α1 = 0. In this case µ = µ1 be-
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comes the reference or baseline mean. Prior to providing the procedure for
testing H0, we sum up the notation:

yij jth observation from treatment i
yi Sample mean from treatment i
y Average of all observations
µi Population treatment mean
µ Population grand mean
αi ith treatment effect
ni Size of ith sample
k Number of treatments
N Total sample size

11.2.1 ANOVA Table and Rationale for F-Test

The ANOVA table displays the data summaries needed for inference about
the ANOVA hypothesis. It also provides an estimator of the variance in
measurements and assesses the goodness of fit of an ANOVA model.

The variability in data follows the fundamental ANOVA identity in which
the total sum of squares (SST) is represented as a sum of the treatment sum
of squares (SSTr) and the sum of squares due to error (SSE):

SST = SSTr + SSE = SSBetween + SSWithin,
k

∑
i=1

ni

∑
j=1

(yij − y)2 =
k

∑
i=1

ni(yi − y)2 +
k

∑
i=1

ni

∑
j=1

(yij − yi)
2.

Here y= 1
N ∑

k
i=1 ∑

ni
j=1 yij is the mean of all observations, and yi =

1
ni

∑
ni
j=1 yij, i =

1, . . . ,k, are the sample means.
The standard output from most statistical software includes degrees of

freedom (DF), mean sum of squares, F ratio, and the corresponding p-value:

Source DF Sum of squares Mean squares F p
Treatment k− 1 SSTr MSTr = SSTr/(k− 1) MSTr/MSE P(Fk−1,N−k > F)

Error N − k SSE MSE = SSE/(N− k)
Total N − 1 SST
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The null hypothesis is rejected if the F-statistic is large compared to
the (1− α) quantile of an F-distribution with k − 1 and N − k degrees of
freedom. A decision can also be made by looking at the p-value.

Rationale. The mean square error, MSE, is an unbiased estimator of σ2.
Indeed,

MSE =
1

N − k

k

∑
i=1

ni

∑
j=1

(yij − yi)
2 =

1
N − k

k

∑
i=1

[
(ni − 1)

1
ni − 1

ni

∑
j=1

(yij − yi)
2

]

=
1

N − k

k

∑
i=1

(ni − 1)s2
i , and

E(MSE) =
1

N − k

k

∑
i=1

(ni − 1)E(s2
i ) =

1
N − k

k

∑
i=1

(ni − 1)σ2 = σ2.

However, the mean square error due to treatments,

MSTr =
SSTr

k− 1
=

1
k− 1

k

∑
i=1

ni(yi − y)2,

is an unbiased estimator of σ2 only when H0 is true, that is, when all µi are
the same. This follows from the fact that

E(MSTr) = σ2 +
∑i ni(αi)

2

k− 1
,

where αi = µi−µ is the population effect of treatment i, and µ= 1
N ∑

k
i=1 niµi.

Since under H0 α1 = α2 = · · · = αk = 0, the E(MSTr) is equal to σ2; thus,
MSTr is an unbiased estimator of variance. When H0 is violated, not all αi

are 0, or, equivalently, ∑ α2
i > 0. Consequently, the ratio MSTr/MSE quan-

tifies the departure from H0, and large values of this ratio are critical.

Example 11.1. Coagulation Times. To illustrate the one-way ANOVA, we
work out an example involving coagulation times that is also considered
by Box et al. (2005). Twenty-four animals are randomly allocated to four
different diets, but the numbers of animals allocated to different diets are
not the same. The blood coagulation time is measured for each animal.
Does diet type significantly influence the coagulation time? The data and
MATLAB solution are provided next:

times = [62, 60, 63, 59, 63, 67, 71, 64, 65, 66, 68, 66, ...

71, 67, 68, 68, 56, 62, 60, 61, 63, 64, 63, 59];

diets = {’dietA’,’dietA’,’dietA’,’dietA’,’dietB’,’dietB’,...
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’dietB’,’dietB’,’dietB’,’dietB’,’dietC’,’dietC’,’dietC’,...

’dietC’,’dietC’,’dietC’,’dietD’,’dietD’,’dietD’,’dietD’,...

’dietD’,’dietD’,’dietD’,’dietD’};

[p,table,stats] = anova1(times, diets,’on’)

% p = 4.6585e-005

% table =

%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

%’Groups’ [228] [ 3] [ 76] [13.5714] [4.6585e-005]

%’Error’ [112] [20] [5.6000] [] []

%’Total’ [340] [23] [] [] []

%

%stats =

% gnames: 4x1 cell

% n: [4 6 6 8]

% source: ’anova1’

% means: [61 66 68 61]

% df: 20

% s: 2.3664

dietA dietB dietC dietD

60

65

70

(a) (b)

Fig. 11.1 (a) ANOVA table and (b) boxplots, as outputs of the anova1 procedure on the
coagulation times data.

From the ANOVA table we conclude that the null hypothesis is not
tenable, the diets significantly affect the coagulation time. The p-value is
smaller than 0.5 · 10−4, which indicates strong support for H1.

The ANOVA table, featured in the output and Figure 11.1a, is a standard
way of reporting the results of an ANOVA procedure. The SS column in the
ANOVA table restates the fundamental ANOVA identity SSTr+SSE = SST
as 228 + 112 = 340. The degrees of freedom for treatments, k− 1, and the
error, n− k, are additive and their sum is total number of degrees of free-
dom, n − 1. Here, 3 + 20 = 23. The column with mean square errors is
obtained when the sums of squares are divided by their corresponding de-
grees of freedom. The ratio F = MSTr/MSE is the test statistic distributed
as F with (3, 20) degrees of freedom. The observed F = 13.5714 exceeds the
critical value finv(0.95, 3, 20)=3.0984, and H0 is rejected. Recall that the re-
jection region is always right-tailed, in this case [3.0984,∞). The p-value is
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1-fcdf(13.5714, 3, 20)= 4.6585e-005. Figure 11.1b shows boxplots of the co-
agulation times by the diet type.
�

Since the entries in ANOVA table are interrelated, it is possible to recover
a table from only a few entries (e.g., Exercises 11.3, 11.7, and 11.14).

11.2.2 Testing the Assumption of Equal Population Variances

There are several procedures that test for the fulfillment of ANOVA’s con-
dition of homoscedasticity, that is, the condition that the variances are the
same and constant over all treatments.

A reasonably sensitive and simple procedure is Cochran’s test.

11.2.2.1 Cochran’s Test.

Cochran’s test (Cochran, 1941) rejects the hypothesis that k populations
have the same variance if the statistic

C =
s2

max

s2
1 + · · ·+ s2

k

is large. Here, s2
1, . . . , s2

k are sample variances in k samples, and smax is the
largest of s2

1, . . . , s2
k . Cochran’s test assumes equal sample sizes n = n1 = · · ·=

nk. The hypothesis H0 : σ1 = σ2 = · · · = σk is rejected at level α if C >
f

f+k−1 ,
where f is (α/k)-quantile of F-distribution with k − 1 and (k− 1)(n− 1)
degrees of freedom, Fk−1,(k−1)(n−1),α/k.

If the sample sizes are not equal, one can use the harmonic average of
n′is, or a more precise ’t Lam’s generalization of Cochran’s C (’t Lam, 2010).

11.2.2.2 Levene’s Test.

Levene’s test (Levene, 1960) hinges on the statistic

L =
(N − k)∑

k
i=1 ni(Zi· − Z··)2

(k− 1)∑
k
i=1 ∑

ni
j=1(Zij − Zi·)2

,

where Zij = |yij− yi·|. To enhance the robustness of the procedure, the sam-
ple means could be replaced by the group medians, or trimmed means. The
hypothesis H0 : σ1 = σ2 = · · · = σk is rejected at level α if L > Fk−1,N−k,α.
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11.2.2.3 Bartlett’s Test.

Another popular test for homoscedasticity is Bartlett’s test (Bartlett, 1937).
The statistic

B =
(N − k) log s2

p −∑
k
i=1(ni − 1) log s2

i

1 + 1
3(k−1) × (∑k

i=1
1

ni−1 − 1
N−k )

,

where s2
p is the pooled sample variance

(n1−1)s2
1+···+(nk−1)s2

k
N−k , has an approx-

imately χ2-distribution with k − 1 degrees of freedom. Large values of B
are critical, i.e., H0 is rejected at level α if B > χ2

k−1,α.
In MATLAB, Bartlett’s test is performed by the vartestn(X) command

for samples formatted as columns of X, or as vartestn(X, group) for vec-
tor X, where group membership of Xs is determined by the vector group.
Bartlett’s test is the default. Levene’s test is invoked by optional argument,
vartestn(...,’robust’). In the context of Example 11.1, Bartlett’s and Lev-
ene’s tests are performed in MATLAB as

% Coagulation Times: Testing Equality of Variances

[pval stats]=vartestn(times’, diets’,’on’) %Bartlet

% pval = 0.6441

% chisqstat: 1.6680

% df: 3

[pval stats]=vartestn(times’, diets’,’on’,’robust’) %Levene

% pval = 0.6237

% fstat: 0.5980

% df: [3 20]

According to these tests, the hypothesis of equal treatment variances is
not rejected. Cochran’s test agrees with Bartlett’s and Levene’s, giving a
p-value of 0.6557.
Remark. As mentioned iwhen we compared the two means (page 433),
the variances-before-means type procedures are controversial. A celebrated
statistician George E. P. Box criticized checking assumptions of equal vari-
ances before testing the equality means, arguing that comparisons of means
are quite robust procedures compared to a non-robust variance comparison
(Box, 1953, p. 333). Aiming at Bartlett’s test in particular, Box summarized
his criticism as follows: “To make the preliminary test on variances is rather
like putting to sea in a rowing boat to find out whether conditions are suf-
ficiently calm for an ocean liner to leave port!”
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11.2.3 The Null Hypothesis Is Rejected. What Next?

When H0 is rejected, the form for the alternative is not obvious as in the
case of two means, and thus we must further explore relationships between
the individual means. We will discuss two post-test ANOVA analyses: (i)
tests for contrasts and (ii) pairwise comparisons. They both make sense
only if the null hypothesis is rejected; if H0 is not rejected, then both tests
for contrasts and pairwise comparisons are trivial.

11.2.3.1 Contrasts

A contrast is any linear combination of the population means,

C = c1µ1 + c2µ2 + · · ·+ ckµk,

such that ∑
k
i=1 ci = 0.

For example, if µ1, . . . ,µ5 are means of k = 5 populations, the lin-
ear combinations 2µ1 − µ2 − µ4, µ3 − µ2, and µ1 + µ2 + µ3 − µ4 − 2µ5,
are all contrasts since 2 − 1 + 0 − 1 + 0 = 0, 0 − 1 + 1 + 0 + 0 = 0, and
1 + 1 + 1− 1− 2 = 0.

In the ANOVA model, yij = µi + ǫij, i = 1, . . . ,k; j = 1, . . . ,ni, the sample
treatment means yi =

1
ni

∑
ni
j=1 yij are the estimators of the population treat-

ment means µi. Let N = n1 + · · ·+ nk be the total sample size and s2 = MSE
the estimator of variance.

The test for a contrast

H0 :
k

∑
i=1

ciµi = 0 versus H1 :
k

∑
i=1

ciµi <, 6=,> 0 (11.2)

is based on the test statistic that involves sample contrast ∑
k
i=1 ciyi

t =
∑

k
i=1 ciyi

s

√
∑

k
i=1

c2
i

ni

,

that has a t-distribution with N − k degrees of freedom. Here Ĉ =

∑
k
i=1 ciyi is an estimator of contrast C and s2 ∑

k
i=1

c2
i

ni
is the sample

variance of Ĉ.

The (1− α)100% confidence interval for the contrast is



514 11 ANOVA and Elements of Experimental Design




k

∑
i=1

ciyi − tN−k,1−α/2 · s ·

√√√√ k

∑
i=1

c2
i

ni
,

k

∑
i=1

ciyi + tN−k,1−α/2 · s ·

√√√√ k

∑
i=1

c2
i

ni


 .

Sometimes contrast tests are called single-degree F-tests because of the
link between t and F distributions. Recall that if random variable X has
a t-distribution with n degrees of freedom, then X2 has an F-distribution
with 1 and n degrees of freedom. Thus, the test of contrast in (11.2) against
the two-sided alternative can equivalently be based on the statistic

F =

(
∑

k
i=1 ciyi

)2

s2 ∑
k
i=1

c2
i

ni

,

which has an F-distribution with 1 and N − k degrees of freedom. This F-
test is good only for two-sided alternatives since the direction of deviation
from H0 is lost by squaring the t-statistic.

Example 11.2. Contrast for Coagulation Times. As an illustration, let us
test the hypothesis H0 : µ1 + µ2 = µ3 + µ4 in the context of Example 11.1.
The hypothesis above is a contrast since it can be written as ∑i ciµi = 0 with
c = (1,1,−1,−1). The following MATLAB code tests the contrast against the
one-sided alternative and also finds the 95% confidence interval for ∑i ciµi.

m = stats.means %[p,table,stats] = anova1(times, diets)

%from Example Coagulation Times

c = [ 1 1 -1 -1 ];

L = c(1)*m(1) + c(2)*m(2)+c(3)*m(3) + c(4)*m(4) %L=-2

LL= m * c’ %LL=-2

stdL = stats.s * sqrt(c(1)^2/4+c(2)^2/6+c(3)^2/6+c(4)^2/8)

%stdL = 1.9916

t = LL/stdL %t =-1.0042

%test H_o: mu * c’ = 0 H_1: mu * c’ < 0

% p-value

tcdf(t, 20) %0.1636

%or 95% confidence interval for population contrast

[LL - tinv(0.975, 20)*stdL, LL + tinv(0.975, 20)*stdL]

% -6.1545 2.1545

The hypothesis H0 : µ1 + µ2 = µ3 + µ4 is not rejected, and the p-
value is 0.1636. Also, the 95% confidence interval for µ1 + µ2 − µ3 − µ4
is [−6.1545,2.1545]. Note that the confidence interval contains 0.
�
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Orthogonal Contrasts*. Two or more contrasts are called orthogonal
if their sample counterpart contrasts are uncorrelated. Operationally, two
contrasts c1µ1 + c2µ2 + · · ·+ ckµk and d1µ1 + d2µ2 + · · ·+ dkµk are orthogo-
nal if, in addition to ∑i ci = ∑i di = 0, the condition c1d1 + c2d2 + · · ·+ ckdk =
∑i cidi = 0 holds. For unbalanced designs the condition is ∑i cidi/ni = 0.

If there are k treatments, only k− 1 mutually orthogonal contrasts can
be constructed. Any additional contrast can be expressed as a linear com-
bination of the original k− 1 contrasts. For example, if

Treatments
Contrast 1 2 3 4
C1 1 –1 –1 1
C2 1 0 0 –1
C3 0 1 –1 0

then the contrast (1,−1,−3,3) is 2C1−C2 + C3. Any set of k− 1 orthogonal

contrasts perfectly partitions the SSTr. If SSC =
(∑ciyi)

2

∑i c2
i /ni

, then

SSTr = SSC1 + SSC2 + · · ·+ SSCk−1.

This gives a possibility of simultaneous testing of any subset ≤ k − 1 of
orthogonal contrasts. Of particular interest are orthogonal contrasts sensi-
tive to polynomial trends among the ordered and equally spaced levels of
a factor. For example, when the design is balanced, and k = 4:

Equispaced levels
Contrast 1 2 3 4
CLinear –3 –1 1 3
CQuadratic 1 –1 –1 1
CCubic –1 3 –1 3

11.2.3.2 Pairwise Comparisons

After rejecting H0, an assessment of H1 can be conducted by pairwise com-
parisons. As the name suggests, this is a series of tests for all pairs of means

in k populations. Of course, there are (k
2) =

k(k−1)
2 different tests.

A common error in doing pairwise comparisons is to perform k(k−1)
2

two-sample t-tests. The tests are dependent and the significance level α
for simultaneous comparisons is difficult to control. This is equivalent in
spirit to simultaneously testing multiple hypotheses and adjusting the sig-
nificance level of each test to control overall significance level (page 415).
For example, for k = 5, the Bonferroni procedure will require α = 0.005 for
individual comparisons in order to control the overall significance level at
0.05, which is clearly a conservative approach.
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Tukey (1952, unpubl. IMS address; 1953, unpubl. mimeograph) pro-
posed a test designed specifically for pairwise comparisons sometimes
called the “honestly significant difference test.” The Tukey method is based
on the so-called studentized range distribution with quantiles q. The quan-
tile used in a test or a confidence interval is qν,k,1−α, with α being the overall
significance level (or (1− α)100% overall confidence), k the number of treat-
ments, and ν the error degrees of freedom equal to N − k. The difference
between two means µi and µj is significant if

|yi − yj| > qν,k,1−α
s√
n

, (11.3)

where s =
√

MSE and n is the treatment sample size for a balanced
design. If the design is not balanced, then replace n in (11.3) by the
harmonic mean of nis, nh =

k

∑
k
i=1 1/ni

(Tukey–Kramer procedure).

The function qtukey(v,k,p) (Trujillo-Ortiz and Hernandez-Walls, MAT-
LAB Central #3469) approximates Tukey’s quantiles for inputs ν = N − k,
k, and p = 1− α.

In biomedical experiments it is often the case that one treatment is con-
sidered a control and the only comparisons of interest are pairwise com-
parisons of all treatments with the control, forming a total of k − 1 com-
parisons. This is sometimes called the many-to-one procedure and it was
developed by Dunnett (1955).

Let µ1 be the control mean. Then for i = 2, . . . ,k the mean µi is different
than µ1 if

|yi − y1| > dν,k−1,α
s√

1/ni + 1/n1
,

where α is a joint significance test for k− 1 tests, and ν = N − k.
It is recommended that the control treatment have more observations

than other treatments. A discussion on the sample size necessary to per-
form Dunnett’s comparisons can be found in Liu (1997). MATLAB function

dunnett.m can be found on MATLAB Central (N. Pokala, File ID: #38157).

Example 11.3. Multiple Comparisons for Coagulation Times. In the con-
text of Example 11.1, let us compare the means using the Tukey procedure.
This is a default for MATLAB’s command multcompare applied on the output
stats in [p, table, stats] = anova1(times, diets). The multcompare command
produces an interactive visual position for all means with their error bars
and additionally gives an output with a confidence interval for the differ-
ence of trhe means of each pair. If the confidence interval contains 0, then
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the means are not statistically different, according to Tukey’s procedure. For
example, the 95% Tukey confidence interval for µ2− µ3 is [−5.8241,1.8241],
and the means µ2 and µ3 are “statistically the same.” Conversely, Tukey’s
95% interval for µ1 − µ3 is [−11.2754,−2.7246], indicating that µ1 is signifi-
cantly smaller than µ3.

multcompare(stats) %[p,table,stats] = anova1(times, diets)

%Compares means: 1-2; 1-3; 1-4; 2-3; 2-4; 3-4

%ans =

% 1.0000 2.0000 -9.2754 -5.0000 -0.7246

% 1.0000 3.0000 -11.2754 -7.0000 -2.7246

% 1.0000 4.0000 -4.0560 0 4.0560

% 2.0000 3.0000 -5.8241 -2.0000 1.8241

% 2.0000 4.0000 1.4229 5.0000 8.5771

% 3.0000 4.0000 3.4229 7.0000 10.5771

We can also find the Tukey’s confidence intervals by using qtukey.m.
For example, the 95% confidence interval for µ1 − µ2 is

m=stats.means;

%1-2

[m(1)-m(2) - qtukey(20,4,0.95)*stats.s*sqrt(1/2 *(1/4+1/6)) ...

m(1)-m(2) ...

m(1)-m(2) + qtukey(20,4,0.95)*stats.s*sqrt(1/2*(1/4+1/6))]

% -9.3152 -5.0000 -0.6848

% Compare to: -9.2754 -5.0000 -0.7246 from multcompare

Although close to the output of multcompare, this interval differs due to a
coarser approximation algorithm in qtukey.m.
�

�
In addition to Tukey and Dunnett, there is a range of other multiple

comparison procedures. For example, Bonferroni is easy but too conserva-
tive. Since there are (k

2) pairs among k means, replacing α by α∗ = α/(k
2)

would control all the comparisons at level α. Scheffee’s multiple compar-
ison procedure provides a simultaneous (1− α)-level confidence interval
for all linear combinations of population means and as a special case all
pairwise differences. Scheffee’s (1− α)100% confidence interval for µi − µj

is given by

|yi − yj| ± s

√√√√(k− 1)Fα,k−1,N−k

(
1
ni

+
1
nj

)
.

Sidak’s multiple comparison confidence intervals are

|yi − yj| ± tN−k,α∗/2 s

√√√√
(

1
ni

+
1
nj

)
,



518 11 ANOVA and Elements of Experimental Design

where α∗ = 1− (1− α)
2

k(k−1) . Note that Sidak’s comparisons are just slightly
less conservative than Bonferroni’s for which the α∗ = α/(k

2). Since (1−
α)m = 1− mα + m(m−1)

2 α2 − . . . , Sidak’s 1− (1− α)
2

k(k−1) is approximately
α/(k

2), which is the Bonferroni choice.

11.2.4 Bayesian Solution

Next we provide a Bayesian solution for the same problem. In the Win-
BUGS code ( anovacoagulation.odc) we stipulate that the data are normal
with means equal to the grand mean, plus the effect of diet, mu[i]<-mu0 +

alpha[diets[i]]. The priors on alpha[i] are noninformative and depend on
the selection of identifiability constraint. Here the code uses sum-to-zero,
a STZ constraint that fixes one of the αs, while the rest are given stan-
dard noninformative priors for the location. For example, α1 is fixed as
−(α2 + · · · + αk), which explains the term sum-to-zero. Another type of
constraint that ensures model identifiability is corner or CR constraint. In
this case, “corner” value α1 is set to 0. Then treatment 1 is considered as a
baseline category.

The grand mean mu0 is given a noninformative prior as well. The pa-
rameter tau is a precision, that is, a reciprocal of variance. Traditionally, the
noninformative prior on the precision is gamma with small parameters, in
this case dgamma(0.001,0.001). From tau, the standard deviation is calculated
as sigma<-sqrt(1/tau). Thus, the highlights of the code are (i) the indexing
of alpha via diets[i], (ii) the identifiability constraints, and (iii) the choice
of noninformative priors.

model{

for (i in 1:ntotal){

times[i] ~ dnorm( mu[i], tau )

mu[i] <- mu0 + alpha[diets[i]]

}

#alpha[1] <- 0.0; #CR Constraint

alpha[1] <- -sum( alpha[2:a] ); #STZ Constraint

mu0 ~ dnorm(0, 0.0001)

alpha[2] ~ dnorm(0, 0.0001)

alpha[3] ~ dnorm(0, 0.0001)

alpha[4] ~ dnorm(0, 0.0001)

tau ~ dgamma(0.001, 0.001)

sigma <- sqrt(1/tau)

}

DATA

list(ntotal = 24, a=4,
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times =c(62, 60, 63, 59, 63, 67, 71, 64, 65, 66,

68, 66, 71, 67, 68, 68, 56, 62, 60, 61, 63, 64, 63, 59),

diets = c(1,1,1,1, 2,2,2,2,2,2, 3,3,3,3,3,3, 4,4,4,4,4,4,4,4) )

INITS

list( mu0=0, alpha = c(NA,0,0,0), tau=1)

mean sd MC error val2.5pc median val97.5pc start sample

alpha[1] –3.001 1.03 0.002663 –5.039 –3.002 –0.9566 1001 100000
alpha[2] 1.999 0.893 0.003573 0.2318 1.999 3.774 1001 100000
alpha[3] 4.001 0.8935 0.003453 2.232 4.002 5.779 1001 100000
alpha[4] –2.999 0.8178 0.003239 –4.61 –2.999 –1.382 1001 100000
mu0 64.0 0.5248 0.00176 62.96 64.0 65.03 1001 100000
sigma 2.462 0.4121 0.001717 1.813 2.408 3.422 1001 100000
tau 0.1783 0.05631 2.312E-4 0.08539 0.1724 0.3043 1001 100000

Figure 11.2a summarizes the posteriors of treatment effects, α1, . . . ,α4, as
boxplots. Once the simulation for ANOVA is completed in WinBUGS, this
graphical output becomes available under Inference>Compare tab.

(a) (b)

Fig. 11.2 (a) WinBUGS output from Inference>Compare. Boxplots of posterior realiza-
tions of treatment effects alpha. (b) Matrix of correlations among components of alpha.

WinBUGS can also estimate the correlations between the treatment ef-
fects. The correlation matrix below and its graphical representation (Fig. 11.2b)
are outputs from Inference>Correlations.

alpha[1] alpha[2] alpha[3] alpha[4]

alpha[1] 1.0 –0.4095 –0.4056 –0.3694
alpha[2] –0.4095 1.0 –0.3059 –0.2418
alpha[3] –0.4056 –0.3059 1.0 –0.2476
alpha[4] –0.3694 –0.2418 –0.2476 1.0
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Note that off-diagonal correlations are negative, as expected because of the
STZ constraint.

Expand the WinBUGS code anovacoagulation.odc to accommodate the
six differences diff12 <- alpha[1]-alpha[2],. . . , diff34 <- alpha[3]-alpha[4]. Com-
pare credible sets for the differences with MATLAB’s multcompare output.

11.2.5 Fixed- and Random-Effect ANOVA

In Example 11.1 (Coagulation Times) the levels of the factor are fixed: dietA,
. . . , dietD. Such ANOVAs are called fixed-effect ANOVAs. Sometimes the
number of factor levels is so large that a random subset is selected to serve
as a set of levels. Then the inference is not concerned with these specific
randomly selected levels but with the population of levels. For example,
in measuring the response in animals to a particular chemical in food, a
researcher may believe that the type of animal may be a factor. He/she
would select a random but small number of different species as the lev-
els of the factor. Inference about this factor would be translated to all po-
tential species. In measuring the quality of healthcare, the researcher may
have several randomly selected cities in the United States as the levels of
the factor. For such models, the effects αi, i = 1, . . . ,k are assumed normal
N (0,σ2

α), and the ANOVA hypothesis is equivalent to H0 : σ2
α = 0. Thus, for

a balanced random-effect model, E(MSTr) = σ2 + nσ2
α , as opposed to the

fixed-effect case, E(MSTr) = σ2 + n
k−1 ∑

k
i=1 α2

i .
If s2

1 = MSTr, then in a balanced random-effect ANOVA the variance
components are estimated as:

σ̂2 = s2 = MSE and σ̂2
α =

s2
1 − s2

n
,

where n = N/k is the sample size per level. Thus, the test of H0 : σ2
α =

0 versus H1 : σ2
α 6= 0 is based on s2

1/s2 = MSTr/MSE, which has the
F-distribution with k − 1, N − k degrees of freedom. Operationally, the
random-effect and fixed-effect ANOVAs coincide, and the same ANOVA
table can be used. The two differ mostly in the interpretation of the in-
ference and the power analysis. Gauge R&R ANOVA in Sec. 11.11 is an
example of a random-effect ANOVA.

11.3 Welch’s ANOVA*

When population variances are different, the standard ANOVA may be
misleading. The errors may go either way: either to reject true H0 or fail
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to reject wrong H0. Numerous approaches have been suggested to tackle
the theoretical and practical aspects of heteroscedasticity. The Welch pro-
cedure (Welch, 1951) has proved to provide excellent Type I error control,
superior power performance, and straightforward calculations. Unlike the
traditional ANOVA, we will not assume equality of population variances,
although the normality and independence is assumed.

Recall that one-way ANOVA was an extension of a two-sample t-test
where population variances were assumed equal. Welch’s ANOVA is an
extension of Welch–Satterthwaite test, that is, the “Scenario 2” in a two-
sample testing (page 431) where no explicit assumption on population vari-
ances was made.

Let, as in the traditional ANOVA setup, yij, i = 1, . . . ,k; j = 1, . . . ,nk be
the observations from k populations with normal N (µi,σ2

i ) distributions.
Denote, as usual, yi =

1
ni

∑
ni
j=1 yij and s2

i = 1
ni−1 ∑

ni
j=1(yij − yi)

2, the mean
and variance of the ith sample.

Define

ωi =
ni

s2
i

, i = 1, . . . ,k

ŷ =
k

∑
i=1

ωiyi

/ k

∑
i=1

ωi

Q =
k

∑
i=1

1
ni − 1

(
1− ωi

/ k

∑
i=1

ωi

)2

v2 =
∑

k
i−1 ωi(yi − ŷ)2/(k− 1)

1 + 2(k− 2)Q/(k2 − 1)
∼ Fk−1,ν, ν =

k2 − 1
3Q

The statistic v2 has an F-distribution with k− 1 and ν = k2−1
3Q degrees of

freedom. Large values of F are critical for H0.

Example 11.4. Welch’s Illustration. As an illustration, we slightly modify
an example discussed in Welch (1951, p. 335). The numerical characteristics
of samples obtained from three normal populations are summarized in the
table:

Sample size Mean Variance
Sample 1 28 27.8 60.1
Sample 2 10 24.1 6.3
Sample 3 7 22.2 15.4

(The original example had sample sizes 20, 10, and 10). Using Welch’s
ANOVA, we will test the hypothesis that the population means are the
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same. The weights ωi for the three samples are 0.4659, 1.5873, and 0.4545.
This gives ŷ = 24.4430, Q = 0.1512 and the test statistic v2 = 3.7212. This
statistic has an F-distribution with k − 1 and ν = 17.6314 degrees of free-
dom. The resulting p-value is 0.0449. Thus, at 5% level the test is barely
significant. See welchexample.m. If the traditional ANOVA is applied (see
Exercise 11.3 on how to conduct ANOVA when group means and variances
are given), it results in a p-value of 0.0792, thus, which is not significant at
5% level.

Multiple Comparisons for Heterogeneous Variances. There are several
procedures that we can use to compare pairs of means when the hypothesis
of equality of population means is rejected. The simplest is to repeat a two-
sample t-test with Welch–Satterthwaite degrees of freedom and a corrected
significance level by Bonferroni or Šidák. For example, if there are k levels
of a factor, then C = (k

2) is the number of possible pairs of means. For
the overall confidence of (1− α)100%, the t-quantile in the repeated tests
becomes 1 − α/(2C) quantile for Bonferroni or (1− α/2)1/C quantile for
Šidák’s correction.

Simulation in Welch ANOVA. Using MATLAB, we simulate below an
example that shows Welch’s ANOVA performing superbly in a situation
where the traditional ANOVA fails. The code is given in welchsimul.m.
Consider balanced setup with 4 groups and group sample sizes of n = 200,
obtained from normal distributions with mean 0 and variances 32,12,12,
and 12. In this case H0 : α1 = α2 = α3 = α4 = 0 is correct, and in a repeated
testing the p-values should be uniformly distributed on (0,1).

%Welch ANOVA Simulations: welchsimul.m

k=4; nk=200;

pvals=[]; polds=[];

M=50000;

for i = 1:M

yy=randn(k, nk);

y1=3*yy(1,:); y2= yy(2,:); ...

y3 = yy(3,:); y4= yy(4,:);

yibar=[mean(y1) mean(y2) mean(y3) mean(y4)];

ni=[nk nk nk nk];

si2 = [var(y1) var(y2) var(y3) var(y4)];

%Welch’s test

wei =ni./si2 ;

nwei=wei/sum(wei);

yhat= sum(nwei.*yibar);

Q=sum( (1-nwei).^2./(ni-1));

W=sum(wei.*(yibar - yhat).^2)/(k-1);

v2 = W/(1+2*(k-2)*Q/(k^2 -1));

nu = (k^2-1)/(3 * Q);

pval = 1-fcdf(v2, k-1, nu);

pvals=[pvals pval];

%ANOVA test
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pold = anova1([y1 y2 y3 y4], ...

[ones(1,nk) 2*ones(1,nk) 3*ones(1,nk) 4*ones(1,nk)],’off’);

polds=[polds pold];

end

figure;

bihist(pvals, polds, 50)

anovap=sum(polds<0.05)/M % 0.0805

welchp=sum(pvals<0.05)/M % 0.0501

In M = 50,000 simulations the p-values for both tests are saved and
summarized via back-to-back histograms, as in Figure 11.3. Note the cor-
rect behavior of Welch’s test: its p-values are uniformly distributed and
the proportion of times H0 was rejected in a nominal 5%-level testing was
0.0501. But for the same data, the regular ANOVA rejected correct H0 more
than 8% of the time. The non-uniformity of ANOVA-produced p-values is
evident from Figure 11.3.

3000 2000 1000 0 1000 2000 3000
−0.01

0.19

0.39

0.59

0.79

0.99

1.19

 

 

Welch
ANOVA

Fig. 11.3 Histograms of p-values in testing a correct H0 by Welch’s ANOVA (blue) and
traditional ANOVA (green).

�

11.4 Two-Way ANOVA and Factorial Designs

Many experiments involve two or more factors. For each combination of
factor levels an experiment is performed and the response recorded. We
will discuss only factorial designs with two factors; the interested reader is
directed to Kutner et al. (2004) for a comprehensive treatment of multifactor
designs and incomplete factorial designs.

Denote the two factors by A and B and assume that factor A has a levels
and B has b levels. Then for each a× b combination of levels we perform
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the experiment n ≥ 1 times. Measurements at fixed levels of A and B are
called replicates. Such a design will be called a factorial design. When factors
are arranged in a factorial design, they are called crossed. If the number of
replicates is the same for each cell (fixed levels for A and B), then the
design is called balanced. We will be interested not only in how the factors
influence the response, but also if the factors interact.

Suppose that the responses yijk are obtained under the ith level of fac-
tor A and the jth level of factor B. For each cell (i, j) one obtains nij repli-
cates, and yijk is the kth replicate. The model for yijk is

yijk = µ + αi + β j + (αβ)ij + ǫijk,

i = 1, . . . , a; j = 1, . . . ,b; k = 1, . . . ,nij. (11.4)

Thus, the observation yijk is modeled as the grand mean µ, plus the in-
fluence of factor A, αi, plus the influence of factor B, β j, plus the interac-
tion term (αβ)ij, and, finally, plus the random error ǫijk. As in the one-way
ANOVA, the errors ǫijk are assumed to be independent normal with zero
mean and constant variance σ2 for all i, j, and k.

To ensure the identifiability of decomposition in (11.4), restrictions on
αis, β js, and (αβ)ijs need to be imposed. Customarily, STZ constraints are
assumed

a

∑
i=1

αi = 0,
b

∑
j=1

β j = 0,
a

∑
i=1

(αβ)i,j = 0,
b

∑
j=1

(αβ)i,j = 0,

although different restrictions are possible, see page 11.2.4.

In a two-factor factorial design there are three hypotheses to be tested:
effects of factor A,

H′0 : α1 = α2 = · · · = αa = 0 versus H′1 = (H′0)
c,

effects of factor B,

H′′0 : β1 = β2 = · · · = βb = 0 versus H′′1 = (H′′0 )
c,

and the interaction of A and B,

H′′′0 : (αβ)11 = (αβ)12 = · · · = (αβ)ab = 0 versus H′′′1 = (H′′′0 )c.

The variability in observations follows the fundamental ANOVA iden-
tity in which the total sum of squares (SST) is represented as a sum of the
A-treatment sum of squares (SSA), a sum of the B-treatment sum of squares
(SSB), the interaction sum of squares (SSAB), and the sum of squares due
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to error (SSE). For a balanced design in which the number of replicates in
all cells is n,

SST = SSA + SSB + SSAB + SSE

=
a

∑
i=1

b

∑
j=1

n

∑
k=1

(yijk− y...)
2

= bn
a

∑
i=1

(yi.. − y...)2 + an
b

∑
j=1

(y.j. − y...)
2 + n

a

∑
i=1

b

∑
j=1

(yij. − yi.. − y.j. + y...)
2

+
a

∑
i=1

b

∑
j=1

n

∑
k=1

(yijk− yij.)
2.

Here,

y... =
1

abn

a

∑
i=1

b

∑
j=1

n

∑
k=1

yijk, yi.. =
1

bn

b

∑
j=1

n

∑
k=1

yijk,

y.j. =
1

an

a

∑
i=1

n

∑
k=1

yijk, and yij. =
1
n

n

∑
k=1

yijk.

The point estimator for αi effects is α̂i = yi.. − y..., for β j effects it is β̂ j =

y.j. − y..., and for the interaction (αβ)ij it is (̂αβ)ij = yij. − yi.. − y.j. + y... .
The degrees of freedom are partitioned according to the ANOVA iden-

tity as abn− 1 = (a− 1) + (b− 1) + (a− 1)(b− 1) + ab(n− 1). Outputs in
standard statistical packages include degrees of freedom (DF), mean sum
of squares, F-ratios, and their p-values.

Source DF SS MS F p-value
Factor A a− 1 SSA MSA = SSA

a−1 FA = MSA
MSE P(Fa−1,ab(n−1)> FA)

Factor B b− 1 SSB MSB = SSB
b−1 FB = MSB

MSE P(Fb−1,ab(n−1)> FB)

A × B (a− 1)(b− 1) SSAB MSAB = SSAB
(a−1)(b−1) FAB = MSAB

MSE P(F(a−1)(b−1),ab(n−1)> FAB)

Error ab(n− 1) SSE MSE = SSE
ab(n−1)

Total abn− 1 SST

FA, FB, and FAB are test statistics for H′0, H′′0 , and H′′′0 , and their large
values are critical. The rationale for these tests follows from the following
expected values:
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E(MSE) = σ2, E(MSA) = σ2 +
nb

a− 1

a

∑
i=1

α2
i , E(MSB) = σ2 +

na

b− 1

b

∑
j=1

β2
j ,

and E(MSAB) = σ2 +
n

(a− 1)(b− 1)

a

∑
i=1

b

∑
j=1

(αβ)2
ij.

Example 11.5. Insulin Therapy. Insulin has anti-inflammatory effects, as
evaluated by its ability to reduce plasma concentrations of cytokines. The
cytokine content in several organs after endotoxin (lipopolysaccharide,
LPS) exposure and the effect of hyperinsulinaemia was examined in a
porcine model (Brix-Christensen et al., 2005). All animals (35 to 40 kg) were
subject to general anaesthesia and ventilated for 570 minutes. There were
two possible interventions:

LPS: Lipopolysaccharide infusion for 180 minutes.
HEC: Hyperinsulinemic euglycemic clamp in 570 minutes (from start).

Insulin was infused at a constant rate and plasma glucose was clamped at
a certain level by infusion of glucose.

LPS induces a systemic inflammation (makes the animals sick) and HEC
acts as a treatment. There were four experimental cells: (1) only anaesthesia
(no HEC, no LPS), (2) HEC, (3) LPS, and (4) HEC and LPS.

The responses are levels of interleukin-10 (IL-10, an anti-inflammatory
cytokine) in the kidney after 330 minutes have elapsed. The table corre-
sponds to a balanced design n = 8, although the original experiment was
unbalanced with ten animals in group 1, nine in group 2, ten in group 3,
and nine in group 4.

No HEC Yes HEC
7.0607 4.7510 3.0693 2.1102

No LPS 2.6168 2.9530 1.6489 3.1004
4.3489 3.6137 2.9160 4.1170
3.6356 5.6969 2.9149 3.0229
3.6911 4.5554 2.4159 1.8944
4.3933 3.8447 3.1493 3.5133

Yes LPS 6.0513 1.3590 4.4462 4.6254
4.2559 2.1449 2.8545 3.8967

%insulin.m

data2 = [... %columns: IL10 LPS HEC

7.0607 1 1; 2.6168 1 1; 4.3489 1 1;...

3.6356 1 1; 4.7510 1 1; 2.9530 1 1;...

3.6137 1 1; 5.6969 1 1; 3.0693 1 2;...

1.6489 1 2; 2.9160 1 2; 2.9149 1 2;...

2.1102 1 2; 3.1004 1 2; 4.1170 1 2;...

3.0229 1 2; 3.6911 2 1; 4.3933 2 1;...

6.0513 2 1; 4.2559 2 1; 4.5554 2 1;...
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3.8447 2 1; 1.3590 2 1; 2.1449 2 1;...

2.4159 2 2; 3.1493 2 2; 4.4462 2 2;...

2.8545 2 2; 1.8944 2 2; 3.5133 2 2;...

4.6254 2 2; 3.8967 2 2];

IL10 = data2(:,1); LPS=data2(:,2); HEC=data2(:,3);

[p table stats terms] = anovan( IL10, {LPS,HEC}, ...

’varnames’,{’LPS’,’HEC’}, ’model’,’interaction’)

The resulting ANOVA table provides the test for the two factors and
their interaction.

Source DF SS MS F p-value
LPS 1 0.0073 0.0073 0.0051 0.9436
HEC 1 7.2932 7.2932 5.0532 0.0326
LPS*HEC 1 2.1409 2.1409 1.4834 0.2334
Error 28 40.4124 1.4433
Total 31 49.8539

Note that factor LPS is insignificant. The associated F statistic is 0.0051
with p-value of 0.9436. The interaction (LPS*HEC) is insignificant as well
(p-value of 0.2334), while HEC is significant (p-value of 0.0326).

Next, we generate the interaction plots.

%insulin.m continued

cell11 = mean(data2( 1: 8,1)) %L1 H1

cell12 = mean(data2( 9:16,1)) %L1 H2

cell21 = mean(data2(17:24,1)) %L2 H1

cell22 = mean(data2(25:32,1)) %L2 H2

figure;

plot([1 2],[cell11 cell12],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’r’)

hold on

plot([1 2],[cell11 cell12],’r-’, ’linewidth’,3)

plot([1 2],[cell21 cell22],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’)

plot([1 2],[cell21 cell22],’k-’, ’linewidth’,3)

title(’Lines for LPS=1 (red) and LPS = 2 (black)’)

xlabel(’HEC’)

figure;

plot([1 2],[cell11 cell21],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’r’)

hold on

plot([1 2],[cell11 cell21],’r-’,’linewidth’,3)

plot([1 2],[cell12 cell22],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’)

plot([1 2],[cell12 cell22],’k-’,’linewidth’,3)

title(’Lines for HEC=1 (red) and HEC = 2 (black)’)

xlabel(’LPS’)
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Fig. 11.4 Interaction plots of LPS against HEC (left) and HEC against LPS (right) to
explore the additivity of the model.

Figure 11.4 presents treatment mean plots, also known as interaction
plots. The x-axis contains the levels of the factors, in this case both factors
have levels 1 and 2. The y-axis contains the means of response (IL-10). The
circles in both plots correspond to the cell means.

For example, in Figure 11.4a x-axis has two levels of factor HEC. The
means of IL-10 for LPS=1 are connected by the red line, while the means
for LPS=2 are connected by the black line. When the lines on the plots are
approximately parallel, the interaction between the factors is absent. Thus,
the interaction plots serve as exploratory tools to check if the interaction
term should be included in the ANOVA model. Note that some interac-
tion between LPS and HEC is present (the lines are not perfectly parallel);
however, this interaction was found not statistically significant (p-value of
0.2334).

Next, we visualize the ANOVA fundamental identity.

%insulin.m continued

SSA = table{2,2}; SSB = table{3,2}; SSAB=table{4,2};

SSE=table{5,2}; SST = table{6,2};

%Display the budget of Sums of Squares

H=figure;

set(H,’Position’,[400 400 400 400]);

y=[0 0 1 1];

hold on

h1=fill([0 SST SST 0],y,’c’);

y=y+1;

h2=fill([0 SSA SSA 0],y,’y’);

h3=fill([0 SSB SSB 0]+SSA,y,’r’);

h4=fill([0 SSAB SSAB 0]+SSA+SSB,y,’g’);

h5=fill([0 SSE SSE 0]+SSA+SSB+SSAB,y,’b’);

y=y+1;

h6=fill([0 SST SST 0],y,’w’);

hold off
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legend([h1 h2 h3 h4 h5],’SST’,’SSA’,’SSB’,’SSAB’,’SSE’,...

’Location’,’NorthWest’)

title(’Sums of Squares’)
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Fig. 11.5 Budget of sums of squares for Insulin example.

Figure 11.5 shows the budget of sums of squares in this design. It is
a graphical representation of SST = SSA + SSB + SSAB + SSE. It shows
the contributions to the total variability by the factors, their interaction and
the error. Note that the sum of squares attributed to LPS (in yellow) is not
visible in the plot. This is because its relative contribution to SST is very
small, 0.0073/49.8539< 0.00015.

The ANOVA table and both Figs. 11.4 and 11.5 are generated by file
insulin.m. For a Bayesian solution of this example consult insulin.odc.

�

11.4.1 Two-Way ANOVA: One Observation per Cell

When a two-way ANOVA has a single observation per cell, then there is no
variability within the the cell and SSE is always 0. However, if two factors
do not interact, the MSAB has expectation σ2 and can be used in place of
MSE. This kind of design is not rare and could be dictated by experimental
resources, both financial and material, and time constraints.

With the additivity assumption and single observation per cell the
model from (11.4) becomes
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yij = µ + αi + β j + ǫij, i = 1, . . . , a; j = 1, . . . ,b.

The resulting ANOVA table is

Source DF SS MS F p-value
Factor A a− 1 SSA MSA = SSA

a−1 FA = MSA
MSE P(Fa−1,(a−1)(b−1)> FA)

Factor B b− 1 SSB MSB = SSB
b−1 FB = MSB

MSE P(Fb−1,(a−1)(b−1))> FB)

Error (a− 1)(b− 1) SSE MSE = SSE
(a−1)(b−1)

Total ab− 1 SST

Whether it is reasonable to assume additivity can be tested by Tukey’s
test. This procedure tests a particular deviation from additivity: the pres-
ence of a multiplicative interaction (αβ)ij = δ αi β j. Given the form of inter-
action, the hypotheses are H0 : δ = 0 versus H1 : δ 6= 0.

Tukey’s test is based on partitioning the SSE to two components, sum of
squares corresponding to multiplicative interaction SSAB∗ and the remain-
der sum of squares, SSRem. The sum of squares assessing the multiplicative
interaction is

SSAB∗ =

(
∑

a
i=1 ∑

b
j=1 yijα̂i β̂ j

)2

∑
a
i=1 α̂2

i ×∑
b
j=1 β̂2

j

where α̂i = yi· − y·· and β̂ j = y·j − y·· are estimators of αi and β j.
The Tukey’s test for additivity is based on statistic

F =
SSAB∗/1

SSRem/(ab− a− b)

which has an F-distribution with 1 and ab− a− b degrees of freedom, when
H0 is true.

If the test is significant, then one may try to diminish interactions by
transforming the observations (square root, log, or Box Cox transforms can
be applied).

Example 11.6. Yield of Turnips. Quenouille (1953) gives an example of a
two way design with a single observation per cell. The table consists of
yields of turnips (cwt per 3 acre plots), with dependence on level of phos-
phate and level of liming that represent two factors affecting the growth.
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Level of Level of liming
phosphate 0 1 2

0 706 998 589
1 1028 1025 998
2 928 1111 961
4 1185 1111 1014
8 1120 980 877

16 1050 1143 1053

Test for presence of multiplicative interaction using Tukey’s test for ad-
ditivity.

% turnip.m

a=6; b=3;

Y=[706 1028 928 1185 1120 1050 ...

998 1025 1111 1111 980 1143 ...

589 998 961 1014 877 1053]; %Yields of turnip

pho = [ 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16]; %Pho levels

lim = [ 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2]; %Lim levels

[p tab stats]=anovan(Y, pho,lim);

Yi=reshape(Y,[a b]); %Data as a matrix

alphahat = stats.coeffs(2:a+1);

betahat=stats.coeffs(a+2:a+b+1);

sse=tab{4,2} %9.3575e+04, SSE from ANOVA table output

d=0; s=0;

for i=1:a

for j=1:b

d=d+Yi(i,j)*alphahat(i)*betahat(j);

s=s+alphahat(i)^2 * betahat(j)^2;

end

end

% or avoiding the double loop by Kronecker prod

% d=sum(sum(Yi .* kron( alphahat, betahat’ )))

% s =sum(sum(kron( alphahat.^2, betahat’.^2)))

ssab=d^2/s %3.2671e+04

ssrem = sse - ssab %6.0904e+04

f = ssab/(ssrem/(a*b-a-b)) %4.8280

p = 1-fcdf(f, 1, a*b -a -b) %0.0556

Since p-value is 0.0556, the null hypothesis of additivity is not rejected at
5% significance level.�

11.5 Blocking

In many cases the design can account for the variability due to subjects or
to experimental runs and focus on the variability induced by the treatments
that constitute the factor of interest.
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Example 11.7. Blocking by Rats. A researcher wishes to determine whether
or not four different testing procedures produce different responses to the
concentration of a particular poison in the blood of experimental rats. To
minimize the influence of rat-to-rat variability, the biologist selects four
rats from the same litter. Each of the four rats is given the same dose of
poison per gram of body weight and then samples of their blood are tested
by the four testing methods administered in random order. There are four
different litters each containing four rats for a total of 16 animals involved.

concentration = [9.3 9.4 9.2 9.7 9.4 9.3 9.4 9.6 ...

9.6 9.8 9.5 10.0 10.0 9.9 9.7 10.2];

procedure = [1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4];

litter = [1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4];

[p,table,stats,terms]=anovan(concentration,{procedure,litter},...

’varnames’,char(’Procedure’,’Rat’))

%p = 1.0e-003 *
%

% 0.8713

% 0.0452

%

%table =

% ’Source’ ’Sum Sq.’ ’d.f.’ ’Singular?’ ’Mean Sq.’

% ’Procedure’ [0.3850] [ 3] [ 0] [ 0.1283]

% ’Rat’ [0.8250] [ 3] [ 0] [ 0.2750]

% ’Error’ [0.0800] [ 9] [ 0] [ 0.0089]

% ’Total’ [1.2900] [15] [ 0] []

%

% ’F’ ’Prob>F’

% [14.4375] [8.7127e-004]

% [30.9375] [4.5233e-005]

% [] []

% [] []

In the above code, procedure is the factor of interest and litter is the
blocking factor. Note that both the procedure and litter factors are highly
significant at levels 0.0008713 and 0.0000452, respectively. We are interested
in significant differences between the levels of procedure factor, but not be-
tween the litters or individual animals. However, it is desirable that the
blocking factor turns out to be significant, since in that case we would have
accounted for significant variability attributed to blocks and separated it
from the variability attributed to the test procedures. This makes the test
more accurate.

To emphasize the benefits of blocking, we provide a nonsolution by
treating this problem as a one-way ANOVA layout. This time, we fail to find
any significant difference between the testing procedures (p-value 0.2196).
Clearly, this approach is incorrect on other grounds: the condition of inde-
pendence among the treatments, required for ANOVA, is violated.
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[p,table,stats] = anova1(concentration,procedure)

%p = 0.2196

%

%table =

%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

%’Groups’ [0.3850] [ 3] [0.1283] [1.7017] [0.2196]

%’Error’ [0.9050] [12] [0.0754] [] []

%’Total’ [1.2900] [15] [] [] []

�

In many cases the blocking is done by batches of material, animals from
the same litter, matching the demographic characteristics of the patients,
etc. The repeated measures design is a form of block design where the
blocking is done by subjects, individual animals, etc.

11.6 Repeated Measures Design

Repeated measures designs represent a generalization of the paired t-test to
designs with more than two groups/treatments. In repeated measures de-
signs the blocks are usually subjects, motivating the name “within-subject
ANOVA” that is sometimes used. Every subject responds at all levels of the
factor of interest, i.e., treatments. For example, in clinical trials, the subjects’
responses could be taken at several time instances.

Such designs are sometimes necessary and have many advantages. The
most important advantage is that the design controls for the variability
between the subjects, which is usually not of interest. In simple words,
subjects serve as their own controls, and the variability between them does
not “leak” into the variability between the treatments. Another advantage
is operational. Compared with factorial designs, repeated measures need
fewer participants.

In the repeated measures design the independence between treatments
is violated. Naturally, the responses of a subject are dependent on each
other across treatments.
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11.6.1 ANOVA Table for Repeated Measures

Treatment 1 2 . . . k Subject totals
Subject

1 y11 y12 · · · y1k y1·
2 y21 y22 · · · y2k y2·
· · · · · · · · ·
n yn1 yn2 · · · ynk yn·

Treatment totals y·1 y·2 · · · y·k y··

The repeated measures model is

yij = µ + βi + αj + ǫij, i = 1, . . . ,n; j = 1, . . . ,k,

in which the hypothesis H0 : αj = 0, j = 1, . . . ,k, is of interest. Here, subject
effects βis are random and assumed to be normal N (0,σ2

β). The treatment

effects αj are fixed and satisfy identifiability constraint ∑
k
j=1 αj = 0. The

errors ǫij and effects βi are mutually independent.
In the repeated measures design, total sum of squares SST =∑

n
i=1 ∑

k
j=1(yij−

y..)
2 partitions in the following way:

SST = SSBetweenSubjects + SSWithinSubjects = SSB + [SSA + SSE].

Equivalently,

n

∑
i=1

k

∑
j=1

(yij − y..)
2 = k

n

∑
i=1

(yi. − y..)
2 +

n

∑
i=1

k

∑
j=1

(yij − yi.)
2

= k
n

∑
i=1

(yi. − y..)
2 +

[
n

k

∑
j=1

(y.j − y..)
2 +

n

∑
i=1

k

∑
j=1

(yij − yi. − y.j + y..)
2

]
.

The degrees of freedom are split as

kn− 1 = (n− 1) + n(k− 1) = (n− 1) + [(k− 1) + (n− 1) · (k− 1)].

The ANOVA table is

Source DF SS MS F p

Factor A k− 1 SSA MSA = SSA
k−1 FA = MSA

MSE P(Fk−1,(k−1)(n−1)> FA)

Subjects B n− 1 SSB MSB = SSB
n−1 FB = MSB

MSE P(Fn−1,(k−1)(n−1) > FB)

Error (k− 1)(n− 1) SSE MSE = SSE
(k−1)(n−1)

Total kn− 1 SST
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The test statistic for Factor A (H0 : αj = 0, j = 1, . . . ,k) is FA = MSA/MSE
for which the p-value is p = P(Fk−1,(k−1)(n−1) > FA). Usually we are not
interested in FB = MSB/MSE; however, its significance would mean that
blocking by subjects was efficient in accounting for some variability, thus
making the inference about Factor A more precise. If a formal test for the
significance of subject effects is needed, the hypotheses are written as

H0 : σ2
β = 0 vs. H1 : σ2

β > 0,

since β’s are random effects and βi ∼ N (0,σ2
β) (see page 520).

Example 11.8. Kidney Dialysis. Eight patients each underwent three dif-
ferent methods of kidney dialysis (Daugridas and Ing, 1994). The following
values were obtained for weight change in kilograms between dialysis ses-
sions:

Patient Treatment 1 Treatment 2 Treatment 3

1 2.90 2.97 2.67
2 2.56 2.45 2.62
3 2.88 2.76 1.84
4 1.73 1.20 1.33
5 2.50 2.16 1.27
6 3.18 2.89 2.39
7 2.83 2.87 2.39
8 1.92 2.01 1.66

Test the null hypothesis that there is no difference in mean weight
change among treatments. Use α = 0.05.

%dialysis.m

weich=[ 2.90 2.97 2.67 ;...

2.56 2.45 2.62 ;...

2.88 2.76 1.84 ;...

1.73 1.20 1.33 ;...

2.50 2.16 1.27 ;...

3.18 2.89 2.39 ;...

2.83 2.87 2.39 ;...

1.92 2.01 1.66 ];

subject=[1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8];

treatment = [1 1 1 1 1 1 1 1 ...

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3];

[p table stats terms] = ...

anovan(weich(:),{subject, treatment},’varnames’,...

{’Subject’ ’Treatment’} )

%’Source’ ’Sum Sq.’ ’d.f.’ ’Mean Sq.’ ’F’ ’Prob>F’
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%’Subject’ [5.6530] [ 7] [0.8076] [11.9341][6.0748e-005]

%’Treatment’ [1.2510] [ 2] [0.6255] [ 9.2436][ 0.0028]

%’Error’ [0.9474] [14] [0.0677] [] []

%’Total’ [7.8515] [23] [] [] []

SST = table{5,2}; SSE = table{4,2};

SSA = table{3,2}; SSB = table{2,2};

SSW = SST - SSB;

Since the hypothesis of equality of treatment means is rejected (p-val
= 0.0028), one may look at the differences of treatment effects to find out
which means are different. Command multcompare(stats,’dimension’,2) will
perform multiple comparisons along the second dimension, Treatment, and
produces:

%1.0000 2.0000 -0.1917 0.1488 0.4892

%1.0000 3.0000 0.2008 0.5413 0.8817

%2.0000 3.0000 0.0521 0.3925 0.7329

This output is interpreted as α1 − α2 ∈ [−0.1917,0.4892], α1 − α3 ∈
[0.2008, 0.8817] and α2 − α3 ∈ [0.0521,0.7329] with simultaneous confidence
of 95%. Thus, by inspecting which interval contains 0, we conclude that
treatment means 1 and 2 are not significantly different, while the mean for
treatment 3 is significantly smaller from the means for treatments 1 and 2.
For a Bayesian solution consult dialysis.odc.
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Fig. 11.6 Budget of sums of squares for Kidney Dialysis example.

Figure 11.6 shows the budget of sums of squares. Note that the SSTr and
SSE comprise SSW (sum of squares within), while SSBl (variability due to
subjects) is completely separated from SSTr and SSE. If the blocking by
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subjects is ignored and the problem is considered as a one-way ANOVA,
the subject variability will be a part of SSE leading to wrong inference about
the treatments (Exercise 11.16).
�

11.6.2 Sphericity Tests

Instead of the independence condition, as required in ANOVA, another
condition is needed for repeated measures in order for an inference to be
valid. This is the condition of sphericity or circularity. In simple terms, the
sphericity assumption requires that all pairs of treatments be positively cor-
related in the same way. Another way to express sphericity is that variances
of all pairwise differences between treatments are the same.

When an F-test in a repeated measures scenario is performed, many
statistical packages (SAS, SPSS, etc.) automatically generate corrections for
violations of sphericity. Examples are the Greenhouse–Geisser, the Huynh–
Feldt, and lower-bound corrections. These packages correct for sphericity
by altering the degrees of freedom, thereby altering the p-value for the
observed F-ratio.

Opinions differ about which correction is the best, and this depends on
what one wants to control in the analysis. An accepted universal choice is to
use the Greenhouse–Geisser correction, ǫGG. Violation of sphericity is more
serious when ǫGG is smaller. When ǫGG > 0.75, the Huynh–Feldt correction
ǫHF is recommended.

An application of Greenhouse–Geisser’s and Huynh–Feldt’s corrections,
ǫGG and ǫHF, respectively, is provided in the script below ( circularity.m)
in the context of Example 11.8.

weich=[ 2.90 2.97 2.67 ; 2.56 2.45 2.62 ;...

2.88 2.76 1.84 ; 1.73 1.20 1.33 ;...

2.50 2.16 1.27 ; 3.18 2.89 2.39 ;...

2.83 2.87 2.39 ; 1.92 2.01 1.66 ];

n = size(weich,1); %number of subjects, n=8

k = size(weich,2); %number of treatments, k=3

Sig = cov(weich); %covariance matrix of weich

md = trace(Sig)/k; %mean of diagonal entries of Sig

ma = mean(mean(Sig)); %mean of all components in Sig

mr = mean(Sig’); %row means of Sig

A = (k*(md-ma))^2;

B = (k-1)*(sum(sum(Sig.^2))-2*k*sum(mr.^2)+k^2*ma^2);

epsGG = A/B %Greenhouse-Geisser epsilon 0.7038

epsHF = (n*(k-1)*epsGG-2)/((k-1)*((n-1)-(k-1)*epsGG))

%Huynh-Feldt epsilon 0.8281

%Corrections based on Trujillo-Ortiz et al. functions

%epsGG.m and epsHF.m available on MATLAB Central.
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F = 9.2436; %F statistic for testing treatment differences

p = 1-fcdf(F,k-1,(n-1)*(k-1)) %original pvalue 0.0028

%

padjGG = 1-fcdf(F,epsGG*(k-1),epsGG*(n-1)*(k-1)) %0.0085

padjHF = 1-fcdf(F,epsHF*(k-1),epsHF*(n-1)*(k-1)) %0.0053

Note that both degrees of freedom in the F statistic for testing the treat-
ments are multiplied by correction factors, which increased the original
p-value. In this example the corrections for circularity did not change the
original decision of rejection of hypothesis H0 stating the equality of treat-
ment effects.
Remark. To check whether the Repeated Measures design is an appropriate
model one can

(i) inspect the QQ-plot of residuals, eij = yij − yi. − y.j + y.. plotted
against normal quantiles;

(ii) overlay profiles yi1,yi2, . . . ,yi,k for all n subjects. Since the repeated
measures model is additive by definition, the profiles should appear ap-
proximately parallel.

11.7 Nested Designs*

In the factorial design two-way ANOVA, two factors are crossed. This means
that at each level of factor A we get measurements under all levels of fac-
tor B, that is, all cells in the design are nonempty. In Example 11.5, two
factors, HEC and LPS, given at two levels each (“yes” and “no”), form a
2× 2 table with four cells. The factors are crossed, meaning that for each
combination of levels we obtained observations. Sometimes this is impos-
sible to achieve due to the nature of the experiment.

Suppose, for example, that four diets are given to mice and that we are
interested in the mean concentration of a particular chemical in the tissue.
Twelve experimental animals are randomly divided into four groups of
three and each group put on a particular diet. After 2 weeks the animals
are sacrificed and from each animal the tissue is sampled at five different
random locations. The factors “diet” and “animal” cannot be crossed. After
a single dietary regime, taking measurements on an animal requires its
sacrifice, thus repeated measures designs are impossible.

The design is nested, and the responses are

yijk = µ + αi + β j(i) + ǫijk, i = 1, . . . ,4; j = 1, . . . ,3; k = 1, . . . ,5,

where µ is the grand mean, αi is the effect of the ith diet, and β j(i) is the
effect of animal j, which is nested within treatment i.

For a general balanced two-factor nested design,

yijk = µ + αi + β j(i)+ ǫijk, i = 1, . . . , a; j = 1, . . . ,b; k = 1, . . . ,n,



11.7 Nested Designs* 539

the identifiability constraints are ∑
a
i=1 αi = 0, and for each i, ∑

b
j=1 β j(i) = 0.

The ANOVA identity SST = SSA + SSB(A) + SSE is

a

∑
i=1

b

∑
j=1

n

∑
k=1

(yijk− y...)
2

= bn
a

∑
i=1

(yi..− y...)
2 + n

a

∑
i=1

b

∑
j=1

(yij.− y...)
2 +

a

∑
i=1

b

∑
j=1

n

∑
k=1

(yijk− yij.)
2.

The degrees of freedom are partitioned according to the ANOVA iden-
tity as abn− 1 = (a− 1) + a(b− 1) + ab(n− 1). The ANOVA table is shown
below:

Source DF SS MS

A a− 1 SSA MSA = SSA
a−1

B(A) a(b− 1) SSB MSB = SSB
a(b−1)

Error ab(n− 1) SSE MSE = SSE
ab(n−1)

Total abn− 1 SST

Notice that the table does not provide the F-statistics and p-values. This
is because the inferences differ depending on whether the factors are fixed
or random.

The test for the main effect, H0 : all αi = 0, is based on F = MSA/MSE
if both factors A and B are fixed, and on F = MSA/MSB(A) if at least
one of the factors is random. The test for H0 : all β j(i) = 0 is based on F =

MSB(A)/MSE in both cases. In the mouse-diet example, factor B (animals)
is random.

Example 11.9. Nested Mice. Suppose that the data for the mouse-diet study
are given as

Diet 1 2 3 4
Animal 1 2 3 1 2 3 1 2 3 1 2 3

k = 1 65 68 56 74 69 73 65 67 72 81 76 77
k = 2 71 70 55 76 70 77 74 59 63 75 72 69
k = 3 63 64 65 79 80 77 70 61 64 77 79 74
k = 4 69 71 68 81 79 79 69 66 69 75 82 79
k = 5 73 75 70 72 68 68 73 71 70 80 78 66

There are 12 mice in total, and the diets are assigned 3 mice each. On
each mouse 5 measurements are taken. As we pointed out, this does not
constitute a design with crossed factors since, for example, animal 1 under
diet 1 differs from animal 1 under diet 2. Rather, the factor animal is nested
within the factor diet. The following script is given in nesta.m:
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yijk =[...

65 68 56 74 69 73 65 67 72 81 76 77 ;...

71 70 55 76 70 77 74 59 63 75 72 69 ;...

63 64 65 79 80 77 70 61 64 77 79 74 ;...

69 71 68 81 79 79 69 66 69 75 82 79 ;...

73 75 70 72 68 68 73 71 70 80 78 66 ];

a = 4;

b = 3;

n = 5;

%matrices of means (y..., y_i.., y_ij.)

yddd = mean(mean(yijk)) * ones(n, a*b)

yijd = repmat(mean(yijk), n, 1)

%yidd---------------------

m=mean(yijk);

mm=reshape(m’, b, a);

c=mean(mm);

d=repmat(c’,1,b);

e=d’;

yidd = repmat(e(:)’,n,1)

SST = sum(sum((yijk - yddd).^2) ) %2.3166e+003

SSA = sum(sum((yidd - yddd).^2) ) %1.0227e+003

SSB_A = sum(sum((yijd - yidd).^2) ) %295.0667

SSE = sum(sum((yijk - yijd).^2) ) %998.8

MSA = SSA/(a-1) %340.9111

MSB_A = SSB_A/(a * (b-1)) %36.8833

MSE = SSE/(a * b * (n-1)) %20.8083

%A fixed B(A) random //// 0r A random B(A) random

FArand = MSA/MSB_A %9.2430

pa = 1- fcdf(FArand, a-1, a*(b-1)) %0.0056

%

FB_A = MSB_A/MSE %1.7725

pb_a = 1- fcdf(FB_A, a*(b-1), a*b*(n-1)) %0.1061

Figure 11.7 shows the budget of sums of squares for this example.
From the analysis we conclude that the effects of factor A (diet) were signif-
icant (p = 0.0056), while the effects of factor B (animal) were not significant
(p = 0.1061).

MATLAB’s built-in anovan can handle nested designs. Here is a solution
that uses anovan. For sintax details consult MATLAB’s help.

%%Need to recode the data and factors as row vectors

yijk =[...

65 68 56 74 69 73 65 67 72 81 76 77 ...

71 70 55 76 70 77 74 59 63 75 72 69 ...

63 64 65 79 80 77 70 61 64 77 79 74 ...
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Fig. 11.7 The budget of sums of squares for the mouse-diet study.

69 71 68 81 79 79 69 66 69 75 82 79 ...

73 75 70 72 68 68 73 71 70 80 78 66 ];

diet = repmat([1 1 1 2 2 2 3 3 3 4 4 4], 1, 5);

animal = repmat([1 2 3],1, 20);

mynest=[0 0;1 0]; %2 nested in 1, matrix element (2,1) is 1.

%animals within diets are random, need to declare ’random’,[2]

[p table stats]=...

anovan(yijk,{diet, animal},’nested’,mynest,’random’,[2],’varnames’,{’diet’,’animal’})

table

% Analysis of Variance

% Source Sum Sq. d.f. Mean Sq. F Prob>F

% diet 1022.7333 3 340.9111 9.243 0.00560

% animal(diet) 295.0667 8 36.8833 1.7725 0.10609

% Error 998.8 48 20.8083

% Total 2316.6 59

�

Remarks. (1) Note that the nested model does not have the interaction term.
This is because the animals are nested within the diets. (2) For designs that
are not balanced, the calculations are substantially more complex and a
regression model should be used whenever possible.

11.8 Power Analysis in ANOVA

To design a sample size for an ANOVA test, one needs to specify the signif-
icance level, desired power, and a precision or effect. Precision is defined in
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terms of ANOVA variance σ2 and population treatment effects αi coming
from the null hypothesis H0 : α1 = α2 = · · ·= αk = 0. It quantifies the extent

of deviation from H0 and usually is a function of the ratio ∑ niα
2
i

σ2 .
Under H0, for a balanced design, the test statistic F has an F-distribution

with k− 1 and N− k = k(n− 1) degrees of freedom, where k is the number
of treatments and n the number of subjects at each level.

However, if H0 is not true, the test statistic has a noncentral F-distribution
with k− 1 and k(n− 1) degrees of freedom and a noncentrality parameter

λ = n
∑i α2

i

σ2 . The parameter λ quantifies the extent of deviation from H0.
An alternative way to set the precision is via Cohen’s effect size, which

for ANOVA takes the form f 2 =
1/k ∑i α2

i
σ2 . Note that Cohen’s effect size and

noncentrality parameter are connected via

λ = N f 2 = nk f 2.

Since determining the sample size is a prospective task, information about
σ2 and αi may not be available. In the context of ANOVA, Cohen (1988)
recommends effect sizes of f 2 = 0.12 as small, f 2 = 0.252 as medium, and
f 2 = 0.42 as large.

The power in ANOVA is, by definition,

1− β = P(Fnc
k−1,N−k(λ) > Fk−1,k(n−1),1−α), (11.5)

where Fnc
k−1,N−k(λ) is a random variable with a noncentral F-

distribution with k − 1 and N − k degrees of freedom and noncen-
trality parameter λ. The quantity Fk−1,N−k,1−α is the 1− α quantile of
a standard F-distribution with k− 1 and N − k degrees of freedom.

The interplay among the power, sample size, and effect size is illustrated
by the following example:

Example 11.10. Sample Size in One-Way ANOVA. Suppose k = 4 treat-
ment means are to be compared at a significance level of α = 0.05. The ex-
perimenter is to decide how many replicates n to run at each level, so that
the null hypothesis is rejected with a probability of at least 0.9 if f 2 = 0.0625
or if ∑i α2

i is equal to σ2/4.
For n = 60, that is, N = 4× 60= 240, the power is calculated in a one-line

command:

1-ncfcdf(finv(1-0.05, 4-1, 4*(60-1)), 4-1, 4*(60-1), 15) %0.9122

Here we used λ = nk f 2 = 60× 4× 0.0625 = 15.
We could try different values of n (group sample sizes) to achieve the

desired power; this change affects only two arguments in Eq. (11.5): k(n−
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1) and λ = nk f 2. Alternatively, we could use MATLAB’s built-in function
fzero(fun,x0) which tries to find a zero of fun near some initial value x0.

k=4; alpha = 0.05; f2 = 0.0625;

f = @(n) 1-ncfcdf( finv(1-alpha, k-1,k*n-k),k-1,k*n-k, n*k*f2 ) - 0.90;

ssize = fzero(f, 100) %57.6731

%Sample size of n=58 (per treatment) ensures the power of 90% for

%the effect size f^2=0.0625.

Thus, sample size of n = 58 will ensure the power of 90% for the speci-
fied effect size. The function fzero is quite robust with respect to the speci-
fication of the initial value; in this case the initial value was n = 100.

If we wanted to plot the power for different sample sizes (Fig. 11.8), the
following simple MATLAB script would do it. The inputs are the k number
of treatments and the significance level α. The specific alternative H1 is such
that ∑i α2

i = σ2/4, so that λ = n/4.

k=4; %number of treatments

alpha = 0.05; %significance level

y=[]; %set values of power for n

for n=2:100

y =[y 1-ncfcdf(finv(1-alpha, k-1, k*(n-1)), ...

k-1, k*(n-1), n/4)];

end

plot(2:100, y,’b-’,’linewidth’,3)

xlabel(’Group sample size n’); ylabel(’Power’)
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Fig. 11.8 Power for n ≤ 100 (size per group) in a fixed-effect ANOVA with k = 4 treat-
ments and α = 0.05. The alternative H1 is defined as ∑i α2

i = σ2/4 so that the parameter
of noncentrality λ is equal to n/4.
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In the preceding analysis, the total sample size is N = k× n = 240.
�

Sample Size in ANOVA in Terms of Maximal Difference between any
Two Means. Let δ = maxi,j |µi − µj| be the maximal difference between the
population means that we would like the ANOVA test to detect and reject
H0. In terms of δ, the noncentrality parameter is expressed as

λ =
nδ2

2σ2 ,

and the sample size determination proceeds as in (11.5) with this λ. Some
researchers prefer eliciting the precision in terms of maximal detectable
difference δ, rather than in terms of global ∑i α2

i .

Power Analysis for Random-Effect ANOVA. In random-effect ANOVA
the alternative hypothesis is H1 : σ2

α 6= 0. When H1 is true, the ratio

F =
MSTr

MSE(1 + nσ2
α /σ2)

has a standard F-distribution with k− 1 and k(n− 1) degrees of freedom.
Here n is the level sample size and N = nk is the total sample size. Conse-
quently, the power calculation does not require non-central F-distribution.
Simply,

1− β = P

(
MSTr

MSE
> Fk−1,k(n−1),1−α

∣∣∣H1 true
)

= P

(
F >

Fk−1,k(n−1),1−α

1 + nσ2
α/σ2

)
.

Thus, the effect size should be elicited in units of ratios of variance compo-
nents, σ2

α/σ2.

Example 11.11. Power Analysis in Random-Effect ANOVA. Assume that
we are interested in power and sample size in an ANOVA test with k = 5
random levels, an effect of size e = σ2

α/σ2, and α = 0.05.
(i) With what probability will the effect e = 1/2 be detected if n = 16

observations per level are available?
(b) What sample size is needed so that the effect e = 1/3 is detected with

power 85%?

%(a)

effect= 1/2; k=5; n=16; alpha=0.05;

pow = 1 - fcdf(finv(1-alpha, k-1, k*(n-1))/(1 + n*effect), k-1, k*(n-1))
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%pow=0.9819

%(b)

k=5; effect=1/3; alpha=0.05; power=0.85;

f = @(n) 1 - fcdf(finv(1-alpha, k-1, k*(n-1))/(1 + n*effect), ...

k-1, k*(n-1))-power;

ssize = fzero(f, 20)

%ssize = 18.8027 approx 19 per level, total ss is 5*19=95.

�

Power and Sample Size in Welch’s ANOVA. Suppose that we want to find
power in a one-way Welch ANOVA with k = 4 levels, where variances are
1,4, 9, and 16 and sample sizes are 12, 24, 48, and 96 respectively. The non-

centrality parameter is λ =
∑i α2

i
(∑i 1/ωi)/k

. Since (∑i 1/ωi)/k can be expressed

as (∑i s2
i /ni)/k, the noncentrality parameter is the squared distance be-

tween H1 and H0 in units of an average of variances for the group means.
When ∑i α2

i = 2, (e.g., if the group treatment effects are (1,0,0,−1)), then
λ = 13.2414 and the power is 1− β = 0.8542. This is calculated by MATLAB
script welchanovapower.m.

k=4; alpha = 0.05;

ni=[12 24 48 96];

si2=[1 4 9 16];

alphai=[1 0 0 -1];

sai2=sum(alphai.^2); %effect = 2

wei=ni./si2; recwei=1./wei;

nwei=wei/sum(wei) %0.4091 0.2045 0.1818 0.2045

Q=sum( (1-nwei).^2./(ni-1)) %0.0802

df = (k^2-1)/(3 * Q) %62.3773

lambda = sai2/mean(recwei) %13.2414

%lambda is the effect in units of an average of

%variances for the group means

pow = 1-ncfcdf( finv(1-alpha, k-1, df), k-1, df, lambda) %0.8542

If the power analysis is used to design sample size and ni are desired

to be all equal, ni = n, then f 2 =
1
k ∑i αi
1
k ∑i σ2

i

, which further simplifies to f 2 on

page 542 when all σ2
i are equal to σ2.

Sample Size for Multifactor ANOVA. A power analysis for multifactor
ANOVA is usually done by selecting the most important factor and eval-
uating the power for that factor. Operationally, this is the same as the pre-
viously discussed power analysis for one-way ANOVA, but with modified
error degrees of freedom to account for the presence of other factors.

Example 11.12. Power Analysis for Multifactor ANOVA. Assume a two-
factor, fixed-effect ANOVA. The test for factor A at a = 4 levels is to be
evaluated for its power. Factor B is present and has b = 3 levels. Assume a
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balanced design with 4× 3 cells, with n = 20 subjects in each cell. The total
number of subjects in the experiment is N = 3× 4× 20 = 240.

For α = 0.05, a medium effect size f 2 = 0.0625, and λ = N f 2 = 20× 4×
3× 0.0625 = 15, the power is 0.9121.

1-ncfcdf(finv(1-0.05, 4-1, 4*3*(20-1)), 4-1, 4*3*(20-1), 15) %0.9121

Alternatively, if the cell sample size n is required for a specified power,
we can use function fzero.

a=4; b=3; alpha = 0.05; f2=0.0625;

f = @(n) 1-ncfcdf( finv(1-alpha, a-1,a*b*(n-1)), ...

a-1, a*b*(n-1), a*b*n*f2) - 0.90;

ssize = fzero(f, 100) %19.2363

%sample size of 20 (by rounding 19.2363 up) ensures 90% power

%given the effect size and alpha

�

Sample Size for Repeated Measures Design. In a repeated measures design,
each of the k treatments is applied to every subject. Thus, the total sample
size is equal to a treatment sample size, N = n. Suppose that ρ is the cor-
relation between scores for any two levels of the factor and it is assumed
constant. Then the power is calculated by Eq. (11.5), where the noncentral-
ity parameter is modified as

λ =
n ∑i α2

i

(1− ρ)σ2 =
nk f 2

1− ρ
.

Example 11.13. Power Analysis for Repeated Measures Design. Suppose
that n = 25 subjects go through k = 3 treatments and that a correlation be-
tween the treatments is ρ = 0.6. This correlation comes from the experimen-
tal design; the measures are repeated on the same subjects. Then, for the
medium effect size ( f = 0.25 or f 2 = 0.0625), the achieved power is 0.8526.

n=25; k=3; alpha=0.05; rho=0.6;

f = 0.25; %medium effect size f^2=0.0625

lambda = n * k * f^2/(1-rho) %11.7188

power = 1-ncfcdf( finv(1-alpha, k-1, (n-1)*(k-1)),...

k-1, (n-1)*(k-1), lambda) %0.8526

If the power is specified at 85% level, then the number of subjects is
obtained as

k=3; alpha=0.05; rho=0.6; f=0.25;

pf = @(n) 1-ncfcdf( finv(1-alpha, k-1, (n-1)*(k-1)),...

k-1, (n-1)*(k-1), n*k*f^2/(1-rho) ) - 0.85;

ssize = fzero(pf, 100) %24.8342 (n=25 after rounding)
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�

Often the sphericity condition is not met. This happens in longitudinal
studies (repeated measures taken over time) where the correlation between
measurements on days 1 and 2 may differ from the correlation between
days 1 and 4, for example. In such a case, average correlation ρ is elicited
and used; however, all degrees of freedom in central and noncentral F, as
well as λ, are multiplied by sphericity parameter ǫ.

Example 11.14. Penalizing the Violation of Sphericity. Suppose, as in Ex-
ample 11.13, that n = 25 subjects go through k = 3 treatments, and that an
average correlation between the treatments is ρ = 0.6. If the sphericity is
violated and parameter ǫ is estimated as ǫ = 0.7, the power of 85.26% from
Example 11.13 drops to 74.64%.

n=25; k=3; alpha=0.05; barrho=0.6; eps=0.7;

f = 0.25;

lambda = n * k * f^2/(1-barrho) %11.7188

power = 1-ncfcdf( finv(1-alpha, eps*(k-1), eps*(n-1)*(k-1)),...

eps * (k-1), eps*(n-1)*(k-1), eps*lambda) %0.7464

If the power is to remain at 85% level, then the number of subjects
should increase from 25 to 32.

k=3; alpha=0.05; barrho=0.6; eps=0.7; f = 0.25;

pf = @(n) 1-ncfcdf( finv(1-alpha, eps*(k-1), eps*(n-1)*(k-1)),...

eps*(k-1), eps*(n-1)*(k-1), eps*n * k * f^2/(1-barrho) ) - 0.85;

ssize = fzero(pf, 100) %31.8147

�

11.9 Functional ANOVA*

Functional linear models have become popular recently because many re-
sponses are functional in nature. For example, in an experiment in neu-
roscience, observations could be functional responses, and rather than ap-
plying the experimental design on some summary of these functions, one
could use the densely sampled functions as data.

We provide a definition for the one-way case, which is a “functional-
ized” version of the standard one-way ANOVA.

Suppose that for any fixed t ∈ T ⊂R, the observations y are modeled by
a fixed-effect ANOVA model:

yij(t) = µ(t) + αi(t) + ǫij(t), i = 1, . . . ,k, j = 1, . . . ,ni;
k

∑
i=1

ni = N, (11.6)
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where ǫij(t) are independent N (0,σ2) errors. When i and j are fixed, we
assume that functions µ(t) and αi(t) are square-integrable functions. To
ensure the identifiability of treatment functions αi, one typically imposes

(∀t)∑
i

αi(t) = 0. (11.7)

In real life the measurements y are often taken at equidistant times tm.
The standard least square estimators for µ(t) and αi(t)

µ̂(t) = y(t) =
1
n ∑

i,j
yij(t), (11.8)

α̂i(t) = yi(t)− y(t), (11.9)

where yi(t) =
1
ni

∑j yij(t), are obtained by minimizing the discrete version
of LMSSE, (e.g., Ramsay and Silverman, 1997, p. 141):

LMSSE = ∑
t

∑
i,j
[yij(t)− (µ(t) + αi(t))]

2, (11.10)

subject to the constraint (∀t) ∑i niαi(t) = 0.
The fundamental ANOVA identity becomes a functional identity,

SST(t) = SSTr(t) + SSE(t), (11.11)

with SST(t) =∑i,l[yil(t)− y(t)]2, SSTr(t) = ∑i ni[yi(t)− y(t)]2, and SSE(t) =
∑i,l[yil(t)− yi(t)]

2.
For each t, the function

F(t) =
SSTr(t)/(k− 1)
SSE(t)/(N − k)

(11.12)

is distributed as noncentral Fk−1,N−k

(
∑i niα

2
i (t)

σ2

)
. Estimation of µ(t) and

αj(t) is straightforward, and estimators are given in Eqs. (11.8).
The testing of hypotheses involving functional components of the stan-

dard ANOVA method is hindered by dependence and dimensionality prob-
lems. Testing requires dimension reduction and this material is beyond the
scope of this book. The interested reader can consult Ramsay and Silverman
(1997) and Fan and Lin (1998).

Example 11.15. FANOVA in Tumor Physiology. Experiments carried out in
vitro with tumor cell lines have demonstrated that tumor cells respond to
radiation and anticancer drugs differently, depending on the environment.
In particular, available oxygen is important. Efforts to increase the level of
oxygen within tumor cells have included laboratory rats with implanted
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tumors breathing pure oxygen. Unfortunately, animals breathing pure oxy-
gen may experience large drops in blood pressure, enough to make this
intervention too risky for clinical use.

Mark Dewhirst, Department of Radiation Oncology at Duke University,
sought to evaluate carbogen (95% pure oxygen and 5% carbon dioxide) as a
breathing mixture that might improve tumor oxygenation without causing
a drop in blood pressure. The protocol called for making measurements on
each animal over 20 minutes of breathing room air, followed by 40 min-
utes of carbogen breathing. The experimenters took serial measurements
of oxygen partial pressure (PO2), tumor blood flow (LDF), mean arterial
pressure (MAP), and heart rate. Microelectrodes, inserted into the tumors
(one per animal), measured PO2 at a particular location within the tumor
throughout the study period. Two laser Doppler probes, inserted into each
tumor, provided measurements of blood flow. An arterial line into the right
femoral artery allowed measurement of MAP. Each animal wore a face
mask for administration of breathing gases (room air or carbogen). [See
Lanzen et al. (1998) for more information about these experiments.]

Nine rats had tumors transplanted within the quadriceps muscle, which
we will denote by TM. For comparison, the studies also included eight rats
with tumors transplanted subcutaneously (TS) and six rats without tumors
(N) in which measurements were made in the quadriceps muscle. The data
are provided in oxigen.dat.

Figure 11.9 show some of the data (PO2). The plots show several fea-
tures, including an obvious rise in PO2 at the 20-minute mark among some
of the animals. No physiologic model exists that would characterize the
shapes of these profiles mathematically. The primary study question con-
cerned evaluating the effect of carbogen breathing on PO2. The analysis
was complicated by the knowledge that there may be acute changes in PO2
after carbogen breathing starts. The primary question of interest is whether
the tumor tissue behaves differently than normal muscle tissue or whether
a tumor implanted subcutaneously responds to carbogen breathing differ-
ently than tumor tissue implanted in muscle tissue in the presence of acute
jumps in PO2.

The analyses concern inference on changes in some physiologic mea-
surements after an intervention. The problem for the data analysis is how
best to define “change” in order to allow for the inference desired by the
investigators.

From a statistical modeling point of view, the main issues concern build-
ing a flexible model for the multivariate time series yij of responses and
providing for formal inferences on the occurrence of change at time t∗

and the “equality” of the PO2 profiles. From the figures it is clear that
the main challenge arises from the highly irregular behavior of responses.
Neither physiologic considerations nor any exploratory data analysis mo-
tivates any parsimonious parametric form. Different individuals seem to
exhibit widely varying response patterns. Still, it is clear from inspection of
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Fig. 11.9 PO2 measurements. Notice that despite a variety of functional responses and a
lack of a simple parametric model, at time t∗ = 20′ the pattern generally changes.

the data that for some response series a definite change takes place at time
t∗.

Figure 11.10 shows the estimators of components in the functional
ANOVA model. As can be discern from the figure, adding µ(t) and α2(t)
will lead to a relatively horizontal expected profile for group i, each fitted
curve canceling the other to some extent. Files micePO2.m and fanova.m

support this example.
�
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Fig. 11.10 Functional ANOVA estimators.

11.10 Analysis of Means (ANOM)*

Some statistical applications, notably in the area of quality improvement,
involve a comparison of treatment means to determine which means are
significantly different from their overall average. For example, a biomedical
engineer might run an experiment to investigate which of six concentra-
tions of an agent produces a different output, in the sense that the average
measurement for each concentration differs from the overall average.

Questions of this type are answered by the analysis of means (ANOM),
which is a method for making multiple comparisons, sometimes referred to
as “multiple comparisons with the weighted mean.” The ANOM answers
different question than the ANOVA; however, it is related to ANOVA via
multiple tests involving contrasts (Halperin et al., 1955; Ott, 1967).

The ANOM procedure consists of multiple testing of k hypotheses
H0i : αi = 0, i = 1, . . . ,k versus the two-sided alternative. Since the testing
is simultaneous, the Bonferroni adjustment to the type I error is used. Here
αi are, as in ANOVA, k population treatment effects µi − µ, i = 1, . . . ,k,
which are estimated as

α̂i = yi − y,

in the usual ANOVA notation. The population effect αi can be represented
via the treatment means as
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αi = µi − µ = µi −
µ1 + · · ·+ µk

k

= −1
k

µ1 − · · · −
1
k

µi−1 +

(
1− 1

k

)
µi − · · · −

1
k

µk .

Since the constants c1 =−1/k, . . . , ci = 1− 1/k, . . . , ck =−1/k sum up to 0,
α̂i is an empirical contrast,

α̂i = yi −
y1 + · · ·+ yk

k

= −1
k

y1 − · · · −
1
k

yi−1 +

(
1− 1

k

)
yi − · · · −

1
k

yk,

with standard deviation (as in page 513),

sα̂i
= s

√√√√
k

∑
j=1

c2
j

nj
= s

√√√√ 1
ni

(
1− 1

k

)2

+
1
k2 ∑

j 6=i

1
nj

.

Here ni are treatment sample sizes, N = ∑
k
i=1 ni is the total sample size, and

s =
√

MSE.
All effects α̂i falling outside the interval

[−sα̂i
× tN−k,1−α/(2k), sα̂i

× tN−k,1−α/(2k)],

or equivalently, all treatment means yi falling outside of the interval

[y− sα̂i
× tN−k,1−α/(2k), y + sα̂i

× tN−k,1−α/(2k)],

correspond to rejection of H0i : αi = µi − µ = 0. The Bonferroni correction
1 − α/(2k) in the t-quantile tN−k,1−α/(2k) controls the significance of the
procedure at level α (page 415).

Example 11.16. ANOM on Coagulation Times. We revisit Example 11.1
and perform an ANOM analysis. In this example y1 = 61, y2 = 66, y3 = 68,
and y4 = 61. The grand mean is y = 64. Standard deviations for α̂ are sα̂1 =
0.9736, sα̂2 = 0.8453, sα̂3 = 0.8453, and sα̂4 = 0.7733, and the t-quantile corre-
sponding to α = 0.05 is t1−0.05/8,20 = 2.7444. This leads to ANOM bounds,
[61.328,66.672], [61.680,66.320], [61.680,66.320], and [61.878,66.122].

Only the second treatment mean y2 = 66 falls in its ANOM interval
[61.680, 66.320]; see Figure 11.11 (generated by anomct.m). Consequently,
the second population mean µ2 is not significantly different from the grand
mean µ.
�
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Fig. 11.11 ANOM analysis on Coagulation Times. The blue line is the overall mean, the
red lines are the ANOM interval bounds, and the green dots are the treatment means.
Note that only the second treatment mean falls in its interval.

11.11 The Capability of a Measurement System (Gauge
R&R ANOVA)*

The gauge R&R methodology is concerned with the capability of measur-
ing systems. Over time gauge R&R methods have evolved, and now two ap-
proaches have become widely accepted: (i) the average and range method,
also known as the AIAG method, and (ii) the ANOVA method. We will
focus on the ANOVA method and direct interested readers to Montgomery
(2005) for comprehensive coverage of the topic.

In a typical gauge R&R study, several operators measure the same parts
in random order. Most studies involve two to five operators and five to
ten parts. There are usually several trial repetitions, which means that an
operator performs multiple measurements on the same part.

The ANOVA method of analyzing measurement data provides not only
the estimates for repeatability or equipment variation, reproducibility or
appraiser variation, and part-to-part variation but also accounts for possible
interaction components.

We first define several key terms in gauge R&R context:
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Gauge or gage: Any device that is used to obtain measurements.

Part: An item subjected to measurement. Typically a part is selected
at random from the entire operating range of the process.

Trial: A set of measurements on a single part that is taken by an
operator.

Measurement system: The complete measuring process involving
gauges, operators, procedures, and operations. The system is evalu-
ated as capable, acceptable, or not capable, depending on the variabili-
ties of its components. Notions of repeatability, reproducibility (R&R),
and part variability as the main sources of variability in a measure-
ment system, are critical for its capability assessment.

Repeatability: The variance in measurements obtained with a mea-
suring instrument when used several times by an appraiser while
measuring the identical characteristic on the same part.

Reproducibility: The variation in measurements made by different
appraisers using the same instrument when measuring an identical
characteristic on the same part.

The measurements in a gauge R&R experiment are described as an
ANOVA model

yijk = µ + Pi +Oj + POij + ǫijk, i = 1, . . . , p, j = 1, . . . ,o, k = 1, . . . ,n,

where Pi, Oi, POij, and ǫijk are independent random variables that represent
the contributions of parts, operators, part–operator interaction, and random
error to the measurement. We assume that the design is balanced, that there
are p parts and o operators, and that for each part/operator combination
there are n trials.

This is an example of a random-effect, two-way ANOVA, since the fac-
tors parts and operators are both randomly selected from the population
consisting of many parts and operators. Except for the grand mean µ, which
is considered a constant, the random variables Pi, Oj, POij, ǫijk are consid-
ered independent zero-mean normal with variances σ2

P, σ2
O, σ2

PO, and σ2.
Then the variability of measurement yijk splits into the sum of four vari-
ances:

Var (yijk) = σ2
P + σ2

O + σ2
PO + σ2.

As in Section 11.4, the mean squares in the ANOVA table are obtained
as
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MSP =
SSP

p− 1
, MSO =

SSO

o− 1
, MSPO =

SSPO

(p− 1)(o− 1)
, MSE =

SSE

po(n− 1)
,

where the sums of squares are standardly defined (page 525). Since this is
a random-effect ANOVA, it holds that

E(MSP) = σ2 + nσ2
PO + onσ2

P,

E(MSO) = σ2 + nσ2
PO + pnσ2

O,

E(MSPO) = σ2 + nσ2
PO,

E(MSE) = σ2.

The derivation of these expectations is beyond the scope of this text, but
a thorough presentation of it can be found in Montgomery (1984) or Kut-
ner et al. (2005). The expectations above, by moment matching, lead to the
estimates

σ̂2
P =

MSP−MSPO

on
,

σ̂2
O =

MSO−MSPO

pn
,

σ̂2
PO =

MSPO−MSE

n
,

σ̂2 = MSE.

In the context of R&R analysis, the definitions of empirical variance com-
ponents are as follows:

σ̂2
Repeat = σ̂2

σ̂2
Reprod = σ̂2

O + σ̂2
PO

σ̂2
Gauge = σ̂2

Repeat + σ̂2
Reprod

= σ̂2 + σ̂2
O + σ̂2

PO

σ̂2
Total = σ̂2

Gauge + σ̂2
Part

Next we provide several measures of the capability of a measurement
system.

Number of Distinct Categories. The measure called signal-to-noise ratio,
in the context of R&R, is defined as
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SNR =

√√√√2× σ̂2
Part

σ̂2
Gauge

.

The SNR rounded to the closest integer defines the number of distinct cat-
egories (NDC) measure, which is a resolution of the measurement system.

The NDC informally indicates how many “categories” the measurement
system is able to differentiate. If NDC = 0 or 1, then the measurement sys-
tem is useless. If NDC = 2, then the system can differentiate only between
two categories (“small” and “large,” in T-shirt terminology). If NDC = 3,
then the system can distinguish “small,” “medium,” and “large,” and so on.
If NDC≥ 5, then the measurement system is capable. If NDC≤ 1, then the
measurement system is not capable. Otherwise, the measurement system
is evaluated as acceptable.

Percent of R&R Variability. The percent of R&R variability (PRR) mea-
sures the size of the R&R variation relative to the total data variation. It is
defined as

PRR =

√√√√ σ̂2
Gauge

σ̂2
Total

.

If PRR < 10%, then the measurement system is capable. If PRR > 30%,
the measurement system is not capable; the system is acceptable for 10%≤
PRR ≤ 30%. Also, the individual contribution of repeatability and repro-
ducibility variances entering the summary measure PRR are of interest.
For instance, a large repeatability variation, relative to the reproducibility
variation, indicates a need to improve the gauge. A high reproducibility
variance relative to repeatability indicates a need for better operator train-
ing.

MATLAB’s function gagerr(y,part,operator) performs a gauge re-
peatability and reproducibility analysis on measurements in vector y col-
lected by operator on part. As in the anovan command, the number of el-
ements in part and operator should be the same as in y. There are many
important options in gagerr, and we recommend that the user carefully
consult the function help.

Example 11.17. Measurements of Thermal Impedance. This example of a
gauge R&R study comes from Houf and Berman (1988) and Montgomery
(2005). The data, in the table below, represent measurements on thermal
impedance (in ◦C per Watt × 100) of a power module for an induction
motor starter. There are ten parts, three operators, and three measurements
per part.
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Part Operator 1 Operator 2 Operator 3
number Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 37 38 37 41 41 40 41 42 41
2 42 41 43 42 42 42 43 42 43
3 30 31 31 31 31 31 29 30 28
4 42 43 42 43 43 43 42 42 42
5 28 30 29 29 30 29 31 29 29
6 42 42 43 45 45 45 44 46 45
7 25 26 27 28 28 30 29 27 27
8 40 40 40 43 42 42 43 43 41
9 25 25 25 27 29 28 26 26 26
10 35 34 34 35 35 34 35 34 35

Using ANOVA R&R analysis, evaluate the capability of the measure-
ment system by assuming that parts and operators possibly interact. See
Exercise 11.33 for the case where parts and operators do not interact (addi-
tive ANOVA model).

We will first analyze the problem as a two-way ANOVA ( RandR2.m)
and then, for comparison, provide MATLAB’s output from the function
gagerr.

%model with interaction

impedance = [...

37 38 37 41 41 40 41 42 41 42 41 43 42 42 42 43 42 43 ...

30 31 31 31 31 31 29 30 28 42 43 42 43 43 43 42 42 42 ...

28 30 29 29 30 29 31 29 29 42 42 43 45 45 45 44 46 45 ...

25 26 27 28 28 30 29 27 27 40 40 40 43 42 42 43 43 41 ...

25 25 25 27 29 28 26 26 26 35 34 34 35 35 34 35 34 35]’ ;

% forming part and operator vectors.

a = repmat([1:10],9,1); part = a(:);

b = repmat([1:3], 3,1); operator = repmat(b(:),10,1);

[p table stats terms] = anovan( impedance,{part, operator},...

’model’,’interaction’,’varnames’,{’part’,’operator’} )

MSE = table{5,5} %0.5111

MSPO =table{4,5} %2.6951

MSO = table{3,5} %19.6333

MSP = table{2,5} %437.3284

p = stats.nlevels(1); o = stats.nlevels(2);

n=length(impedance)/(p * o);%p=10, 0=3, n=3

s2Part = (MSP - MSPO)/(o * n) %48.2926

s2Oper = (MSO - MSPO)/(p * n) %0.5646

s2PartOper = (MSPO - MSE)/n %0.7280

s2 = MSE %0.5111

s2Repeat = s2 %0.5111

s2Repro = s2Oper + s2PartOper %1.2926

s2Gage = s2Repeat + s2Repro %1.8037

s2Tot = s2Gage + s2Part %50.0963
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%percent variation due to part

ps2Part = s2Part/s2Tot %0.9640

% signal-to-noise ratio; > 5 measuring system is capable

snr = sqrt( 2 * ps2Part/(1-ps2Part)) %7.3177

% snr rounded is NDC (number of distinct categories).

ndc = round(snr) %7

% percent of R&R variability

prr = sqrt(s2Gage/s2Tot) %0.1897

Therefore, the measuring system is capable by NDC = 7≥ 5 but falls in
the “gray” zone (10, 30) according to the PRR measure. MATLAB’s built-in
function gagerr produces a detailed output:

gagerr(impedance,{part, operator},’model’,’interaction’)

% Source Variance %Variance sigma 5.15*sigma 5.15*sigma

% ================================================================

% Gage R&R 1.80 3.60 1.34 6.92 18.97

% Repeatability 0.51 1.02 0.71 3.68 10.10

% Reproducibility 1.29 2.58 1.14 5.86 16.06

% Operator 0.56 1.13 0.75 3.87 10.62

% Part*Operator 0.73 1.45 0.85 4.39 12.05

% Part 48.29 96.40 6.95 35.79 98.18

% Total 50.10 100.00 7.08 36.45

% ----------------------------------------------------------------

% Number of distinct categories (NDC) : 7

% % of Gage R&R of total variations (PRR): 18.97

�

When operators and parts do not interact, an additive ANOVA model,

yijk = µ + Pi +Oj + ǫijk, i = 1, . . . , p, j = 1, . . . ,o, k = 1, . . . ,n,

should be used. In this case, the estimators of variances are

σ̂2
P =

MSP−MSE

on
,

σ̂2
O =

MSO−MSE

pn
,

σ̂2 = MSE,

and σ̂2
Reprod is simply reduced to σ̂2

O.
Exercise 11.33 solves the problem in Example 11.17 without the PO-

interaction term and compares the analysis with the output from gagerr.
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11.12 Testing Equality of Several Proportions

An ANOVA-type hypothesis can be considered in the context of several
proportions. Consider k independent populations from which k samples
of size n1,n2, . . . ,nk are taken. We record a binary attribute, say, 1 or 0. Let
X1, X2, . . . , Xk be the observed number of 1s and p̂1 = X1/n1, . . . , p̂k = Xk/nk

the sample proportions.
To test H0 : p1 = p2 = · · · = pk against the general alternative H1 = Hc

0,
the statistic

χ2 =
k

∑
i=1

(Xi − ni p)
2

ni p(1− p)

is formed. Here

p =
X1 + X2 + · · ·+ Xk

n1 + n2 + · · ·+ nk

is a pooled sample proportion. Under H0 all proportions are the same and
equal to p, so p is the best estimator. The statistic χ2 has an approximate
χ2-distribution with k− 1 degrees of freedom. This approximation is con-
sidered good if all ni p exceed 0.5 and no more than 20% of nis are smaller
than 5.

If H0 is rejected, a Marascuillo procedure (Marascuillo and Serlin, 1988)
can be applied to compare individual pairs of population proportions. For
k populations there are k(k− 1)/2 tests, and the two proportions pi and pj

are different if

| p̂i − p̂j| >
√

χ2
k−1,1−α×

√
p̂i(1− p̂i)/ni + p̂j(1− p̂j)/nj. (11.13)

Example 11.18. Gender and Hair Color. Zar (2010) provides data on gender
proportions in samples of subjects grouped by the color of their hair.

Hair color
Gender Black Brown Blond Red
Male 32 43 16 9
Female 55 65 64 16
Total 87 108 80 25

We will test the hypothesis that population proportions of males are the
same for the four groups.

%Gender Proportions and Hair Color

Xi = [32 43 16 9];

ni = [87 108 80 25];

pi = Xi./ni %0.3678 0.3981 0.2000 0.3600
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pbar = sum(Xi)/sum(ni) %0.3333

chi2 = sum( (Xi - ni*pbar).^2./(ni * pbar * (1-pbar)) ) %8.9872

pval = 1-chi2cdf(chi2, 4-1) %0.0295

Thus, with a p-value of about 3%, the hypothesis of homogeneity of
population proportions is rejected. Using the condition in (11.13) show that
the difference between p̂2 and p̂3 is significant and responsible for rejecting
H0.

Remark. We will see later (Chapter 12) that this test and the test for ho-
mogeneity in 2 × c contingency tables are equivalent. Here we assumed
that the sampling design involved fixed totals ni. If the sampling was fully
random (i.e., no totals for hair color nor males/females were prespecified),
then H0 would be the hypothesis of independence between gender and hair
color.
�

For Tukey-type multiple comparisons and testing proportion trends, see
Zar (2010) and Conover (1999).

11.13 Testing the Equality of Several Poisson Means*

When under in each of k treatments the observations are multiple counts,
the standard ANOVA is often inappropriately applied to test for the equal-
ity of means. For counting observations the Poisson model is more ade-
quate than the normal, and using a standard ANOVA methodology may
be problematic. For example, when an ANOVA hypothesis of equality of
means is rejected, but the observations are in fact Poisson, multiple compar-
isons may be invalid due to unequal treatment variances, which for Poisson
observations are equal to the means. Next, we describe an approach that is
appropriate for Poisson observations.

Suppose that in treatment i we observe ni Poisson counts,

Xij ∼ Poi(λi), i = 1, . . . ,k, j = 1, . . . ,ni.

Denote by Oi the sum of all counts in treatment i, Oi = ∑
ni
j=1 Xij, and by O

the sum of counts across all treatments, O = ∑
k
i=1 Oi. The total number of

observations is N = ∑
k
i=1 ni.

One can show that the distribution of the vector (O1,O2, . . . ,Ok), given
the total sum O, is multinomial (page 187),

(O1,O2, . . . ,Ok|O)∼Mn(O, p),

where p = (p1, p2, . . . , pk) is defined via
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pi =
niλi

∑
k
i=1 niλi

.

Thus, when the hypothesis H0 : λ1 = λ2 = · · · = λk is true, then pi = ni/N.
Suppose that counts Oi are observed. Define expected counts Ei as

Ei = pi ×O =
ni

N
×O, i = 1, . . . ,k.

Then

χ2 =
k

∑
i=1

(Oi − Ei)
2

Ei

is Pearson’s test statistic for testing H0. When H0 is true, it has an approx-
imately χ2-distribution with k − 1 degrees of freedom. Alternatively, one
could use the likelihood statistic

G2 = 2
k

∑
i=1

Oi log
Oi

Ei
,

which under H0 also has the χ2-distribution with k− 1 degrees of freedom.
Large values of χ2 or G2 are critical for H0.

Example 11.19. Twenty Plates with Cells. Assume that in an experiment
three treatments are applied on 20 plates populated with a large number of
cells, the first treatment on 7, the second on 5, and the third on 8 plates.

The following table gives the numbers of cells per plate that responded
to the treatments:

Treatment 1 Treatment 2 Treatment 3
1 6 4 2 3 5 5 9 2 7 2 3 0 2 1
8 2 4 5 2

We assume a Poisson model and wish to test the equality of mean counts,
H0 : λ1 = λ2 = λ3.

The solution is provided in poissonmeans.m. The hypothesis of the
equality of means is rejected with a p-value of about 1.3%. Note that stan-
dard ANOVA fails to reject H0, for the p-value is 6.15%. This example
demonstrates the inadequacy of the standard ANOVA for this kind of data.

ncells = [1 6 4 2 3 8 2 5 5 9 2 7 2 3 0 2 1 4 5 2]’;

agent = [1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3]’;

ncells1=ncells(agent==1)

ncells2=ncells(agent==2)

ncells3=ncells(agent==3)

k = 3; %treatments

n1 = length(ncells1); n2 = length(ncells2); n3= length(ncells3);
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ni=[n1 n2 n3] %7 5 8

N = sum(ni) %20

O1 = sum(ncells1); O2 = sum(ncells2); O3 = sum(ncells3);

Oi=[O1 O2 O3] %26 28 19

O = sum(Oi) %73

%expected

Ei = O .* ni/N %25.55 18.25 29.2

%Poisson chi2

chi2 = sum( (Oi - Ei).^2 ./ Ei ) %8.7798

%Likelihood G2

G2 = 2 * sum( Oi .* log(Oi./Ei ) ) %8.5484

pvalchi2 = 1 - chi2cdf(chi2, k-1) %0.0124

pvalG2 = 1 - chi2cdf(G2, k-1) %0.0139

% If the problem is treated as ANOVA

[panova table] = anova1(ncells, agent)

% panova = 0.0615

% table =

% ’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

% ’Groups’ [ 32.0464] [ 2] [16.0232] [3.3016] [0.0615]

% ’Error’ [ 82.5036] [17] [ 4.8532] [] []

% ’Total’ [114.5500] [19] [] [] []

�

11.14 Exercises

11.1. Nematodes. Some varieties of nematodes, roundworms that live in the
soil and are frequently so small that they are invisible to the naked eye,
feed on the roots of lawn grasses and crops such as strawberries and
tomatoes. This pest, which is particularly troublesome in warm climates,
can be treated by the application of nematocides. However, because of
the size of the worms, it is very difficult to measure the effectiveness
of these pesticides directly. To compare four nematocides, the yields
of equal-size plots of one variety of tomatoes were collected. The data,
given as yields in pounds per plot, are shown in the table below:

Nematocide A Nematocide B Nematocide C Nematocide D
18.6 18.7 19.4 19.0
18.4 19.0 18.9 18.8
18.4 18.9 19.5 18.6
18.5 18.5 19.1 18.7
17.9 18.5

(a) Write a statistical model for ANOVA and state H0 and H1 in terms of
your model.
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(b) What is your decision if α = 0.05?
(c) For what values of α will your decision be different than that in (b)?

11.2. Cell Folate Levels in Cardiac Bypass Surgery. Altman (1991, p. 208)
provides data on 22 patients undergoing cardiac bypass surgery. The
patients were randomized to one of three groups receiving the following
treatments:
Treatment 1. Patients received a 50% nitrous oxide and 50% oxygen mix-
ture continuously for 24 hours.
Treatment 2. Patients received a 50% nitrous oxide and 50% oxygen mix-
ture only during the operation.
Treatment 3. Patients received no nitrous oxide but received 35% to 50%
oxygen for 24 hours.
The measured responses, given as red cell folate levels (ng/ml) for the
three groups after 24 hours of ventilation, are shown below:

Treat1 243 251 275 291 347 354 380 392
Treat2 206 210 226 249 255 273 285 295 309
Treat3 241 258 270 293 328

The question of interest is whether the three ventilation methods result
in a different mean red cell folate level. If the hypothesis of equality of
treatment means is rejected, which means are significantly different?

11.3. MTHFR C677T Genotype and Levels of Homocysteine and Folate. A
study by Ozturk et al. (2005) considered the association of methylenete-
trahydrofolate reductase (MTHFR) C677T polymorphisms with levels of
homocysteine and folate. A total of N = 815 middle-aged and elderly
subjects were stratified by MTHFR C677T genotype (k = 3) and their
measurements summarized in the table below:

CC: n1 = 312 CT: n2 = 378 TT: n3 = 125
Characteristics X1 (s1) X2 (s2) X3 (s3)
Homocysteine, nmol/l 14.1 (1.9) 14.2 (2.3) 15.3 (3.0)
Red blood cell folate, nmol/l 715 (258) 661 (236) 750 (348)
Serum folate, nmol/l 13.1 (4.7) 12.3 (4.2) 11.4 (4.4)

(a) Using a one-way ANOVA, test the hypothesis that the population
homocysteine levels for the three genotype groups are the same. Use
α = 0.05.
Hint: Since the raw data are not given, calculate

MSTr =
1

k− 1

k

∑
i=1

ni(Xi − X)2 and MSE =
1

N − k

k

∑
i=1

(ni − 1)s2
i ,

for

N = n1 + · · ·+ nk and X =
n1X1 + · · ·+ nkXk

N
.
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Statistic F is the ratio MSTr/MSE. It has k− 1 and N − k degrees of free-
dom.
(b) For red blood cell folate measurements complete the following
ANOVA table:

SS DF MS F p

===================================================================

SSTr= DF1= MSTr=469904.065 F= p=

SSE = DF2= MSE = 69846.911

===========================

SST= DF=

11.4. Computer Games. In Exercise 7.24, mental rotations test scores were
provided for three groups of children:
Group 1 (“Factory” computer game): X1 = 22.47, s1 = 9.44,n1 = 19.
Group 2 (“Stellar” computer game): X2 = 22.68, s2 = 8.37,n2 = 19.
Control (no computer game): X3 = 18.63, s3 = 11.13,n3 = 19.
Assuming a normal distribution of scores in the population and equal
population variances, test the hypothesis that the population means are
the same at a 5% significance level.

11.5. Beetles. The following data were extracted from a more extensive study
by Sokal and Karten (1964). The data represent mean dry weights (in
milligrams) of three genotypes of beetles, Tribolium castaneum, reared at
a density of 20 beetles per gram of flour. The four independent measure-
ments for each genotype are recorded below:

Genotypes
++ +b bb

0.958 0.986 0.925
0.971 1.051 0.952
0.927 0.891 0.829
0.971 1.010 0.955

Using a one-way ANOVA, test whether the genotypes differ in mean dry
weight. Take α = 0.01.

11.6. ANOVA Table from Summary Statistics. When accounts of one-way
ANOVA designs are given in journal articles or technical reports, the
data and the ANOVA table are often omitted. Instead, means and stan-
dard deviations for each treatment group are given, along with the F-
statistic, its p-value, and the decision on whether to reject or not. One
can build the ANOVA table from this summary information and thus
verify the author’s interpretation of the data.
The results below are from an experiment with n1 = n2 = n3 = n4 = 10
observations on each of k = 4 groups:
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Treatment ni Xi si

1 10 100.40 11.68
2 10 103.00 11.58
3 10 107.10 10.05
4 10 114.80 10.61

(a) Write the model for this experiment and state the null hypothesis in
terms of the parameters of the model.
(b) Use the information in the table above to show that SSTr = 1186 and
SSE = 4357.
(c) Construct the ANOVA table for this experiment, with standard
columns SS, d f , MS, F, and p-value.
Hint: SSTr = n1(X1 − X)2 + n2(X2 − X)2 + n3(X3 − X)2 + n4(X4 − X)2,
for X = ∑

4
i=1 niXi/ ∑

4
i=1 ni and SSE = (n1 − 1)s2

1 + (n2 − 1)s2
2 + (n3 −

1)s2
3 + (n4 − 1)s2

4; see also Exercise 11.3.
Part (c) shows that it is possible to use treatment means and standard
deviations to reconstruct the ANOVA table, find its F-statistic, and test
the null hypothesis. However, without knowing the individual data val-
ues, one cannot carry out some other important statistical analyses (e.g.,
residual analysis).

11.7. Protein Content in Milk for Three Diets. The data from Diggle et al.
(1994) are used to compare the content of protein in milk of 79 cows
randomly assigned to three different diets: barley, a barley-and-lupins
mixture, and lupins alone.
The original data set is longitudinal in nature (protein monitored weekly
for several months), but for the purpose of this exercise we took the
protein concentration at 6 weeks following calving for each cow.

b=[3.7700 3.0000 2.9300 3.0500 3.6000 3.9200...

3.6600 3.4700 3.2100 3.3400 3.5000 3.7300...

3.4900 3.1600 3.4500 3.5200 3.1500 3.4200...

3.6200 3.5700 3.6500 3.7100 3.5700 3.6300...

3.6000];

m=[3.4000 3.8000 3.2900 3.7100 3.2800 3.3800...

3.5700 2.9000 3.5500 3.5500 3.0400 3.4000...

3.1500 3.1300 3.2500 3.1500 3.1000 3.1700...

3.5000 3.5700 3.4700 3.4500 3.2600 3.2400...

3.7000 3.0500 3.5400];

l=[3.0700 3.1200 2.8700 3.1100 3.0200 3.3800...

3.0800 3.3000 3.0800 3.5200 3.2500 3.5700...

3.3800 3.0000 3.0300 3.0600 3.9600 2.8300...

2.7400 3.1300 3.0500 3.5500 3.6500 3.2700...

3.2000 3.2700 3.7000];

resp = [b’; m’; l’]; %single column vector of all responses

class = [ones(25,1); 2*ones(27,1); 3*ones(27,1)]; %class vector

[pval, table, stats] = anova1(resp, class)

[cintsdiff,means] = multcompare(stats) %default comparisons

Partial output is given below.
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(a) Fill in the empty spaces in the output.

%pval =

% 0.0053

%

%table

%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

%’Groups’ [______] [____] [0.3735] [______] [_______]

%’Error’ [______] [____] [______]

%’Total’ [5.8056] [____]

%

%stats =

% gnames: 3x1 cell

% n: [25 27 27]

% source: ’anova1’

% means: [3.4688 3.3556 3.2293]

% df: 76

% s: 0.2580

%

% cintsdiff =

% 1.0000 2.0000 -0.0579 0.1132 0.2844

% 1.0000 3.0000 0.0684 0.2395 0.4107

% 2.0000 3.0000 -0.0416 0.1263 0.2941

%

% means =

% 3.4688 0.0516

% 3.3556 0.0497

% 3.2293 0.0497

(b) What is H0 here and is it rejected? Use α = 5%.
(c) From the output of cintsdiff, discuss how the population means dif-
fer.

11.8. Tasmanian Clouds. The data clouds.txt provided by OzDASL were
collected in a cloud-seeding experiment in Tasmania between mid-1964
and January 1971. Analysis of these data is discussed in Miller et al.
(1979).
The rainfalls are period rainfalls in inches. Variables TE and TW are the
east and west target areas, respectively, while CN, CS, and CNW are the
corresponding rainfalls in the north, south, and northwest control areas,
respectively. S stands for seeded and U for unseeded. Variables C and T

are averages of control and target rainfalls. Variable DIFF is the difference
T-C.
(a) Use an additive two-way ANOVA to estimate and test the treatment
effects of Season and Seeded.
(b) Repeat the analysis from (a) after adding the interaction term.

11.9. Red Clover Varieties. Successful production of red clover depends to a
considerable extent on selecting the best varieties for a particular farm.
For that reason, varieties are compared in trial plots on Minnesota Agri-
cultural Experiment Station fields at Grand Rapids, Morris, and Rose-
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mount. Varieties are grown in replicated plots at each location. These
plots are handled so that the factors affecting yield and other character-
istics are as nearly the same for all varieties at each location as possible.
Minnesota Agricultural Experiment Station scientists seeded red clover
at three locations in 1995. The trials were harvested at Grand Rapids,
Morris, and Rosemount in 1996 and at Rosemount and Morris in 1997
and 1998. Severe winter injury destroyed the trial at Grand Rapids.
The table below (Ehlke and Vellekson, 1999; Tab. 1, p. 3) provides data on
yield of red clover, in tons of dry matter per acre, seeded at 3 locations
in 1995. Data is also available in data structure redclover.mat.

Yield
Grand Rapids Morris Rosemount

1966 1966 1967 1968 1966 1967 1968
Variety
Arlington 3.7 2.6 3.3 2.9 3.2 2.0 4.8
Astred 3.3 2.2 2.2 2.7 2.5 1.8 3.3
Cinnamon 4.0 3.1 3.7 3.0 3.4 2.1 5.3
Marathon 4.3 3.2 3.5 2.6 3.4 1.7 4.5
Randolph 3.8 3.7 3.5 2.8 3.8 2.0 4.7
Scarlett 3.0 3.0 3.5 2.8 3.7 1.8 4.8

(a) Test the hypothesis that the mean yields for the six clover varieties
are the same regardless of year and location. Take α = 5%.
(b) Using a two-way ANOVA with factors Variety and Location, show
that neither factor is significant. Is the interaction significant?
(c) Using a two-way ANOVA with factors Variety and Year, show that
the effect of Year is significant. Which years significantly differ?

11.10. Cochlear Implants. Woodworth (2004) describes and analyzes data from
an interesting experiment involving cochlear implants. A cochlear im-
plant is a small, complex electronic device that can help to provide a
sense of sound to a person who is profoundly deaf or severely hard of
hearing. The implant consists of an external portion that sits behind the
ear and a second portion that is surgically placed under the skin. Tradi-
tional hearing aids amplify sounds so that they may be detected by dam-
aged ears. Cochlear implants bypass damaged portions of the ear and
directly stimulate the auditory nerve. Signals generated by the implant
are sent by way of the auditory nerve to the brain, which recognizes the
signals as sound. Hearing through a cochlear implant is different from
normal hearing and takes time to learn or relearn. However, it allows
many people to recognize warning signals, understand other sounds in
the environment, and enjoy a conversation in person or by telephone.
Eighty-one profoundly deaf subjects in this experiment received one of
three different brands of cochlear implant (A/B/G3). Brand G3 is a third-
generation device, while brands A and B are second-generation devices.
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The research question was to determine whether the three brands dif-
fered in levels of speech recognition.
The data file is given in cochlear.xlsx. The variables are as follows:

Name Description
ID Patient ID number
Age Patient’s age at the time of implantation
Device Type of cochlear implant (A/B/G3)
YrDeaf Years of profound deafness prior to implantation
CS Consonant recognition score, sound only
CV Consonant recognition score, visual only
CSV Consonant recognition score, sound and vision
SNT Sentence understanding score
VOW Vowel recognition score
WRD Word recognition score
PHN Phoneme recognition score

Run three separate ANOVAs with three response variables, which are
different tests of speech recognition:
(a) CSV, audiovisual consonant recognition (subjects hear triads like
“ABA,” “ATA,” and “AFA” and have to pick the correct consonant on
a touch screen);
(b) PHN, phoneme understanding (number of correct phonemes in ran-
dom 5- to 7-word sentences like “The boy threw the ball.”); and
(c) WRD, word recognition (number of words recognized in a list of
random, unrelated monosyllabic words “ball,” “dog,” etc.).

11.11. Does the Honeybee Change the Concentration of Nectar while en
Route to the Hive? Park (1932) investigated the means employed by
the honeybee to eliminate excess water from nectar in the process com-
monly known as the ripening of honey.
Syrup of approx. 40% concentration was fed to the bees. The concentra-
tion in their honey sacs was determined upon their arrival at the hive
(distance 0.5 mi). The decreases recorded in the table are classified to six
batches according to time of collection. The question to be answered is
this: were significant differences introduced by changes in the time of
gathering the data, or can the six batches be considered random samples
from a homogeneous population?
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Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6
–1.06 –0.99 –0.64 1.60 –1.08 –2.50
–1.01 –0.59 –0.34 –0.75 –0.53 –0.65
–0.96 –1.04 0.06 –2.10 –2.18 –1.10
–1.11 –0.39 0.01 –1.10 –1.08 –0.65
–0.91 –0.39 –1.49 –0.65 –0.38 –1.85
–1.06 –0.94 –0.94 –0.55 1.97 –0.55
–0.64 –0.64 –0.34 –0.60 –1.43 –1.20
–0.74 –0.44 –0.19 –0.20 –1.15

–1.14 –0.39 –0.75 –0.45
–0.44 –0.60 –1.00

Data can be found in bees.mat, a data structure with two fields:
bees.difs and bees.batch.
(a) Conduct a one-way ANOVA test and state your conclusions.
(b) A test in MATLAB that will check equality of population variances is
vartestn, (see also p. 511). Conduct this test. Was the standard ANOVA
assumption of equal variances violated?
(c) A counterpart test that does not require equality of variances is
Welch’s ANOVA, Section 11.3. Write a code in MATLAB that applies
Welch’s ANOVA and apply it on Park’s data. What do you conclude?

11.12. SiRstv: NIST’s Silicon Resistivity Data. Measurements of bulk resis-
tivity of silicon wafers were made at NIST with five probing instruments
(columns in the data matrix) on each of 5 days (rows in the data ma-
trix). The wafers were doped with phosphorous by neutron transmu-
tation doping in order to have nominal resistibility of 200 ohm · cm.
Measurements were carried out with four-point DC probes according to
ASTM Standard F84-93 and described in Ehrstein and Croarkin (1984).

1 2 3 4 5
196.3052 196.3042 196.1303 196.2795 196.2119
196.1240 196.3825 196.2005 196.1748 196.1051
196.1890 196.1669 196.2889 196.1494 196.1850
196.2569 196.3257 196.0343 196.1485 196.0052
196.3403 196.0422 196.1811 195.9885 196.2090

(a) Test the hypothesis that the population means of measurements pro-
duced by these five instruments are the same at α = 5%. Use MATLAB
to produce an ANOVA table.
(b) Pretend now that some measurements for the first and fifth instru-
ments are misrecorded (in italics):
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1 2 3 4 5
196.3052 196.3042 196.1303 196.2795 196.1119
196.2240 196.3825 196.2005 196.1748 196.1051
196.2890 196.1669 196.2889 196.1494 196.1850
196.2569 196.3257 196.0343 196.1485 196.0052
196.3403 196.0422 196.1811 195.9885 196.1090

Test the same hypothesis as in (a). If H0 is rejected, perform Tukey’s
multiple comparisons procedure.

11.13. Dorsal Spines of Gasterosteus aculeatus. Bell and Foster (1994) were
interested in the effect of predators on dorsal spine length evolution in
Gasterosteus aculeatus (threespine stickleback, Fig. 11.12). Dorsal spines
are thought to act as an antipredator mechanism.

Fig. 11.12 Gasterosteus aculeatus.

To examine this issue, researchers sampled eight sticklebacks from each
of Benka Lake (no predators), Garden Bay Lake (some predators), and
Big Lake (lots of predators). Their observations on spine length (in mil-
limeters) are provided in the following table.

Benka Lake Garden Bay Lake Big Lake
4.2 4.4 4.9
4.1 4.6 4.6
4.2 4.5 4.3
4.3 4.2 4.9
4.5 4.4 4.7
4.4 4.2 4.4
4.5 4.5 4.5
4.3 4.7 4.4

They would like to know if spine lengths differ among these three pop-
ulations and apply ANOVA with lakes as “treatments.”
(a) Test the hypothesis that the mean lengths in the three populations are
the same at level α = 0.05. State your conclusion in terms of the problem.
(b) Would you change the decision in (a) if α = 0.01? Explain why or
why not.
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11.14. Incomplete ANOVA Table. In the context of a balanced two factor
ANOVA, recover entries a–m.

Source of Sum of Degrees of Mean
variation squares freedom square F p-value
A 256.12 2 a 4.18 b
B c 3 12.14 d e
A×B 217.77 f g h i
Error j k l
Total m 119

11.15. Maternal Behavior in Rats. To investigate the maternal behavior of
laboratory rats, researchers separated rat pups from their mother and
recorded the time required for the mother to retrieve the pups. This
longitudinal study was run with six mothers when their litters were 5-
, 20-, and 35-day-old. The pups were moved a fixed distance from the
mother and the time of retrieval (in seconds) was recorded (Adapted
from Montgomery, 1984):

5 days 15 40 25 15 20 18
20 days 30 55 20 25 23 20
35 days 30 85 50 24 45 40

State the inferential problem, pose the hypotheses, check for sphericity,
and perform the test at α = 0.05. State your conclusions.

11.16. Comparing Dialysis Treatments. In Example 11.8 pretend that the three
columns of measurements are independent, that is, that 24 independent
patients were randomly assigned to one of the three treatments, 8 pa-
tients to each treatment. Test the null hypothesis that there is no differ-
ence in mean weight change among the treatments. Use α = 0.05. Com-
pare results with those in Example 11.8 and comment.

11.17. Materials Scientist Assessing Tensile Strength. A materials scientist
wishes to test the effect of four chemical agents on the strength of a par-
ticular type of cloth. There might be variability from one bolt to another,
so the scientist decides to use a randomized block design, with the bolts
of cloth considered as blocks. She selects five bolts and applies all four
chemicals in random order to each bolt. The resulting tensile strengths
follow:
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Chemical
Bolt 1 2 3 4

1 73 73 75 73
2 68 67 68 71
3 74 75 78 75
4 71 72 74 73
5 67 70 70 69

Analyze the data and draw appropriate conclusions.

11.18. Magnesium Ammonium Phosphate and Chrysanthemums. Walpole
et al. (2007) provide data from a study on the effect of magnesium am-
monium phosphate on the height of chrysanthemums, which was con-
ducted at George Mason University in order to determine a possible
optimum level of fertilization, based on the enhanced vertical growth
response of the chrysanthemums. Forty chrysanthemum seedlings were
assigned to 4 groups, each containing 10 plants. Each was planted in a
similar pot containing a uniform growth medium. An increasing con-
centration of MgNH4PO4, measured in grams per bushel, was added to
each plant. The 4 groups of plants were grown under uniform condi-
tions in a greenhouse for a period of 4 weeks. The treatments and the
respective changes in heights, measured in centimeters, are given in the
following table:

Treatment
50 g/bu 100 g/bu 200 g/bu 400 g/bu

13.2 16.0 7.8 21.0
12.4 12.6 14.4 14.8
12.8 14.8 20.0 19.1
17.2 13.0 15.8 15.8
13.0 14.0 17.0 18.0
14.0 23.6 27.0 26.0
14.2 14.0 19.6 21.1
21.6 17.0 18.0 22.0
15.0 22.2 20.2 25.0
20.0 24.4 23.2 18.2

(a) Do different concentrations of MgNH4PO4 affect the average attained
height of chrysanthemums? Test the hypothesis at the level α = 0.10.
(b) For α = 10%, perform multiple comparisons using multcompare.
(c) Find the 90% confidence interval for the contrast µ1 − µ2 − µ3 + µ4.

11.19. Color Attraction for Oulema melanopus. Some colors are more attrac-
tive to insects than others. Wilson and Shade (1967) conducted an ex-
periment aimed at determining the best color for attracting cereal leaf
beetles (Oulema melanopus). Six boards in each of four selected colors
(lemon yellow, white, green, and blue) were placed in a field of oats in
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July. The following table (modified from Wilson and Shade, 1967) gives
data on the number of cereal leaf beetles trapped:

Board color Insects trapped
Lemon yellow 45 59 48 46 38 47
White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7

(a) Based on computer output, state your conclusions about the attrac-
tiveness of these colors to the beetles. See also Fig. 11.13a.
In MATLAB:

ntrap=[ 45, 59, 48, 46, 38, 47, 21, 12, 14, 17,...

13, 17, 37, 32, 15, 25, 39, 41, 16, 11,...

20, 21, 14, 7];

color={’ly’,’ly’,’ly’,’ly’,’ly’,’ly’,...

’wh’,’wh’,’wh’,’wh’,’wh’,’wh’,...

’gr’,’gr’,’gr’,’gr’,’gr’,’gr’,...

’bl’,’bl’,’bl’,’bl’,’bl’,’bl’};

[p, table, stats] = anova1(ntrap, color)

multcompare(stats)

%

%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

%’Groups’ [4.2185e+003] [ 3] [1.4062e+003] [30.5519] [1.1510e-007]

%’Error’ [ 920.5000] [20] [ 46.0250] [] []

%’Total’ [5.1390e+003] [23] [] [] []

%

%Pairwise Comparisons

% 1.0000 2.0000 20.5370 31.5000 42.4630

% 1.0000 3.0000 4.7037 15.6667 26.6297

% 1.0000 4.0000 21.3703 32.3333 43.2963

% 2.0000 3.0000 -26.7963 -15.8333 -4.8703

% 2.0000 4.0000 -10.1297 0.8333 11.7963

% 3.0000 4.0000 5.7037 16.6667 27.6297

(b) The null hypothesis is rejected. Which means differ? See Fig. 11.13b.
(c) Perform an ANOM analysis. Which means are different from the
(overall) grand mean?

11.20. Raynaud’s Phenomenon. Raynaud’s phenomenon is a condition result-
ing in a discoloration of the fingers or toes after exposure to temper-
ature changes or emotional events. Skin discoloration is caused by an
abnormal spasm of the blood vessels, diminishing blood supply to the
local tissues. Kahan et al. (1987) investigated the efficacy of the calcium-
channel blocker nicardipine in the treatment of Raynaud’s phenomenon.
This efficacy was assessed in a prospective, double-blind, randomized,
crossover trial in 20 patients. Each patient received 20 mg nicardipine or
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Fig. 11.13 (a) Barplots of ntrap for the four treatments. (b) A snapshot of the interactive
plot for multiple comparisons.

placebo three times a day for 2 weeks and then was crossed over for
2 weeks. To suppress any carryover effect, there was a 1-week washout
period between the two treatments. The researchers were interested in
seeing if nicardipine significantly decreased the frequency and severity
of Raynaud’s phenomenon as compared with the placebo. To control for
the order of drug administration effect, 10 randomly selected subjects
received drug first, and the remaining 10 placebo first. The data consist
of a number of attacks in 2 weeks.

Period 1 Period 2 Period 1 Period 2
Subject Nicardipine Placebo Subject Placebo Nicardipine

1 16 12 11 18 12
2 26 19 12 12 4
3 8 20 13 46 37
4 37 44 14 51 58
5 9 25 15 28 2
6 41 36 16 29 18
7 52 36 17 51 44
8 10 11 18 46 14
9 11 20 19 18 30

10 30 27 20 44 4

Download the MATLAB format of these data ( raynaud.m) and perform
an ANOVA test in MATLAB. Select an additive model, with the number
of attacks yijk represented as

yijk = µ + αi + β j + γk(j) + ǫijk.
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Here µ is the grand mean, αi, i = 1, . . . ,20 is the drug effect, β j, j = 1,2 is
the order effect, γk(j), k = 1, . . . ,10 is the effect of subject nested in order
j, and ǫijk is the zero-mean normal random error.
Note that subjects are nested in order treatments, that is a subject cannot
receive both drug and placebo first. We are interested in testing the null
hypothesis about the drugs,

H0 : α1 = α2 = 0,

as well as the effect of the order,

H′0 : β1 = β2 = 0.

The remaining hypothesis H′′0 : γk(j) = 0, k = 1, . . . ,10, j = 1,2, is lateral
for this study.

(a) Conduct a nested ANOVA analysis using MATLAB’s anovan with op-
tion ’nested’. Test hypotheses H0 and H′0. Describe your findings.
(b) What proportion of variability in the data yijk is explained by the
ANOVA model given above?

11.21. Leptograpsus Crabs. Venables and Ripley (2002) analyzed the data from
Campbell and Mahon (1974) on the morphology of rock crabs Leptograp-
sus variegatus collected at Fremantle, W. Australia (32◦S,117◦E). Camp-
bell and Mahon wanted to show that Leptograpsus variegatus ver. Caeruleus
(blue form) and Leptograpsus variegatus ver. Aurantius (orange form) are
in fact two distinct species based on the comparison of several morpho-
logic measurements on the carapace.
The data on 50 specimens of each sex of each of two color forms were
collected by Campbell and Mahon. File crabs.mat is MATLAB’s data
structure consisting of the following fields:

crabs.sp Species, coded B (blue) or O (orange)
crabs.sex Coded as M or F
crabs.FL Frontal lip of carapace (mm)
crabs.RW Rear width of carapace (mm)
crabs.CL Length along the midline (mm)
crabs.CW Maximum width of carapace (mm)
crabs.BD Body depth (mm)
crabs.score First principal component scores

from FL, RW, CL, CW, and BD.

(a) Using a two-way ANOVA with factors sp and sex and response score,
explore whether the interaction between the factors is significant. Report
the p-value. Use MATLAB’s function anovan.
(b) If the interaction is found significant, do one-way ANOVAs sepa-
rately for male and female crabs. Split the data accordingly and provide
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two ANOVA tables, one for each sex. What are the p-values associated
with sp factor?

11.22. Simvastatin. In a Quantitative Physiology Lab at Georgia Tech, students
were asked to find a therapeutic model to test on MC3T3-E1 cell line to
enhance osteoblastic growth. The students found a drug called Simvas-
tatin, a cholesterol lowering drug to test on these cells. Using a control
and three different concentrations 10−9M, 10−8M, and 10−7M, cells were
treated with the drug. These cells were plated on four 24-well plates
with each well plate having a different treatment. To test for osteoblastic
differentiation, a pNPP assay was used to test for alkaline phosphatase
activity. The higher the alkaline phosphatase activity, the better the cells
are differentiating and become more bone like. This assay was performed
6 times total within 11 days. Each time the assay was performed, four
wells from each plate were used. The data ( simvastatin.dat) are pro-
vided in the following table:

Time
Concentration Day 1 Day 3 Day 5 Day 7 Day 9 Day 11

0.062 0.055 0.055 1.028 0.607 0.067
A 0.517 0.054 0.059 1.067 0.104 0.093

(Control) 0.261 0.056 0.062 1.128 0.163 0.165
0.154 0.063 0.062 0.855 0.109 0.076
0.071 0.055 0.067 0.075 0.068 0.347

B 0.472 0.060 1.234 0.076 0.143 0.106
(10−7M) 0.903 0.057 1.086 0.090 0.108 0.170

0.565 0.056 0.188 1.209 0.075 0.097
0.068 0.059 0.092 0.091 0.098 0.115

C 0.474 0.070 0.096 0.218 0.122 0.085
(10−8M) 0.063 0.090 0.123 0.618 0.837 0.076

0.059 0.064 0.091 0.093 0.142 0.085
0.066 0.447 0.086 0.248 0.108 0.290

D 0.670 0.091 0.076 0.094 0.105 0.090
(10−9M) 0.076 0.079 0.082 0.215 0.093 0.518

0.080 0.071 0.080 0.401 0.580 0.071

In this design there are two crossed factors: concentration and time.
(a) Using a two-way ANOVA, show that the interaction between factors
time and concentration is significant.
(b) Since the presence of a significant interaction affects the tests for main
effects, conduct a conditional test for the concentration factor if time is
fixed at day 3. Also, conduct the conditional test for time factor if the
concentration level is C.

11.23. Differences in Differences. Bolton (1984) provides data on 6 patients
in a clinical trial involving two drugs and a placebo. In a randomized
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order the drugs are administered to all 6 patients, allowing for washout
period between the administrations. For each treatment and each patient,
pre-drug and post-drug measurements have been taken and are shown
below:

Placebo Drug 1 Drug 2
Patient Pre Post Pre Post Pre Post

1 180 176 170 161 172 165
2 140 142 143 140 140 141
3 175 174 180 176 182 175
4 120 128 115 120 122 122
5 165 165 176 170 171 166
6 190 183 200 195 192 185

This table (without the Patient column) is given in the file bolton.dat|mat.
It is of interest to compare the effectiveness of the treatments.
(a) Compare the treatments using only Post values.
(b) Test the effectiveness of the treatments by comparing the changes
from the baseline, Post minus Pre. If significant, which treatments differ?

11.24. Skull variations in Canis lupus L. Data set wolves.dat|mat provides
skull morphometric measurements on wolves (Canis lupus L.) coming
from two geographic locations: Rocky Mountains (rm) and the Arctic
(ar). The original source of data is Jolicoeur (1959), but subsequently
many authors used this data to illustrate various multivariate statistical
procedures.
The goal of Jolicoeur’s study was to determine how the location and
gender affect the skull shape among the wolf populations. There were 9
response variables:

Variable Measure
y1 Palatal length
y2 Postpalatal length
y3 Zygomatic width
y4 Palatal width outside the first upper molars
y5 Palatal width inside the second upper molars
y6 Width between the postglenoid foramina
y7 Interorbital width
y8 Least width of the braincase
y9 Crown length of the first upper molar

These 9-dimensional measurements can be assigned to one of the four
groups determined by a combination of location and gender: rmm, rmf,

arm, and arf.

(a) Using ANOVA, test the equality of the group means for the response
y1.
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(b) Find principal component scores for this data and plot the first prin-
cipal component against the second. Represent the measurements from
different groups by different markers/colors. Using ANOVA, test the
equality of the group population means for the first principal compo-
nent. Compare the means using the multcompare procedure.

11.25. Isoflavones and ALP Activity. A team of bioengineering students
wanted to see the effect of Daidzein and Genistein, two isoflavones from
soybeans, and time period cultured has on the Alkaline Phosphatase
Activity (ALP) of osteoblastic cells. An increase in ALP activity would
indicate these immature bone cells are differentiating and moving to-
wards matrix maturation. The team cultures 3 identical well plates with
wells of control, cells with Daidzein treatment, and cells with Genistein
treatment in each. The ALP was measured on day 2 for well plate 1, day
6 for well plate 2, and day 10 for well plate 3. Data, in a data-structure
format, is provided in isoflavon.mat (Courtesy of Michelle Rost). The
variables are

isoflavon.absorbance isoflavon.drug isoflavon.day isoflavon.ALP

The Absorbance reading was used to calculate ALP activity. Drug was
coded as 1 for Control, 2 for Daidzein, and 3 for Genistein. ALP Activity
was multiplied by a factor of 106.
(a) Was there a significant interaction between drug treatment and the
time?
(b) Did the drug treatment or the time have an effect on the ALP activity?
If so, which drug treatment group or time period had an inhibitory or
stimulatory effect?
(c) Analyze the residuals of this model. Do they appear normal?
(d) Using WinBUGS, analyze the problem assuming STZ constraints in
ANOVA model.
(d) Repeat the analysis in (a-c) using the logarithm of ALP activity as a
response.

11.26. Master of Light. Albert Michelson devised a clever way to increase
precision of measuring the speed of light (Michelson, 1927) by rotat-
ing mirrors. In his experiment the light was sent from Mount Wil-
son, reflected back from Mount San Antonio, and the time of flight
was recorded. Back-engineered, when the speed of light is assumed
known, crude calculations for an octagonal rotating mirror look as fol-
lows: The round trip distance between Mount Wilson and Mount San
Antonio is d = 70,800 m. Dividing d by speed of light c = 2.997× 1010

m/s results in time of flight t = 2.36 × 10−4 s. When an octagonal
mirror rotates at 529 rev/s, the time between successive surfaces is
(1/529)/8 = 2.36× 10−4, the same as t. Thus, the return image of light
should fall in the same place. Michelson was able to control the mirror
rotation rate and align perfectly the locations of sent and received lights.
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A diagram of his equipment and data can be found in Michelson (1927,
p.4, http://adsabs.harvard.edu/full/1927ApJ....65....1M). The data
in the table below represent the two last digits in his measurements
and can be thought of as observations between 0 and 99. Data set

michelson.dat contains the data in MATLAB format.

Type of rotating mirror
Material/Sides Glass/8 Glass/12 Glass/16 Steel/12 Steel/8

47 47 42 18 3 39 66 21 18 9 30 21
38 62 36 45 27 66 27 33 12 30 33 18
29 59 33 30 48 15 9 24 30 27 12 33
92 44 0 27 3 7 6 39 30 39 24 23
41 47 18 27 27 27 42 18 18 27 57 39
44 41 57 66 42 37 12 63 48 24 44 33

48 24 69 24 30 27 18 30 24
15 63 15 42 42 24 30

60

(a) Test whether the means of measurements for different types of mir-
rors are statistically the same.
(b) Which treatment level(s) is(are) different. Find 95% confidence inter-
vals for the differences of means, µi − µj, 1≤ i < j≤ 5.
(c) Consider now data for only four treatment levels Glass/8, Glass/12,
Steel/8, and Steel/12. Recode the data to conduct a two-way ANOVA
with factors Material (levels Glass and Steel) and Sides (levels 8 and
12). Pretend you are a data-analyst in Michelson’s lab. If Michelson was
interested whether the factors Material and Sides interact, how would
you advise him?

11.27. Multifactor Twisting Experiment. Johnson (2000) provides data on a
multifactor experiment studying the effects of ingot location (A), slab
position (B), specimen preparation (C), and twisting temperature (D) on
the number of turns required to break the steel specimen by twisting (y).
For each of the 3× 2× 2× 3 = 36 experimental conditions two measure-
ments are recorded, so the total sample size is n = 72.
The data set twisting.dat contains 5 columns:

Column 1 Factor A at 3 levels: Top, Middle, Bottom coded by 1, 2, and 3
Column 2 Factor B at two levels coded by 1 and 2
Column 3 Factor C at two levels: Grind and Turn coded by 1 and 2
Column 4 Factor D at 3 levels: 2100◦F, 2200◦F, and 2300◦F coded by 1, 2, and 3
Column 5 Response y: Numbers of turns

(a) Using anovan, fit the model for y with second-order interactions.
(b) Discuss the ANOVA table. Which main effects are significant at 5%
level? Is any interaction significant?

http://adsabs.harvard.edu/full/1927ApJ....65....1M
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(c) Show that with 2 observations per experimental condition (cell), the
power for the Cohen’s medium effect f 2 = 0.0625 in a 0.05-level testing
for factor A (3 levels) is only 43.79%. What number of observations per
cell is required to achieve the power of at least 85%?
Hint: Show first that with n observations per cell for the model with
second-order interactions only, the error degrees of freedom (dfe) is
36n − 20. In general, if in a 4-way balanced ANOVA with n observa-
tions per cell where factors A-D have a-d levels, the total sample size is
N = abcdn and the dfe is equal to dftotal − dfa − dfb − dfc − dfd −
dfab − dfac − dfad − dfbc − dfbd − dfcd. The dftotal is N− 1, main ef-
fect A has dfa = a− 1 degrees of freedom, and second-order interaction
A*B has dfab = (a− 1)(b− 1) degrees of freedom. Degrees of freedom
for other main effects and interactions are calculated similarly.
Following Example 11.9, the power for n observations per cell is
1-ncfcdf( finv(1-0.05,3-1,36*n- 20),3-1,36*n-20, 36*n*0.0625).

11.28. The Honeybee Hierarchical. In the context of Exercise 11.11 we are in-
terested in the decrease of syrup concentration when the two different
concentrations of 60% and 64% are explored. Under each concentration
3 batches of syrup are made. The batches are nested within each concen-
tration and considered as random.

Concentration 60% Concentration 64%
Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3

–1.62 –0.94 –2.13 –0.41 –1.35 –1.72
–0.29 –1.04 –1.65 –0.46 –1.20 –2.77
–0.62 –1.21 –3.18 –1.71 –3.50 –2.22
–0.67 –1.04 –1.73 –0.86 –2.05 –1.45
–0.47 –0.89 –2.23 –1.33 –1.38 –1.27
–0.77 –0.99 –1.88 –1.06 –3.12 –0.85
–0.67 –0.39 –1.73 –1.29 –2.05 –2.02
–1.72 –0.59 –2.58 –1.33 –1.00 –3.42
–0.67 –0.89 –1.28 –0.96 –3.12 –1.42
–1.07 –1.24 –2.08 –4.26 –2.68 –1.89

Show that when basic ANOVA (in this case two-sample t-test) is ap-
plied, the concentrations show significant differences. When the nested
ANOVA is conducted, the concentrations are no longer significantly dif-
ferent. Provide an explanation.

11.29. Antitobacco Media Campaigns. Since the early 1990s, the US popu-
lation has been exposed to a growing number and variety of televised
antitobacco advertisements. By 2002, 35 states had launched antitobacco
media campaigns.
Four states (factor A) participated in an antitobacco awareness study.
Each state independently devised an antitobacco program. Three cities
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(factor B) within each state were selected for participation, and 10 house-
holds within each city were randomly selected to evaluate effectiveness
of the program. All members of the selected households were inter-
viewed, and a composite index was formed for each household mea-
suring the extent of antitobacco awareness. The data are given in the
table (the larger the index, the greater the awareness):

State i 1 2 3 4
City j 1 2 3 1 2 3 1 2 3 1 2 3

1 42 26 33 48 56 44 23 47 48 70 56 35
2 56 38 51 54 65 34 31 39 40 61 49 30
3 35 42 43 48 71 39 34 45 43 57 58 41
4 40 29 49 57 66 40 28 51 48 69 55 52

Household k 5 54 44 42 51 64 51 30 38 51 71 47 39
6 49 43 39 51 51 47 36 47 57 49 50 44
7 51 45 41 56 60 34 41 39 40 61 49 30
8 48 39 47 50 72 41 35 44 41 57 61 40
9 52 30 45 50 60 42 28 44 49 69 54 52
10 54 40 51 49 63 49 33 46 49 67 52 45

(a) Discuss and propose the analyzing methodology.
(b) Assume that a nested design with fixed factor effects is appropriate.
Provide the ANOVA table.
(c) Test whether or not the mean awareness differ for the four states. Use
α = 0.05. State the alternatives and draw a conclusion.

11.30. Orthosis. The data Ortho.dat were acquired and computed by Dr.
David Amarantini and Dr. Martin Luc (Laboratoire Sport et Performance
Motrice, Grenoble University, France). The purpose of recording such
data was an interest to better understand the processes underlying move-
ment generation under various levels of an externally applied moment
to the knee. In this experiment, stepping-in-place was a relevant task
to investigate how muscle redundancy could be appropriately used to
cope with an external perturbation while complying with the mechan-
ical requirements related to balance control and/or minimum energy
expenditure. For this purpose, 7 young male volunteers wore a spring-
loaded orthosis of adjustable stiffness under 4 experimental conditions:
a control condition (without orthosis), an orthosis condition (with the
orthosis only), and two conditions (Spring1, Spring2) in which stepping
in place was perturbed by fitting a spring-loaded orthosis onto the right
knee joint.
For each stepping-in-place replication, the resultant moment was com-
puted at 256 time points equally spaced and scaled so that a time inter-
val corresponds to an individual gait cycle. A typical moment observa-
tion is therefore a one-dimensional function of normalized time t so that
t ∈ [0,1]. The data set consists in 280 separate runs and involves j = 7
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subjects over i = 4 described experimental conditions, replicated k = 10
times for each subject. Moment plots over gait cycles are shown in Fig-
ure 11.14. Model the data as arising from a fixed-effects FANOVA model
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Fig. 11.14 Orthosis data set: The panels in rows correspond to Treatments while the pan-
els in columns correspond to Subjects; there are 10 repeated measurements in each panel.

with 2 qualitative factors (Subjects and Treatments), 1 quantitative factor
(Time) and 10 replications for each level combination.
�

If the functional ANOVA model is Eyijk(t) = µ(t) + αi(t) + β j(t), find
and plot functional estimators for the grand mean µ(t) and treatment
effects α1(t)− α4(t).

11.31. Bone Screws. Bone screws are the most commonly used type of or-
thopedic implant. Their precision is critical and several dimensions are
rigorously checked for conformity (outside and root diameters, pitch,
tread angle, etc.). The screws are produced in lots of 20,000. To confirm
the homogeneity of production, 6 lots were selected and from each lot
a sample of size 100 was obtained. The following numbers of noncon-
forming screws are found in the six samples: 20, 17, 23, 9, 15, and 14.
(a) Test the hypothesis of homogeneity of proportions of nonconforming
screws in the six lots.
(b) If the null hypothesis in (a) is rejected, find which lots differ. Assume
α = 0.05.

11.32. R&R Study. Five parts are measured by two appraisers using the same
measuring instrument. Each appraiser measured each part three times.
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Find the relevant parameters of the measuring system and assess its
capability (PRR and NDC).

measure =[ ...

217 220 217 214 216 ...

216 216 216 212 219 ...

216 218 216 212 220 ...

216 216 215 212 220 ...

219 216 215 212 220 ...

220 220 216 212 220]’;

part = [ ...

1 2 3 4 5 1 2 3 4 5 ...

1 2 3 4 5 1 2 3 4 5 ...

1 2 3 4 5 1 2 3 4 5]’;

appraiser =[...

1 1 1 1 1 ...

1 1 1 1 1 ...

1 1 1 1 1 ...

2 2 2 2 2 ...

2 2 2 2 2 ...

2 2 2 2 2]’;

11.33. Additive R&R ANOVA for Measuring Impedance. Repeat the analysis
in Example 11.17 by assuming that parts and operators do not interact,
that is, with an additive ANOVA model. Provide comparisons with re-
sults from gagerr, where the option (’model’,’linear’) is used.

11.34. Round and Wrinkled Peas. Mendelian advocate Bateson (1913) pro-
vides table describing result of Mendel’s peas experiment. The counts of
round and wrinkled peas are provided for 10 plants.

Plant # Round # Wrinkled # Total Plant # Round # Wrinkled # Total
1 45 12 57 6 26 6 32
2 27 8 35 7 88 24 112
3 24 7 31 8 22 10 32
4 19 10 29 9 28 6 34
5 32 11 43 10 25 7 32

(a) Test the hypothesis that the sample of 10 plants has homogeneous
proportions, H0 : p1 = p2 = · · · = p10. Report the p-value and discuss.
(b) The plants are F2 generation with expected frequency of round peas
equal to 3/4. How would you change the statistic in (a) to test H0 : p1 =
p2 = · · · = p10 = 3/4?
Hint: When p is replaced by 3/4, the χ2 statistic will have k degrees of
freedom instead of k− 1. Why?

11.35. Aberrant Crypt Foci. Aberrant crypt foci (ACF) are abnormal collections
of tube-like structures that are precursors to tumors (McLellan et al.,
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1991). Researchers exposed 22 rats to a carcinogen and then counted the
number of ACFs in the rat colons. There were three treatment groups
based on time since first exposure to the carcinogen, as 6, 12, or 18 weeks.

ACFweek6 = [1 3 5 1 2 1 1]

ACFweek12 = [3 1 2 6 0 0 4 1]

ACFweek18 = [10 6 6 7 5 7 6]

Assume a Poisson model for the number of ACFs, where the intensity
parameters λ6, λ12, and λ18 correspond to counts after 6, 12, and 18
weeks, respectively.
Test the hypothesis H0 : λ6 = λ12 = λ18. Use α = 0.05.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch11.Anova/

anomct.m, anovarep.m, Barspher.m, C677T.m, cardiac.m, chrysanthemum.m,

circularity.m, coagulationtimes.m, cochcdf1.m, crabs.m, Cochtest.m,

dialysis.m, dorsalspines.m, dunn.m, epsGG.m, fanova.m, fibers.m, hair.m,

insects.m, insulin.m, maternalbehavior.m, Mauspher.m, Mausphercnst.m,

micePO2.m, nest1.m, nest2.m, nesta.m, nestAOV.m, nestedcomplex.m,

nestnylon.m, nicardipine.m, orthosis.m, orthosisraw.m, pedometer1300.m,

poissonmeans.m, powerANOVA.m, qtukey.m, RandR.m, RandR2.m, RandR3.m,

ratsblocking.m, raynaud.m, screws.m, secchim.m, simvastatin.m,

sphertest.m, ssizerepeated.m, tmcomptest.m, turnips.m, welchanovapower.m,

welchexample.m, welchsimul.m, wolves.m

anovacoagulation.odc, dialysis.odc, insulin.odc, isoflavon.odc,

simvastatin.odc, vortex.odc

arthritis.dat|mat, bees.mat, bolton.dat|mat, chairyoga.mat,

clouds.txt, cochlear.xlsx, crabs.dat|mat, michelson.dat, deaf.xls,

Ortho.dat, oxygen.dat, pmr1300.mat, porcinedata.xls, redclover.mat,

Proliferation.xls, secchi.mat|xls, secchi.xls, silicone.dat,

silicone1.dat, simvastatin.dat, twisting.dat|mat|xlsx, wolves.dat|mat

http://statbook.gatech.edu/Ch11.Anova/
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Chapter 12

Models for Tables

The object of this present paper is to deal with this novel conception of what I have termed
contingency, and to see its relation to our older notions of association and normal cor-
relation. The great value of the idea of contingency for economic, social, and biometric
statistics seems to me to lie in the fact that it frees us from the need of determining scales
before classifying our attributes.

– Karl Pearson

WHAT IS COVERED IN THIS CHAPTER

• Contingency Tables and Testing for Independence in Categorical
Data
• Measuring Association in Contingency Tables
• Three-Dimensional Tables
• Tables with Fixed Marginals: Fisher’s Exact Test
• Combining Contingency Tables: Mantel–Haenszel Theory
• Paired Tables: McNemar and Liddell Tests
• Risk Differences, Risk Ratios, and Odds Ratios for Paired Exper-

iments
• Stuart–Maxwell, Bowker, Garth, and Cochran’s Tests
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12.1 Introduction

The focus of this chapter is the analysis of tabular data. Although the
measurements could be numerical, the tables summarize only the counts
along the levels of two or more crossed factors according to which the
data are tabulated. In this text, we go beyond the traditional introductory
coverage and discuss topics such as three-dimensional tables, multiple ta-
bles (Mantel–Haenszel theory), paired tables (McNemar, Liddell, Stuart–
Maxwell, and Bowker tests), and risk theory (risk differences, risk ratios,
and odds ratios) for paired tables. The risk theory for 2× 2 tables was al-
ready discussed in Chapter 10 in the context of comparing two population
proportions.

The dominant statistical procedure in this chapter is testing for the in-
dependence of two cross-tabulated factors. In cases where the marginal
counts are fixed before the sampling, the test for independence becomes
the test for homogeneity of one factor across the levels of the other factor.
Although the concepts of homogeneity and independence are different, the
mechanics of the two tests are the same. Thus, sometimes it is important to
know how an experiment was conducted and whether the table marginal
counts were fixed prior to sampling.

The paired tables, like the paired t-test or repeated measure design,
are preferred to ordinary or parallel tables whenever pairing is feasible. In
paired tables, we would usually be interested in testing the agreement of
proportions. The pairing allows for control of confounding by other factors
and gives more precise estimators of variance of proportions and functions
of the proportions.

12.2 Contingency Tables: Testing for Independence

To formulate a test for the independence of two crossed factors, we need
to recall the definition of independence of two events and two random
variables. Two events R and C are independent if the probability of their
intersection is equal to the product of their individual probabilities,

P(R∩ C) = P(R) · P(C).

For random variables independence is defined using the independence of
events. For example, two random variables X and Y are independent if the
events {X ∈ Ix} and {Y ∈ Iy}, where Ix and Iy are arbitrary intervals, are
independent.

To motivate inference for tabulated data we also need a brief review
of two-dimensional discrete random variables, discussed in Chapter. 5. A
two-dimensional discrete random variable (X,Y), where X ∈ {x1, . . . , xr}
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and Y ∈ {y1, . . . ,yc}, is fully specified by its probability distribution, which
is given in the form of a table:

y1 y2 · · · yc Marginal

x1 p11 p12 p1c p1·
x2 p21 p22 p2c p2·

xr pr1 pr2 prc pr·
Marginal p·1 p·2 p·c 1

The two components X and Y in (X,Y) are independent if all cell probabil-
ities are equal to the product of the associated marginal probabilities, that
is, if pij = P(X = xi,Y = yj) = P(X = xi)P(Y = yj) = pi· × p·j for each i, j.
If there exists a cell (i, j) for which pij 6= pi· × p·j, then X and Y are depen-
dent. The marginal distributions for components X and Y are obtained by
taking the sums of probabilities in the table, row-wise and column-wise,

respectively:
X x1 x2 . . . xr

p p1· p2· . . . pr·
and

Y y1 y2 . . . yc

p p·1 p·2 . . . p·c
.

Example 12.1. Dependence of Components in 2D Random Variable. If
(X,Y) is defined by

X \ Y 10 20 30 40
−1 0.1 0.2 0 0.05
0 0.2 0 0.05 0.1
1 0.1 0.1 0.05 0.05

then the marginals are
X −1 0 1
p 0.35 0.35 0.3

and
Y 10 20 30 40
p 0.4 0.3 0.1 0.2

, and X and

Y are dependent since we found a cell, for example, (2,1), such that 0.2 =
P(X = 0,Y = 10) 6= P(X = 0) ·P(Y = 10) = 0.35 · 0.4= 0.14. As we indicated,
it is sufficient for one cell to violate the condition pij = pi·× p·j in order for
X and Y to be dependent.
�

Instead of random variables and cell probabilities that provide intuition,
we consider an empirical counterpart, a table of observed frequencies. The
table is defined by the levels of two factors: R and C. The levels are not nec-
essarily numerical but could be, and most often are, categorical, ordinal,
or interval. For example, when assessing the possible dependence between
gender (factor R) and personal income (factor C), the levels for R are cat-
egorical {male, female}, and for C are interval, say, {[0,30K), [30K,60K),
[60K,100K), ≥ 100K}. In the table below, factor R has r levels coded as
1, . . . ,r and factor C has c levels coded as 1, . . . , c. A cell (i, j) is an intersec-
tion of the ith row and the jth column and contains nij observations. The
sum of the ith row is denoted by ni· while the sum of the jth column is
denoted by n·j.
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1 2 · · · c Total
1 n11 n12 n1c n1·
2 n21 n22 n2c n2·

r nr1 nr2 nrc nr·
Total n·1 n·2 n·c n··

Denote the total number of observations n·· = ∑
r
i=1 ni· = ∑

c
j=1 n·j simply

by n. The empirical probability of the cell (i, j) is
nij

n , and the empirical
marginal probabilities of levels i and j are ni·

n and
n·j
n , respectively.

When factors R and C are independent, the frequency in the cell (i, j) is
expected to be n · pi· · p·j. This can be estimated by empirical frequencies

eij = n × ni·
n
× n·j

n
,

that is, as the product of the total number of observations n and the corre-
sponding empirical marginal probabilities. After simplification, the empir-
ical frequency in the cell (i, j) for independent factors A and B is

eij =
ni· × n·j

n
.

By construction, the table containing “independence” frequencies eij

would have the same row and column totals as the table containing ob-
served frequencies nij, that is,

1 2 · · · c Total
1 e11 e12 e1c n1·
2 e21 e22 e2c n2·

r er1 er2 erc nr·
Total n·1 n·2 n·c n··

To measure the deviation from independence of the factors, we com-
pare nij and eij over all cells. There are several measures for discrepancy
between observed and expected frequencies, the two most important being
Pearson’s χ2,

χ2 =
r

∑
i=1

c

∑
j=1

(nij − eij)
2

eij
, (12.1)
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and the likelihood ratio statistic G2,

G2 = 2
r

∑
i=1

c

∑
j=1

nij log

(
nij

eij

)
.

Both statistics χ2 and G2 are approximately distributed as chi-square with
(r− 1)× (c− 1) degrees of freedom, and their large values are critical for
H0. The approximation is good when cell frequencies are not small. In-
formal requirements are that no empty cells should be present and that
observed counts should not be less than 5 for at least 80% of the cells. We
focus on χ2 since the inference using statistic G2 is similar.

Thus, for testing H0: Factors R and C are independent, versus H1: Fac-
tors R and C are dependent, the test statistic is χ2 given in (12.1) and the
test is summarized as

Null Alternative α-level rejection region p-value (MATLAB)
H0: R,C ind. H1: R,C dep. [χ2

d f ,1−α,∞) 1-chi2cdf(chi2, df)

where d f = (r− 1) · (c− 1).
When some cells have expected frequencies < 5, the Yates correction for

continuity is sometimes used, in which case the statistic χ2 gets the form

χ2 =
r

∑
i=1

c

∑
j=1

(|nij − eij| − 0.5)2

eij
.

Although recommended by some practitioners, this correction is controver-
sial. It was originally proposed by Yates (1934) to bring closer tail probabil-
ities of this statistics to the hypergeometric tails for contingency tables with
fixed marginals (discussed in Section 12.4).

We denoted by pij the population counterpart to p̂ij = nij/n and by pi·
and p·j the population counterparts of p̂i· = ni·/n and p̂·j = n·j/n. In terms
of p’s, the independence hypothesis takes the form

H0 : pij = pi· × p·j for all i, j versus H1 : pij 6= pi· × p·j for at least one i, j.

The following MATLAB program, tablerxc.m, calculates expected fre-
quencies, the value of the χ2 statistic, and the associated p-value.

function [chi2, pvalue, exp, assoc] = tablerxc(obs)
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% Contingency Table r x c for testing the probabilities

%

% Input:

% obs - r x c matrix of observations.

%

% Output:

% chi2 - statistic (approx distributed as chi-square

% with (r-1)(c-1) degrees of freedom)

% pvalue - p - value

% exp - matrix of expected frequencies

% asoc - structure containing association measures: phi,

% C, and Cramer’s V

% Example of use:

% [chi2,pvalue,exp,assoc]=tablerxc([6 14 17 9; 30 32 17 3])

%-------------------------------------------------------

[r c]=size(obs); %size of matrix

n = sum(sum(obs)); %total s. size

columns = sum(obs); %col sums 1 x c

rows = sum(obs’)’; %row sums r x 1

exp = rows * columns ./ n; %[r x c] matrix

chi2 = sum(sum((exp - obs).^2./exp ));

df=(r-1)*(c-1);

pvalue = 1- chi2cdf(chi2, df);

% measures of association

if (df == 1)

assoc.phi = sqrt(chi2/n);

end

assoc.C = sqrt(chi2/(n + chi2));

assoc.V = sqrt(chi2/(n * (min(r,c)-1)));

Example 12.2. PAS and Streptomycin Cures for Pulmonary Tuberculo-
sis. Data released by the British Medical Research Council in 1950 (an-
alyzed also in Armitage and Berry, 1994) concern the efficiency of para-
amino-salicylic acid (PAS), streptomycin, and their combination in the treat-
ment of pulmonary tuberculosis. Outcomes of sputum culture test per-
formed on patients after the treatment are categorized as “Positive smear,”
“Negative smear and positive culture,” and “Negative smear and negative
culture.”

The table below summarizes the findings on 273 treated patients with a
TB diagnosis.

Smear (+) Smear (–) Smear (–) Total
culture (+) culture (–)

PAS 56 30 13 99
Streptomycin 46 18 20 84
PAS and streptomycin 37 18 35 90

Total 139 66 68 273

There are two factors here: cure and sputum results. We will test the
hypothesis of their independence at the level α = 0.05.
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D =[ ...

56 30 13 ; %99

46 18 20 ; %84

37 18 35 ]; %90

% 139 66 68 273

[chi2,pvalue,exp] = tablerxc(D)

% chi2 = 17.6284

% pvalue = 0.0015

% exp =

% 50.4066 23.9341 24.6593

% 42.7692 20.3077 20.9231

% 45.8242 21.7582 22.4176

The p-value is 0.0015, which is significant. For α = 0.05, the rejection
region of the test comprises values larger than chi2inv(1-0.05, (3-1)*(3-1)),
which is the interval [9.4877,∞). Since 17.6284 > 9.4877, the hypothesis of
independence is rejected.
�

Remark. The χ2 statistic in (12.1) tests the hypothesis of independence if
the sampling needed to construct the table is unrestricted. More precisely,
only the total sample size n is preset in advance without any restriction
on the marginal counts. If either row sums or column sums are preset in
advance, the statistic in (12.1) tests for the homogeneity of one factor with
respect to the other. Examples of such designs are given in Exercises 12.16
and 12.19.

12.2.1 Measuring Association in Contingency Tables

In a contingency table, statistic χ2 tests the hypothesis of independence
and in some sense quantifies the association between the two factors. How-
ever, as a measure, χ2 is not normalized and depends on the sample size,
while its distribution depends on the number of rows and columns. There
are several measures that are calibrated to the interval [0,1] and measure
the strength of association in a way similar to R2 in a regression context.
We discuss three measures of association: the φ-coefficient, the contingency
coefficient C, and Cramér’s V coefficient.

φ-Coefficient. If a 2 × 2 contingency table classifying n elements

produces statistic χ2, then the φ-coefficient is defined as

φ =

√
χ2

n
.
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Contingency Coefficient C. If an r× c contingency table classifying
n elements produces statistic χ2, then the contingency coefficient C is
defined as

C =

√
χ2

χ2 + n
.

Cramér’s V Coefficient. If an r × c contingency table classifying n
elements produces statistic χ2, then Cramér’s V coefficient is defined
as

V =

√
χ2

n(k− 1)
,

where k is the smaller of r and c, k = min{r, c}. If the number of levels
for any factor is 2, then Cramér’s V becomes the φ-coefficient.

Example 12.3. Thromboembolism and Contraceptive Use. A data set, con-
sidered in more detail by Worchester (1971), contains a cross-classification
of 174 subjects with respect to the presence of thromboembolism and con-
traceptive use as a risk factor. For a refinement of this data set by an addi-
tional factor (Smoking status), see Exercise 12.23.

Contraceptive use No contraceptive use Total

Thromboembolism 26 32 58
Control 10 106 116

Total 36 138 174

Statistic χ2 is 30.8913 with a p-value of 2.7289 · 10−8, and the hypothesis
of independence of thromboembolism and contraceptive usage is strongly
rejected. For this table,

φ =

√
χ2

n
=

√
30.8913

174
= 0.4214,

C =

√
χ2

χ2 + n
=

√
30.8913

30.8913+ 174
= 0.3883.

For 2× 2 tables, φ and Cramér’s V coincide. The fourth component in the
output of tablerxc.m is a data structure with measures of association.
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[chi2, pvalue, exp, stat]=tablerxc([26,32; 10,106])

%chi2 = 30.8913

%pvalue = 2.7289e-008

%

%exp =

% 12 46

% 24 92

%

%stat =

% phi: 0.4214

% C: 0.3883

% V: 0.4214

�

12.2.2 Power Analysis for Contingency Tables

Power analysis for contingency tables involves evaluation of a noncentral
χ2 in which the noncentrality parameter λ depends on an appropriate effect
size.

The traditional effect size in this context is Cohen’s w, which is in fact
equivalent to the φ-coefficient, φ =

√
χ2/n, where n is the total table size.

Unlike the φ-coefficient that is used for 2 × 2 tables only, w is used for
arbitrary r× c tables and can exceed 1. In this case, w2 = (s− 1)V2, where
s = min{r, c} and V is Cramér’s V. Effects w = 0.1,0.3, and 0.5 correspond
to a small, medium, and large size, respectively.

For prospective analyses, the noncentrality parameter λ is nw2, and for
retrospective analyses, λ is the observed χ2. The power is

1− β = 1− ncχ2(χ2
k,1−α,k,λ),

where k = (r− 1)× (c− 1) is the number of degrees of freedom and χ2
k,1−α

is the (1− α)-quantile of a χ2
k distribution.

Example 12.4. Power and Sample Size for a 2× 6 Table.
(a) Find the power in a 2× 6 contingency table, for n = 180 and w = 0.3

(medium effect).

w = 0.3; n = 180; k = (2-1)*(6-1); alpha = 0.05; lambda=n*w^2

pow = 1-ncx2cdf( chi2inv(1-alpha,k), k, lambda) %0.8945

(b) What sample size ensures the power of 95% in a contingency table
2× 6, for an effect of w = 0.3 and α = 0.05?

beta = 0.05; alpha = 0.05; k = (2-1)*(6-1); w=0.3;

pf = @(n) ncx2cdf( chi2inv(1-alpha,k), k, n*w^2) - beta;

ssize = fzero(pf, 200) %219.7793 approx 220
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�

What is the meaning of effect size w in the context of contingency ta-

bles? Let p
(0)
ij and p

(1)
ij be the (i, j)th cell probabilities under H0 and H1

respectively. Then,

w2 =
χ2

n
= ∑

i,j

(
p
(1)
ij − p

(0)
ij

)2

p
(0)
ij

.

12.2.3 Cohen’s Kappa

Cohen’s kappa (Cohen, 1960) is a widely used descriptor of agreement be-
tween two testing procedures. This descriptor is motivated by calibrating
the observed agreement by an agreement due to chance. If pc is the pro-
portion of agreement due to chance and po the proportion of observed
agreement, then

κ̂ =
po − pc

1− pc
. (12.2)

For a paired table representing the results of n tests by two devices or
ratings by two raters

+ −
+ a b a + b
− c d c + d

a + c b + d n = a + b + c + d

Cohen’s kappa index is defined as

κ̂ =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
. (12.3)

The expression in Eq. (12.2) is equivalent to that in Eq. (12.3) for po =
a/n + d/n and pc = (a + b)(a + c)/n2 + (b+ d)(c+ d)/n2, respectively. The
former is the observed agreement equal to the proportion of (+,+) and (–,–)
outcomes, while the latter is the proportion of agreement when the results
are independent within fixed marginal proportions, that is, an agreement
due to chance.

There are no formal rules for judging κ̂, but here is the standard:
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κ̂ Degree of agreement
<0.20 Poor
0.20–0.40 Fair
0.40–0.60 Moderate
0.60–0.80 Good
≥ 0.8 Very good

The MLE of κ is

κ̂mle =
4(ad− bc)− (b− c)2

(2a + b + c)(2d + b + c)
,

and it is obtained from (12.2) by taking po = a/n+ d/n and pc = P2 + (P′)2,
where P = (2a + b + c)/(2n) and P′ = (2d + b + c)/(2n) are, respectively,
the MLEs of the prevalence of + and – in the population.

There are several approximations for the variance of κ̂. Two standard
estimators are the Block–Kraemer (BK) and Garner (G) approximations:

(1) (BK):

Var κ̂ ≈ 1− κ̂

n

(
(1− κ̂)(1− 2κ̂) +

κ̂(2− κ̂)

2P(1− P′)

)
;

(2) (G)

Var κ̂ ≈ 4

(1− pc)2n2
(

1
a+1 +

1
b+1 +

1
c+1 +

1
d+1

) .

The sampling distribution of κ̂ is asymptotically normal, and the ap-
proximation is satisfactory if n is not too small (e.g., n > 30) and κ is not
too close to 1. This leads, in a standard manner, to approximate confidence
intervals for κ, as

κ̂ ± z1−α/2
√

Var κ̂.

Example 12.5. Two Sensors. A company producing medical sensor A is
applying for FDA approval of a new version B. Both sensors A and B are
prone to errors, and a gold standard is absent. The FDA is requesting that
the new sensor be comparable to the currently used one, and the company
decides to include Cohen’s κ̂ statistic in the report.

The experiment consisted of 2,803 trials and resulted in a paired table
[97 11; 6 2689], where 97 was the number of (+, +) outcomes and 2,689 the
number of (–, –) outcomes. The code cohen.m finds Cohen’s κ̂ and 95%
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confidence intervals for the population κ, based on the two estimators of
variance, Block-Kraemer and Garner.

data =[97 11; 6 2689]

%data =

% 97 11

% 6 2689

a=data(1,1); b=data(1,2); c=data(2,1); d=data(2,2);

apb = a+b; cpd = c+d; apc = a+c; bpd = b+d;

n = a + b + c + d;

%------------

p0 = (a + d)/n; %Observed agreement

pc = (apb*apc + cpd*bpd)/n^2; %Chance agreement

Pre = (2*a + b + c)/(2 * n); %Prevalence of +

pcc = Pre^2 + (1-Pre)^2; %MLE of chance agreement

%------------

kappa = 2 * (a * d - b * c)/(apb*bpd + apc*cpd) %0.9163

%or kappa=(p0-pc)/(1-pc)

kappamle = (4 * (a*d - b*c) - (b -c)^2)/...

((2 * a + b + c) * (2 * d + b + c)) %0.9163

%or kappamle=(p0-pcc)/(1-pcc)

%------------

%Block-Kraemer variance estimator

varbk = (1- kappa)/n * ( (1- kappa)*(1-2* kappa) + ...

(kappa * (2 - kappa)/(2 * Pre * (1-Pre)))) %4.0731e-004

%Garner variance estimator

vargarner = 4/( (1- pc)^2 * n^2 * (1/(a+1) + 1/(b+1) + ...

1/(c+1) + 1/(d + 1) ) ) %4.0971e-004

%------------

%Confidence intervals

[ kappa - 1.96 * sqrt(varbk) ...

kappa + 1.96 * sqrt(varbk)] %0.8767 0.9558

[ kappa - 1.96 * sqrt(vargarner) ...

kappa + 1.96 * sqrt(vargarner)] %0.8766 0.9560

Cohen’s κ is estimated to be 91.63%, which represents very good agree-
ment.
�

12.3 Three-Way Tables

A natural extension of two-way tables for testing the independence of two
factors are n-dimensional tables for testing the independence of n factors.
We will discuss a three-dimensional extension; the interested reader can
consult Zar (2010), Agresti (2002), or Fienberg (2000) for more detailed cov-
erage. In three-dimensional tables the counts constitute three-dimensional
arrays characterized by rows, columns, and pages. We associate factors with
these three dimensions and consider row, column, and page factors (R, C,
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and P). In the cell (i, j,k) there are nijk observations, i = 1, . . . ,r, j = 1, . . . , c,
and k = 1, . . . , p.

Denote the total number of observations by n. The empirical probability
of the cell (i, j,k) is nijk/n, and the empirical marginal probabilities of row i,
column j, and page k are ni··/n, n·j·/n, and n··k/n. The numerators are
calculated as the sums over all indices replaced by dots. For example, n·j· =
∑

r
i=1 ∑

p
k=1 nijk, j = 1, . . . , c.

Complete Independence. We are interested in testing the hypothesis H0
that the factors R, C, and P are independent. The alternative H1 would be
that the factors are not independent. Under H0, the frequency in the cell
(i, j,k) is expected to be

eijk = n × ni··
n
× n·j·

n
× n··k

n
,

as the product of the total number of observations n and the correspond-
ing empirical marginal probabilities. After simplification, the expected fre-
quency in the cell (i, j,k) becomes

eijk =
ni·· × n·j· × n··k

n2 .

The number of free parameters is (r − 1) + (c − 1) + (p− 1). The test
statistic is

χ2 =
r

∑
i=1

c

∑
j=1

p

∑
k=1

(nijk − eijk)
2

eijk
, (12.4)

and the likelihood ratio statistic is

G2 = 2
r

∑
i=1

c

∑
j=1

p

∑
k=1

nijk log

(
nijk

eijk

)
.

When H0 is true, both statistics χ2 and G2 follow approximately a χ2-
distribution with rcp− 1− (r− 1)− (c− 1)− (p− 1) = rcp− r− c− p + 2
degrees of freedom. Large values of χ2 are critical for H0.

Joint Independence. If H0 is rejected, multiple alternatives are possible.
For example, all three factors R, C, and P are mutually dependent, fac-
tors R and C are dependent but both are independent of factor P, and
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so on. To answer why H0 was rejected, one needs to test the hypothesis
whether each single factor is independent of the other two. This kind of
independence is called joint independence. There are three such tests, and
they are summarized in the following table:

Factor eijk d f

R vs. (C, P)
ni··×n·jk

n (r− 1)(cp− 1)
C vs. (R, P)

n·j·×ni·k
n (c− 1)(rp− 1)

P vs. (R,C)
n··k×nij·

n (p− 1)(rc− 1)

Here nij· = ∑k nijk, n·jk = ∑i nijk, and ni·k = ∑j nijk. Also, as before, ni·· =
∑j ∑k nijk, n·j· = ∑i ∑k nijk, and n··k = ∑i ∑j nijk. The χ2 statistic is calculated
as in (12.4), and the degrees of freedom are given in the table. In particular,
suppose that we want to test independence of P versus (R,C). The χ2 from
(12.4) is calculated using

eijk = n× nij·
n
× n··k

n
.

The number of free parameters is (rc − 1) + (p − 1), which leads to
rcp − 1 − (rc − 1)(p− 1) =(p − 1)(rc − 1) degrees of freedom for the χ2

statistic in (12.4). Statistics and degrees of freedom for R versus C, P and C
versus R, P are calculated similarly.

Conditional Independence. A very important kind of independence in
three-way tables is conditional independence. Suppose that factors R and C
are related and that R and P are also related. We are interested in checking
the independence of factors C and P. Unconditionally the factors C and P
will be related via their joint relation to factor R, but when accounted for R,
the C and P may be independent. Such independence is called conditional
independence.

There are three such tests, and they are summarized in the following
table:

Factor eijk d f

R vs. C given P
ni·k×n·jk

n··k
p(r− 1)(c− 1)

R vs. P given C
nij·×n·jk

n·j·
c(r− 1)(p− 1)

C vs. P given R
nij·×ni·k

ni··
r(c− 1)(p− 1)

We will explain how to test conditional independence of C and P given R,
for other combinations the procedure is similar.

The the χ2 statistic in (12.4) is calculated using
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eijk =
n× (nij·/n)× (ni·k/n)

ni··/n
=

nij· × ni·k
ni··

.

The number of free parameters is (r− 1)+ r(c− 1)+ r(p− 1) which leads to
rcp− 1− (r− 1)− r(c− 1)− r(p− 1) = r(c− 1)(p− 1) degrees of freedom.

Example 12.6. Anolis Lizards of Bimini. This well-known data set comes
from the paper of Schoener (1968) and is also used in Fienberg (1970). The
researcher was interested in structural habitat categories for Anolis lizards
of Bimini: sagrei (brown anole) adult males versus distichus (trunk anole)
adult and subadult males. The brown anole and trunk anole are medium-
sized, fairly robust, “trunk-ground” lizards. They generally prefer the fairly
open vegetation of disturbed sites, where they adopt a head-down, sit-and-
wait posture and perch low on large trunks or fenceposts.

The researcher was interested in the preferences of these two species
with respect to the perch height and diameter.

A. sagrei A. distichus
Perch diameter Perch diameter
≤ 4 > 4 ≤ 4 > 4

Perch height > 4.75 32 11 61 41
(in feet) ≤ 4.75 86 35 73 70

The data is classified with respect to three dichotomous factors: Height
at levels Low (≤ 4.75) and High (> 4.75), Diameter at levels Small (≤ 4)
and Large (> 4), and Species with levels A. sagrei and A. distichus. Are these
three factors independent? The null hypothesis is that the factors are in-
dependent and the alternative is that they are not. The MATLAB program

tablerxcxp.m calculates the expected frequencies under mutual indepen-
dence hypothesis and provides the χ2 statistic, its degrees of freedom, and
the p-value. This program also outputs the expected frequencies in the for-
mat that matches the input data. Here, Height is the row factor R, Diameter
is the column factor C, and Species is the page factor P.

anolis = [32 11; 86 35];

anolis(:,:,2)=[61 41; 73 70];

[ch2 df pv exp]=tablerxcxp(anolis)

%ch2 = 23.9055

%df = 4

%pv =8.3434e-005

%exp(:,:,1) =

% 35.8233 22.3185

% 65.2231 40.6351

%exp(:,:,2) =
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% 53.5165 33.3417

% 97.4370 60.7048

The hypothesis H0 is rejected (p = 8.3434 · 10−5), and we infer that the
three factors are not independent. However, this analysis does not fully
explain the dependencies responsible for rejecting H0. Are all three fac-
tors dependent, or maybe two of the factors are mutually dependent and
the third is independent of both? When H0 is rejected, we need a par-
tial independence test, similar to pairwise comparisons in the case where
the ANOVA hypothesis is rejected. The MATLAB program for this test is

partialrxcxp.m.

[ch2 df pv exp]=partialrxcxp(anolis,’r_cp’)

%ch2 = 12.3028; df=3; pv = 0.0064, exp=...

[ch2 df pv exp]=partialrxcxp(anolis,’c_pr’)

%ch2 = 14.4498; df=3; pv = 0.0024, exp=...

[ch2 df pv exp]=partialrxcxp(anolis,’p_rc’)

%ch2 = 23.9792; df=3; pv =2.5231e-005, exp=...

Three tests are performed: (i) the row factor independent of column/page
factors (partial = ’r_cp’), (ii) the column factor independent of row/page
factors (partial = ’c_rp’), and (iii) the page factor independent of row/column
factors (partial = ’p_rc’). It is evident from the output that all three tests
produced significant χ2, that is, each factor depends on the two oth-
ers. Since Height was the row factor R, Diameter the column factor C,
and Species the page factor P, we conclude that the strongest depen-
dence is that of Species factor on the height and diameter of the perch,
partialrxcxp(anolis,’p_rc’), with a p-value of 0.000025.
�

12.4 Contingency Tables with Fixed Marginals: Fisher’s
Exact Test

In his monograph, Fisher (1935) provides an example of a small 2× 2 con-
tingency table related to a tea-tasting experiment. It is about a woman who
claimed to be able to judge whether tea or milk was poured in a cup first.
The woman was given eight cups of tea, in four of which tea was poured
first, and was told to guess which four had tea poured first. The contin-
gency table for this design is

Guess milk first Guess tea first Total
Milk first x 4− x 4
Tea first 4− x x 4

Column total 4 4 8
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The number of correct guesses “Milk first” in the cell (1,1), x, can take

values 0, 1, 2, 3, or 4 with the probabilities
(4

x)(
4

4−x)

(8
4)

, as in

hygepdf(0:4, 8,4,4)

% ans = 0.0143 0.2286 0.5143 0.2286 0.0143

These are hypergeometric probabilities, applicable here since the marginal
counts are fixed.

For x = 4 the probability of obtaining this table by chance is 0.0143,
while for x = 3 the probability of getting this or a more extreme table by
chance is 0.2286 + 0.0143 = 0.2429, and so on. Thus, the probability of the
woman’s guessing correctly, that is, if x = 4, would be less than 5%.

Suppose that in the table

Column 1 Column 2 Row total

Row 1 a b a + b
Row 2 c d c + d

Column total a + c b + d n = a + b + c + d

marginal counts a+ b, c+ d, a+ c, and b+ d are fixed. Then a, b, c, and d are
constrained by these marginals. We are interested if the probabilities that an
observation will be in column 1 are the same for rows 1 and 2. Denote these
probabilities as p1 and p2. The null hypothesis here is not the hypothesis of
independence but the hypothesis of homogeneity, H0 : p1 = p2. The test is
close to the two-sample problem considered in Chapter 10; however, in this
case the samples are dependent because of marginal constraints.

The statistic T to test H0 is simply the number of observations in the cell
(1,1):

T = a.

If H0 is true, then T has a hypergeometric distribution HG(n, a + b, a + c),
that is,

P(T = x) =

(
a + b

x

)
·
(

c + d

a + c− x

)

(
n

a + c

) =

(
a + c

x

)
·
(

b + d

a + b− x

)

(
n

a + b

) , (12.5)

for x = 0,1, . . . ,min{a + b, a + c}.
This is an easy consequence of the fact that if X ∼ Bin(a + b, p1) and

Y ∼ Bin(c + d, p2) are independent, then X given Y = a + c has hypergeo-
metricHG(n, a+ b, a+ c) distribution only if p1 = p2. Since the probabilities
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in HG(n, a + b, a + c) and HG(n, a + c, a + b) are identical, the probability
P(T = x) in (12.5) has two equivalent forms.

The p-value against the one-sided alternative H1 : p1 < p2 is hygecdf(a, n,

a+b, a+c) and against the alternative H1 : p1 > p2 is 1 - hygecdf(a-1, n, a+b,

a+c). If the hypothesis is two-sided, then the p-value cannot be obtained by
doubling one-sided p-value due to asymmetry of the hypergeometric dis-
tribution. The two-sided p-value is obtained as the sum of all probabilities
hygepdf(x, n, a+b, a+c), x = 0,1, . . . ,min{a + b, a + c} that are smaller than
or equal to hygepdf(a, n, a+b, a+c).

Example 12.7. Gender Balance. There are 22 subjects enrolled in a clinical
trial and 9 are females. Researchers plan to administer 11 portions of a drug
and 11 placebos. Only 2 females are administered the drug. Are the pro-
portions of males and females assigned to the drug significantly different?
What are the p-values for one- and two-sided alternatives?

fisherexact.m

a = 2; b = 7; c = 9; d =4;

n = a + b + c + d;

T = a;

pval = hygecdf(T,n,a+c,a+b) %H1: p1<p2 pval=0.0402

% or equivalently pval=hygecdf(T,n,a+b,a+c)

%

pa = hygepdf(T,n,a+c,a+b);

for i = 1:min(a+b, a+c)+1

p(i) = hygepdf(i-1,n,a+c,a+b) ;

end

pval2 = sum(p(p <= pa)) %H1: p1 ~= p2 pval2=0.0805

Since the one-sided p-value is less than 5%, we reject the hypothesis
of homogeneity of adminstration of a drug versus placebo with respect to
gender. For the two-sided alternative, we fail to reject H0.
�

Example 12.8. The Effect of Passive Smoking on Lung Cancer. Lawal
(2003) considers the following data originally published by Correa et al.
(1983) on the effect of passive smoking on lung cancer. A total of 155 non-
smoking ever-married females were tabulated by their lung cancer status
and husband’s smoking status.

Is the proportion of lung cancer cases homogeneous with respect to the
husband’s smoking status? Find the p-value for both one- and two-sided
alternatives.

Cancer status
Case Control Total

Spouse smoked 14 61 75
Spouse did not smoke 8 72 80

Total 22 133 155
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Here H0 : p1 = p2 and H1 : p1 > p2 or H1 : p1 6= p2.
a = 14; b = 61; c = 8; d =72;

n = a + b + c + d;

T = a;

%H1: p1 > p2

pval = 1-hygecdf(T-1,n,a+c,a+b) %0.0941

%H1: p1 ~= p2

pa = hygepdf(T,n,a+c,a+b);

for i = 1:min(a+b, a+c)+1

p(i) = hygepdf(i-1,n,a+c,a+b) ;

end

pval2 = sum(p(p <= pa)) %0.1669

Thus, Fisher’s exact test fails to reject the null hypothesis at 5% significance
level.
�

Fisher’s exact test remains valid for designs with random row totals,
random column totals, or tables with random marginals as in the previous
section. In this case the tests are conservative, and more powerful versions
exist. A benefit of using Fisher’s exact test is that it operates with small cell
frequencies; for example, a 0 count in a table cell is a possibility. Since χ2

or normal approximations assume large n and npijs preferably larger than
5, the reason for the popularity of Fisher’s exact test is obvious.

Extensions of Fisher’s exact test to tables of larger size are possible,
but the methodology is considerably more complex. Freeman and Hal-
ton (1951) extended the test to 2× 3 and 3× 3 tables. Implementations in
MATLAB can be found on MATLAB Central ( MyFisher33.m by Giuseppe
Cardillo, File #15482).

12.5 Stratified Tables: Mantel–Haenszel Test

In Section 10.7, 2 × 2 tables were discussed in the context of comparing
two proportions. In previous sections of this chapter we discussed inde-
pendence and marginal homogeneity for 2× 2 tables.

Here we discuss multiple 2× 2 tables and inference from combined in-
formation. The Mantel–Haenszel methodology can be used in 2× 2 tables
to control for a variable that stratifies the data. This stratification leads
to multiple tables, one for each level of controlled variable. The Mantel–
Haenszel methodology can be used for (i) testing the conditional indepen-
dence of two factors, (ii) measuring the degree of conditional association
(risk ratios), or (iii) conducting meta-analysis of the conditional odds ra-
tios. All conditioning is on the variable by which the tables are stratified.
There are several other uses of the Mantel–Haenszel methodology such as
in survival analysis (logrank test of Mantel, p. 818) and in depairing of
McNemar’s paired designs (p. 614).
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12.5.1 Testing Conditional Independence or Homogeneity

Suppose that k independent classifications into a 2× 2 table are observed.
We could denote the ith such table by

ai bi ai + bi

ci di ci + di

ai + ci bi + di ni

The tables give counts broken down by binary levels of two factors, and
the separate tables usually correspond to the levels of a third factor that
needs to be controlled. Imagine that we want to test for the independence of
two factors, say, political association (Democrat, Republican) and opinion
about some social issue (Support, Oppose). The single contingency table
may not be significant, but when controlled by gender (two tables, one
for males, the other for females) or by age group, the dependence may
turn out significant. Thus, multiple tables make inference more precise by
controlling for an influential variable.

For each of k tables consider a cell at the position (1,1), so-called pivot
cell, with ai counts. If the two tabulated factors are independent, then the
counts ai should be close to “expected” counts ei = (ai + bi)(ai + ci)/ni.

The test statistic measuring discrepancies in the pivot cell over all k
tables is

χ2 =
(|A− E| − 1/2)2

V
, where (12.6)

A =
k

∑
i=1

ai, E =
k

∑
i=1

ei, V =
k

∑
i=1

(ai + bi)(ci + di)(ai + ci)(bi + di)

n2
i (ni − 1)

,

which has an approximate χ2-distribution with 1 degree of freedom when
the hypothesis of independence/homogeneity is true. Large values of χ2

are critical for H0.
It is interesting that even for sparse individual tables the χ2-approximation

holds as long as the sum of row totals in all tables is larger than 20, say,
∑i(ai + bi), ∑i(ci + di) > 20.

As in contingency tables, if the marginal sums are fixed in advance,
the subsequent inference does not concern the independence; it concerns
the homogeneity of one factor within the levels of the other factor. The
following example tests for homogeneity of proportions of cancer inci-
dence among smokers and nonsmokers stratified by populations in dif-
ferent cities.
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Example 12.9. Smoking and Cancer in Three Chinese Cities. The three
2 × 2 tables provide classification of people from three Chinese cities,
Zhengzhou, Taiyuan, and Nanchang, with respect to smoking habits and
incidence of lung cancer (Liu, 1992).

Zhengzhou Taiyuan Nanchang
Cancer Diagnosis: Yes No Total Yes No Total Yes No Total
Smoker 182 156 338 60 99 159 104 89 193
Nonsmoker 72 98 170 11 43 54 21 36 57
Total 254 254 508 71 142 213 125 125 250

We can apply the Mantel–Haenszel test to decide if the proportions of
cancer incidence for smokers and nonsmokers coincide for the three cities:
H0 : p1i = p2i, where p1i is the proportion of incidence of cancer among
smokers in city i and p2i is the proportion of incidence of cancer among
nonsmokers in city i, i = 1,2,3. We use the two-sided alternative, H1 : p1i 6=
p2i, for some i ∈ {1,2,3} and fix the type I error rate at α = 0.10.

To compute χ2 in (12.6), we find A, E, and V. From the tables, A =
∑i ai = 182+ 60+ 104= 346. Also, E = ∑i ei = 338 · 254/508+ 159 · 71/213+
193 · 125/250 = 169 + 53 + 96.5 = 318.5.

V =
k

∑
i=1

(ai + bi)(ci + di)(ai + ci)(bi + di)

n2
i (ni − 1)

=
338 · 254 · 170 · 254

5082 · 507
+

159 · 71 · 54 · 142
2132 · 212

+
193 · 125 · 57 · 125

2502 · 249
= 28.33333+ 9 + 11.04518 = 48.37851.

Therefore,

χ2 =
(|346− 318.5| − 0.5)2

48.37851
= 15.0687.

Because the statistic χ2 is distributed approximately as χ2
1, the p-value (via

MATLAB m-file mantelhaenszel.m) is 0.0001.

[chi2, pval] = mantelhaenszel([182 156; 72 98; ...

60 99; 11 43; 104 89; 21 36])

%chi2 = 15.0687

%pval = 1.0367e-004

In this case, there is clear evidence that the cancer rates are not homoge-
neous among the three cities.
�

Example 12.10. Oral Contraceptive Use and Myocardial Infarction Risk. Shapiro
et al. (1979) investigated the effect of oral-contraceptive use on the risk
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of myocardial infarction. The possible link was investigated in 234 pre-
menopausal women with a first infarction and 1,742 hospital controls. Re-
sults are summarized in five two-by-two tables stratified by age groups:

Contraceptive 25–29 y.o. 30–34 y.o. 35–39 y.o. 40–44 y.o. 45–49 y.o.
use MI Contr MI Contr MI Contr MI Contr MI Contr
Yes 4 62 9 33 4 26 6 9 6 5
No 2 224 12 390 33 330 65 362 93 301

If age stratification is ignored, then a cumulative table is

Contraceptive All ages
use MI Contr
Yes 29 135
No 205 1607

We are interested in testing for the independence of the contraceptive use
and the incidence of MI.

If the significance level is set at 1%, the χ2 analysis of the cumulative
table fails to reject the hypothesis of independence.

[chi2, pval,~] = tablerxc([29 135; 205 1607])

% chi2 = 5.8443

% pval = 0.0156

By using the more appropriate Mantel–Haenszel test for the conditional
independence (conditional on age group), we find that departure from the
independence hypothesis is highly significant.

[chi2, pval] = mantelhaenszel([4 62; 2 224; 9 33; 12 390; ...

4 26; 33 330; 6 9; 65 362; 6 5; 93 301])

% chi2 = 32.7927

% pval = 1.0253e-08

This is an example of “perils of aggregation,” where highly dependent
factors, as indicated by Mantel–Haenszel test adequate here, may be not be
found significantly dependent if the aggregate table was used.
�

Remark. (i) Breslow–Day statistic for testing overall homogeneity in multi-
ple 2× 2 tables is

χ2
BD =

k

∑
i=1

ni(aidi − bici)
2

(ai + bi)(ci + di)(ai + ci)(bi + di)
,

which is distributed as χ2
k−1. Unlike the Mantel–Haenszel statistic that re-

mains valid for small counts in individual tables as long as cumulative
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counts are large, the Breslow–Day statistic requires large counts for each
table.

(ii) It is possible to extend the Mantel–Haenszel theory for r× c tables.
An overview and references can be found in Landis et al. (1998).

12.5.2 Odds Ratio from Stratified Tables

An overview of risk analysis for a 2× 2 table was provided in Section 10.7,
where we discussed risk difference, risk ratio, and odds ratio. Suppose that
in a particular study the participating subjects are stratified to k groups
according to some classifying feature/factor, and that each strata produces
an independent 2× 2 table. We are interested in combining the results from
the individual tables for the risk analysis of all subjects. The goal is to
eliminate confounding effect of the factor used for stratification.

In this section we discuss how to calculate the combined odds ratio. Let
the rows in the table corresponding to ith group represent Types 1 and 2
and the columns Presence/Absence of a particular attribute:

Presence Absence
Type 1 ai bi ai + bi

Type 2 ci di ci + di

ai + ci bi + di ni

For example, Types could be case and control subjects and Presence/Absence
could be related to a particular risk factor. The tables can be stratified ac-
cording to some other risk factor or demographic feature that we would
like to control, such as gender, age, smoking status, socioeconomic status,
etc.

Then the proportion of subjects with the attribute present for Type 1 is
ai/(ai + bi), and the proportion of subjects with the attribute present for
Type 2 is ci/(ci + di).

The observed odds ratio (for the types) in a single ith table is

ai/bi

ci/di
=

aidi

bici
.

The combined odds ratio for all k strata is defined as

omh =
∑i aidi/ni

∑i bici/ni
. (12.7)
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The expression omh was proposed in Mantel and Haenszel (1959) and rep-
resents the weighted average of individual odds ratios aidi

bici
with weights

proportional to bici/ni and summing up to 1.
An approximation to the sample variance of the log odds ratio omh

is given by the Robins, Breslow, and Greenland (RBG) variance formula
(Robins et al., 1986):

V̂ar (log(omh)) =
∑i RiPi

2R2 +
∑i PiSi + QiRi

2RS
+

∑i SiQi

2S2 ,

where Pi = (ai + di)/ni, Qi = (bi + ci)/ni, Ri = aidi/ni, Si = bici/ni, R =
∑i Ri, and S = ∑i Si. If k is equal to 1, the RBG variance formula reduces to
the familiar ( 1

a +
1
b +

1
c +

1
d ), (p. 471).

The (1− α)100% confidence interval for population odds ratio O is

[omh exp{−z1−α/2 s}, omh exp{z1−α/2 s}] ,

where s =
√

V̂ar (log(omh)).
Another way of controlling confounding factors in risk calculations is

by matching subjects according to all factors that we want to control. Some
results on the inference from matched pair tables, or paired tables, are pro-
vided next.

12.6 Paired Tables: McNemar’s Test

Another type of table commonly used in dental, opthalmology, and phar-
macology trials is matched-pair table summarizing the designs in which
interventions are applied to the same patient. For example, in randomized
split-mouth trials comparing the effectiveness of tooth-specific interven-
tions to prevent decay, one tooth in a subject is randomly selected to receive
treatment A, while the contralateral tooth in the same subject receives treat-
ment B. Another example is crossover trials testing the efficacy of drugs. In
this design, a patient is randomly administered either treatment A or B
in the first time period and then administered the other treatment in the
second time period. The link between the split-mouth design and crossover
trials is apparent – the tooth location in the split-mouth design is analogous
to time in the crossover design.

The matched-pair design has statistical advantages. This design controls
for many confounding factors because the control and test groups are sub-
ject to the same environment. Thus differences in outcomes between test
and control groups are likely attributable to the treatment. Moreover, since
control and test groups receive both interventions, matched-pair studies
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usually require no more than half the number of subjects to produce the
same precision as parallel group studies.

McNemar’s test is used for inference in paired tables. Although data for
the McNemar test resemble contingency tables, the structure of the tables
and the inference are quite different. For simplicity, assume that measure-
ments at Before and After on the same subject result in Positive and Neg-
ative responses. From N subjects we obtain 2N responses, or N pairs of
responses, organized as follows:

After
Positive Negative Total

Before
Positive A B A + B

Negative C D C + D
Total A + C B + D N

For example, A is the number of subjects (pairs of responses) where
both Before and After resulted in a positive. More generally, Before and After
could be any two different groups of matched subjects that produce binary
responses.

The marginal sum A + B is the number of positives in Before, and A + C
is the number of positives in After. The proportion of positives in Before is
p̂1 =

A+B
N , while the proportion of positives in After is p̂2 =

A+C
N . Let the

population counterparts of p̂1 and p̂2 be p1 and p2.
Any paired table can be “parallelized,” but information about pairing is

lost. The table above has the following parallelized form:

Positive Negative Total
Before A + B C + D N
After A + C B + D N
Total 2A + B + C B + C + 2D 2N

All inference regarding population p1 and p2 (risk differences, risk ra-
tios, and odds ratios) can be conducted using the parallelized table; how-
ever, such inference does not take into account potentially substantial infor-
mation contained in pairing. Omitting this information can influence deci-
sions. Such errors of ignoring pairing, and treating paired data as parallel,
are frequent in existing literature.

Next we discuss inference for risk differences, risk ratios, and odds ra-
tios. These concepts were discussed in Chapter 10 for independent pro-
portions or equivalently 2 × 2 parallel tables; here we take pairing into
consideration.
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12.7 Risk Differences, Risk Ratios, and Odds Ratios for
Paired Tables

In the context of epidemiological studies when a single subject cannot be
classified simultaneously as exposed and nonexposed, the measurements
are taken on a matched pair of subjects, one exposed and one not exposed.
All other characteristics should match or be as close as possible (gender,
age, socioeconomic status, race, etc.)

Non-exposed
Disease No disease Total

Exposed Disease A B A + B
No disease C D C + D

Total A + C B + D N

Table 12.1 Matched-pair design table typical for epidemiological studies.

In this table sample proportions of diseased among the exposed and unex-
posed are p̂1 =

A+B
N and p̂2 =

A+C
N , respectively.

12.7.1 Risk Differences

The McNemar test examines the difference between the proportions that
derive from the marginal sums and tries to infer if the two population
proportions p1 and p2 differ significantly. The difference between this test
and the test for two proportions from Chapter 10, page 468, is that in the
paired tables the two proportions are not independent. Note that both sample
proportions p̂1 = (A + B)/N and p̂2 = (A + C)/N depend on A from the
upper left cell of the table. The inference about the difference of population
counterparts p1 and p2 involves only entries B and C from the table, since
A/N cancels.

Under the hypothesis H0 : p1 = p2, both B and C are distributed as bi-
nomial Bin(B + C,0.5). In this case, EB = B+C

2 and Var (B) = B+C
4 . By the

CLT,

Z =
B−EB√
Var (B)

=
B− (B + C)/2√

B + C/2
=

B− C√
B + C

has approximately standard normal N (0,1) distribution. Thus, after squar-
ing we obtain the statistic
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χ2 = Z2 =
(B− C)2

B + C
,

which is approximately χ2-distributed with 1 degree of freedom. Large
values of χ2 are critical for the two-sided alternative.

Note that if one-sided alternatives H1 : p1 > p2 or H1 : p1 < p2 are of
interest, one should use statistic Z instead of χ2. When B + C is small, it is

recommended to use a continuity correction in χ2 as χ2 = (|B−C|−1)2

B+C .
The confidence interval for the difference in proportions is

[ p̂1 − p̂2 − z1−α/2 s, p̂1 − p̂2 + z1−α/2 s] ,

where s is the square root of s2, and

s2 =
p̂1(1− p̂1)

N
+

p̂2(1− p̂2)

N
− 2( p̂11 p̂22− p̂12 p̂21)

N
,

where, as before, p̂1 = (A+ B)/N, p̂2 = (A+C)/N, p̂11 = A/N, p̂12 = B/N,
p̂21 = C/N, and p̂22 = D/N. Note that the first two factors in the expression
for s2 are as in the case of independent proportions (e.g., page 10.6), while
the third factor accounts for the dependence. Note also that this sample
variance is equivalent to squared standard deviation in (10.13) when p̂′1 =
B/N and p̂′2 = C/N.

Remark. Since under the null hypothesis B is distributed as binomial
Bin(B + C,0.5), exact inference is possible. A two sided p-value is the sum
of binomial probabilities for B values at least as far from (B + C)/2 as ob-
served. See Agresti (1992) for a survey of exact inferences for contingency
tables.

12.7.2 Risk Ratios

An estimator of the population risk ratio (or relative risk) R = p1/p2 is
defined as

r =
p̂1

p̂2
=

A + B

A + C
,
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with an estimator of variance for the log r as,

s2
log r =

1
A + B

+
1

A + C
− 2A

(A + B)(A + C)
.

The (1− α)× 100% CI for the logarithm of population risk ratio is
[
log r− z1−α/2 slog r, log r + z1−α/2 slog r

]
,

and the confidence interval on the population risk ratio is obtain by taking
antilogs of the two bounds,

[
r exp

{
−z1−α/2 slog r

}
, r exp

{
z1−α/2 slog r

}]
.

12.7.3 Odds Ratios

To conduct the inference on odds ratios in paired tables, we use the Mantel–
Haenszel theory with parallel tables constructed from a paired table. Any
table with N paired observations generates N Mantel–Haenszel tables

1 0
0 0
7→ 1 1

0 0
0 1

0 0
7→ 1 0

0 1
0 0
1 0
7→ 0 1

1 0
and

0 0
0 1
7→ 0 0

1 1

where the black table is paired and the red is parallel.

After
Positive Negative

Before
Positive • •

Negative • •
−→

Before After
Positive • •

Negative • •

For example, 1 in the paired table
1 0
0 0

where both Before and After are

Positive is translated to 1 for each Before and After in a table
1 1
0 0

, contrasting

Positives and Negatives for Before and After. From an analysis of Mantel–
Haenszel odds ratio omh in (12.7) one can see that ∑i aidi is B and ∑i bici is
C. All ni = 2 in (12.7) cancel.

Thus the estimator for population odds ratio O is

o =
B

C
.
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To find the confidence interval on the log o, we use the Miettinen’s test-
based method (Miettinen, 1976). First note that when H0 : O = 1 is true,
McNemar’s χ2 statistic can be expressed as

χ2 =
(logo− log1)2

Var (log o)
,

in which the only unknown is Var [log o], since logo = log(B/C) and
χ2 = (|B − C| − 1)2/(B + C) (McNemar) are easy to find. By solving for
Var (log o) and taking the solution as V̂ar (logo), we can approximate the
(1− α)× 100% confidence interval for logO as

[log o− z1−α/2 s, log o + z1−α/2 s] ,

where s =
√

V̂ar (logo). The confidence interval for the population O is
derived from the above using antilogs.

Another formula for variance of o in a matched-pairs table case comes
from the RBG variance estimator for the Mantel–Haenszel unmatched cases
(page 610), s =

√
s2

log o =
√

1/B + 1/C. It can be seen that the estimator of

log o is consistent, since when the number of tables goes to infinity, s→ 0.
MATLAB function mcnemart.m computes the estimators and confi-

dence intervals for McNemar’s layout.

function [stats] = mcnemart(matr, alpha)

% matr is 2x2 table matrix [A B; C D].

if nargin==1, alpha=0.05 ; end

A=matr(1,1); B= matr(1,2); C= matr(2,1); D=matr(2,2);

% If any entry is 0, add 0.5 to all cells

if( A*B*C*D==0 )

matr = matr + 0.5;

end

N = A + B + C + D; stats.N = N;

stats.chi2 = (B-C)^2/(B+C); %mc nemar’s chi2

stats.pval = 1- chi2cdf(stats.chi2, 1);

stats.h = stats.chi2 > chi2inv(1-alpha, 1); %H0 rejected?

p1 = (A + B)/N; stats.p1=p1; % row prob

p2 = (A + C)/N; stats.p2=p2; % column prob

p11 = A/N; p12 = B/N; p21 = C/N; p22 = D/N;

% risk difference
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stats.rd = p1 - p2;

delta = p11*p22 - p12*p21;

s = sqrt( p1*(1-p1)/N + p2*(1-p2)/N + 2*delta/N );

ssel = sqrt( ((B+C)*N - (B-C)^2)/N^3 );

lbd = p1 - p2 - norminv(1-alpha/2)*s;

ubd = p1 - p2 + norminv(1-alpha/2)*s;

stats.rdint = [lbd, ubd];

% risk ratio

stats.rr = (A+B)/(A+C);

varlrr = 1/(A+B) + 1/(A+C) - 2*A/((A+B)*(A+C));

lblrr = log((A+B)/(A+C)) - norminv(1-alpha/2)*sqrt(varlrr) ;

ublrr = log((A+B)/(A+C)) + norminv(1-alpha/2)*sqrt(varlrr) ;

stats.rrint = [exp(lblrr), exp(ublrr)];

% odds ratio

stats.or = B/C;

% miettinen approx for variance

s2lor1 = (log(B/C))^2 * (B+C)/((abs(B-C)-1)^2 + 0.0000001);

slor1 = sqrt(s2lor1);

lblor1 = log(B/C) - norminv(1-alpha/2)*slor1 ;

ublor1 = log(B/C) + norminv(1-alpha/2)*slor1 ;

stats.ormiett = [exp(lblor1), exp(ublor1)];

% RBG approx for variance

slor2 = sqrt(1/B + 1/C);

lblor2 = log(B/C) - norminv(1-alpha/2)*slor2 ;

ublor2 = log(B/C) + norminv(1-alpha/2)*slor2 ;

rgblint = [lblor2, ublor2];

stats.orrgb = [exp(lblor2), exp(ublor2)];

% Liddell’s exact method

df1l = 2*C +2; df2l = 2*B;

F1 = finv(1-alpha/2, df1l, df2l);

tl = B/(B+(C+1)*F1 );

orexall = tl/(1-tl);

%

df1u = 2*B +2; df2u = 2*C;

F2 = finv(1-alpha/2, df1u, df2u);

tu = (B+1)*F2/(C+(B+1)*F2 );

orexalu = tu/(1-tu);

stats.orliddell = [orexall, orexalu];

Example 12.11. Split-Mouth Trials for Dental Sealants. Randomized split-
mouth trials (RSM) are frequently used in dentistry to examine the effec-
tiveness of preventive interventions that impact individual teeth as opposed
to the whole mouth. For example, to examine the effectiveness of dental
sealants in preventing caries, a permanent first molar is randomly chosen
for the intervention, while its contralateral tooth serves as the control. Be-
cause the control and test teeth are subject to the same oral environment,
this design controls for many confounding factors such as diet, tooth mor-
phology, and oral hygiene habits. Thus, differences in outcomes between
test and control teeth are likely attributable to the treatment. Due to this
pairing, adequate power may be achieved with a smaller sample size than
if the teeth were independent.
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Forss and Halme (1998) report results of a split-mouth study that started
in 1988 with 166 children with the goal of assessing tooth-sealant materials.
Participants were children from Finland aged 5 to 14 years with a mean age
11 years. To be included in the study, children had to have a contralateral
pair of newly erupted, sound, unsealed permanent first or second molar
teeth.

Interventions on the occlusal surfaces of sound first or second perma-
nent molars involved glass ionomer Fuji III sealant as a treatment and third-
generation, resin-based, light-cured Delton sealant as a control. The results
were recorded at the 7-year follow-up involving 97 children, as the dropout
rate was 42%.

Control (resin)
Caries No caries Total

Treatment (Fuji III)
Caries 8 15 23

No caries 8 66 74
Total 16 81 97

Risk differences, risk ratios, and odds ratios with respective confidence
intervals are obtained by the MATLAB program mcnemart.m. Several ap-
proaches to confidence intervals for population odds ratio O (exact, ap-
proximate RBG, approximate Miettinen) are presented. The odds ratio o
is 1.8750, the exact 95% confidence interval for O is orliddell = [0.7462,

5.1064], and two approximations are ormiett = [0.7003, 5.0198] and orrgb =

[0.7950, 4.4224].
The complete output from mcnemart.m is

mcnemart([8, 15; 8, 66])

N: 97

chi2: 2.1304

pval: 0.1444

h: 0

p1: 0.2371

p2: 0.1649

rd: 0.0722

rdint: [-0.0545 0.1989]

rr: 1.4375

rrint: [0.8807 2.3464]

or: 1.8750

ormiett: [0.7003 5.0198]

orrgb: [0.7950 4.4224]

orliddell: [0.7462 5.1064]

�

Example 12.12. Testing for Salmonella. Large discrepancies are usually
found when different ELISAs for the diagnosis of pig salmonellosis are
compared. Mainar-Jaime et al. (2008) explored the diagnostic agreement of
two commercial assays: (i) Salmonella Covalent Mix-ELISA (Svanovir) as
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test A, and (ii) Swine Salmonella Antibody Test Kit (HerdCheck) as test B,
for the detection of antibodies to Salmonella spp. in slaughter pigs.

Two populations of pigs slaughtered in abattoirs from Saskatchewan,
Canada, have been analysed:

Population 1: Animals from farms marketing < 10,000 pigs/year.
Population 2: Animals from farms marketing ≥ 10,000 pigs/year.

Population 1 Population 2
Test B + Test B – Total Test B + Test B – Total

Test A + 11 16 27 2 5 7
Test A – 6 119 125 1 72 73

Total 17 135 152 3 77 80

From McNemar’s χ2 test it could be concluded that test A significantly
differs from test B in the proportion positive at α = 0.05 for Population
1 and in the aggregate table. The tests show no significant difference for
Population 2.
�

Sample Size in McNemar’s Test. Miettinen (1968) proposed a power anal-
ysis for McNemar’s test based on a normal approximation for test statistics
under alternative hypotheses.

Let w = p12 + p21 be the total probability of a discording case. Let 0 <

∆ < w be the discrepancy we want to control. In these terms, McNemar’s
null hypothesis is

H0 : p12 = p21 = w/2,

and the alternative is defined by

p12 = (w± ∆)/2 and p21 = (w∓ ∆)/2. (12.8)

The sample size needed to reject H0 with power 1− β in α-level testing
against the one-sided alternative, specified by the choice of w and ∆

in (12.8), is

N =

(
z1−α
√

w + z1−β

√
w− ∆2(3 + w)/(4w)

)2

∆2

1− β = Φ

(
|∆|
√

N − z1−α
√

w√
w− ∆2(3 + w)/(4w)

)
.

If the alternative is two sided, 1− α in normal quantiles is replaced by
1− α/2.
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Here are simple MATLAB @-functions implementing sample size and
power calculations

%w = p12+p21 is the probability of discording

% delta is discrepancy we want to capture.

%H0: p12=p21 = w/2 vs. H1: |p12 - p21| = delta

% p21=(w + delta)/2; p12 = (w-delta)/2

%================================

ssmn = @(alpha, beta, w, delta) ...

(norminv(1-alpha)*sqrt(w)+norminv(1-beta)* ...

sqrt(w - delta^2*(3 + w)/(4*w)) )^2/delta^2

power =@(alpha, N, w, delta) ...

normcdf( (abs(delta)*sqrt(N)-norminv(1-alpha)*sqrt(w))/ ...

sqrt(w - delta^2*(3 + w)/(4*w)) )

Example 12.13. OPEN/CLOSED Cases. This example is adapted from Berger
and Sidik (2002). A regulatory agency sometimes checks the accuracy of
analyses of a medical laboratory. The laboratory has information when it
is checked. An experimenter thinks the laboratory is more careful when
it knows that the results may be scrutinized. To confirm this the experi-
menter sends two samples from each person for antibody analysis. In one
case, the sample is labeled as an OPEN case (part of a check); in the other
case, the sample is labeled as CLOSED case (not part of a check). The ex-
perimenter also has a gold standard and knows whether the laboratory
analysis is correct or incorrect. This is a matched pairs design and the
one-sided alternative H1 : p12 < p21 is of interest. Here p12 is the proba-
bility that CLOSED/OPEN was correct/incorrect and p21 the probability
that CLOSED/OPEN was incorrect/correct.

What total sample size, in number of pairs, is needed to reject H0 with a
power 0.8 in a 0.05-level test against the one-sided alternative, when p12 =
0.1 and p21 = 0.2?

From p12 = 0.2 and p21 = 0.1, we find w = 0.3 and ∆ = 0.1. Thus,
ssmn(0.05, 0.2, 0.3, 0.1) % 179.6304, and a sample of size N = 180 pairs
ensures the desired power. The exact power for N = 180 pairs is 0.8007, as
power(0.05, 180, 0.3, 0.1) % 0.8007.
�

12.7.4 Liddell’s Procedure

Paired proportions have traditionally been compared using McNemar’s test
but an exact alternative due to Liddell (1983) is preferable. In fact, some
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argue that McNemar test for testing odds ratios in paired tables should not
be used when the exact test is available and readily implementable.

As in McNemar’s setup, the B count in the table is treated as a realiza-
tion of binomial variable Bin(B +C, p). Under H0 : OR = 1, the distribution
of B is Bin(B + C,1/2).

The Liddell’s exact test uses the link between binomial and F distribu-
tions. The test statistic F = B/(C + 1) has an F-distribution with 2(C + 1)
and 2B degrees of freedom. Confidence limits for OR are calculated as fol-
lows:

[
B

(C + 1)× F2(C+1),2B,1−α/2
,

B× F2(B+1),2C,1−α/2

C

]

Giuseppe Cardillo’s function liddell.m is available on Matlab Central
FileExchange (#22024) and this book’s website.

Example 12.14. Schistosoma Mansoni. Schistosoma mansoni is a parasite that
is found in Africa, Caribbean, and parts of South America. Among human
parasitic diseases in tropical and subtropical areas, schistosomiasis ranks
second behind malaria in terms of socioeconomic and public health im-
pact. Sleigh et al. (1982) compare results of one Bell and one Kato–Katz
examination performed on each of 315 stool specimens from residents in
an area in northeastern Brazil endemic for schistosomiasis mansoni. The
following table, discussed also in Kirkwood and Sterne (2003), summarizes
the findings:

Kato–Katz positive Kato–Katz negative Total
Bell positive 184 54 238
Bell negative 14 63 77

Total 198 117 315

Are the probabilities of detecting Schistosomiasis mansoni different for
the two tests? Find the odds ratio and its 95% confidence interval using
Liddell’s procedure.

From the output of liddell.m we have

liddell([184 54; 14 63])

Liddell’s exact test

Maximum likelihood estimate of OR = 3.8571

Exact 95% confidence interval = 2.1130 to 7.5193

F = 3.6000 p-value (two-sided)= 0.00000111
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The odds ratio is estimated by OR = 54/14 = 3.8571, meaning that odds
of a positive result by Kato-Katz test are almost 4 times the odds of a pos-
itive result by Bell’s test. Liddell’s exact method indicates that this odds
ratio falls between 2.1130 and 7.5193 with confidence 95%.
�

12.7.5 Analyzing Discordant Pairs: Garth Test*

Assume that in a clinical assay the patients receiving two drugs A and B can
receive them in order (A, B), that is, drug A first, or in order (B, A), that is,
drug B first. The order of administration may be responsible for carryover
effects and possible unwanted drug interactions affecting the efficacy.

The researchers are interested in drug effects but want to control for the
order effects. Usually the drug effect is measured by some pharmacokinetic
outcome, and for such continuous measures the ANOVA methodology is
appropriate. When observations are dichotomous (Effect present – No effect
present), Garth (1979) developed a test that is capable of both comparing
drug efficiency and testing for order effect.

Consider the following paired table

Drug B
Effect No effect

Effect • nA

Drug A
No effect nB •

where nA (nB) is the number of subjects for which drug A (B) produced an
effect and drug B (A) did not.

As in the McNemar test, we focus only on discordant counts nA and nB

and ignore the pairs where effects agree (marked as •). Let nd = nA + nB be
the number of discordant pairs, nAB the number of discordant pairs with
A as the first drug, and nBA the number of discordant pairs with B as the
first drug. Count nA can be split as nA = nA,AB + nA,BA, where nA,AB is the
portion of nA for the order (A, B). Analogously, nB = nB,AB + nB,BA. Lastly,
let n1 be the number of subjects for which only the first drug was effective,
and n2 the number of subjects for which only the second drug was effective.
Note that n1 = nA,AB + nB,BA and n2 = nA,BA + nB,AB.

Using nA,AB, nB,AB, nA,BA, and nB,BA, we form two tables in which the
rows relate to (i) the type of drug (A or B), and (ii) to the position (first or
second) of the effective drug,
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Table (i) Order
(A,B) (B,A)

Effect with A nA,AB nA,BA nA

Effect with B nB,AB nB,BA nB

nAB nBA nd

Table (ii) Order
(A,B) (B,A)

Effect with first drug nA,AB nB,BA n1
Effect with second drug nB,AB nA,BA n2

nAB nBA nd

Now the Fisher exact test applies to both tables. For table (i), the test is
that there is no order effect, while for table (ii), the test is for no difference
in drugs as their effect is concerned. For more discussion, see Everitt (1977).

Example 12.15. Emetogenic drugs A and B. In a study, patients received
two emetogenic drugs A and B, and the drug effect was the presence of nau-
sea/vomitting. The patients were randomized with respect to drugs’ order.
For 34 patients, 16 assigned to (A, B) and 18 assigned to (B, A) sequences,
the results disagree. The table counts were nA,AB = 9,nA,BA = 14,nB,AB = 7,
and nB,BA = 4.

(a) Interpret the table count nA,AB in the terms of this study.
(b) Test the hypothesis that there is no difference in drug effects in terms

of causing nausea/vomitting.
(c) Test the hypothesis that there is no difference in effect with respect

to sequence of drug administration.
Use Fisher exact tests and α = 0.05.
Solution. (a) In this study nA,AB = 9 means that for 9 patients out of 34

for which the results disagreed, and out of 16 assigned to sequence (A, B),
9 had positive response to the first drug administered. It also means that 9
patients, out of 23 positively responding to drug A, took drug A first.

%(b,c)

[h p]=fisherexactt([9 4; 7 14]) %for drug efficacy

%H0: p1=p2 vs. H1: p1 =/= p2

%h = 0

%p = 0.0764

[h p]=fisherexactt([9 14; 7 4]) %for drug order

H0: p1=p2 vs. H1: p1 =/= p2

h = 0

p = 0.2743

As the drug efficacy is of concern, neither the drugs nor the order of
administration were significant at 5% level in two-sided testing. If we had
applied the McNemar test on the discordant counts nA = nA,AB + nA,BA =
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23 and nB = nB,AB + nB,BA = 11, the results would have been significant,
with a p-value of 0.0396. This would have been an inappropriate conclusion
in this context.
�

12.7.6 Multicategorical Paired Tables: Stuart–Maxwell Test*

A natural generalization of the McNemar test is a design in which there are
N matched pairs where each response can be classified into k > 2 different
categories. There are two possible generalizations of the McNemar test:
tests for symmetry and tests for marginal homogeneity. For 2 × 2 tables
these two tests coincide, but the tests are quite different for k × k tables,
when k > 2.

12.7.6.1 Tests for Marginal Homogeneity

We will be interested in the equality of proportions for categories in the
two populations that form the paired responses. This is equivalent to ho-
mogeneity of marginal proportions. For simplicity, we first discuss the case
when k = 3.

Assume that paired responses come from Before and After and each re-
sponse may result in one of three categories: Positive, Neutral, and Negative.

After
Positive Neutral Negative Total

Positive n11 n12 n13 n1·
Before Neutral n21 n22 n23 n2·

Negative n31 n32 n33 n3·
Total n·1 n·2 n·3 N

Notice that the table counts matched pairs; for example, n23 is the num-
ber of cases where Before resulted in neutral and After resulted in negative.
Thus, again, we have a total of 2N responses organized into N matched
pairs.

Denote by pij the population proportion of subjects that are classified as
i (one of Positive, Neutral, or Negative) in Before, and as j in After.

Let pi· = ∑j pij and p·j = ∑i pij be the marginal probabilities of the three
categories in Before and After, respectively. The null hypothesis of interest is
that the population proportions of the three categories are the same for the
two groups, Before and After,

H0 : p1· = p·1, p2· = p·2, and p3· = p·3,
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which is the hypothesis of marginal homogeneity. The alternative is any
violation of H0.

The test statistic is

χ2 =
n23(n1· − n·1)2 + n13(n2· − n·2)2 + n12(n3· − n·3)2

2(n12n13 + n12n23 + n13n23)
, (12.9)

where nij = (nij + nji)/2.
The statistic χ2 in (12.9) has a χ2-distribution with 2 degrees of freedom,

and its large values are critical.

Rule: Reject H0 at significance level α if χ2 > χ2
2,1−α, where χ2

2,1−α

is a 1 − α quantile of a χ2-distribution with 2 degrees of freedom
(chi2inv(1-alpha, 2)). The p-value of this test is 1-chi2cdf(chi2, 2) for
chi2 as in (12.9).

Example 12.16. Galton and ALW Features in Fingerprints. In his influential
book Finger Prints, Sir Francis Galton details the description and distribu-
tions of arch-loop-whorl (ALW) features of human fingerprints (Fig. 12.1).
Some of his findings from 1892 are still in use today.

Tables 12.2a,b are from Galton (1892) and tabulate ALW features on
forefingers in pairs of school children.

(a) (b) (c)

Fig. 12.1 (a) Arch, (b) loop, and (c) whorl features in a fingerprint.

In Table 12.2a, subjects A and B are paired at random from a large popu-
lation of subjects. In Table 12.2b, subjects A and B are two brothers with
randomized assignment of order (A, B).

Galton was interested in knowing if there was any influence of fraternity
on the dependence of ALW features. Using Stuart–Maxwell test, we will
test for the equality of marginal distributions, H0: Population proportions
of fingerprint features for individuals from groups A and B are the same.

The function stuartmaxwell.m gives the following output:

%galtonalw.m

indeppairs = [5 12 8; 8 18 8; 9 20 13];

fratpairs = [5 12 2; 4 42 15; 1 14 10];
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Table 12.2 (a) Table with random pairing of children. (b) Table with fraternal pairing.

A
Arch Loop Whorl

B
Arch 5 12 8
Loop 8 18 8
Whorl 9 20 13

A
Arch Loop Whorl

B
Arch 5 12 2
Loop 4 42 15
Whorl 1 14 10

(a) (b)

[stat] = stuartmaxwell(indeppairs)

%stat =

%stuartmaxwellchi2 = 5.8023

%stuartmaxwellpval = 0.0550

[stat] = stuartmaxwell(fratpairs)

%stat =

%stuartmaxwellchi2 = 4.2738

%stuartmaxwellpval = 0.1180

It is evident that for random pairing, the hypothesis of equal proportions
H0 almost rejected at 5% level (p-value 0.0550), while in the case of fraternal
pairing the equality of proportions of fingerprint features is not rejected (p-
value 0.1180). If treated as contingency tables, as originally intended by
Galton, the hypothesis of independence between two groups A and B on
the basis of fingerprint features is not rejected for random pairing (p-value
0.9520), while it is rejected for the case of fraternal pairing (p-value 0.0247).

[chisq p]=tablerxc([5 12 8; 8 18 8; 9 20 13])

%(a) random pairing

%chisq = 0.6948

% p = 0.9520

[chisq p]=tablerxc([5 12 2; 4 42 15; 1 14 10])

%(b) fraternal pairing

% chisq = 11.1699

% p = 0.0247

�

When k≥ 3, an elegant representation of χ2 statistic is possible in terms
of matrices. Let nij be the entries in the paired table and let n·j and ni· be
the column and row sums. Define vector d = (d1,d2, . . . ,dk−1) and matrix
S =

(
sij

)
k−1×k−1 as

di = ni· − n·i,
sii = ni· + n·i − 2nii, i = 1, . . . ,k− 1;

sij = −(nij + nji), i 6= j, i, j = 1, . . . ,k− 1.

Then
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χ2 = d′S−1d

is the statistic for testing the hypothesis of marginal homogeneity

H0 : pi· = p·i, 1≤ i ≤ k

and has a χ2-distribution with k− 1 degrees of freedom.
Bhapkar (1966) also proposed a test for marginal homogeneity. The test

statistic is the similar to Stuart–Maxwell’s, but the difference lies in the
calculation of variance-covariance matrix. Bhapkar’s χ2 is calculated as

χ2 = d′B−1d,

where

B = S− 1
n

dd′.

Here d and S are as in Stewart–Maxwell’s procedure. Function stuartmaxwell.m

performs both Stuart–Maxwell and Bhapkar tests.
Although the Bhapkar and Stuart-Maxwell tests are asymptotically

(N → ∞) equivalent, the Bhapkar test is a more powerful alternative to
the Stuart-Maxwell test for small N.

Example 12.17. Unaided Distant Vision. The table below, provided by Stu-
art (1953), presents visual acuity of 7,477 women. The women, aged 30 to
39, were employees in Britain’s Royal Ordnance factories in 1943 to 1946.
For each woman, the left and right eyes were classified into vision grades,
from 1 (highest) to 4 (lowest).

Right eye Left eye grade
grade 1 2 3 4

1 1520 266 124 66
2 234 1512 432 78
3 117 362 1772 205
4 36 82 179 492

We will test whether the distribution of Grade score is homogeneous for
the left and right eye, that is H0 : pi· = p·i, i = 1, . . . ,4.

eyes = [1520 266 124 66; 234 1512 432 78; ...

117 362 1772 205; 36 82 179 492];

[stats] = stuartmaxwell(eyes)

stats =

stuartmaxwellchi2: 11.9566

stuartmaxwellpval: 0.0075

bhapkarchi2: 11.9757

bhapkarpval: 0.0075
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As is evident from the output of stuartmaxwell, the hypothesis of sym-
metry for this table is rejected. Note also that, since N = 7477 is large, the
Stuart–Maxwell and Bhapkar tests are practically indistinguishable.�

12.7.6.2 Tests for Symmetry

The hypothesis of table symmetry,

H0 : pij = pji, for all i, j,

is stronger than the hypothesis of marginal homogeneity. If the paired table
is symmetric, the marginal homogeneity is satisfied,

H0⇒ p·i = pi·, i = 1,2, . . . ,k.

The opposite is not true: the marginal homogeneity does not imply sym-
metry, except for k = 2 (McNemar’s test). If the hypothesis of symmetry is
satisfied, then all conditional distributions are homogeneous. That is, for
any fixed j,

P(A in category i| B in category j) =

P(B in category i | A in category j), i = 1,2, . . . ,k.

Thus, the hypothesis of symmetry, or equivalently the equality of all con-
ditional distributions, implies the marginal homogeneity hypothesis.

Bowker (1948) suggested generalization of McNemar’s statistics for k×
k tables as,

χ2 = ∑
i<j

(nij − nji)
2

nij + nji
,

which under the null hypothesis of symmetry has approximately χ2 distri-
bution with k(k− 1)/2 degrees of freedom.

Edwards (1948) suggested a continuity correction for McNemar statis-
tics that is applicable to Bowker’s χ2,

χ2
corr = ∑

i<j

(|nij − nji| − 1)2

nij + nji
,

while May and Johnson (2001) suggested

χ2
mj = ∑

i<j

n · (nij − nji)
2

n · (nij + nji)− (nij − nji)2 .
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Both modifications of Bowker test are distributed as chi-square with k(k−
1)/2 degrees of freedom.

Krampe and Kuhnt (2007) compared performance of the three symme-
try tests and found that Bowker and May–Johnson approximations work
well if the table counts are not small and that the Bowker-corrected χ2

provides a conservative test. Function bowker.m performs the Bowker,
Bowker-corrected, and May–Johnson’s tests.

Example 12.18. Noise and Quiet Traffic. The research network “Quiet traf-
fic” sponsored by the Bundesministerium für Bildung und Forschung, Ger-
many, examined among other things the effect of traffic noise on humans.
Kuhnt et al. (2004) provide data on 72 subjects exposed twice to road and
rail noise, with four different noise intensities (40, 52, 70, and 82 [dB]). The
subjects report the level of annoyance by the noise on a Likert scale with 5
levels (1 = very low, 2 = low, 3 = moderate, 4 = high, and 5 = very high).

Second
exposure

1 2 3 4 5
1 51 28 3 0 0

First 2 15 68 40 5 1
exposure 3 0 29 77 21 1

4 0 4 19 80 14
5 0 1 5 26 88

The researches were interested in whether the subjects classify noise
differently when they are exposed to it for the second time, that is, in testing
the table symmetry.

data=[ 51 28 3 0 0; ...

15 68 40 5 1; ...

0 29 77 21 1; ...

0 4 19 80 14; ...

0 1 5 26 88];

stat = bowker(data)

stat =

bowkerchi2: 15.1616

bowkerpval: 0.1263

bowkercorrectedchi2: 11.1814

bowkercorrectedpval: 0.3436

mayjohnsonchi2: 15.2448

mayjohnsonpval: 0.1234

The hypothesis of symmetry is not rejected. Note that the Bowker-
corrected test is conservative here. Several entries in the table are 0 or small,
so the χ2 approximation may not be satisfactory.
�
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12.7.7 Cochran’s Q Test∗

If we observe a binary response, say, present and absent, for r subjects on
c occasions, we might be interested in testing whether the presence rate
changes over time. If c = 2, then we would perform McNemar’s test by
counting the instances (0, 0), (0,1), (1, 0), and (1, 1) for r subjects and forming
a paired table of counts. When c > 2, then Cochran’s Q test is used. Let
aij = 1 if a success is observed at location (i, j), and 0 otherwise. Define row,
column, and total means as

Ri =
1
c

c

∑
j=1

aij,

Cj =
1
r

r

∑
i=1

aij,

T =
1
rc

r

∑
i=1

c

∑
j=1

aij.

Then

Q =
r2(c− 1)

c
×

∑
c
j=1(Cj − T)2

∑
r
i=1 Ri (1− Ri)

has χ2 with c− 1 degrees of freedom.
The test for H0 : no change in incidence of 1 over the repeated measures,

is implemented by the function cochrant.m.

Example 12.19. 0–1 Image Homogeneity. As an illustration of Cochran’s
test we generate a matrix of size 1024× 1024 of Bernoulli random variables.
The left-hand side submatrix 1024 × 512 is generated as i.i.d. Bernoullis
Ber(0.5), and the right-hand side submatrix of the same size is generated
as i.i.d. Bernoulli Ber(0.51). This visually undetectable difference (Fig. 12.2)
is easily captured by Cochran’s test.

a1 = binornd(1,0.5, [1024 512]);

a2 = binornd(1,0.51, [1024 512]);

a =[a1 a2];

[h Q p]=cochrant(a)

% h = 1

% Q = 1.1984e+003

% p = 1.1233e-004

�

Cochran’s test is equivalent to McNemar’s test when pairs (1, 1),(1, 0),(0,
1), and (0, 0) are counted and organized as a 2× 2 table. Indeed if c = 2,
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Fig. 12.2 Matrix 1024× 1024 of Bernoullis. Submatrix 1024× 512 on the left side is gen-
erated as i.i.d. Bernoulli Ber(0.5), while the right-hand side submatrix of the same size
is generated as i.i.d. Bernoulli Ber(0.51).

b = binornd(1, 0.5, [200 2]);

[h Q p]=cochrant(b)

%h = 0

%Q = 0.8526

%p = 0.3558

n11 = 0; n12=0; n21=0; n22=0;

for i = 1:r

if ( b(i,1)+b(i,2) == 2) n11=n11+1;

elseif ( b(i,1)+b(i,2) == 0) n22=n22+1;

elseif ( b(i,1) > b(i,2) ) n12=n12+1;

else n21=n21+1;

end

end

[h chi2 pval] = mcnemart([n11 n12; n21 n22])

%h = 0

%chi2 = 0.8526

%pval = 0.3558

12.8 Exercises

12.1. Amoebas and Intestinal Disease. When an epidemic of severe intestinal
disease occurred among workers in a plant in South Bend, Indiana, doc-
tors said that the illness resulted from infection by the amoeba Entamoeba
histolytica. There are actually two varieties of these amoebas, large and
small, and the large ones were believed to be causing the disease. Doc-
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tors suspected that the presence of the small amoebas might help people
resist infection by the large ones. To check on this, public health officials
chose a random sample of 138 apparently healthy workers and deter-
mined if they were infected with either the large and/or small amoebas.
The table below provides the resulting data (Cohen, 1973). Is the pres-
ence of the large variety independent of the presence of the small one?
Test at 5% significance level.

Large variety
Small variety Present Absent Total
Present 12 23 35
Absent 35 68 103
Total 47 91 138

12.2. Drinking and Smoking. Alcohol and nicotine consumption during
pregnancy are believed to be associated with certain characteristics in
children. Since drinking and smoking behaviors may be related, it is im-
portant to understand the nature of this relationship when fully assess-
ing their influence on children. In a study by Streissguth et al. (1984), 452
mothers were classified according to their alcohol intake prior to preg-
nancy recognition and their nicotine intake during pregnancy. The data
are summarized in the following table:

Nicotine (mg/day)
Alcohol (ounces/day) None 1–15 16 or more
None 105 7 11
0.01–0.10 58 5 13
0.11–0.99 84 37 42
1.00 or more 57 16 17

(a) Calculate the column sums. In what way does the pattern of alcohol
consumption vary with nicotine consumption?
(b) Calculate the row sums. In what way does the pattern of nicotine
consumption vary with alcohol consumption?
(c) Formulate H0 and H1 for assessing whether or not alcohol consump-
tion and nicotine consumption are independent.
(d) Compute the table of expected counts.
(e) Find the χ2 statistic. Report the degrees of freedom and the p-value.
(f) What do you conclude from the analysis of this table?

12.3. Aortic Valve Replacement and Bleeding Complications. Généreux et
al. (2014) sought to identify the incidence, predictors, and prognostic
impact of bleeding complications (BC) after surgical aortic valve re-
placement (SAVR) compared with transcatheter aortic valve replacement
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(TAVR). The TAVR procedure could be transfemoral (TF) or transapical
(TA). Bleeding complications have been found to be the strongest inde-
pendent predictor of 1-year patient mortality.
The study involved 657 severely symptomatic patients randomly as-
signed to SAVR, TAVR-TF, or TAVR-TA, and indicators of major bleeding
complications have been recorded for each patient.
The data are given in the table:

TAVR-TF TAVR-TA SAVR
BC 27 9 71
No BC 213 95 242
Total 240 104 313

Test the hypothesis that the incidence of BC is independent of AVR pro-
cedure types. Use α = 0.05.

12.4. Family Size. A demographer surveys 1,000 randomly chosen American
families and records their family sizes and family incomes:

Family size
Family income 2 3 4 5 6 7
Low 145 81 57 22 9 8
Middle 151 73 71 33 13 10
High 124 60 80 42 13 8

Do the data provide sufficient evidence to conclude that family size and
family income are statistically dependent?
(a) State the H0 and H1 hypotheses.
(b) Perform the test using α = 0.05 and comment.

12.5. Nightmares. Over the years numerous studies have sought to character-
ize the nightmare sufferer. From these studies has emerged the stereo-
type of someone with high anxiety, low ego strength, feelings of in-
adequacy, and poorer-than-average physical health. A study by Hersen
(1971) explored whether gender is independent of having frequent night-
mares. Using Hersen’s data summarized in the table below, test the hy-
pothesis of independence at the level α = 0.05.

Men Women
Nightmares often (at least once a month) 55 60
Nightmares seldom (less than once in a month) 105 132

12.6. Independence of Segregation. According to a mathematical model of
inheritance, at a given meiosis, the probability of an allele at one locus
passing to the gamete is independent of an allele at any locus on another
chromosome passing to the gamete. This is usually referred to as the law
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of independent segregation of genes. Also, one allele from the pair at any
locus passes to the gamete with probability equal to 1/2.
Roberts et al. (1939) conducted an extensive set of experiments for testing
independent segregation of genes in mice and rats. One of the results of
a mating of the form Aa Bb Dd× aa bb dd is reported as:

ab aB Ab AB Total
d 427 440 509 460 1836
D 494 467 462 475 1898
Total 921 907 971 935 3734

Using the χ2 statistic, test for the independence of segregation at α = 5%.
Hint: The expected number in each cell is 1/2 × 1/2 × 1/2 × 3734 =
466.75.

12.7. Site of Corpus Luteum in Caesarean Births. Williams (1921) observed
that in Caesarean-section births, the corpus luteum was located in the
right ovary 23 times and 16 times in the left for male children. For fe-
male children the numbers were 13 and 12, respectively. Test for the
independence of ovary side and gender of a child.

12.8. An Easy Grade? A student wants to take a statistics course with a pro-
fessor who is an easy grader. There are three professors scheduled to
teach the course sections next semester. The student manages to obtain
a random sample of grades given by the three professors this past year.

Observed Prof A Prof B Prof C Total

Grades A 10 12 28 50
Grades B 35 30 15 80
Grades C 15 30 25 70

Total 60 72 68 200

Using a significance level of 1%, test the hypothesis that a student’s grade
is independent of the professor.

12.9. Importance of Bystanders. When a group of people is confronted with
an emergency, a diffusion-of-responsibility process can interfere with an
individual’s responsiveness. Darley and Latané (1968) asked subjects to
participate in a discussion carried over an intercom. Aside from the ex-
perimenter to whom they were speaking, subjects thought that there
were zero, one, or four other people (bystanders) also listening over the
intercom. Part way through the discussion, the experimenter feigned se-
rious illness and asked for help. Darley and Latané noted how often the
subject sought help for the experimenter as a function of the number of
supposed bystanders. The data are summarized in the table:
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Sought assistance No assistance
No bystanders 11 2
One bystander 16 10
Four bystanders 4 9

What could Darley and Latané conclude from the results?
(a) State H0 and H1.
(b) Perform the test at a 5% significance level.

12.10. Manual and Ocular Laterality: Is There a Link? Tabular data on manual
and ocular laterality in 413 students of University College, London, aged
18–24, were first reported by Woo (1928). Ocular laterality was measured
by four tests: near point, visual acuity, spherical refractions, and general
astigmatism. Manual laterality was measured by grip strength, first/last
pull, lack of endurance, steadiness, and balancing tests. The data are
summarized in the following table:

Left-eyed Ambiocular Right-eyed Total
Left-handed 34 62 28 124
Ambidexterous 27 28 20 75
Right-handed 57 105 52 214
Total 118 195 100 413

(a) Test the hypothesis that the ocular and manual dexterity are depen-
dent. Report the p-value and discuss.
(b) Omit ambidexterous and ambiocular counts to test whether any side
is significantly dominant for (i) manual or (ii) ocular laterality.

12.11. Streptococcus Pyogenes and Tonsil Size. Holmes and Williams (1954)
classify 1,398 children aged 0–15 years according to their relative tonsil
size and whether or not they were carriers of Streptococcus pyogenes.

Present but Greatly
not enlarged Enlarged enlarged Total

Carriers 19 29 24 72
Noncarriers 497 560 269 1326
Total 516 589 293 1398

Is the size of tonsils dependent on the Streptococcus pyogenes carrier sta-
tus?
If there is dependence, tonsil size could be regarded as the dependent
variable, while the presence or absence of Streptococcus pyogenes is re-
garded as a possible explanatory factor. This distinction is in keeping
with possible biological mechanisms: if there is a causal relationship be-
tween the two variables, it is almost certainly in the direction indicated
rather than the reverse.
Test the hypothesis of independence at α = 0.05 level.
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12.12. Psychosis in Adopted Children. Numerous studies have been done to
determine the etiology of schizophrenia. Such factors as biological, psy-
chocultural, and sociocultural influences have been suggested as possible
causes of this disorder. To test if schizophrenia has a hereditary compo-
nent, researchers compared adopted children whose biological moth-
ers are schizophrenic (“exposure”) to adopted children whose biological
mothers are normal (“nonexposure”).
Furthermore, the child-rearing abilities of adoptive families have been
assessed to determine if there is a relationship between those children
who become psychotic and the type of family into which they are
adopted. The families are classified as follows: healthy, moderately dis-
turbed, and severely disturbed.
The following data are from an experiment described in Carson and
Butcher (1992).

Type of adoptive family
Healthy Moderately disturbed Severely disturbed

Diagnosis Exp Nonexp Exp Nonexp Exp Nonexp
None 41 42 11 26 6 15

Psychotic 10 11 18 25 38 28

(a) For moderately disturbed families, find the risk difference for a
child’s psychosis with the mother’s schizophrenia as a risk factor. Find
a 95% confidence interval for the risk difference.
(b) For severely disturbed families, find the risk ratio and odds ratio for
psychosis with the mother’s schizophrenia as a risk factor. Find a 95%
confidence interval for the risk ratio and odds ratio.
(c) Is a mother’s schizophrenia a significant factor for a child’s psychosis
overall? Assess this using the Mantel–Haenszel test. Find the overall
odds ratio and corresponding 95% confidence interval.

12.13. More Perils of Aggregation: Berkeley Admission Data. Examination
of aggregate data on graduate admissions to the University of Califor-
nia, Berkeley, for fall 1973 shows a clear but misleading pattern of bias
against female applicants (Bickel et al., 1975). For the six major graduate
programs denoted here as A–F, a total of 4,526 students applied, 2,691
males and 1,835 females. Among 1,755 admitted students, 1,198 were
males and 557 females.
(a) Using a 2× 2 contingency table show that gender and admission are
dependent. Also, show that the population proportions are significantly
different (test for two proportions on page 465).
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(b) The numbers in (a) brought up accusations of gender bias in Berke-
ley admissions. However, when stratified by department/program, the
admission results were as follows:

Admitted Not admitted Total
Program A Men 512 313 825

Women 89 19 108
Program B Men 353 207 560

Women 17 8 25
Program C Men 120 205 325

Women 202 391 593
Program D Men 138 279 417

Women 131 244 375
Program E Men 53 138 191

Women 94 299 393
Program F Men 22 351 373

Women 24 317 341

Using Mantel–Haenszel’s test show that gender and admission status
are not significantly related.
Remark. This exercise is not exactly Simpson’s paradox, but it exem-
plifies perils of aggregation. In 4 out of 6 schools women had a higher
admission rate. Yet, the overall admission rate for women was signifi-
cantly lower.

12.14. The Midtown Manhattan Study. The data set below has been analyzed
by many authors (Haberman, Goodman, Agresti, etc.) and comes from
the study by Srole et al. (1962). The data cross-classifies 1,660 young New
York residents with respect to two factors: mental health and parents’
socioeconomic status (SES).
The mental health factor is classified by four categories: Well, Mild symp-
tom formation, Moderate symptom formation, and Impaired. The par-
ents’ SES has six categories ranging from High (1) to Low (6).
Here is the table:

Well Mild Moderate Impaired
1 (High) 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 (Low) 21 71 54 71

(a) Test the hypothesis that mental health and parents’ SES are indepen-
dent factors at a 5% confidence level. You can use tablerxc.m code.
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(b) The table below provides the expected frequencies. Explain what the
expected frequencies are. Explain how the number 104.0807 from the
table was obtained, and show your work.

Well Mild Moderate Impaired
1 (High) 48.4542 95.0145 57.1349 61.3964
2 45.3102 88.8494 53.4277 57.4127
3 53.0777 104.0807 62.5867 67.2548
4 71.0169 139.2578 83.7398 89.9855
5 49.0090 96.1024 57.7892 62.0994
6 (Low) 40.1319 78.6952 47.3217 50.8512

12.15. Tonsillectomy and Hodgkin’s Disease. A study by Johnson and John-
son (1972) involved 85 patients with Hodgkin’s disease. Each of these
had a healthy sibling. In 26 of these pairs, both individuals had had ton-
sillectomies (T); in 37 pairs, both individuals had not had tonsillectomies
(N); in 15 pairs, only the healthy individual had had a tonsillectomy; in
7 pairs, only the one with Hodgkin’s disease had had a tonsillectomy.

Healthy/T Healthy/N Total
Patient/T 26 15 41
Patient/N 7 37 44

Total 33 52 85

A goal of the study was to determine whether there was a link between
the disease and having had a tonsillectomy: is the proportion of those
who had tonsillectomies the same among those with Hodgkin’s disease
as among those who do not have it? Test at α = 5%,

12.16. School Spirit at Duke. Duke has always been known for its great
school spirit and support of its athletic teams, as evidenced by the fa-
mous Cameron Crazies. One way that school enthusiasm is shown is by
donning Duke paraphernalia including shirts, hats, shorts, and sweat-
shirts. A project in an introductory statistics class was to explore possible
links between school spirit, measured by the number of students wear-
ing paraphernalia, and some other attributes. It was hypothesized that
men would wear Duke clothes more frequently than women. The data
were collected on the Bryan Center walkway starting at a random hour
on five different days. Each day 100 men and 100 women were tallied,
with results shown in the table below:

Duke paraphenalia No Duke paraphenalia Total
Male 131 369 500

Female 52 448 500

Total 183 817 1000

Test the hypothesis that population of male and female Duke students
are homogeneous with respect to wearing Duke paraphernalia?
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12.17. Two Halloween Questions with Easy Answers. A study was designed
to test whether or not aggression is a function of anonymity. The study
was conducted as a field experiment on Halloween (Fraser, 1974); 300
children were observed unobtrusively as they made their rounds. Of
these 300 children, 173 wore masks that completely covered their faces,
while 127 wore no masks. It was found that 101 children in the masked
group displayed aggressive or antisocial behavior versus 36 children in
the unmasked group.
(a) Are anonymity and aggression independent? Use α = 0.01.
(b) If p1 is the (population) proportion for aggressive behavior for sub-
jects wearing a mask and p2 is the proportion for subjects not wearing a
mask, find a 95% confidence interval for the odds ratio:

p1/(1− p1)

p2/(1− p2)
.

12.18. Runners and Heart Attack. The influence of running on preventing
heart attacks has been studied by a local runners club. The follow-
ing two-way table classifies 350 people as runners or nonrunners, and
whether or not they have had a heart attack. The factors are runner sta-
tus and history of heart attack.

Heart attack No heart attack Total

Runner 12 112 124
Nonrunner 36 190 226

Total 48 302 350

(a) Test for the independence of factors. Use α = 0.05.
(b) Explain in words (in terms of this problem) what constitutes errors
of the first and second kind in the testing.

12.19. Perceptions of Dangers of Smoking. A poll was conducted to de-
termine if perceptions of the hazards of smoking were dependent on
whether or not the person smoked. One hundred smokers and one hun-
dred nonsmokers were randomly selected and surveyed. The results are
given below:

Smoking is: Very Somewhat Not
dangerous Dangerous dangerous dangerous

Smokers 21 (35.5) 29 (30) 29 ( ) 21 ( )
Nonsmokers 50 (35.5) 31 ( ) 11 ( ) 8 ( )

Test the hypothesis that perception of the dangers of smoking is homo-
geneous with respect to smoking status at α = 0.05. Three theoretical
frequencies in parentheses are already calculated.



12.8 Exercises 639

12.20. Red Dye No. 2. Fienberg (1980) discusses an experiment in which the
food additive Red Dye No. 2 was fed to two groups of rats at various
dosages. Some rats died during the experiment, which lasted 131 weeks,
and the remainder were sacrificed at the end of the 131st week. All rats
were examined for tumors.

Age of death 0–131 weeks Terminal sacrifice
Dosage Low High Low High

Tumor present 4 7 0 7
Tumor absent 26 16 14 14

Test the mutual independence of the three factors. Report the p-value
and discuss.

12.21. Cyclaneusma Needlecast. Cyclaneusma needlecast is a plant disease
that affect pines. The affected trees have yellow needles that later be-
come more of a tan color, with darker brown transverse bands develop-
ing on the needle surfaces. It is difficult to control this disease because
spore production and infection can take place whenever temperatures
are above freezing and needles are wet.
Data in the table below describe an assessment of the outbreak of needle-
cast disease in two geographic locations of the western Italian Alps in
September 2010.
The affected species were Scots, Austrian White, and Swiss Mountain
pines, which are randomly sampled from the two locations.

Cyclaneusma needlecast disease data
Location A Location B

Needlecast disease Needlecast disease
Type of pine Yes No Yes No Totals
Scots 4 21 3 27 55
Austrian White 17 40 14 67 138
Swiss Mountain 61 43 70 52 226

(a) Are Species, Locations, and Disease mutually independent?
(b) Is Location independent from (Disease, Species)?
(c) Is Disease independent from Location given the Species?

12.22. Leukoplakia. Data (Table 12.3) from Hamerle and Tutz (1980) come
from a study on leukoplakia, which is a clinical term used to describe
patches of keratosis visible as adherent white patches on the membranes
of the oral cavity. Although most leukoplakia patches are benign and
considered not dangerous, sometimes they are coexistent with oral can-
cer. Often cancers on the floor of the mouth, beneath the tongue, occur
next to areas of leukoplakia.
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The objective is to explore the association between the disease and smok-
ing. The data on this association are stratified by alcohol consumption
level, also considered to be a risk factor.

Leukoplakia
Yes No

Alcohol Smoker
No Yes 26 10

No 8 8
(0g, 40g] Yes 38 8

No 43 24
(40g, 80g] Yes 4 1

No 14 17
> 80g Yes 1 0

No 3 7

Table 12.3 Contingency table for oral leukoplakia.

(a) Using Haenszel–Mantel procedure test the hypothesis that smoking
and the disease are associated. Use α = 0.05.
(b) Aggregate over alcohol consumption levels into a single 2× 2 table on
smoking versus disease status. Does the test for association agree with
the decision from (a)?

12.23. Thromboembolism, Smoking, and Contraceptive Use. The data pre-
sented in the table below were first analyzed by Worcester (1971) and
then re-analyzed by Bishop et al. (1975, p. 112). It was also discussed
in Example 12.3 in an aggregate form. The first response variable is the
presence or absence of thromboembolism. Variables 2 and 3 are both
stimuli variables, being the use or nonuse of oral contraception and
smoking or nonsmoking, respectively.

Thromboembolism data from Worcester (1971)
Smoker Nonsmoker

Contraceptive user Contraceptive user
Type of patient Yes No Yes No Totals
Thromboembolism 14 7 12 25 58
Control 2 22 8 84 116

(a) Identify the three factors and test the hypothesis that they are mutu-
ally independent.
(b) If the hypothesis in (a) is rejected, test the hypothesis that the factor
Type of patient is independent of the pair of factors Smoker and Contra-
ceptive use.
(c) Using Mantel–Haenszel methodology, test the hypothesis that the
probabilities of thromboembolism are equal for the contraceptive users
or non-users by accounting for the smoking status.
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12.24. ADA Polymorphism, Age and Gender. ADA (Adenosine Deaminase)
is a gene that plays a critical role in the immune system. ADA controls
the cellular level of adenosine, directly affecting immune response as
well as metabolic rate. ADA*1 is the dominant form of the gene, and
ADA*2 homozygous causes death in early embryonic stages. However,
if individuals are heterozygous with ADA*2, they have higher levels of
circulating adenosine, which can have a number of repercussions. This
polymorphism can be looked into further by identifying risk factors. The
population proportion of homozygous ADA*1 is 0.8575
Napolioni and Lucarini (2010) report data on 884 unrelated healthy in-
dividuals participating in a study, looking for genetic frequencies.

Males
Age ADA*1/1 ADA*1/2
<71 115 16
80–85 111 32
86–90 58 6
>90 59 3

Females
Age ADA*1/1 ADA*1/2
<71 109 32
80-85 120 17
86-90 82 16
>90 91 17

(a) Determine if the genotype is independent from age grouping for both
male and female. Conduct separate tests at α = 0.05.
(b) Recode the data from both tables so you can check if the proportion of
homozygous subjects is homogeneous for males and females, stratified
by the age level. Use Mantel–Haenszel’s test at the 5% level.
(c) Aggregate observed counts in (b) across the age groups to determine
if gender and genotype are independent.

12.25. Meta Analysis of Amantadine for Treatment of Influenza. The flu (in-
fluenza) can be caused by many different viruses. The drug amantadine
is FDA-approved for treatment and chemoprophylaxis of the influenza
A virus infections among adults and children aged one year and older.
Data on five randomized controlled trials of amantadine for preventing
influenza (Table 12.4) and analysis of its efficacy were presented by Jef-
ferson et al. (2002). The outcome is presence/absence of influenza-like-
lllness (ILI).
For us, it is of interest to explore the dependence of factors Treatment
(levels: Drug/Placebo) and ILI Status (levels: ILI/No ILI). Each of the
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Trial Drug (n/N) Placebo (n/N)
Calmander (1968) 33/47 31/47
Oker-Blom (1970) 62/141 88/152
Schapira (1971) 49/157 39/140
Pettersson (1980) 66/95 69/97
Quarless (1981) 42/107 44/99

Table 12.4 Five trials of amantadine for prevention of influenza. Outcome is the propor-
tion of influenca-like-illnesses (ILI), n cases out of N subjects.

five studies can be presented in a form of 2× 2 contingency table. For
example, Oker-Blom (1970) data can be tabulated as

Drug Placebo Total
ILI 62 88 150
No ILI 79 64 143
Total 141 152 293

(a) For Oker-Blom data, test independence of factors Treatment and ILI
Status using the χ2-test. You can use tablerxc.m and report the p-value.
What is your conclusion?
(b) Repeat the analysis in (a) for the remaining 4 studies. For which study
the p-value is the smallest.
(c) Sum up the 5 tables into a single table. Conduct the analysis the same
as in (a). Are the factors significantly dependent?
(d) Conduct simultaneous analysis of all 5 tables using Mantel–Haenszel
test. Report the p-value.
(e) In one paragraph, summarize your findings in (a)–(d).

12.26. UPSIT. Le (2009) provides data on a matched case-control study con-
ducted in order to evaluate the cumulative effects of acrylate and methacry-
late on olfactory function. Cases were defined as subjects scoring below
the 10th percentile on the UPSIT (University of Pennsylvania Smell Iden-
tification Test).

Cases
Controls Exposed Unexposed
Exposed 25 22
Unexposed 9 21

(a) Test to compare the cases versus controls. State your hypotheses
clearly and conduct the test. Use α = 0.05.
(b) In the table above there are 154 subjects in total, 77 cases and 77
controls. A tabulation that ignores pairing/matching is

Cases Controls Total
Exposed 34 47 81
Unexposed 43 30 73
Total 77 77 154
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Repeat the test from (a), without the information on matching. Compare
the results and discuss.

12.27. Mycosis Fungoides and Cutting Oils. In a case-control study reported
by Cohen (1977) researchers wanted to examine the association between
mycosis fungoides, a type of lymphoma that begins in the skin and even-
tually spreads to internal organs, and a history of employment in an in-
dustrial environment with exposure to cutting oils, a risk factor. After
matching 54 subjects with the disease (Cases) with 54 subjects without
the disease (Controls), the history of exposure to risk factors was inves-
tigated.

Controls
History of No history of
exposure exposure Total

History of exposure 16 13 29
Cases No history of exposure 3 22 25

Total 19 35 54

(a) The Cases seem to be more likely to be exposed to the risk factor than
the Controls. Explore if this is statistically significant, at the 5% level.
(b) Fully “parallelize” the table, that is, find b, c, and d:

Cases Controls
History of exposure 16 + 13 b
No history of exposure c d

For the table in this form explore if the factors Mycosis and Exposure
are significantly dependent. Use α = 0.05.

12.28. H. pylori and ELISA Revisited. In Exercise 4.16 the researchers also
compared performance of oral fluid ELISA (OD=0.3) and serum ELISA
in the cohort of 81 subjects. We are interested in comparing the specifici-
ties of the two tests. From the information given in Exercise 4.16, and the
fact that 3 control subjects tested positive with both ELISA tests, distill a
single paired table:

Oral fluid ELISA
– + Total

Serum ELISA –
+ 3

Total 47

Because we are interested in the specificities, note that this table involves
only 47 control subjects. Using mcnemart.m compare the population
specificities of the two tests.
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12.29. Hepatic Arterial Infusion. Allen-Mersh et al. (1994), as well as Spiegel-
halter et al. (2004), reported the results of a trial in which patients under-
going therapy for liver metastasis were randomized to receive it either
systematically (as is standardly done) or via hepatic arterial infusion
(HAI). Of 51 randomized to HAI, 44 died, and of 49 randomized to sys-
tematic therapy, 46 died. Estimate the log odds ratio and find a 95%
confidence interval.

12.30. Vaccine Efficacy Study. Consider the data from a vaccine efficacy study
(Chan, 1998). In a randomized clinical trial of 30 subjects, 15 were inocu-
lated with a recombinant DNA influenza vaccine, and the remaining 15
were inoculated with a placebo. Twelve of the 15 subjects in the placebo
group (80%) eventually became infected with influenza, whereas for the
vaccine group, only 7 of the 15 subjects (47%) became infected. Suppose
that p1 is the probability of infection for the vaccine group and p2 is the
probability of infection for the placebo group.
What is the one-sided p-value for testing the null hypothesis H0 : p1 = p2
obtained by Fisher’s exact test?

12.31. Marriages in Surinam. Speckmann (1965) and Lawal (2003) provide
data on the religious affiliations of husbands and wives in 264 marriages
in Surinam.

Wife
Christian Muslim Hindu Total

Christian 17 1 7 25
Husband Muslim 1 66 6 73

Hindu 9 6 151 166
Total 27 73 164 264

Here Hindu counts combine Sanatan Dharm and Arya Samaj affiliations.
Are the population proportions of husbands who are Christian, Mus-
lim, or Hindu equal to the proportions of wives who belong to those
three religious groups? Note that the data are paired and that the Stuart–
Maxwell test is appropriate.

12.32. CYP1A1 Polymorphysm and Risk of Leukemia. Researchers (Ma et al,
2002) were interested in the association between the genotypic frequen-
cies of the cytochrome P450 1A1 polymorphism and the risk of child-
hood leukemia. Data were collected as part of the Northern California
Childhood Leukemia Study. Matched case-control observations were ab-
stracted from a large number of genetic/environmental variables that
potentially influence the risk of childhood leukemia. The cases are chil-
dren ages 0 to 14 years old with newly diagnosed leukemia (1995 to 1999)
obtained from major hospitals in the San Francisco Bay Area. Compari-
son with California State Cancer Registry data shows that > 90% of the
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eligible children were ascertained. The control children were randomly
selected from birth certificate records and matched to cases with respect
to sex, age, race, and county of birth. The CYP1A1/leukemia data con-
sisting of 175 matched pairs of acute lymphoblastic leukemia cases and
their controls (117 concordant and 58 discordant pairs) are given in Table
12.5.

Control: AA* Control: AG Control: GG Total
Case: AA* 103 26 2 131
Case: AG 23 14 2 39
Case: GG 1 4 0 5
Total 127 44 4 175

Table 12.5 The observed numbers of matched pairs by case-control status and CYP1A1
genotypes

(a) Using Stuart–Maxwell and Bhapkar procedures, test the marginal
homogeneity of genotypes for case and control children.
(b) Using Bowker’s procedure, test for the symmetry of the table.
Use α = 0.05.

12.33. Left-/Right-Side Tooth Decay. Tomizawa et al. (2006) give tabular data
on number of decayed teeth in 349 men aged 18–39. Counts are made on
left and right side of mouth in each subject. The data were collected in a
dental clinic in Sapporo City, Japan, from 2001 to 2005.

Right
0–4 5–8 9+ Total

0–4 118 37 2 157
Left 5–8 21 87 23 131

9+ 2 11 48 61
Total 141 135 73 349

Using Stuart–Maxwell and Bhapkar procedure test the marginal ho-
mogeneity. Also test for the symmetry using Bowker procedure. Use
α = 0.05.
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MATLAB FILES USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch12.Tables/

annoyance.m, anole.m, berkeleyadmissions.m, bowker.m, cochranappl.m,

cochrant.m, cohen.m, concoef.m, conditionalrxcxp.m, fisherexact.m,

fisherexactt.m, galtonalw.m, hindu.m, jointrxcxp.m, kappa1.m,

liddell.m, mantelhaenszel.m, mcnemart.m, myfisher33.m, oesophageal.m,

partialrxcxp.m, psychosis.m, PAS.m, stuartmaxwell.m, table2x2.m,

tablerxc.m, tablerxcxp.m, unmatch.m
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Chapter 13

Correlation

The invalid assumption that correlation implies cause is probably among the two or three
most serious and common errors of human reasoning.

– Stephen Jay Gould

WHAT IS COVERED IN THIS CHAPTER

• Calculating the Pearson Coefficient of Correlation, Conditional
Correlation
• Testing the Null Hypothesis of No Correlation
• General Test for Correlation and Confidence Intervals, Fisher z-

Transformation
• Inference for Two or More Correlation Coefficients
• Nonparametric Correlation Measures: Spearman’s and Kendall’s

Correlation Coefficient

13.1 Introduction

Collins English Dictionary1 defines correlation as a mutual or reciprocal rela-
tionship between two or more things, the act or process of correlating or the state

1 correlation. (n.d.). Collins English Dictionary - Complete & Unabridged
10th Edition. Retrieved April 16, 2017 from Dictionary.com website
http://www.dictionary.com/browse/correlation
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of being correlated, and the extent of correspondence between the ordering of two
variables.

Statistically, correlation is a measure of the particular affinity between
two sets of comparable measurements. It is often incorrectly believed that
the notions of correlation and statistical dependence and causality coincide.
According to an anecdote, the number of drownings at a particular large
beach in one season could be positively and significantly correlated with
the number of ice-creams sold at the beach during the same period of time.
Of course, nobody would argue that the relationship is causal. Purchasing
an ice-cream at the beach does not increase the risk of drowning; the pos-
itive correlation is caused by a latent or lurking variable, the number of
visitors at the beach.

Correlation is, in informal terms, a constrained dependence. For ex-
ample, the common measure of correlation, the Pearson coefficient of
correlation, quantifies the strength and direction of the linear relation-
ship between two variables.

If measurements are correlated, then they are dependent, but not nec-
essarily vice versa. A simple example involves points on a unit circle. One
selects n angles ϕi, i = 1, . . . ,n, uniformly from [0,2π]. The angles deter-
mine n points on the unit circle, (xi,yi) = (cos ϕi, sin ϕi), i = 1, . . . ,n. Al-
though x = (x1, . . . , xn) and y= (y1, . . . ,yn) are functionally dependent, since
x2

i + y2
i = 1, their coefficient of correlation is 0 or very close to 0. See also Ex-

ercise 13.1. Only for a normal distribution do the notions of correlation and
independence coincide: uncorrelated normally distributed measurements
are independent.

13.2 The Pearson Coefficient of Correlation

In Chapter 2, where we discussed the summaries of multidimensional data
we also mentioned correlations between the variables and connected the co-
efficient of correlation with scatterplots and a descriptive statistical method-
ology. In this chapter we will take an inferential point of view on correla-
tions. For developing the tests and confidence intervals we will assume that
the data come from normal distributions for which the population coeffi-
cient of correlation is ρ.

Suppose that pairs (X1,Y1), (X2,Y2), . . . , (Xn,Yn) are observed, and as-
sume that Xs and Ys come from normal N (0,σ2

X) and N (0,σ2
Y) distribu-

tions and that the correlation coefficient between X and Y is ρXY, or simply
ρ. We are interested in making an inference about ρ when n pairs (Xi,Yi)
are observed.
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Fig. 13.1 A simulated example showing scatterplots with correlated components (a) r =
0.04, (b) r = 0.54, (c) r = −0.77, and (d) r = 0.96.

From the observations, the following sums of squares are formed: Sxx =
∑

n
i=1(Xi −X)2, Syy = ∑

n
i=1(Yi−Y)2, and Sxy = ∑

n
i=1(Xi −X)(Yi−Y). Then,

an estimator of ρ is

r =
Sxy√

Sxx Syy
.

An alternative expression for r is

r =
∑i XiYi − nX Y√

(∑i X2
i − n(X)2) (∑i Y2

i − n(Y)2)
.

This estimator is an MLE for ρ, and it is asymptotically unbiased, that is,
limn→∞ Ern = ρ.

Sample correlation coefficient r is always in [−1,1]. To see this, con-
sider the Cauchy–Schwartz inequality that states: For any two vectors
(u1,u2, . . . ,un) and (v1,v2, . . . ,vn), it holds that (∑i uivi)

2 ≤ ∑i u2
i ∑i v2

i .



652 13 Correlation

Substitutions ui = Xi−X and vi =Yi−Y prove the inequality r2 ≤ 1. Figure
13.1 shows simulated correlated data (green dots) with correlation coeffi-
cients (a) r = 0.04, (b) r = 0.54, (c) r =−0.77, and (d) r = 0.96.

Partial Correlation. Let rxy,rxz, and ryz be correlations between the pairs
of variables X, Y, and Z. The partial correlation between X and Y when
effect of Z is accounted for is

rxy.z =
rxy − rxzryz√

1− r2
xz

√
1− r2

yz

.

When the effects of two variables Z and W are excluded from the correla-
tion between X and Y, the partial coefficient is

rxy.zw =
rxy.w − rxz.wryz.w

√
1− r2

xz.w

√
1− r2

yz.w

or, equivalently,

rxy.zw =
rxy.z − rxw.zryw.z√
1− r2

xw.z

√
1− r2

yw.z

,

depending on the order of exclusion of W and Z.

Remark. The partial coefficient of correlation rxy.z referred to a correlation
between X and Y when the effects of Z are removed from both X and Y. If
we wanted the correlation between X and Y when the effect of Z is removed
only from Y, then we should use semi-partial correlation,

rx(y.z) =
rxy − rxzryz√

1− r2
yz

= rxy.z

√
1− r2

xz.

Semi-partial correlations are utilized in multiple regressions for variable
selection.

13.2.1 Inference About ρ

Assume that pairs (Xi,Yi), i = 1, . . . ,n are sampled from a bivariate normal
distribution N2(µX ,µY,σ2

X,σ2
Y,ρ) with density as in (6.1). We refer to ρ as

the population coefficient of correlation. To test H0 : ρ = 0 against one of
the alternatives ρ >, 6=,< 0, the t-statistic is used:



13.2 The Pearson Coefficient of Correlation 653

t = r

√
n− 2
1− r2 ,

which has a t-distribution with d f = n− 2 degrees of freedom.

Alternative α-level rejection region p-value
H1 : ρ > 0 [td f ,1−α,∞) 1-tcdf(t, df)

H1 : ρ 6= 0 (−∞, td f ,α/2] ∪ [td f ,1−α/2,∞) 2*tcdf(-abs(t), df)

H1 : ρ < 0 (−∞, td f ,α] tcdf(t, df)

Example 13.1. Rats and Maze. The table below gives the number of times
X rats ran through a maze and the time Y it took them to run through the
maze on their last trial.

Rat Trials (X) Time (Y)
1 8 10.9
2 9 8.6
3 6 11.4
4 5 13.6
5 3 10.3
6 6 11.7
7 3 10.7
8 2 14.8

(a) Find r.
(b) Is the maze learning significant? Test the hypothesis that the popu-

lation correlation coefficient ρ is 0, versus the alternative that ρ is negative.
∑i Xi = 42, ∑ X2

i = 264, ∑i Yi = 92, ∑i Y2
i = 1084.2, ∑i XiYi = 463.8, X =

5.25, Y = 11.5.

r =
463.8− 8 · 5.25 · 11.5√

(264− 8 · 5.252)(1084.2− 8 · 11.52)
=

−19.2√
43.5 · 26.2

=−0.5687.

For testing H0 : ρ = 0 versus H1 : ρ < 0, we find

t = r

√
n− 2
1− r2 = −1.6937.

For α = 0.05 the critical value is t6,0.05 = −1.9432 and the null hypothesis is
not rejected.

Remark. Sample size is critical for our decision. If for the same r =−0.5687,
the sample size n were 30, then t =−3.6588, and H0 would be rejected, since
t < t28,0.05 =−1.7011.
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In MATLAB:

X = [8 9 6 5 3 6 3 2];

Y = [10.9 8.6 11.4 13.6 10.3 11.7 10.7 14.8];

n=8;

cxy=cov(X,Y)

% cxy =

% 6.2143 -2.7429

% -2.7429 3.7429

rxy=cxy(1,2)/sqrt(cxy(1,1)*cxy(2,2))

%rxy = -0.5687

tstat = rxy * sqrt(n-2)/sqrt(1-rxy^2)

%tstat = -1.6937

pval = tcdf(tstat, n-2)

%pval = 0.0706

%n=8, p-val = 7% > 5% do not reject H_0

%============

n=30;

tstat = rxy * sqrt(n-2)/sqrt(1-rxy^2)

%tstat =-3.6588

pval = tcdf(tstat, n-2)

% pval = 5.2031e-04

�

When partial correlations are of interest, the test is based on the statistic

t = r
√

n−q−2
1−r2 , which has d f = n− q− 2 degrees of freedom. Here q is the

number of other variables accounted for.

Example 13.2. Mg-CaO Data. In many ways magnesium (symbol Mg) is
very similar to calcium (Ca), and determination of the quantity of one may
be influenced by the presence of the other. Extremely small amounts of
calcium, especially in the presence of much magnesium, as in magnesites
and fused magnesia, cannot be determined satisfactorily by direct precip-
itation as an oxalate. Hazel and Eglof (1946) proposed a new method, de-
noted as method B. Its performance was compared to the traditional alco-
hol method (treatment with a mixture of ethyl alcohol, methyl alcohol and
sulfuric acid), denoted here as method A.

The column y is obtained by using the method A, while the column z
is obtained by a Hazel–Eglof method B. Column x is the exact amount of
CaO present in MgO + CaO, India magnesite, and magnesite 104. Part of
this data ( hazel.dat|mat) was analyzed also by Youden (1951, p.44).
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x y z
CaO CaO Found CaO Found

Present Method A Method B
4.0 3.7 3.9
8.0 7.8 8.1
8.5 7.7 8.9
9.1 8.4 9.2
9.7 9.4 10.0
9.9 9.5 9.9

12.5 12.1 12.4
16.0 15.6 16.0
20.0 19.8 19.8
25.0 24.5 25.0
26.8 26.1 27.1
31.0 31.1 31.1
36.0 35.5 35.8
40.0 39.4 40.1
40.0 39.5 40.1

Find and test the significance of ryz.x.

%hazel.m

hazel=[...

4.0 3.7 3.9

8.0 7.8 8.1

...

40.0 39.4 40.1

40.0 39.5 40.1 ];

%or just load ’hazel.dat|mat’

x=hazel(:,1); y=hazel(:,2); z=hazel(:,3); n=length(x);

mycor = @(x,y) (x(:)-mean(x(:)))’*(y(:)-mean(y(:)))/ ...

sqrt( (x(:)-mean(x(:)))’*(x(:)-mean(x(:)) )*...

(y(:)-mean(y(:)))’*(y(:)-mean(y(:))));

rxy=mycor(x,y); rxz = mycor(x,z); ryz=mycor(y,z);

% 0.9998 0.9999 0.9996

ryz_x = (ryz - rxy * rxz)/sqrt((1-rxy^2)*(1-rxz^2)) %-0.3861

t = ryz_x * sqrt(n-2-1)/sqrt(1-ryz_x^2) %-1.4498

pval = 2 * tcdf(-abs(t), n-2-1) % 0.1727

Thus, the extreme correlation between y and z (0.9996, p-value of about
1.6 · 10−21) becomes insignificant (p-value of 0.1727), even negative, when
variable x is taken into account. In the context of the problem, when ac-
counted for the true content of CaO, the methods A and B are not signifi-
cantly correlated.
�
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13.2.1.1 Confidence Intervals for ρ

Confidence intervals for the population coefficient of correlation ρ are ob-
tained not by using direct measurements, but in a transformed domain.
This transformation is known as Fisher’s z-transformation and is intro-
duced next.

Let (X11, X21), . . . , (X1n, X2n) be a sample from a bivariate normal distri-
bution N2(µ1,µ2,σ2

1 ,σ2
2 ,ρ), and Xi =

1
n ∑

n
j=1 Xij, i = 1,2.

The Pearson coefficient of linear correlation

r =
∑

n
i=1(X1i − X1)(X2i − X2)[

∑
n
i=1(X1i − X1)2 ·∑n

i=1(X2i − X2)2
]1/2

has a complicated distribution involving special functions, (e.g., Anderson,
1984, page 113). However, it is well known that the asymptotic distribution

for r is normal, N (ρ, (1−ρ2)2

n ). Since the variance is a function of the mean

[σ2(ρ) = (1−ρ2)2

n , see equation (6.4)], the transformation defined as

ϑ(ρ) =
∫

c

σ(ρ)
dρ

=
∫

c
√

n

1− ρ2 dρ

=
c
√

n

2

∫ ( 1
1− ρ

+
1

1 + ρ

)
dρ

=
c
√

n

2
log
(

1 + ρ

1− ρ

)
+ k

stabilizes the variance. This is known as Fisher’s z-transformation for the
correlation coefficient. Typical choices for c and k are c = 1/

√
n and k = 0.

Assume that r and ρ are mapped to w and ζ as

w =
1
2

log
(

1 + r

1− r

)
= arctanh r, ζ =

1
2

log
(

1 + ρ

1− ρ

)
= arctanh ρ.

The distribution of w is approximately normal, N (ζ, 1
n−3 ), and this

approximation is quite accurate when ρ2/n2 is small and n is as low
as 20.

The inverse z-transformation is

r = tanh(w) =
exp{2w} − 1
exp{2w}+ 1

.
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The use of Fisher’s z-transformation is illustrated on finding the confi-
dence intervals for ρ and testing hypotheses about ρ.
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(a) (b)

Fig. 13.2 (a) Simulational run of 10,000 rs from a bivariate population having a theo-
retical ρ =

√
2/2. (b) The same rs transformed into ws with the normal approximation

superimposed.

To exemplify the above-stated transformations, we generated n = 30
pairs of normally distributed random samples with theoretical correlation√

2/2. This was done by generating two i.i.d. normal samples a and b of
length 30 and taking the transformation x1 = a + b, x2 = b. The sample
correlation coefficient r was found. This was repeated M = 10,000 times. A
histogram of 10,000 sample correlation coefficients is shown in Figure 13.2a.
A histogram of the z-transformed rs is shown in Figure 13.2b with a super-
imposed normal approximation N (arctanh(

√
2/2),1/(30− 3)).

The sampling distribution for w is approximately normal with mean
ζ = 1

2 log 1+ρ
1−ρ and variance 1/(n− 3). This approximation is satisfactory

when the number of pairs exceeds 20. Thus, the (1− α)100% confidence
interval for ζ = 1

2 log 1+ρ
1−ρ is
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[wL,wU] =

[
w− z1−α/2√

n− 3
, w +

z1−α/2√
n− 3

]
,

where w = 1
2 log 1+r

1−r .

Since r = e2w−1
e2w+1 , an approximate (1− α)100% confidence interval

for ρ is

[rL,rU ] =

[
e2wL − 1
e2wL + 1

,
e2wU − 1
e2wU + 1

]
.

Remark. More accurate approximation for the sampling distribution of w
has the mean ζ + ρ/(2n− 2). The correction ρ/(2n− 2) is often used in
testing and confidence intervals when n is not large. In the above interval
the corrected w would be 1

2 log 1+r
1−r − r

2(n−1) .

Example 13.3. If r = −0.5687 and n = 8, then w = −0.6456. The bounds for
the 95% confidence interval for ζ = 1

2 log 1+ρ
1−ρ are wL =−0.6456− 1.96/

√
5=

−1.522 and wU = −0.6456+ 1.96/
√

5 = 0.2309. The confidence interval for
ρ is obtained by back-transforming wL and wU using r = e2w−1

e2w+1 . The result
is [−0.9091,0.2269].
�

13.2.1.2 Test for ρ = ρ0

We saw that when ρ0 = 0, this test is a t-test with a statistic given as t =

r
√

n−2
1−r2 . When ρ0 6= 0, then the test of H0 : ρ = ρ0 versus H1 : ρ >, 6=,< ρ0

does not have a simple generalization. An approximate test is based on a
normal approximation. Under H0 : ρ = ρ0, the test statistic

z =

√
n− 3
2

[
log
(

1 + r

1− r

)
− log

(
1 + ρ0

1− ρ0

)]
,

has an approximately standard normal distribution. This implies the fol-
lowing testing rules:



13.2 The Pearson Coefficient of Correlation 659

Alternative α-level rejection region p-value
H1 : ρ > ρ0 [z1−α,∞) 1-normcdf(z)

H1 : ρ 6= ρ0 (−∞,zα/2] ∪ [z1−α/2,∞) 2*normcdf(-abs(z))
H1 : ρ < ρ0 (−∞,zα] normcdf(z)

Example 13.4. Interparticular Spacing in Nanoprisms. There is much in-
terest in knowing and understanding how nanoparticles interact optically.
One reason is the use of nanoparticles as plasmon rulers. Plasmon rulers are
beneficial to the field of biomedical engineering as they allow researchers
to measure changes and differences in DNA or cells at the nano level. This
is promising for diagnostics, especially with respect to genetic disorders,
which could be potentially identified by data from a plasmon ruler. In or-
der to create a basis for this idea, research must be done to determine
the effect of different interparticle spacing on the maximum wavelength of
absorbance of the particles. While a linear correlation between measured
separation and wavelength is not strong, researchers have found that the cor-
relation between the reciprocal of separation, recsep=1/separation, and the
logarithm of a wavelength, logwl=log(wavelength), is strong. The data from
the lab of Dr. Mostafa El-Sayed, Georgia Tech, are given in the table below,
as well as in nanoprism.dat.

recsep logwl recsep logwl recsep logwl

2.9370 0.0694 2.9284 0.0433 2.9212 0.0331
2.9196 0.0288 2.9149 0.0221 2.9106 0.0121
2.9047 0.0080 2.9047 0.0069 2.9031 0.0049
2.9320 0.0714 2.9154 0.0427 2.9165 0.0336
2.9085 0.0292 2.9090 0.0240 2.9047 0.0197
2.9058 0.0052 2.9025 0.0104 2.9025 0.0087
2.8976 0.0078 2.8971 0.0065 2.8976 0.0062

(a) Test the hypothesis that the population coefficient of correlation for
the transformed measures is ρ = 0.96 against the alternative ρ < 0.96. Use
α = 0.05.

(b) Find a 95% confidence interval for ρ.
From the MATLAB code below, we see that r = 0.9246 and the p-value

for the test is 0.0832. Thus, at a 5% significance level H0 : ρ = 0.96 is not
rejected. The 95% confidence interval for ρ in this case is [0.8203,0.9694].

%nanoprism.m

load ’nanoprism.dat’

recsep = nanoprism(:,1);

logwl = nanoprism(:,2);

r = corr(recsep, logwl) %0.9246

n = length(logwl);
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fisherz = @(x) atanh(x); invfisherz = @(x) tanh(x);

%fisher z and inverse transformations as pure functions

%Forming z for testing H0: rho = rho0:

z = (fisherz(r) - fisherz(0.96))/(1/sqrt(n-3)) %-1.3840

pval = normcdf(z) %0.0832

%95% confidence interval

invfisherz([fisherz(r) - norminv(0.975)/sqrt(n-3) ,...

fisherz(r) + norminv(0.975)/sqrt(n-3)])

%0.8203 0.9694

�

Remark. Inference for population ρ using Fisher z transform is valid when
samples sizes are larger than n = 5. When n < 15, it is recommended to

correct r as r∗ = r
[
1 + 1+r2

2(n−3)

]
.

If n > 15, the distribution of random variable

t =
(r− ρ)

√
n− 2√

(1− ρ2)(1− r2)

is well approximated with t-distribution with n − 2 degrees of freedom.
This fact is sometimes used to devise an alternative test for testing H0 : ρ =
ρ0 versus one-sided or two-sided alternatives, in a standard way.

If n > 200, one can approximate distribution of r directly as normal

N
(

ρ, 1−ρ2

n−1

)
.

13.2.1.3 Test for the Equality of Two Correlation Coefficients

In some testing scenarios we might be interested to know if the correla-
tion coefficients from two bivariate populations, ρ1 and ρ2, are equal. From

the first population the pairs (X
(1)
i ,Y(1)

i ), i = 1, . . . ,n1 are observed. Anal-

ogously, from the second population the pairs (X
(2)
i ,Y(2)

i ), i = 1, . . . ,n2 are
observed and sample correlations r1 and r2 are calculated. The populations
are assumed normal and independent, but components X and Y within
each population might be correlated.

The test statistic for testing H0 : ρ1 = ρ2 versus H1 : ρ1 >, 6=,< ρ2 is ex-
pressed in terms of Fisher’s z-transformations of the sample correlations r1
and r2:

z =
w1 −w2√

1
n1−3 +

1
n2−3

,
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where wi =
1
2 log 1+ri

1−ri
, i = 1,2 and n1 and n2 are the number of pairs in the

first and second sample, respectively.

Alternative α-level rejection region p-value
H1 : ρ1 > ρ2 [z1−α,∞) 1-normcdf(z)

H1 : ρ1 6= ρ2 (−∞,zα/2] ∪ [z1−α/2,∞) 2*normcdf(-abs(z))
H1 : ρ1 < ρ2 (−∞,zα] normcdf(z)

If H0 is not rejected, then one may be interested in pooling the two
sample estimators r1 and r2. This is done in the domain of z-transformed
values as

wp =
(n1 − 3)w1 + (n2 − 3)w2

n1 + n2 − 6

and inverting wp to rp via

rp =
1− exp{2wp}
1 + exp{2wp}

.

Example 13.5. Swallowtail Butterflies. The following data were extracted
from a larger study by Brower (1959) on a speciation in a group of swal-
lowtail butterflies. Morphological measurements are (X – length of eighth
tergile, Y – length of superuncus)×8, in mm.

Species X Y X Y X Y X Y

Papilio 24 14 21 15 20 17.5 21.5 16.5
multicaudatus 21.5 16 25.5 16 25.5 17.5 28.5 16.5

23.5 15 22 15.5 22.5 17.5 20.5 19
21 13.5 19.5 19 26 18 23 17
21 18 21 17 20.5 16 22.5 15.5

Papilio 20 11.5 21.5 11 18.5 10 20 11
rutulus 19 11 20.5 11 19.5 11 19 10.5

21.5 11 20 11.5 21.5 10 20.5 12
20 10.5 21.5 12.5 17.5 12 21 12.5
21 11.5 21 12 19 10.5 19 11
18 11.5 21.5 10.5 23 11 22.5 11.5
19 13 22.5 14 21 12.5 19.5 12.5

The observed correlation coefficients are r1 =−0.1120 (for P. multicauda-
tus) and r2 = 0.1757 (for P. rutulus). We are interested if the corresponding
population correlation coefficients ρ1 and ρ2 are significantly different.

The Fisher z-transformations of r1 and r2 are w1 = −0.1125 and w2 =
0.1776. The test statistic is z = −0.1125−0.1776√

1/17+1/25
= −0.9228. For this value of
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z the p-value against the two-sided alternative is 0.3561, and the null hy-
pothesis of the equality of population correlations is not rejected. Here is a
MATLAB session for the exercise above.

PapilioM=[24, 14; 21, 15; 20, 17.5; 21.5, 16.5; ...

21.5, 16; 25.5, 16; 25.5, 17.5; 28.5, 16.5; ...

23.5, 15; 22, 15.5; 22.5, 17.5; 20.5, 19; ...

21, 13.5; 19.5, 19; 26, 18; 23, 17; ...

21, 18; 21, 17; 20.5, 16; 22.5, 15.5];

PapilioR=[20, 11.5; 21.5, 11; 18.5, 10; 20, 11; ...

19, 11; 20.5, 11; 19.5, 11; 19, 10.5; ...

21.5, 11; 20, 11.5; 21.5, 10; 20.5, 12; ...

20, 10.5; 21.5, 12.5; 17.5, 12; 21, 12.5; ...

21, 11.5; 21, 12; 19, 10.5; 19, 11; ...

18, 11.5; 21.5, 10.5; 23, 11; 22.5, 11.5; ...

19, 13; 22.5, 14; 21, 12.5; 19.5, 12.5];

PapilioMX=PapilioM(:,1); % X_m

PapilioMY=PapilioM(:,2); % Y_m

PapilioRX=PapilioR(:,1); % X_r

PapilioRY=PapilioR(:,2); % Y_r

n1=length(PapilioMX);

n2=length(PapilioRX);

r1=corr(PapilioMX, PapilioMY); % -0.1120

r2=corr(PapilioRX, PapilioRY); % 0.1757

%test for rho1 = 0

pval1 = 2* tcdf(-abs(r1*sqrt(n1-3)/sqrt(1-r1^2)), n1-3);

% 0.6480

%test for rho2 = 0

pval2 = 2* tcdf(-abs(r2*sqrt(n2-3)/sqrt(1-r2^2)), n2-3);

%0.3806

fisherz = @(x) 1/2*log( (1+x)/(1-x) );

%Fisher z transformation as pure function

w1 = fisherz(r1); %-0.1125

w2 = fisherz(r2); %0.1776

%test for rho1 = rho2 vs. rho1 ~= rho2

z = (w1 - w2)/sqrt(1/(n1-3) + 1/(n2-3)) %-0.9228

pval = 2 * normcdf(-abs(z)) %0.3561

�

13.2.1.4 Testing the Equality of Several Correlation Coefficients

We are interested in testing H0 : ρ1 = ρ2 = · · · = ρk.
Let ri be the correlation coefficient based on ni pairs, i = 1, . . . ,k, and let

wi =
1
2 log 1+ri

1−ri
be its Fisher transformation. Define



13.2 The Pearson Coefficient of Correlation 663

N = (n1 − 3) + (n2 − 3) + · · ·+ (nk − 3) =
k

∑
i=1

ni − 3k, and

w =
(n1 − 3)w1 + (n2 − 3)w2 + · · ·+ (nk − 3)wk

N
.

Then the statistic

χ2 = (n1 − 3)w2
1 + (n2 − 3)w2

2 + · · ·+ (nk − 3)w2
k − N(w)2

has a χ2-distribution with k− 1 degrees of freedom. Large values of χ2 are
critical for H0.

Example 13.6. Correlations in Fisher’s Iris Data. In testing whether the
correlations between sepal and petal lengths differ for the species: setosa,
versicolor, and virginica, the p-value found was close to 0.

load fisheriris

%Correlations between sepal and petal lengths

%for species setosa, versicolor and virginica

n1=50; n2=50; n3=50; k=3; N=n1+n2+n3-3*k;

r =[ corr(meas(1:50, 1), meas(1:50, 3)), ...

corr(meas(51:100, 1), meas(51:100, 3)), ...

corr(meas(101:150, 1), meas(101:150, 3)) ]

%0.2672 0.7540 0.8642

fisherz = @(r) 1/2 * log( (1+r)./(1-r) );

w=fisherz(r)

%0.2738 0.9823 1.3098

wbar = [n1-3 n2-3 n3-3]/N * w’ %0.8553

chi2 = [n1-3, n2-3, n3-3]*(w.^2)’- N*wbar^2 %26.3581

pval = 1-chi2cdf(chi2, k-1) %1.8897e-006

�

13.2.1.5 Power and Sample Size in Inference About Correlations

Power and sample size computations for testing correlations use the fact
that Fisher’s z-transformed sample correlation coefficients have an approx-
imately normal distribution, as we have seen before.

The statistic t = r
√

n−2
1−r2 , which has a t-distribution with d f = n− 2 de-

grees of freedom, determines the critical points of the rejection region as

r∗ =

√√√√ t2
n−2,1−α

t2
n−2,1−α + (n− 2)

,

where α is replaced by α/2 for the two-sided alternative, and where the
sign of the square root is negative if H1 : ρ < 0.
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Let z-transformations of r and r∗ be w and w∗, respectively. Then the
power, as a function of w, is approximately

1− β = Φ
(
(w−w∗)

√
n− 3

)
, (13.1)

with (w−w∗) replaced by (w∗ −w) if H1 : ρ < 0.
The calculated power is retrospective, that is, the power for ρ = r, where

r is observed. For prospective studies, w in (13.1) is replaced by z-transform
of ρ1 from H1 : ρ = ρ1.

The sample size needed to achieve a power of 1− β, in a test of level α
against the one-sided alternative, is approximately,

n =

(
z1−α + z1−β

w

)2

+ 3.

Here the effect size w is z-transformation of ρ1 from the specific alternative,
H1 : ρ = ρ1, and z1−α and z1−β are quantiles of a standard normal distribu-
tion. When the alternative is two-sided, z1−α is replaced by z1−α/2.

Example 13.7. Power for Rats and Mazes. In Example 13.1 it was found
that r = −0.5687. For n = 8, the null hypothesis of no correlation was not
rejected. It was also discussed that if, for the same observed r, the sample
size were n = 30, the null hypothesis would be rejected with a p-value of
5.2031e− 04.

What would be the retrospective power of this test in a 5% testing
against the alternative H1 : ρ < 0?

If w∗ is taken with the negative sign, and (w−w∗) in (13.1) replaced by
(w∗ − w), the approximate power is found to exceed 95%:

r=-0.5687;

n=30;

rstar = -sqrt( tinv(1-0.05,n-2)^2/( (n-2) + tinv(1-0.05,n-2)^2 )) %-0.3061

fisherz = @(x) atanh(x);

wstar = fisherz(rstar); w = fisherz(r);

power = normcdf((wstar-w)*sqrt(n-3)) %0.9565

�

Example 13.8. Sample Size in Testing the Correlation. One wishes to de-
termine the size of a sample sufficient to reject H0 : ρ = 0 with a power
of 1− β = 0.90 in a test of level α = 0.05 whenever ρ ≥ 0.4. Here we take
H1 : ρ = 0.4 and find that a sample of size 51 will be necessary:

fisherz = @(x) atanh(x);

w = fisherz(0.4) % 0.4236

n =((norminv(0.95)+norminv(0.90))/w)^2 + 3 %50.7152

If H0 : ρ = 0 is to be rejected whenever |ρ| ≥ 0.4, then a sample of size 62
is needed:
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n =((norminv(0.975)+norminv(0.90))/w)^2 + 3 %61.5442

�

13.2.1.6 Multiple Correlation Coefficient

Consider three variables X1, X2, and Y. The correlation between Y and the
pair X1, X2 is measured by the multiple correlation coefficient

Ry.x1x2 =

√
r2

x1y − 2rx1x2 · rx1y · rx2y + r2
x2y

1− r2
x1x2

.

This correlation is significant if

F =
R2

y.x1x2
/2(

1− R2
y.x1x2

)
/(n− 3)

is large. Here n is the number of triplets (X1, X2,Y), and statistic F has an
F-distribution with 2,n− 3 degrees of freedom.

The general case R = Ry.x1x2...xk
is analogous. Statistic

F =
R2/k

(1− R2)/(n− k− 1)

has an Fk,n−k−1-distribution. We will see in the next chapter (page 687) that
R2 represents the coefficient of determination and testing its significance
is equivalent to testing the significance of the multiple regression of Y on
X1, . . . , Xk.

13.2.2 Bayesian Inference for Correlation Coefficients

To conduct a Bayesian inference on a correlation coefficient, a bivariate nor-
mal distribution for the data is assumed and Wishart’s prior is placed on
the inverse of the covariance matrix. Recall that the Wishart distribution is
a multivariate counterpart of a gamma distribution (more precisely, of a χ2-
distribution) and the model is in fact a multivariate analogue of a gamma
prior on the normal precision parameter.

To illustrate this Bayesian model, a bivariate normal sample of size
n = 46 is generated. For this sample Pearson’s coefficient of correlation
was found to be r = 0.9908, with sample variances of s2

x = 8.1088 and
s2

y = 35.0266.
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WinBUGS code corr.odc, as given below, is run, and Bayes’ estimators
for the population correlation ρ and component variances σ2

x and σ2
y are

obtained as 0.9901, 8.114, and 34.99. These values are close to the classi-
cal estimators since the priors are noninformative. The hyperparameters of
Wishart’s prior are matrix W and degrees of freedom df, and low degrees of
freedom, df=3, make this prior “vague.”

As an exercise, compute a classical 95% confidence interval for ρ (page 656)
and compare it with the 95% credible set [0.9823,0.9952]. Are the intervals
similar?

model{

for( i in 1:nn){

y[i,1:2] ~ dmnorm( mu[i,], Tau[,] )

mu[i,1] ~ dnorm(mu.x, tau1)

mu[i,2] ~ dnorm(mu.y, tau2)

}

mu.x ~ dnorm(0, 0.0001)

mu.y ~ dnorm(0, 0.0001)

tau1 ~ dgamma(0.001, 0.001)

tau2 ~ dgamma(0.001, 0.001)

Tau[1:2,1:2] ~ dwish( W[,], df )

df <- 3

Sigma[1:2, 1:2] <- inverse(Tau[,])

rho <- Sigma[1,2]/sqrt(Sigma[1,1]*Sigma[2,2])

}

DATA

list( nn=46, y = structure(.Data = c( 0.5674, -1.6458,

-0.4656, -4.8531,

1.5253 , -2.1200,

...

8.3435, 14.7693,

11.0151, 18.8988,

8.9949, 15.3797,

10.5287, 18.1455), .Dim=c(46,2)) ,

W = structure(.Data = c(1,0,0,1),.Dim=c(2,2) ) )

INIT

list(Tau = structure(.Data = c(1,1,1,1), .Dim = c(2,2)),

mu.x = 1, mu.y = 1, tau1=1, tau2=1)

mean sd MC error val2.5pc median val97.5pc start sample

Sigma[1,1] 8.114 1.757 0.01462 5.361 7.881 12.21 1001 100000
Sigma[1,2] 16.68 3.625 0.03035 11.0 16.2 25.13 1001 100000
Sigma[2,1] 16.68 3.625 0.03035 11.0 16.2 25.13 1001 100000
Sigma[2,2] 34.99 7.570 0.06331 23.15 33.98 52.63 1001 100000

rho 0.9901 0.0033 3.287E-5 0.9823 0.9906 0.9952 1001 100000
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13.3 Spearman’s Coefficient of Correlation

Charles Edward Spearman was a late bloomer, academically speaking. He
received his Ph.D. at the age of 48, after having served as an officer in the
British army for 15 years. He is most famous in the field of psychology,
where he theorized that “general intelligence” was a function of a compre-
hensive mental competence rather than a collection of multifaceted mental
abilities. His theories eventually led to the development of factor analysis.

Spearman (1904) proposed the rank correlation coefficient long before
statistics became a scientific discipline. For bivariate data, an observation
has two coupled components (X,Y) that may or may not be related to each
other. Let ρ = Corr(X,Y) represent the unknown correlation between two
components. In a sample of n, let R1, . . . , Rn denote the ranks for the first
component X and S1, . . . ,Sn denote the ranks for Y. For example, if x1 = x(3)
is the third smallest value from x1, . . . , xn and y1 = y(5) is the fifth small-
est value from y1, . . . ,yn, then (R1,S1) = (3,5). The Spearman coefficient of
correlation is simply Pearson’s coefficient of correlation the corresponding
ranks,

ρ̂ =
∑

n
i=1(Ri − R)(Si − S)√

∑
n
i=1(Ri − R)2 ·∑n

i=1(Si − S)2
. (13.2)

This expression can be simplified. From (13.2), R = S = (n + 1)/2 and
∑(Ri − R)2 = ∑(Si − S)2 = nVar (Ri) = n(n2 − 1)/12. Define D as the dif-
ference between ranks, i.e., Di = Ri − Si. With R = S, we can see that

Di = (Ri − R)− (Si − S)

and

n

∑
i=1

D2
i =

n

∑
i=1

(Ri − R)2 +
n

∑
i=1

(Si − S)2 − 2
n

∑
i=1

(Ri − R)(Si − S),

i.e.,

n

∑
i=1

(Ri − R)(Si − S) =
n(n2 − 1)

12
− 1

2

n

∑
i=1

D2
i .

By dividing both sides of the equation by
√

∑
n
i=1(Ri − R)2 ·∑n

i=1(Si − S)2 =

∑
n
i=1(Ri − R)2 = n(n2 − 1)/12, we obtain
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ρ̂ = 1− 6 ∑
n
i=1 D2

i

n(n2 − 1)
. (13.3)

Consistent with Pearson’s coefficient of correlation, Spearman’s coeffi-
cient of correlation also ranges between −1 and 1. If there is perfect agree-
ment, meaning all the differences are 0, then ρ̂ = 1. The scenario that max-
imizes ∑ D2

i occurs when ranks are perfectly opposite: Ri = n− Si + 1. In
this case ∑ D2

i = n(n2 − 1)/3, and ρ̂ =−1.
If the sample is large enough, then Spearman’s statistic can be approxi-

mated using the normal distribution. It was shown that if n > 10, then

Z = (ρ̂− ρ)
√

n− 1∼N (0,1).

If Spearman’s correlation ρ̂ is given, an approximation for Pearson’s
coefficient of correlation is

r ≈ 2sin
πρ̂

6
.

Example 13.9. Tread Wear for Tires. Stichler et al. (1953) provide a list of
tread wear for tires, each tire measured by two methods based on (a) weight
loss and (b) groove wear.

Weight Groove Weight Groove
45.9 35.7 41.9 39.2
37.5 31.1 33.4 28.1
31.0 24.0 30.5 28.7
30.9 25.9 31.9 23.3
30.4 23.1 27.3 23.7
20.4 20.9 24.5 16.1
20.9 19.9 18.9 15.2
13.7 11.5 11.4 11.2

For this data, ρ̂ = 0.9265. Note that if we opt for the parametric measure
of correlation, the Pearson coefficient is 0.948.
�

Ties in the Data: The statistics in (13.2) and (13.3) are not designed
for paired data that include tied measurements. If ties exist in the data,
a simple adjustment should be made. Define u′ = ∑ u(u2 − 1)/12 and
v′ = ∑ v(v2 − 1)/12 where the us and vs are the ranks for X and Y ad-
justed (e.g., averaged) for ties. Then

ρ̂′ =
n(n2 − 1)− 6 ∑

n
i=1 D2

i − 6(u′ + v′)
{[n(n2 − 1)− 12u′][n(n2 − 1)− 12v′]}1/2 ,
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and it holds that, for large n,

Z = (ρ̂′ − ρ)
√

n− 1∼N (0,1).

The MATLAB function corr(x,y,’type’,’Spearman’) computes the Spear-
man correlation coefficient for column vectors x and y.

13.4 Kendall’s Tau

M. G. Kendall formalized an alternative measure of dependence among
ranked data, originally proposed and used in the nineteenth century, by
analyzing “concordant” and “discordant” pairs in a bivariate sample.

From (Xi,Yi), i = 1, . . . ,n, one can choose (n
2) different pairs. The pair

(Xi,Yi), (Xj,Yj) is concordant if either Xi < Xj and Yi < Yj or Xi > Xj and
Yi > Yj. The pair is called discordant if either Xi < Xj and Yi > Yj or Xi > Xj

and Yi < Yj. For example, the pair (2,4) and (1,−1) is concordant, while
the pair (−2,4) and (1,−1) is discordant.

Let nC and nD be the number of concordant and discordant pairs re-
spectively, among all possible (n

2) pairs. Kendall’s τ̂ statistic (Kendall, 1938)
is defined as

τ̂ =
nC − nD

(n
2)

=
2S

n(n− 1)
(13.4)

for S = nC − nD and no ties in the samples present.
Coefficient τ̂ from (13.4) can also be represented as

τ̂ = 1− 4Q

n(n− 1)
, Q =

n−1

∑
i=1

n

∑
j=i+1

1(ri > rj),

where ris are defined via ranks of the second sample corresponding to the
ordered ranks of the first sample, {1,2, . . . ,n}, as

(
1 2 . . . n
r1 r2 . . . rn

)
.

In this notation, Q is the number of inversions among the pairs of ranks of
the second sample corresponding to the ordered ranks of the first sample.

Quantities Q and S are connected, as

S =
n(n− 1)

2
− 2Q.
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The population τ is the probability of a pair being concordant, minus
the probability of a pair being discordant. If (X1,Y1) and (X2,Y2) is a pair
with the same distribution as (X,Y), then

τ = P [(X1 − X2)(Y1 − Y2) > 0]−P [(X1 − X2)(Y1 −Y2) < 0] .

The population τ is also a standard correlation between two random vari-
ables, sign(X1 − X2) and sign(Y1 −Y2).

When n > 10, a normal approximation can be applied for S and τ̂. Using
this normal approximation, we will find the confidence interval for the
population τ and test the hypothesis that the rank correlation is significant.

The sample variance of S and τ̂ when no ties are present are approxi-
mately

Var S =
n(n− 1)(2n + 5)

18
and Var τ̂ =

2(2n + 5)
9n(n− 1)

.

With the presence of ties, the expressions for sample variance are more
complicated, but the expressions above can serve as approximations if the
number of ties in not excessive. Then the (1− α)100% confidence interval
for τ is

[
τ̂ − z1−α/2

√
2(2n + 5)
9n(n− 1)

, τ̂ + z1−α/2

√
2(2n + 5)
9n(n− 1)

]
∩ [−1,1].

To test the hypothesis H0 : τ = 0 versus one-sided or two-sided alterna-
tives we will use a z-test with statistic

Z = τ̂

√
9n(n− 1)
2(2n + 5)

,

that under H0 has a standard normal distribution. Since τ̂ is derived from
S, and S is an integer, we can get more precise p-values using continuity
corrections. For example, a test of H0 against the two-sided alternative H1 :
τ 6= 0 would have p-value, in terms of MATLAB, as

p = 2 * min( normcdf(3*(S+1/2)*sqrt(2)/sqrt(n*(n-1)*(2*n + 5))),...

1-normcdf(3*(S-1/2)*sqrt(2)/sqrt(n*(n-1)*(2*n + 5))) )

In the case of numerical data, Kendall’s and Pearson’s coefficients of
correlation could be linked. Here we can approximate r as

r ≈ sin
τ̂π

2
.

Example 13.10. Prevention of Vitreous Loss. Limbal incisions were made in
rabbit eyes to mirror the initial steps of lens extraction. The vitreous body
loses water when the eye is open and decreases in weight, as reported by
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Galin et al. (1971). The results had implications in the context of cataract
surgery. The authors measured the vitreous body weight for each eye of 15
New Zealand albino rabbits. One eye had been open for 5 minutes (y), while
the other served as a control (x). The measurements of vitreous weight (in
mg) are provided next:

Rabbit # 1 2 3 4 5 6 7 8
Control eye (x) 1848 1532 1460 1947 1810 1718 1686 1617
Open eye (y) 1738 1440 1388 1756 1692 1629 1583 1499
Rabbit # 9 10 11 12 13 14 15
Control eye (x) 1724 1873 1928 2226 1708 1605 1822
Open eye (y) 1596 1794 1785 2044 1602 1491 1702

In the code rabbits.m we found no ties, nC = 100, nD = 5, τ̂ = 0.9048,
and a 95% confidence interval of [0.5276,1.0000].

%rabbits.m

x=[1848 1532 1460 1947 1810 1718 1686 1617 ...

1724 1873 1928 2226 1708 1605 1822];

y=[1738 1440 1388 1756 1692 1629 1583 1499 ...

1596 1794 1785 2044 1602 1491 1702];

n=15;

%nc-number of concordant pairs,%nd - discordant %nt - ties

nc = 0; nd = 0; nt=0;

for i = 1:n-1

for j = i+1:n

if sign(x(i) - x(j)) * sign(y(i) - y(j)) > 0 nc=nc+1;

elseif sign(x(i) - x(j)) * sign(y(i) - y(j)) < 0 nd=nd+1;

else nt=nt+1;

end

end

end

tauhat = (nc-nd)/(nc+nd) %0.9048

%Sample variance of tau

tauvar = 2*(2*n+5)/(9*n*(n-1)) %0.0370

%95% CI for population tau

[max(0,tauhat - norminv(0.975)*sqrt(tauvar)) ...

min(1,tauhat + norminv(0.975)*sqrt(tauvar)) ]%[0.5276 1.0000]

S=nc-nd %95

%p-value in testing H0: tau=0 vs. H_1: tau != 0.

pval=2*(1-normcdf(abs(tauhat), 0, sqrt(tauvar))) %2.5853e-06

�

Remark. The generalized coefficient of correlation is defined as

ρ =
∑i<j cij(X)cij(Y)

(
∑i<j c2

ij(X)×∑i<j c2
ij(X)

)1/2 , (13.5)
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for X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn). Then Pearson’s, Spearman’s, and
Kendall’s coefficients of correlation are recovered for cij(X) = Xj − Xi,
cij(X) = Rj − Ri = r(Xj)− r(Xi), and cij(X) = sign(Xj − Xi), respectively.

13.5 Cum hoc ergo propter hoc

We conclude this chapter with a discussion on the misuses of correlations.
The fallacy that correlation implies causation is summarized by Gould’s
quote at the beginning of the chapter (Latin Cum hoc ergo propter hoc mean-
ing “With this, therefore because of this”). We already mentioned the “link”
between ice-cream sold on the beach and the number of drowning acci-
dents, but the correlation fallacy causes more serious damage to science.
Spurious correlations are often misused in medical and health science and
attributed to causations. The number of published studies with voodoo cau-
sations, often conflicted from study to study, is stunning.
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Fig. 13.3 Fresh lemons imported to the United States from Mexico (in metric tons; US
Department of Agriculture) and total US highway fatality rate (per 100,000; US NHTSA,
DOT HS 810 780).

As an extreme case of spurious correlation we give an example, popu-
lar among bloggers on the Web, involving data on imports of fresh lemons
from Mexico (1996–2000) and US highway fatality rates (1996–2000), Fig-
ure 13.3. The correlation is r =−0.986 and is highly significant (p < 0.0002),
even with sample size n = 5. Some bloggers provided “causal links” citing
less expensive car air-fresheners that make drivers happy or slower traffic
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caused by trucks from Mexico transporting lemons. See also Exercise 13.14
for an interesting example of spurious correlation.

There are two possible errors in correlation inference caused by group-
ing data. The first one is if two disparate groups are combined. It could
be that for each group there may not be correlation, but when the groups
are combined, the correlation may be significant and, of course, spurious.
Figure 13.4 illustrates this point. Observations represented by red circles
(group 1, r = 0.0643), as well as the pairs represented by blue circles (group
2, r = 0.0079), show no significant correlation. However, when the groups
are combined, the correlation increases to r = 0.7031, and it is significant
with a p-value of 1.5× 10−5. Details can be found in spur.m.
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Fig. 13.4 Spurious correlation when two groups of uncorrelated pairs are combined.

The second error is more subtle. Often, repeated bivariate measurements
are considered as independent and an artificial correlation due to a block-
ing factor is introduced. For example, if for 15 subjects one measures weight
(X) and skinfold thickness (Y) before and after a diet and combines the
measurements, then due to the “increased sample size” a significance of
correlation between X and Y is likely to be found.

13.6 Exercises

13.1. Correlation between Uniforms and Their Squares. Generate 10,000
uniform random numbers between −1 and 1 in the form of a vector x.
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Demonstrate that y=x.∧2 has a small correlation with x, regardless of their
perfect functional relationship. Explain why.

13.2. Muscle Strength of “Ethanol Abusers.” It is estimated that 10% of Eu-
ropean and North American adults, and up to one-third of acute hospital
admissions, are alcoholics. Obviously, the high proportion of alcoholics
in the hospitalized population imposes severe financial constraints on
health authorities and emphasizes the need for primary caretakers to
focus on minimizing alcohol misuse. A staggering two-thirds of chronic
ethanol abusers have skeletal muscle myopathy (Martin et al., 1985; Wor-
den, 1976).
Hickish et al. (1989) provide height, quadriceps muscle strength, and age
data in 41 male alcoholics, as in the table below. The data are available
as alcos.xls or alcos.ascii.

Height Quadriceps Age Height Quadriceps Age
(cm) muscle (years) (cm) muscle (years)

strength (N) strength (N)
155 196 55 172 147 32
159 196 62 173 441 39
159 216 53 173 343 28
160 392 32 173 441 40
160 98 58 173 294 53
161 387 39 175 304 27
162 270 47 175 404 28
162 216 61 175 402 34
166 466 24 175 392 53
167 294 50 175 196 37
167 491 35 176 368 51
168 137 65 177 441 49
168 343 41 177 368 48
168 74 65 177 412 32
170 304 55 178 392 49
171 294 47 178 540 41
172 294 31 178 417 42
172 343 38 178 324 55
172 147 31 179 270 32
172 319 39 180 368 34
172 466 53

(a) Find the sample correlation between Height and Strength, rHS. Test
the hypothesis that the population correlation coefficient between Height
and Strength ρHS is significantly positive at the level α = 0.01.
(b) Since an increase in Age is expected to decrease the Strength (nega-
tive correlation), find the correlation between Height and Strength when
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Age is accounted for; that is, find rHS.A. Test the hypothesis that ρHS.A is
positive at the level α = 0.01.
(c) Find an approximate 95% confidence interval for ρHS.

13.3. Vending Machine and Pharmacy Errors. Mr. Joseph Bentley, the owner
of a pharmacy store, wants to remove the Coke vending machine stand-
ing in front of his store because he believes the vending machine influ-
ences the number of errors the store employees make. More precisely, as
more Coke is sold outside his store, more errors are made. He provided
the following data:

Errors made 5 3 10 9 5 7 8 4
Coke sold 112 100 220 250 100 200 160 100

Find the coefficient of correlation. Comment on why this correlation is
high. Is there a causation; are Coke sales alone influencing the pharmacy
employees?

13.4. Vending Machine and Pharmacy Errors Revisited. Refer to Exercise
13.3. In addition to Errors and Coke, Mr. Bentley provided the count of
people that pass by his store (and the vending machine):

Errors made 5 3 10 9 5 7 8 4
Coke 112 100 220 250 100 200 160 100
People 10000 6000 17000 20000 9000 15000 14000 8000

Find the coefficient of correlation between Errors and Coke sales while
accounting for the number of people and comment.

13.5. Education, Socioeconomic Status, and Infant Mortality. On the basis
of n = 28 records it was found that the education level of the mother
(X) was negatively correlated with infant mortality (Y) as rxy = −0.6.
Socioeconomic status (Z) is a variable that was not taken into account.
Z is correlated with X and Y as rxz = 0.65 and ryz =−0.7. Find rxy.z and
test for the significance of the population counterpart ρxy.z.

13.6. Corn Yields and Rainfall. The following table published by Misner
(1928) has been analyzed by Ezekiel and Fox (1959).
X: rainfall measurements in inches, in the six states, from 1890 to 1927.
Year 1 in the data below corresponds to 1890.
Y: yearly corn yield in bushels per acre, in six Corn Belt states (Iowa,
Illinois, Nebraska, Missouri, Indiana, and Ohio).

year X Y year X Y

1 9.6 24.5 20 12.0 32.3

2 12.9 33.7 21 9.3 34.9

3 9.9 27.9 22 7.7 30.1

4 8.7 27.5 23 11.0 36.9

5 6.8 21.7 24 6.9 26.8

6 12.5 31.9 25 9.5 30.5

7 13.0 36.8 26 16.5 33.3

8 10.1 29.9 27 9.3 29.7
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9 10.1 30.2 28 9.4 35.0

10 10.1 32.0 29 8.7 29.9

11 10.8 34.0 30 9.5 35.2

12 7.8 19.4 31 11.6 38.3

13 16.2 36.0 32 12.1 35.2

14 14.1 30.2 33 8.0 35.5

15 10.6 32.4 34 10.7 36.7

16 10.0 36.4 35 13.9 26.8

17 11.5 36.9 36 11.3 38.0

18 13.6 31.5 37 11.6 31.7

19 12.1 30.5 38 10.4 32.6

Find the sample correlation coefficient r and a 95% confidence interval
for the population coefficient ρ.

13.7. Drosophilæ. Sokoloff (1966) reported the correlation between body
weight and wing length in Drosophila pseudoobscura as 0.52 in a sam-
ple of n1 = 39 at the Grand Canyon, and as 0.67 in a sample of n2 = 20
at Flagstaff, Arizona. Do the correlations in these two populations differ
significantly? Use α = 0.05.

13.8. Confidence Interval for the Difference of Two Correlation Coeffi-
cients. Using the results on testing the equality of two correlation coef-
ficients, develop a (1− α)100% confidence interval for their difference.

13.9. Oxygen Intake. The human body takes in more oxygen when exercising
than when it is at rest, and to deliver the oxygen to the muscles, the heart
must beat faster. Heart rate is easy to measure, but the measurement of
oxygen uptake requires elaborate equipment. If oxygen uptake (VO2) is
strongly correlated with heart rate (HR) under a particular set of exercise
conditions, then its predicted, rather than measured, values could be
used for various research purposes.2

HR VO2 HR VO2
94 0.473 108 1.403
96 0.753 110 1.499
95 0.929 113 1.529
95 0.939 113 1.599
94 0.832 118 1.749
95 0.983 115 1.746
94 1.049 121 1.897

104 1.178 127 2.040
104 1.176 135 2.231
106 1.292

Find the sample correlation r and calculate a 95% confidence interval for
its population counterpart, ρ.

2 Data provided by Paul Waldsmith from experiments conducted in Don Corrigan’s lab
at Purdue University, West Lafayette, Indiana.
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13.10. Obesity and Pain. Khimich (1997) found that a pain threshold increases
in obese subjects and increases with age. Obesity is measured as the per-
centage over ideal weight (X). The response to pain is measured by using
the threshold of the nociceptive flexion reflex (Y), which is a measure of
the pricking pain sensation in an individual. Measurements X and Y
are considered to be normal. We are interested in an inference about the
correlation between X and Y. The following data were obtained:

X 89 90 75 30 51 75 62 45 90 20
Y 2 3 4 4.5 5.5 7 9 13 15 14

(a) Using results n= 10, ∑i XiYi = 4,461.5, ∑i Xi = 627,∑i X2
i = 45,141, ∑i Yi =

77, ∑i Y2
i = 799.5, calculate the Pearson coefficient of correlation, r.

(b) Test the hypothesis that the population coefficient of correlation, ρ, is
0, against the one-sided alternative H1 : ρ < 0. Use α = 0.05.
(c) Let the age Z (in years) of the individuals from the table be as follows
(in the corresponding order): 20 18 23 19 44 51 36 47 60 55. Find the
partial coefficient of correlation rxy.z if rxz = −0.2089 and ryz = 0.8627.
(d) Find a 95% confidence interval for ρ.

13.11. Connection between Partial and Multiple Coefficients of Correlation.
Show

R2
x.yz = 1− (1− r2

xz)(1− r2
xy.z) = 1− (1− r2

xy)(1− r2
xz.y).

13.12. Swallowtail Butterflies Continued. In Example 13.5 correlations be-
tween morphological measurements, X – length of eighth tergile and Y
– length of superuncus, were compared for species Papilio multicaudatus
and Papilio rutulus, and no significant differences were found.
Brower (1959) also provides the same morphological measurements for
Papilio glaucus, the Eastern tiger swallowtail:

Species X Y X Y X Y X Y

Papilio 17.5 9 19 9 18 10 19 8
glaucus 19 8.5 21 8.5 19 9 21 9.5

19 9.5 17.5 9 23.5 10.5 16 9.5
19.5 10 17 7 16 8 18 9
18.5 8.5 19 8.5 16.5 8.5 18.5 9.5
17.5 9.5 19.5 8 18.5 8 19 9
20.5 9 17 9.5 18.5 9 16.5 9
17.5 9 19 9 18.5 7.5 18.5 8.5
17.5 9 16.5 11 23 9 22 8
18 10 21.5 9 18.5 9 20.5 8
21 10 21 8 22.5 9.5 18 10
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(a) Find the observed correlation coefficient r3 for P. glaucus.
(b) If population correlation coefficients for the three species P. multicau-
datus, P. rutulus, and P. glaucus, are ρ1,ρ2, and ρ3, respectively, test the
hypothesis H0 : ρ1 = ρ2 = ρ3. Report the p-value and discuss.

13.13. Van Der Waerden’s Rank Correlation. Let Rx = (R1, . . . , Rn) and Ry =
(R′1, . . . , R′n) be the vectors of ranks for X1, . . . , Xn and Y1, . . . ,Yn. Van Der
Waerden’s rank correlation coefficient is defined as

R =
∑

n
i=1 zRi/(n+1)× zR′i/(n+1)

∑
n
i=1 z2

i/(n+1)

.

Here, for example, zRi/(n+1) denotes the Ri/(n + 1)th quantile of a stan-
dard normal distribution.
When the rank correlation is absent (H0), the quantity

S =
n

∑
i=1

zRi/(n+1)× zR′i/(n+1)

is approximately normal with ES = 0 and Var S = 1
n−1

[
∑

n
i=1 z2

i/(n+1)

]2

whenever n > 10.
(a) Using data on rabbit eyes from Exercise 13.10, find Van Der Waer-
den’s rank correlation coefficient R.
(b) For the same data test the hypothesis that the population Van Der
Waerden’s rank correlation is 0 versus the two-sided alternative. Use
asymptotic distribution of S.

13.14. Age of Miss America and the Murders by Hot Objects. An interest-
ing example of spurious correlation is found between the ages of the
crowned Miss America and the number of homicides by steam, hot va-
pors, and hot objects (for the United States, as reported by the CDC), for
years 1999–2007:

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007
Age of Miss America 24 24 24 21 22 21 24 22 20
Number of Deaths 7 7 7 3 4 3 8 4 2

(a) Plot the two data sets on the same graph, using Year as the x-axis;
(b) Test the significance of this correlation and report the p-value.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch13.Corr/

corroncircle.m, corrs.m, errorscoke.m, fisherzsimu.m, hazel.m, histo.m,

iriscorr.m, lemon.m, nanoprism.m, ObesityPain.m, rabbits.m, spur.m,

sputious2.m, vanderwaerdencorr.m, variouscorrs.m

corr.odc

hazel.dat|mat, nanoprism.dat
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Chapter 14

Regression

The experiments showed further that the mean filial regression towards mediocrity was
directly proportional to the parental deviation from it.

– Francis Galton (1886)

WHAT IS COVERED IN THIS CHAPTER

• Ordinary Linear Regression
• Confidence Intervals and Hypothesis Tests for Parameters and

Responses in Linear Regression
• Multiple Regression, Matrix Formulation
• Model Selection and Assessment in Multiple Regression
• Power Analysis in Regression
• Regression Nonlinear in Predictors, Errors-in-Variables Regres-

sion
• Analysis of Covariance (ANCOVA)

14.1 Introduction

The rather curious name regression was given to a statistical methodology
by British scientist Sir Francis Galton, who analyzed the heights of sons
and the average heights of their parents. From his observations, Galton
concluded that sons of very tall (or short) parents were generally taller (or

681
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shorter) than average, but not as tall (or short) as their parents. The re-
sults were published in 1886 under the title Regression Towards Mediocrity
in Hereditary Stature. In due course of time the word regression became syn-
onymous with the statistical study of the functional relationship between
two or more variables. The data set illustrating Galton’s finding and used
by Pearson is given in pearson.dat. The scatterplot and regression fits are
analyzed in galton.m and summarized in Figure 14.1. The circles corre-
spond to pairs of father–son heights, the black line is the line y = x, the
red line is the regression line, and the green line is the regression line con-
strained to pass through the origin. Galton’s findings can be summarized
by the observation that the slope of the regression (red) line was signifi-
cantly smaller than the slope of the 45◦ line.
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Fig. 14.1 Galton’s father–son height data (used by Pearson). The circles correspond to
pairs of father–son heights, the black line is the line y = x, the red line is the regression
line, and the green line is the regression line constrained to pass through the origin.

Usually the response variable y is “regressed” on several predictors or
covariates, x1, . . . , xk, and this raises many interesting questions involving
the model choice and fit, collinearity among the predictors, and others.
When we have a single predictor x and a linear relation between y and x,
the regression is called a simple linear regression.

14.2 Simple Linear Regression

Assume that we observed n pairs (x1,y1), . . . , (xn,yn), and each observation
yi can be modeled as a linear function of xi, plus an error,

yi = β0 + β1xi + ǫi, i = 1, . . . ,n.
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Here β0 and β1 are the population intercept and slope parameters, respec-
tively, and ǫi is the error. We assume that the errors are not correlated and
have mean 0 and variance σ2; thus, Eyi = β0 + β1xi and Var yi = σ2. The
goal is to estimate this linear model, that is, estimate β0, β1, and σ2 from
the n observed pairs. To put our discussion in context, we consider a study
of factors affecting patterns of insulin-dependent diabetes mellitus in chil-
dren.

Example 14.1. Diabetes Mellitus in Children. Diabetes mellitus is a con-
dition characterized by hyperglycemia resulting from the body’s inability
to use blood glucose for energy. In type 1 diabetes, the pancreas no longer
makes insulin, and therefore blood glucose cannot enter the cells to be used
for energy.

The objective of this study was to investigate the dependence of the
level of serum C-peptide on various other factors in order to understand
the patterns of residual insulin secretion. C-peptide is a protein produced
by the beta cells of the pancreas whenever insulin is made. Thus, the level
of C-peptide in the blood is an index of insulin production.

The part of the data from Sockett et al. (1987), discussed in the con-
text of statistical modeling by Hastie and Tibshirani (1990), is given next.
The response measurement is the logarithm of C-peptide concentration
(pmol/ml) at the time of diagnosis, and the predictor is the base deficit,
a measure of acidity.

Deficit (x) −8.1 −16.1 −0.9 −7.8 −29.0 −19.2 −18.9 −10.6 −2.8 −25.0 −3.1
Log C-peptide (y) 4.8 4.1 5.2 5.5 5 3.4 3.4 4.9 5.6 3.7 3.9

Deficit (x) −7.8 −13.9 −4.5 −11.6 −2.1 −2.0 −9.0 −11.2 −0.2 −6.1 −1
Log C-peptide (y) 4.5 4.8 4.9 3.0 4.6 4.8 5.5 4.5 5.3 4.7 6.6

Deficit (x) −3.6 −8.2 −0.5 −2.0 −1.6 −11.9 −0.7 −1.2 −14.3 −0.8 −16.8
Log C-peptide (y) 5.1 3.9 5.7 5.1 5.2 3.7 4.9 4.8 4.4 5.2 5.1

Deficit (x) −5.1 −9.5 −17.0 −3.3 −0.7 −3.3 −13.6 −1.9 −10.0 −13.5
Log C-peptide (y) 4.6 3.9 5.1 5.1 6.0 4.9 4.1 4.6 4.9 5.1

We will follow this example in MATLAB as an annotated step-by-step
code/output of cpeptide.m. For more sophisticated analysis, MATLAB
has quite advanced built-in regression tools, regress, regstats, robustfit,
stepwise, and many other more-or-less specialized fitting and diagnostic
tools.

After importing the data, we specify p, which is the number of parame-
ters, rename the variables, and find the sample size.

Deficit =[-8.1 -16.1 -0.9 -7.8 -29.0 -19.2 -18.9 -10.6 -2.8...

-25.0 -3.1 -7.8 -13.9 -4.5 -11.6 -2.1 -2.0 -9.0 -11.2 -0.2...

-6.1 -1 -3.6 -8.2 -0.5 -2.0 -1.6 -11.9 -0.7 -1.2 -14.3 -0.8...

-16.8 -5.1 -9.5 -17.0 -3.3 -0.7 -3.3 -13.6 -1.9 -10.0 -13.5];
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logCpeptide =[ 4.8 4.1 5.2 5.5 5 3.4 3.4 4.9 5.6 3.7 3.9 ...

4.5 4.8 4.9 3.0 4.6 4.8 5.5 4.5 5.3 4.7 6.6 5.1 3.9 ...

5.7 5.1 5.2 3.7 4.9 4.8 4.4 5.2 5.1 4.6 3.9 5.1 5.1 ...

6.0 4.9 4.1 4.6 4.9 5.1];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p = 2; %number of parameters, (beta0, beta1)

%"Deficit" measurement is "x", "logCpeptide" is "y".

x = Deficit’ ; %as a column vector

y = logCpeptide’ ; %as a column vector

n = length(x);

It is of interest to express the log C-peptide (variable y) as a linear
function of alkaline deficiency (variable x), and the population model
y = β0 + β1x + ǫ is postulated. Finding estimators for β0 and β1 is an exer-
cise in calculus – finding the extrema of a function of two variables. The fol-
lowing derivation is known as the least-squares method, which is a broad
mathematical methodology for approximate solutions of overdetermined
systems, first described by Gauss at the end of the eighteenth century. The
best regression line minimizes the sum of squares of errors:

L =
n

∑
i=1

ǫ2
i =

n

∑
i=1

(yi − (β0 + β1xi))
2.

When pairs (xi,yi) are considered fixed, L is a function of β0 and β1 only.
Minimizing L amounts to solving the so-called normal equations

∂L

∂β0
= −2

n

∑
i=1

[yi − β0 − β1xi] = 0 and

∂L

∂β1
= −2

n

∑
i=1

[xiyi − β0xi − β1x2
i ] = 0,

that is,

nβ0 + β1

n

∑
i=1

xi =
n

∑
i=1

yi and

β0

n

∑
i=1

xi + β1

n

∑
i=1

x2
i =

n

∑
i=1

xiyi. (14.1)

Let x = 1
n ∑

n
i=1 xi and y = 1

n ∑
n
i=1 yi be the sample means of predictor values

and the responses. If

Sxy =
n

∑
i=1

(xi − x)(yi − y) =
n

∑
i=1

yi(xi − x) =
n

∑
i=1

xiyi − nx y,
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Sxx =
n

∑
i=1

(xi − x)2 =
n

∑
i=1

x2
i − nx2,

and

Syy =
n

∑
i=1

(yi − y)2 =
n

∑
i=1

y2
i − ny2,

then the values for β0 and β1 minimizing L or, equivalently, solving the
normal equations (14.1) are

β̂1 =
Sxy

Sxx
and β̂0 = y− β̂1x.

We will simplify the notation by denoting β̂0 by b0 and β̂1 by b1. Thus, the
fitted regression equation is

ŷ = b0 + b1x, with

b1 =
Sxy

Sxx
and b0 = y− b1x.

Note that the estimator of slope b1 is connected with the sample correlation
coefficient rXY,

b1 =
Sxy

Sxx
=

Sxy√
Sxx
√

Syy
×
√

Syy√
Sxx

= rXY

√
Syy√
Sxx

.

For values x = xi, the fits ŷi are obtained as

ŷi = b0 + b1xi,

with the residuals ei = yi − ŷi. The residuals are the most important diag-
nostic modality in regression. They explain how well the predicted data
ŷi fit the observations, and if the fit is not good, residuals indicate what
caused the problem.

%Sums of Squares

SXX = sum( (x - mean(x)).^2 ) %SXX=2.1310e+003

SYY = sum( (y - mean(y)).^2 ) %SYY=21.807

SXY = sum( (x - mean(x)).* (y - mean(y)) ) %SXY=105.3477

%estimators of coefficients beta1 and beta0

b1 = SXY/SXX %0.0494

b0 = mean(y) - b1 * mean(x) %5.1494
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% predictions

yhat = b0 + b1 * x;

%residuals

res = y - yhat;

We found that yhat=5.1494+0.0494*x. Figure 14.2 shows a scatterplot of
log C-peptide level (y) against alkaline deficiency (x) with superimposed
regression fit b0 + b1x.
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Fig. 14.2 Scatterplot of log C-peptide level (y) against alkaline deficiency (x). The regres-
sion fit (red) is ŷ = 5.1494 + 0.0494x.

The sum of squared residuals, ∑
n
i=1 e2

i , is denoted by SSE.
One can show that SSE = Syy − b1Sxy and that E(SSE) = (n − 2)σ2.

Thus, the mean square error MSE = SSE/(n− 2) is an unbiased estimator
of error variance σ2. Recall the fundamental ANOVA identity SST = SSTr+
SSE. In regression terms, the fundamental ANOVA identity has the form

SST = SSR + SSE,

where SST = Syy, SSR = b1Sxy, and SSE = ∑
n
i=1 e2

i . Since

ESSR = σ2 + β2
1Sxx,

SSR has an associated 1 degree of freedom and the regression mean sum
of squares MSR is SSR/1 = SSR.

The statistic MSR becomes an unbiased estimator of variance σ2 when
β1 = 0. Thus, if H0 : β1 = 0 is true, one should have F = MSR/MSE close
to 1, since under H0 both MSR and MSE estimate the same quantity, σ2.
Under H0, the statistic F = MSR/MSE has an F-distribution with 1 and
n− 2 degrees of freedom.

Large values of F indicate that there is a contribution of β1 in MSR, and
discrepancy from H0 can be assessed using an F-test. The sums of squares,
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degrees of freedom, mean squares, F-statistic and p-value associated with
observed F are customarily summarized in an ANOVA table:

Source DF SS MS F p-value
Regression 1 SSR MSR = SSR F = MSR

MSE P(F1,n−2 > F)
Error n− 2 SSE MSE = SSE

n−2
Total n− 1 SST

The p-value is associated with testing of H0, which essentially states
that covariate x does not influence the response y, and the same fit can be
obtained by just taking y as the model for yis.

%ANOVA Identity

SST = sum((y - mean(y)).^2) %this is also SYY

SSR = sum((yhat - mean(y)).^2) %5.2079

SSE = sum((y - yhat).^2) %=sum(res.^2), 16.599

% forming F and testing the adequacy of linear regression

MSR = SSR/(p - 1) %5.2079

MSE = SSE/(n - p) %estimator of variance, 0.4049

s = sqrt(MSE) %0.6363

F = MSR/MSE %12.8637

pvalue = 1-fcdf(F, p-1, n-p)

%testing H_0: regression has beta1=0,

%that is, there is no need for linear fit, p-val = 0.00088412

The preceding calculations are arranged in the ANOVA table:

Source DF SS MS F p-value
Regression 1 5.2079 5.2079 12.8637 0.0009
Error 41 16.5990 0.4049
Total 42 21.8070

Figure 14.3a shows a plot of residuals yi − ŷi against xi. A normalized his-
togram of residuals with a superimposed normal distributionN (0,0.63632),
is given in Figure 14.3b.

The quantity R2, called the coefficient of determination, is defined as

R2 =
SSR

SST
= 1− SSE

SST
.

The R2 in this context coincides with the square of the correlation coeffi-
cient between (x1, . . . , xn) and (y1, . . . ,yn). However, the representation of
R2 via the ratio SSR/SST is more illuminating. In words, R2 explains what
proportion of the total variability (SST) encountered in observations is ex-
plained or accounted for by the regression (SSR). Thus, a high R2 is de-

sirable in any regression. Note that F = MSR
MSE = (n−2)R2

1−R2 and the F test is
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Fig. 14.3 (a) Plot of residuals ei = yi− ŷi against x. (b) Normalized histogram of residuals
with superimposed normal distribution N (0, s2), with s estimated as

√
MSE = 0.6363.

equivalent to testing that the population correlation coefficient ρ (the corre-
lation between X’s and Y’s) is significant.

The adjusted R2 (Ezekiel, 1930), defined as

R2
adj = 1− n− 1

n− p
· SSE

SST
= 1− MSE

MST
,

where MST = SST/(n− 1) = s2
y, is important in cases with multiple pre-

dictors (p > 2), since it penalizes inclusion of predictors in the model.

% Other measures of goodness of fit

R2 = SSR/SST %0.2388

R2adj = 1 - (n-1)/(n-p)* SSE/SST %0.2203

Often, instead of regressing yi on xi, one regresses yi on xi − x as

yi = β∗0 + β1(xi − x).

This is beneficial for several reasons. In practice, we calculate only the es-
timator b1. Since the fitted line contains the point (x,y), the intercept β∗0 is
estimated by y, and our regression fit is

ŷi = y + b1(xi − x).

In the Bayesian context, estimating β∗0 and β1 is more stable and efficient
than estimating β0 and β1 directly, since y and b1 are uncorrelated.
�

Estimators b0 and b1 are unbiased estimators of population’s β0 and β1.
We will show that they are unbiased and that their variance is intimately
connected with the variance of responses, σ2:
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Eb1 = β1 and Var b1 =
σ2

Sxx
,

Eb0 = β0 and Var b0 = σ2
(

1
n
+

(x)2

Sxx

)
.

Here is the rationale:

Eb1 = E
Sxy

Sxx
=

1
Sxx

E

n

∑
i=1

yi(xi − x)

=
1

Sxx
E

n

∑
i=1

(β∗0 + β1(xi − x) + ǫi)(xi − x)

=
1

Sxx

[
n

∑
i=1

β∗0(xi − x) +
n

∑
i=1

β1(xi − x)2 + E

n

∑
i=1

ǫi(xi − x)

]

=
1

Sxx
[0 + β1Sxx + 0] = β1.

Var b1 = Var
Sxy

Sxx
=

1
S2

xx

n

∑
i=1

Var (yi(xi − x))

=
1

S2
xx

n

∑
i=1

σ2(xi − x)2 =
σ2

Sxx
.

Since b0 = y− b1x,

Eb0 = E(y− b1x) = β0 + β1x− β1x = β0

and

Var b0 = Var y + Var (b1x)− 2 Cov(y,b1x)

=
σ2

n
+ (x)2 σ2

Sxx
− 2 · 0 = σ2

[
1
n
+

(x)2

Sxx

]
.

An alternative expression for Var b0 is σ2 x2

Sxx
, for x2 = 1

n ∑
n
i=1 x2

i . Sample
counterparts of Var b0 and Var b1 will be needed for the inference in sub-
sequent sections; they are obtained by plugging in the MSE in place of
σ2.

The covariance between b0 and b1 is
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Cov(b0,b1) = Cov(y− b1 · x,b1) = Cov(y,b1)− x ·Var (b1) =−x · σ2

Sxx
,

since Cov(y,b1) = 0. The correlation between b0 and b1 is then readily found
as

Corr(b0,b1) = −
x√

1
n ∑

n
i=1 x2

i

.

In MATLAB the estimator of σ and sample standard deviations of esti-
mators b0 and b1 from Example 14.1 are as follows:

% s, sb0, and sb1

s = sqrt(MSE) %s = 0.6363

%Standard errors of parameter estimators

sb1 = s/sqrt(SXX) %sb1 = 0.0138

sb0 = s * sqrt(1/n + (mean(x))^2/SXX ) %sb0 = 0.1484

14.3 Inference in Simple Linear Regression

To find the estimators of regression parameters and calculate their expecta-
tions and variances, we do not need the distributional properties of errors,
except that they are independent, have a mean 0, and a variance that does
not vary with x. However, to test the hypotheses about the population in-
tercept and slope, and to find confidence intervals, we need to assume that
the errors ǫi are i.i.d. normal. In practice, the residual analysis is conducted
to verify whether the normality assumption is justified.

14.3.1 Inference about the Slope Parameter

For a given constant β10, the test for

H0 : β1 = β10

relies on the statistic

t =
b1 − β10√

s2/Sxx

,

where s2 = MSE. This statistic under H0 has a t-distribution with n − 2
degrees of freedom, and testing is done as follows:
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Alternative α-level rejection region p-value (MATLAB)
H1 : β1 > β10 [tn−2,1−α,∞) 1-tcdf(t,n-2)

H1 : β1 6= β10 (−∞, tn−2,α/2] ∪ [tn−2,1−α/2,∞) 2*tcdf(-abs(t),n-2)

H1 : β1 < β10 (−∞, tn−2,α] tcdf(t,n-2)

The distribution of the test statistic is derived from a linear representa-
tion of b1 as

b1 =
n

∑
i=1

aiyi, ai =
xi − x

Sxx
.

Under H0, b1 ∼ N (β10,σ2/Sxx). Thus,

t =
b1 − β10√

s2/Sxx

=
b1 − β10√

σ2/Sxx

× σ

s
=

b1−β10√
σ2/Sxx√

SSE
(n−2)σ2

,

which, by definition, has a tn−2-distribution, as Z/

√
χ2

n−2
n−2 . We also used

the fact that s2 = MSE = SSE/(n− 2).

The (1− α)100% confidence interval for β1 is
[

b1 − tn−2,1−α/2
s√
Sxx

, b1 + tn−2,1−α/2
s√
Sxx

]
.

14.3.2 Inference about the Intercept Parameter

For a given constant β00, the test for

H0 : β0 = β00

relies on the statistic

t =
b0 − β00

s
√

1
n + (x)2

Sxx

.
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Under H0 this statistic has a t-distribution with n− 2 degrees of freedom,
and testing is done as follows:

Alternative α-level rejection region p-value (MATLAB)
H1 : β0 > β00 [tn−2,1−α,∞) 1-tcdf(t,n-2)

H1 : β0 6= β00 (−∞, tn−2,α/2] ∪ [tn−2,1−α/2,∞) 2*tcdf(-abs(t),n-2)

H1 : β0 < β00 (−∞, tn−2,α] tcdf(t,n-2)

This is based on the representation of b0 as b0 = y − b1x and under H0

b0 ∼ N
(

β00,σ2
(

1
n + (x)2

Sxx

))
. Thus,

t =
b0 − β00

s
√

1/n + (x)2/Sxx

=
b1 − β00

σ
√

1/n + (x)2/Sxx

× σ

s
=

b0−β00

σ
√

1/n+(x)2/Sxx√
SSE

(n−2)σ2

,

which by definition has a tn−2-distribution, as Z/

√
χ2

n−2
n−2 .

The (1− α)100% confidence interval for β0 is

b0 − tn−2,1−α/2 s

√
1
n
+

(x)2

Sxx
, b0 + tn−2,1−α/2 s

√
1
n
+

(x)2

Sxx


 .

% Are the coefficients equal to 0?

t1 = b1/sb1 %3.5866

pb1 = 2 * (1-tcdf(abs(t1),n-p) ) %8.8412e-004

t0 = b0/sb0 %34.6927

pb0 = 2 * (1-tcdf(abs(t0),n-p) ) %0

% Test H_0: beta1 = 0.04 vs. H_1: beta1 > 0.04

tst1 = (b1 - 0.04)/sb1 %0.6846

ptst1 = 1 - tcdf( tst1, n-p ) %0.2487

% Test H_0: beta0 = 5.8 vs. H_1: beta0 < 5.8

tst2 = (b0 - 5.8)/sb0 %-4.3836

ptst2 = tcdf(tst2, n-p ) %3.9668e-005

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Find 95% CI for beta1

[b1 - tinv(0.975, n-p)*sb1, b1 + tinv(0.975, n-p)*sb1]

% 0.0216 0.0773

% Find 99% CI for beta0

[b0 - tinv(0.995, n-p)*sb0, b0 + tinv(0.995, n-p)*sb0]

% 4.7484 5.5503
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14.3.3 Inference about the Variance

Testing H0 : σ2 = σ2
0 relies on the statistic χ2 = (n−2)MSE

σ2
0

= SSE
σ2

0
. This statistic

under H0 has a χ2-distribution with n− 2 degrees of freedom and testing
is done as follows:

Alternative α-level rejection region p-value (MATLAB)
H1 : σ2 < σ2

0 [0,χ2
n−2,α] chi2cdf(chi2,n-2)

H1 : σ2 6= σ2
0 [0,χ2

n−2,α/2] ∪ [χ2
n−2,1−α/2,∞) 2*chi2cdf(ch,n-2)

H1 : σ2 > σ2
0 [χ2

n−2,1−α,∞) 1-chi2cdf(chi2,n-2)

where chi2 is the test statistic and ch=min(chi2,1/chi2).
The (1− α)100% confidence interval for σ2 is

[
SSE

χ2
n−2,1−α/2

,
SSE

χ2
n−2,α/2

]
.

The following MATLAB script tests H0 : σ2 = 0.5 versus H1 : σ2 < 0.5
and finds a 95% confidence interval for σ2. As is evident, H0 is not rejected
(p-value 0.1981), and the interval is [0.2741,0.6583].

% Test H_0: sigma2 = 0.5 vs. H_1: sigma2 < 0.5

ch2 = SSE/0.5 %33.1981

ptst3 = chi2cdf(ch2, n-p) %0.1981

% Find 95% CI for sigma2

[SSE/chi2inv(0.975, n-p), SSE/chi2inv(0.025, n-p)]

% 0.2741 0.6583

14.3.4 Inference about the Mean Response

Suppose that the regression ŷ = b0 + b1x has been found and that we are
interested in making an inference about the response ym = E(y|x = x∗) =
β0 + β1x∗. The statistic for ym is ŷm = b0 + b1x∗, and it is a random variable
since both b0 and b1 are random variables.

The ŷm is an unbiased estimator of ym, Eŷm = E(b0 + b1x∗) = β0 +
β1x∗ = ym, as expected. The variance of ŷm is obtained from representation
ŷm = b0 + b1x∗ = y + b1(x∗ − x) and the fact that the correlation between y
and b1 is zero:
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Var ŷm = σ2
(

1
n
+

(x∗ − x)2

Sxx

)
.

Thus,

ŷm ∼ N
(

β0 + β1x∗,σ2
(

1
n
+

(x∗ − x)2

Sxx

))
,

from which we develop the inference.
The test

H0 : ym = y0

relies on the statistic

t =
ŷm − y0

s
√

1
n + (x∗−x)2

Sxx

.

This statistic under H0 has a t-distribution with n− 2 degrees of freedom
and testing is done as in the cases of β0 and β1.

The (1− α)100% confidence interval for ym = β0 + β1x∗ is

ŷm − tn−2,1−α/2 s

√
1
n
+

(x∗ − x)2

Sxx
, ŷm + tn−2,1−α/2 s

√
1
n
+

(x∗ − x)2

Sxx


 .

14.3.5 Inference about a New Response

Suppose that the regression ŷ = b0 + b1x has been established and that we
are interested in predicting the response ŷpred for a new observation, corre-
sponding to a covariate x = x∗. Given the value x = x∗, the difference be-
tween the inference about the mean response ym discussed in the previous
section and the inference about an individual outcome ypred is substantial.
As in the previous subsection, ŷpred = b0 + b1x∗, and the mean of ŷpred is
E(ŷpred) = β0 + β1x∗ = ypred, which is in fact equal to ym.

Where ypred and ym differ is in their variability. The variability of ŷpred

has two sources, first, the variance of the distribution of ys for x = x∗, which
is σ2, and, second, the variance of sampling distribution for b0 + b1x∗, which

is σ2
(

1
n + (x∗−x)2

Sxx

)
. Thus, Var (ŷpred) = MSE + Var (ŷm).

The distribution for ŷpred is normal,
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ŷpred ∼ N
(

β0 + β1x∗, σ2
(

1 +
1
n
+

(x∗ − x)2

Sxx

))
,

and the subsequent inference is based on this distribution.
The test

H0 : ypred = y0

relies on the statistic

t =
ŷpred − y0

s
√

1 + 1
n + (x∗−x)2

Sxx

.

This statistic under H0 has a t-distribution with n− 2 degrees of freedom,
which implies the inference.

The (1− α)100% confidence interval for ypred is


ŷpred− tn−2,1−α/2 s

√
1 +

1
n
+

(x∗ − x)2

Sxx
, ŷpred + tn−2,1−α/2 s

√
1 +

1
n
+

(x∗ − x)2

Sxx


 .

% predicting y for the new observation x, CI and PI

newx = -5; %Deficit = -5

y_newx = b0 + b1 * newx % 4.9022

sym = s * sqrt(1/n + (mean(x) - newx)^2/SXX )

%st.dev. for mean response, sym = 0.1063

syp = s * sqrt(1 + 1/n + (mean(x) - newx)^2/SXX )

%st.dev. for the prediction syp = 0.6451

alpha = 0.05;

%mean response interval

lbym = y_newx - tinv(1-alpha/2, n-p) * sym;

rbym = y_newx + tinv(1-alpha/2, n-p) * sym;

% prediction interval

lbyp = y_newx - tinv(1-alpha/2, n-p) * syp;

rbyp = y_newx + tinv(1-alpha/2, n-p) * syp;

% the intervals

[lbym rbym] % 4.6875 5.1168

[lbyp rbyp] % 3.5994 6.2050

Remark. Suppose that for x = x∗, instead of a single new response, we
anticipate m new responses and wish to find the prediction interval for
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their average. The prediction interval in this case is obtained by replacing√
1 + 1

n + (x∗−x)2

Sxx
with

√
1
m + 1

n + (x∗−x)2

Sxx
.

Next, we will find Bayesian estimators of the regression parameters in
the same example, Diabetes Mellitus in Children, by using WinBUGS. On
page 688 we mentioned that taking xi − x as a predictor instead of xi is
beneficial in the Bayesian context. From such a parametrization of regres-
sion,

yi = β∗0 + β1(xi − x) + ǫi,

the traditional intercept β0 is then obtained as β∗0 − β1x.

model{

for (i in 1:ntotal){

y[i] ~ dnorm( mui[i], tau )

mui[i] <- bb.0 + b.1 *(x[i] - mean(x[]))

yres[i] <- y[i] - mui[i]

}

bb.0 ~ dnorm(0, 0.0001)

b.0 <- bb.0 - b.1 * mean(x[])

b.1 ~ dnorm(0, 0.0001)

tau ~ dgamma(0.001, 0.001)

s <- 1/sqrt(tau)

}

DATA

list(ntotal=43,

y = c(4.8, 4.1, 5.2, 5.5, 5.0, 3.4, 3.4, 4.9, 5.6, 3.7,

3.9, 4.5, 4.8, 4.9, 3.0, 4.6, 4.8, 5.5, 4.5, 5.3,

4.7, 6.6, 5.1, 3.9, 5.7, 5.1, 5.2, 3.7, 4.9, 4.8,

4.4, 5.2, 5.1, 4.6, 3.9, 5.1, 5.1, 6.0, 4.9, 4.1,

4.6, 4.9, 5.1),

x = c(-8.1, -16.1, -0.9, -7.8, -29.0, -19.2, -18.9, -10.6,

-2.8, -25.0, -3.1, -7.8, -13.9, -4.5, -11.6, -2.1,

-2.0, -9.0, -11.2, -0.2, -6.1, -1.0, -3.6, -8.2,

-0.5, -2.0, -1.6, -11.9, -0.7, -1.2, -14.3, -0.8,

-16.8, -5.1, -9.5, -17.0, -3.3, -0.7, -3.3, -13.6,

-1.9, -10.0, -13.5))

INITS

list(bb.0 = 0, b.1 = 0, tau=1)

The output is given in the table below. It contains Bayesian estimators
b.0 for β0 and b.1 for β1. In the least-squares regression we found that
b1 = Sxy/Sxx = 0.0494, b0 = y − b1 · x = 5.1494, and s =

√
MSE = 0.6363.

Since priors were noninformative, we expect that the Bayes estimators will
be close to the classical. Indeed that is the case: b.0 = 5.149, b.1 = 0.0494,
and s = 0.6481.
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The classical standard errors of estimators for β0 and β1 are sb0 = 0.1484

and sb1 = 0.0138, while the corresponding Bayesian estimators are 0.1525
and 0.01418. The classical 95% confidence interval for β1 was found to be
[0.0216,0.0773]. The Bayesian 95% credible set for β1 is [0.02139,0.07733], as
is evident from val2.5pc and val97.5pc in the output below:

mean sd MC error val2.5pc median val97.5pc start sample

b.0 5.149 0.1525 3.117E-4 4.848 5.149 5.449 2001 200000
b.1 0.0494 0.0141 3.072E-5 0.02139 0.04944 0.07733 2001 200000
s 0.6481 0.0734 1.771E-4 0.5236 0.6415 0.811 2001 200000
yres[1] 0.05111 0.09944 2.175E-4 -0.1444 0.05125 0.2472 2001 200000
yres[2] -0.2537 0.1502 3.459E-4 -0.5499 -0.2533 0.0418 2001 200000
yres[3] 0.09544 0.1431 2.925E-4 -0.1861 0.09505 0.378 2001 200000
yres[4] 0.7363 0.09957 2.167E-4 0.5406 0.7364 0.9325 2001 200000
...
yres[41] -0.4552 0.1333 2.727E-4 -0.7173 -0.4555 -0.1919 2001 200000
yres[42] 0.245 0.1028 2.314E-4 0.04251 0.2451 0.4475 2001 200000
yres[43] 0.6179 0.125 2.879E-4 0.3718 0.6179 0.8632 2001 200000

Thus, the Bayesian approach to regression estimation is quite close to the
classical when the priors on β0 and β1 and the precision τ = 1/σ2 are
noninformative.

Example 14.2. Hubble Regression. Hubble’s constant (H) is one of the most
important numbers in cosmology because it is instrumental in estimating
the size and age of the universe. This long-sought number indicates the
rate at which the universe is expanding, from the primordial “Big Bang.”
The Hubble constant can be used to determine the intrinsic brightness and
masses of stars in nearby galaxies, examine those same properties in more
distant galaxies and galaxy clusters, deduce the amount of dark matter
present in the universe, obtain the scale size of faraway galaxy clusters,
and serve as a test for theoretical cosmological models.

In 1929, Edwin Hubble, a distinguished American astronomer, investi-
gated the relationship between the distance of a galaxy from the Earth and
the velocity with which it appears to be receding. Galaxies appear to be
moving away from us no matter which direction we look. This is thought to
be the result of the “Big Bang.” Hubble hoped to provide some knowledge
about how the universe was formed and what might happen in the future.
The data collected included distances (megaparsecs1) to n = 24 galaxies and
their recessional velocities (km/sec).

Hubble’s law is as follows: Recessional velocity = H × distance,
where H is Hubble’s constant (units of H are [km/sec/Mpc]). By working
backwards in time, the galaxies appear to meet in the same place. Thus
1/H can be used to estimate the time since the Big Bang, a measure of the
age of the universe.

1 1 parsec = 3.26 light years
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Distance in megaparsecs ([Mpc]) 0.032 0.034 0.214 0.263 0.275 0.275
0.45 0.5 0.5 0.63 0.8 0.9
0.9 0.9 0.9 1.0 1.1 1.1
1.4 1.7 2.0 2.0 2.0 2.0

Recessional velocity ([km/sec]) 170 290 −130 −70 −185 −220
200 290 270 200 300 −30
650 150 500 920 450 500
500 960 500 850 800 1090

A regression analysis seems appropriate; however, there is no intercept
term in Hubble’s law. Can you verify that the constant term of the regres-
sion analysis is not significantly different than 0 at any reasonable2 level of α.
Find the 95% confidence interval for the slope β1, also known as Hubble’s
constant H, from the given data.

The age of the universe as predicted by Hubble (in years) is about 2.3
billion years.
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Fig. 14.4 Hubble’s data and regression fits. The blue line is an unconstrained regression
(with intercept fitted), and the red line is a no-intercept fit. The slope for the no-intercept
fit is b1 = 423.9373 (=H).

%H = 423.9373

secinyear =60*60*24*365 %31536000

kminmps = 3.08568025 * 10^19;

age = 1/H * kminmps/secinyear %2.3080e+009

Modern measurements put H at approx. 70, thus predicting the age of
the universe to about 14 billion years. Figure 14.4 showing Hubble’s data
and regression fits is generated by hubble.m.

2 Reasonable here means level α not larger than 0.10.
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�

14.4 Calibration

Often in regression problems we need to make an inference about the pre-
dictor x when a response y is observed or assumed. This typically arises in
the context of instrument calibration, which gives the name to the statistical
methodology used to solve this kind of problems.

A naïve solution, sometimes referred as the reverse method, is to reverse
the roles of x and y, fit a regression x̂ = c0 + c1y, and apply the results
from Section 14.3.5. The problem with this approach is that it assumes that
measurements yi are observed without error, while xis are observed with
error, which may not be the case since x’s are typically controlled. More
seriously, when yi’s are random, the values y∗,y, and Syy in

sx0 = sx

√
1 +

1
n
+

(y∗ − y)2

Syy
, sx =

√
Sxx

n− 2
,

are not fixed constants but random, unlike x∗, x, and Sxx in a reverse coun-

terpart s
√

1 + 1
n + (x∗−x)2

Sxx
from Section 14.3.5.

The standard method uses the original regression ŷ = b0 + b1x and, for
the response y∗, predicts x∗ as

x̂∗ =
1
b1
(y∗ − b0).

This method is called inverse method because the linear equation is inverted,
In this case the expectation and variance of x̂∗ are approximated as

E x̂∗ ≈ x∗ +
σ2

β2
1Sxx

(x∗ − x), Var x̂∗ ≈ σ2

β2
1

(
1 +

1
n
+

(x∗ − x)2

Sxx

)
.

The (1− α)100% prediction interval for x∗ is

x̂∗ − tn−2,1−α/2

s

b1

√
1 +

1
n
+

(x̂∗ − x)2

Sxx
, x̂∗ + tn−2,1−α/2

s

b1

√
1 +

1
n
+

(x̂∗ − x)2

Sxx


 .

If for a single x∗, y∗1 ,y∗2 , . . . ,y∗m are observed, then y∗ from above is re-
placed by the mean y∗, x̂∗ = 1

b1
(y∗ − b0), and the prediction interval be-

comes
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x̂∗ − tn−2,1−α/2

s

b1

√
1
m

+
1
n
+

(x̂∗ − x)2

Sxx
, x̂∗ + tn−2,1−α/2

s

b1

√
1
m

+
1
n
+

(x̂∗ − x)2

Sxx


 .

Example 14.3. Concentration of Caprolactone. Thonnard (2006) analyzes
data on 10 solutions of caprolactone in the solvent tetrahydrofuran. As a
control, a solution without the caprolactone is also provided.

Each of these 11 solutions was injected in a gaschromatograph three
times. The measures from each injection are recorded in a form of surface,
which translates to the estimated concentration. The known solution con-
centrations x for the 10 solutions are paired with the surface readings y,
three for each concentration. The no caprolactone solution results in three
pairs (0, 0). Thus, the data presented in Table 14.1 consist of 33 (x,y) pairs:

Concentration Surface
Observations x (in (g/l) Measures y

1–3 9.71 24.276, 24.083, 24.276
4–6 8.52 20.206, 20.199, 20.223
7–9 7.96 19.773, 19.759, 19.765

10–12 6.82 16.743, 16.587, 16.744
13–15 5.85 15.081, 15.121, 15.274
16–18 4.95 12.636, 12.641, 12.682
19–21 3.91 9.869, 9.906, 9.883
22–24 2.98 7.624, 7.592, 7.585
25–27 2.07 4.638, 4.666, 4.649
28–30 1.02 2.860, 2.859, 2.896
31–33 0.00 0.00, 0.00, 0.00

Table 14.1 Concentration and surface of caprolactone in the solution.

Suppose that we have a new solution, for which we do not know the
concentration of caprolactone, x∗. After injecting this unknown solution
three times in the gaschromatograph, three observations of y are obtained,
y∗1 = 1.582,y∗2 = 1.793, and y∗3 = 1.787. We will estimate x∗ and provide the
95% prediction interval.

MATLAB script caprolactone.m finds the prediction x̂∗ = 0.6329 and
the 95% prediction interval for x∗ as [0.4047,0.8611].

data=[

9.71 24.276

9.71 24.083

9.71 24.276

8.52 20.206

8.52 20.199

8.52 20.223

...
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1.02 2.860

1.02 2.859

1.02 2.896

0.00 0.000

0.00 0.000

0.00 0.000];

x = data(:,1); y=data(:,2);

n=length(x) %33

SXX = sum( (x - mean(x)).^2 ) %305.8026

SXY = sum( (x - mean(x)).* (y - mean(y)) ) %749.4972

b1 = SXY/SXX %2.4509

b0 = mean(y) - b1 * mean(x) %0.1694

s=sqrt(sum( (y - (b0+b1*x)).^2 )/(n-2)) %0.4216

%

ystars=[1.582 1.793 1.787]; m=length(ystars);

ystar = mean(ystars);

xbar=mean(x);

xstar = 1/b1 * (ystar - b0) %0.6329

LB=xstar - tinv(0.975, n-2) * s/b1 * sqrt(1/m+1/n+(xstar-xbar)^2/SXX);

UB=xstar + tinv(0.975, n-2) * s/b1 * sqrt(1/m+1/n+(xstar-xbar)^2/SXX);

[LB xstar UB] %[0.4047 0.6329 0.8611]

This was the inverse method. Compare this solution with the reverse
method in which x and y are flipped and the prediction interval from Sec-
tion 14.3.5 is used.�

14.5 Testing the Equality of Two Slopes*

Let (x1i,y1i), i = 1, . . . ,n1 and (x2i,y2i), i = 1, . . . ,n2, be pairs of measure-
ments obtained from two groups, and for each group the regression is esti-
mated as

y1i = b0(1) + b1(1)x1i + ei(1), i = 1, . . . ,n1, and

y2i = b0(2) + b1(2)x2i + ei(2), i = 1, . . . ,n2,

where in groups i = 1,2 the statistics b0(i) and b1(i) are estimators of the
respective population parameters, intercepts β0(i), and slopes β1(i). We are
interested in testing the equality of the population slopes,

H0 : β1(1) = β1(2),

against the one- or two-sided alternatives.
The test statistic is

t =
b1(1) − b1(2)

s.e.(b1(1) − b1(2))
, (14.2)
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where the standard error of the difference b1(1) − b1(2) is

s.e.(b1(1) − b1(2)) =

√√√√ s2

[
1

Sxx(1)
+

1
Sxx(2)

]
,

and s2 is the pooled estimator of variance,

s2 =
SSE1 + SSE2

n1 + n2 − 4
.

Statistic t in (14.2) has a t-distribution with n1 + n2 − 4 degrees of free-
dom and, in addition to testing, could be used for a (1− α) 100% confidence
interval for β1(1)− β1(2),

[(b1(1) − b1(2))∓ tn1+n2−4,1−α/2× s.e.(b1(1) − b1(2))].

Example 14.4. Cadmium Poisoning. Chronic cadmium poisoning is an in-
sidious disease associated with the development of emphysema and the
excretion in the urine of a characteristic protein of low molecular weight.
The first signs of chronic cadmium poisoning become apparent following
a latent interval after exposure has ended. Respiratory functions deterio-
rate faster with in age. The data set featured in Armitage and Berry (1994)
gives ages (in years) and vital capacity (in liters) for 84 men working in
the cadmium industry, cadmium.dat|mat|xlsx. The observations with flag
exposure equal to 0 denote persons unexposed to cadmium oxide fumes,
while flags 1 and 2 correspond to exposed persons. The purpose of the
study was to assess the degree of influence of exposure to respiratory func-
tions. Since respiratory functions are influenced by age, regardless of expo-
sure, age as a covariate needs to be taken into account. Thus, the suggested
methodology is to test the equality of the slopes in group regressions of
vital capacity to age:

H0 : β1(exposed)= β1(unexposed) versus H1 : β1(exposed)< β1(unexposed).

The research hypothesis is that the regression in the exposed group is
“steeper,” that is, the vital capacity decays significantly faster with age.
This corresponds to a smaller slope parameter for the exposed group since
in this case the slopes are negative (Figure 14.5). The inference is supported
by the following MATLAB code.

xlsread vitalcapacity.xlsx;

twos = ans;

x1 = twos( twos(:,3) > 0, 1); y1 = twos( twos(:,3) > 0, 2);

x2 = twos( twos(:,3) ==0, 1); y2 = twos( twos(:,3) ==0, 2);

n1=length(x1); n2 = length(x2);

SXX1 = sum((x1 - mean(x1)).^2) %4.3974e+003
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SXX2 = sum((x2 - mean(x2)).^2) %6.1972e+003

SYY1 = sum((y1 - mean(y1)).^2) %26.5812

SYY2 = sum((y2 - mean(y2)).^2) %20.6067

SXY1 = sum((x1 - mean(x1)).*(y1 - mean(y1))) %-236.3850

SXY2 = sum((x2 - mean(x2)).*(y2 - mean(y2))) %-189.7116

b1_1 = SXY1/SXX1 %-0.0538

b1_2 = SXY2/SXX2 %-0.0306

SSE1 = SYY1 - (SXY1)^2/SXX1 %13.8741

SSE2 = SYY2 - (SXY2)^2/SXX2 %14.7991

s2 = (SSE1 + SSE2)/(n1 + n2 - 4) %0.3584

s = sqrt(s2) %0.5987

seb1b2 = s * sqrt( 1/SXX1 + 1/SXX2 ) %0.0118

t = (b1_1 - b1_2)/seb1b2 %-1.9606

pval = tcdf(t, n1 + n2 - 4) %0.0267
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Fig. 14.5 Samples from exposed (red) and unexposed (green) groups with fitted regres-
sion lines. The slopes of the two regressions are significantly different with a p-value
smaller than 3%.

Thus, the hypothesis of equality of slopes is rejected with a p-value of
2.67%.
Remark. Since the distribution of t-statistic is calculated under H0, which
assumes parallel regression lines, the more natural estimator s22, in place
of s2, takes into account this fact. The number of degrees of freedom in the
t-statistic changes to n1 + n2 − 3. The changes in the inference are minimal,
as evidenced from the MATLAB code accounting for s22:

%s22 accounts for equality of slopes:

s22 = (SYY1 + SYY2 - ...

(SXY1 + SXY2)^2/(SXX1 + SXX2))/(n1 + n2 - 3) %0.3710

s = sqrt(s22) %0.6091

seb1b2 = s * sqrt( 1/SXX1 + 1/SXX2 ) %0.0120
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t = (b1_1 - b1_2)/seb1b2 %-1.9270

pval = tcdf(t, n1 + n2 - 3) %0.0287

For the case of the confidence interval, estimator s2 and n1 + n2 − 4
degrees of freedom should be used.
�

14.6 Multiple Regression

It is often the case that in an experiment leading to regression analysis more
than a single covariate is available. For example, in Chapter 2, page 32, we
discussed an experiment in which two indexes of the amount of body fat
(Siri and Brozek indexes) were calculated from the body density measure.
In addition, a variety of body measurements, including weight, height, adi-
posity, neck, chest, abdomen, hip, thigh, knee, ankle, biceps, forearm, and
wrist, were recorded. Recall that the body density measure is complicated
and potentially unpleasant, since it is taken by submerging the subject in
water. Therefore, it is of interest to ask whether the Brozek index can be
well predicted using the nonintrusive measurements.

If x1, x2, . . . , xk are variables, covariates, or predictors, and we have n
joint measurements of covariates and the response, xi1, xi2, . . . , xik,yi, i =
1,2, . . . ,n, then multiple regression expresses the response as a linear com-
bination of covariates, plus an intercept and an additive error:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ǫi, i = 1, . . . ,n.

The errors ǫi are assumed to be independent and normal with mean 0 and
constant variance σ2. We will denote by k the number of covariates, but the
number of parameters in the model is p = k + 1 because the intercept β0
should be added. To avoid confusion, we will mostly use p to represent
the number of parameters in all expressions that involve dimensions and
derived statistics.

As in the case of a single predictor, we will be interested in estimating
and testing the coefficients, error variance, and mean and prediction re-
sponses. However, multiple regression brings several new challenges when
compared to a simple regression. The two main challenges are (i) the pos-
sible presence of multicollinearity among the covariates, that is, covariates
being correlated among themselves, and (ii) a multitude of possible mod-
els and the need to find the best model by identifying the “best” subset
of predictors. A synonym for multiple regression is multivariable regres-
sion. Sometimes the multiple regression is wrongly termed multivariate
regression; this terminology is reserved for the case where the response y
is multivariate, which is not the case here.
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14.6.1 Matrix Notation

The regression equations for all n observations (xi1, xi2, . . . , xik,yi), i =
1, . . . ,n, can be written as

y1 = β0 + β1x11 + β2x12 + · · ·+ βkx1k + ǫ1,

y2 = β0 + β1x21 + β2x22 + · · ·+ βkx2k + ǫ2,
...

yn = β0 + β1xn1 + β2xn2 + · · ·+ βkxnk + ǫn,

and also in convenient matrix form as

y = Xβ + ǫ,

where

y =




y1
y2
...

yn


 ,

X =




x1
x2
...

xn


=




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
1 xn1 xn2 · · · xnk


 , β =




β0
β1
...

βk


 , and ǫ =




ǫ1
ǫ2
...

ǫn


 .

Note that y and ǫ are n× 1 vectors, X is an n× p matrix, and β is a p× 1
vector. Here p = k + 1. To find the least-squares estimator of β, one mini-
mizes the sum of squares:

n

∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βkxik))
2.

The minimizing solution

b =




b0
b1
...

bk




satisfies the system (normal equations)
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X ′Xb = X ′y, (14.3)

and the least-squares estimator of β is

b = (X ′X)−1X ′y.

The fitted values are obtained as

ŷ = Xb = X(X ′X)−1X ′y,

and the residuals are

e = y− ŷ = y− Xb = y− X(X ′X)−1X ′y = (I − X(X ′X)−1X ′)y,

where I is an n× n identity matrix.
The matrix H = X(X ′X)−1X ′ that appears in the expressions for fitted

values and residuals is important in this context; it is called the hat matrix.
In terms of the hat matrix H ,

ŷ = Hy, and e = (I − H)y.

Matrices H and I−H are projection matrices, and the n-dimensional vector
y is projected to ŷ by H and to the residual vector e by I−H . Any projection
matrix A is idempotent, which means that A2 = A. Simply put, a projection
of a projection will be the same as the original projection. Geometrically,
vectors ŷ and e are orthogonal since the product of their projection matrices
is 0. Indeed, because H is idempotent, H(I − H) = H − H2 = H − H = 0.

The errors ǫi are independent and the variance of vector ǫ is σ2I.
We will illustrate some concepts from multiple regression using dataset
fat.dat; all calculations are part of MATLAB script fatregdiag.m:

load ’fat.dat’

casen = fat(:,1); %case number

broz = fat(:,2); %dependent variable

siri = fat(:,3); %function of densi

densi = fat(:,4); %an intrusive measure

%below are the predictors (except ffwei)

age = fat(:,5); weight = fat(:,6); height = fat(:,7);

adiposi = fat(:,8); %adiposity is BMI index=weight/height^2

ffwei = fat(:,9); %fat free weight, excluded from predictors

% since it involves body fat and brozek

neck = fat(:,10); chest = fat(:,11); abdomen = fat(:,12);

hip = fat(:,13); thigh = fat(:,14); knee = fat(:,15);

ankle = fat(:,16); biceps = fat(:,17); forearm = fat(:,18);

wrist = fat(:,19);

vecones = ones(size(broz)); % necessary for the intercept

disp(’=======================================================’)
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disp(’ p = 15, 14 variables + intercept’)

disp(’=======================================================’)

Z =[age weight height adiposi neck chest abdomen ...

hip thigh knee ankle biceps forearm wrist];

X =[vecones Z];

Y = broz

% X is design matrix, n x p where n is the number of subjects

% and p is the number of parameters, or number of predictors+1.

% varnames = [’intercept=0’ ’age=1’ ’weight=2’ ’height=3’

% ’adiposi=4’ ’neck=5’ ’chest=6’ ’abdomen=7’ ’hip=8’ ’thigh=9’

% ’knee=10’ ’ankle=11’’biceps=12’ ’forearm=13’ ’wrist=14’];

[n, p] = size(X)

b = inv(X’ * X) * X’* Y;

H = X * inv(X’ * X) * X’;

max(max(H * H - H)); %0 since H is projection matrix

Yhat = H * Y; %or Yhat = X * b;

%-------------------------------------------------------

14.6.2 Sums of Squares and an ANOVA Table

Sums of squares, SST, SSR, and SSE, for multiple regression have simple
expressions in matrix notation. Here we introduce matrix J, which is an
n× n matrix in which each element is 1. The total sum of squares can be
calculated as

SST = y′y− 1
n

y′ Jy = y′
(

I − 1
n

J

)
y.

The error sum of squares is SSE = e′e = y′(I − H)′(I − H)y = y′(I − H)y
because I − H is a symmetric projection matrix.

By taking the difference, we obtain

SSR = SST − SSE = y′
(

H − 1
n

J

)
y.

The number of degrees of freedom for SST, SSR, and SSE are n − 1,
p− 1, and n− p, respectively. Thus, the multiple regression ANOVA table
is as follows:

Source DF SS MS F p-value
Regression p− 1 SSR MSR = SSR

p−1 F = MSR
MSE P(Fp−1,n−p > F)

Error n− p SSE MSE = SSE
n−p

Total n− 1 SST
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where large values of F are critical for H0, which states that the covariates
x1, . . . , xk do not influence the response y. Formally, the null hypothesis is

H0 : β1 = β2 = · · · = βk = 0,

while the alternative is that at least one βi, i = 1, . . . ,k is not 0.
As in the simple regression, R2 is the coefficient of determination,

R2 =
SSR

SST
= 1− SSE

SST
.

Adding more variables to a regression always increases R2, even when the
added covariates have nothing to do with the experiment. If two mod-
els have comparable R2s, then, according to Ockham’s razor,3 the simpler
model should be preferred, and adding new variables to the regression
should be penalized. One way to achieve this is via an adjusted coefficient
of determination,

R2
adj = 1− n− 1

n− p

SSE

SST
,

which is one of the criteria for comparing models.
The estimator of the error variance σ2 is MSE. We can find the confi-

dence intervals of the components of e and ŷ using, respectively, the diag-
onal elements of covariance matrices MSE× (I − H) and MSE× H .

%Sums of Squares

J=ones(n); I = eye(n);

SSR = Y’ * (H - 1/n * J) * Y;

SSE = Y’ * (I - H) * Y;

SST = Y’ * (I - 1/n * J) * Y;

MSR = SSR/(p-1) %806.7607

MSE = SSE/(n-p) %15.9678

F = MSR/MSE %50.5243

pval = 1-fcdf(F, p-1, n-p) %0

Rsq = 1 - SSE/SST %0.7490

Rsqadj = 1 - (n-1)/(n-p) * SSE/SST %0.7342

s = sqrt(MSE) %3.9960

%------------------------------------------------------

3 Pluralitas non est ponenda sine neccesitate, which translates into English as “Plurality
should not be posited without necessity” (William of Ockham, 1287–1347).
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14.6.3 Inference About Regression Parameters and Responses

The covariance matrix for a vector of estimators of regression coefficients b
is equal to

s2
b = MSE× (X ′X)−1.

Its (j + 1)st diagonal element is an estimator of variance for bj, and off-
diagonal elements at the position (j+ 1,k + 1) are estimators of covariances
between bj and bk, where j,k = 0, . . . , p − 1. Note that here we count the
rows/columns of p× p matrix (X ′X)−1 from 1 to p, while the correspond-
ing indices in b run from 0 to p− 1.

When finding a confidence interval or testing a hypothesis about a par-
ticular β j, j = 0, . . . p− 1, we use bj and sbj

(square root of (j+ 1)st diagonal

element of s2
b) in the same way as in the univariate regression, only this

time the test statistic t has n− p degrees of freedom instead of n− 2. Sev-
eral subsequent MATLAB scripts are excerpts from the file fatregdiag.m:

sig2 = MSE * inv(X’ * X);% covariances among b’s

sb=sqrt(diag(sig2));

tstats = b./sb;

pvals = 2 * tcdf(-abs(tstats), n-p);

disp(’--------------------------------------’)

disp(’ var# t pval ’)

disp(’--------------------------------------’)

[ (0:p-1)’ tstats pvals ]

%--------------------------------------

% var# t pval

%--------------------------------------

% 0 -0.9430 0.3467

% 1.0000 1.8942 0.0594

% 2.0000 -1.6298 0.1045

% ...

% 12.0000 0.9280 0.3543

% 13.0000 2.3243 0.0210

% 14.0000 -2.9784 0.0032

Note that in the fat example, the intercept is not significant (p = 0.3467), nor
is the coefficient for variable #12 (biceps) (p = 0.3543), while the coefficient
for variable #13 (forearm) is significant (p = 0.0210).

The regression response ym = x∗b, evaluated at x∗ = (1 x∗1 x∗2 . . . x∗k ),
has sample variance

s2
ym

= (x∗)s2
b(x∗)′.

For a prediction, the variance is, as in univariate regression, s2
yp

= s2
ym

+

MSE. For the inference about regression response, the t-statistic with n− p
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degrees of freedom is used. As an example, assume that for a “new” person
with covariates xh = (1 38 191 72 26 41 104 95 101.5 66 39 24 31 30 18.5),
a prediction of the Brozek index is needed. The model gives a prediction of
19.5143, and the variances for mean response and individual response are
estimated below. This is sufficient to calculate confidence intervals for the
mean and individual responses.

%--------------------------------------------------

% predicting mean and individual responses

% with 95% confidence/prediction intervals

Xh=[1 38 191 72 26 41 104 ...

95 101.5 66 39 24 31 30 18.5];

Yh = Xh * b %19.5143

sig2h = MSE * Xh * inv(X’ * X) * Xh’;

sig2hpre = MSE * (1 + Xh * inv(X’ * X) * Xh’);

sigh = sqrt(sig2h);

sighpre = sqrt(sig2hpre);

%95% CI’s on the mean and individual responses

[Yh-tinv(0.975, n-p)*sigh, Yh+tinv(0.975, n-p)*sigh]

%[17.4347, 21.5940]

[Yh-tinv(0.975, n-p)*sighpre, Yh+tinv(0.975, n-p)*sighpre]

%[11.3721 27.6566]

A Noninformative Bayesian Approach. A Bayesian inference in multiple
linear regression is based on a prior on (β, σ2) and the likelihood

f (y|β,σ2) =

(
1√

2πσ2

)n

exp
{
− 1

2σ2 (y− Xβ)′(y− Xβ)

}

=

(
1√

2πσ2

)n

exp
{
− 1

2σ2

[
(y− ŷ)′(y− ŷ) + (β− b)′(X ′X)(β− b)

]}
,

where b = (X ′X)−1X ′y is the least squares estimator of β, and ŷ = Xb.
With noninformative prior

π(β,σ2) ∝
1

σ2 ,

the posterior for (n− p) s2

σ2 is χ2
n−p, while the posterior for β is multivariate

normal MVN p(b,σ2(X ′X)−1). The marginal posterior for β, when σ2 is
integrated out, is multivariate t with location b. Thus, the Bayes estimator
for β coincides with b, which is also traditional estimator (MLE). The Bayes
estimator of σ2 is n−p

n−p−2 s2, for s2 = 1
n−p (y− ŷ)′(y− ŷ), and n > p + 2.

The (1− α)100% HPD set for β is

{
β
∣∣∣(β− b)′(X ′X)(β− b) ≤ p s2 F1−α,p,n−p

}
,
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where F1−α,p,n−p is the (1− α) quantile of an Fp,n−p-distribution.
For any particular component β j,

t =
β j − bj

s
√

cjj
,

has tn−p posterior distribution. Here cjj is j + 1st diagonal element of
(XX)−1.

A more general prior on (β,σ2) is multivariate normal-inverse gamma
(NIG). This conjugate prior is capable of incorporating various prior in-
formation about the parameters and the prior π(β,σ2) ∝ 1

σ2 can be obtained
as a limiting case of a NIG prior. Chapter 9 of O’Hagan (1994) provides an
excellent description of the resulting Bayesian inference.

14.7 Diagnostics in Multiple Regression

Three important deficiencies in a multiple linear model can be diagnosed:
(i) the presence of outliers, (ii) the nonconstant error variance, and (iii)
a possible suboptimal model selection. Although the exposition level of
these diagnostic methods exceeds the level in introductory coverage of re-
gression, multiple regression modeling is important in practice and pro-
vides an important step to understanding more sophisticated nonlinear
models, such as generalized linear models. For this reason, we provide
a basic overview of residual and influence analysis, as well as an assess-
ment of multicollinearity and choice of model. For readers interested in a
more comprehensive treatment of multivariable linear models, the book by
Rawlings et al. (2001) is a comprehensive resource.

14.7.1 Residual Analysis and Influence

In setting the regression model, we made several assumptions about popu-
lation errors (independence, zero-mean, constant variance, normality). The
residuals, defined as ei = yi − ŷi, can be thought of as observed errors if the
model is correct and should confirm our assumptions. For this reason, the
residuals are examined graphically (histograms, plots against fits ŷ, against
particular predictors, or, when it makes sense, against their order). When
individual data points fail the residual check, we may suspect outliers in an
otherwise correct model. However, if the residual analysis shows systematic
deviations (trends, nonconstant variance), the model should be questioned.
An interesting example of importance of residual analysis was constructed
by Anscombe (1973), see Exercise 14.11.
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Next we discus the ordinary residuals and three modifications more
appropriate for the statistical analysis.

�
The ordinary residuals ei = yi − ŷi are components of (I − H)y. The

leverages hii are diagonal elements of the hat matrix H . These are impor-
tant descriptors of design matrix X and explain how far xi is from x. All
leverages are bounded 1/n≤ hii ≤ 1, and their sum is ∑ hii = p, the number
of regression parameters. Although the errors in the regression are inde-
pendent and with the same variance, the residuals are correlated and with
different sample variances s2(1− hii), where s2 = MSE.

The studentized residual is the ordinary residual divided by its standard
deviation

ri =
ei

s
√

1− hii
,

and recalls the t-statistic. Such residuals are scale-free comparable, and
values outside the interval [−2.5,2.5] are potential outliers. Sometimes
these residuals are called internally studentized, since the standard devia-
tion s =

√
MSE depends on the ith observation.

Externally studentized residuals, also called R-Student residuals, are mea-
sures of influence of the ith observation (yi, xi) on the ith residual. Instead
of s, the residuals are studentized by an external standard deviation,

s−i =

√
(n− p)s2 − e2

i /(1− hii)

n− p− 1
. (14.4)

This external estimate of σ comes from the model fitted without the ith ob-
servation; however, the refitting is not necessary due to a simple expression
in (14.4). Externally studentized residuals

ti =
ei

s−i

√
1− hii

,

can be tested, since they are t distributed with n− p− 1 degrees of freedom.
Of course, if multiple residuals are tested simultaneously, then it should be
done in the spirit of multiple hypothesis testing (Section 9.9).

PRESS (acronym for prediction sum of squares; Allen, 1974) residuals
ei,−i = ei/(1− hii) also remove the impact of the ith observation (yi, xi) on
the fit at xi. This is a cross-validatory residual that measures how a model
built without using the ith observation would predict the ith response.

For model assessment, the statistic PRESS is useful. It is defined as a
sum of squares of PRESS residuals,

PRESS = ∑
i

e2
i,−i,
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and used in defining the prediction R2,

R2
pred = 1− PRESS

SST
.

Here SST is the total sum of squares ∑i(yi− y)2. The ordinary R2 is defined
as 1 − SSE/SST, and in R2

pred the SSE is replaced by PRESS. Since the

average prediction error is defined as
√

PRESS/n, good models should have
a small PRESS.

The following table summarizes standard types of residuals used in
residual analysis:

1. Ordinary residuals ei = yi − ŷi

2. Studentized residuals ri =
ei

s
√

1−hii

3. Externally studentized residuals ti =
ei

s−i

√
1−hii

4. Prediction sum of squares residuals (PRESS) ei,−i =
ei

1−hii

DFBETAS stands for difference in betas. It measures the influence of the
ith observation on β j:

DFBETASij =
bj − bj(−i)

s−i
√

cjj
,

where bj is the estimator of β j, bj(−i) is the estimator of β j when the
ith observation is excluded, and cjj is the (j + 1)st diagonal element in
(X ′X)−1. Large DFBETAS may indicate which predictor might be influ-
ential. The recommended threshold is 2/

√
n. The black boxes in Fig-

ure 14.8 are at combinations (β0− β14 vs. indices of observations) for which
abs(DFBetas>2/sqrt(n)).

Since several DFBETAS can be large, it is useful to pay attention to those
corresponding to large DFFITS. The DFFITS measure the influence of the
ith observation on the prediction ŷi:

DFFITSi =
ŷi − ŷi,−i

s(−i)

√
hii

=

√
hii

1− hii
· ei

s−i

√
1− hii

.

The value ŷi,−i is the prediction of yi on the basis of a regression fit without
the ith observation. The observation is considered influential if its DFFITS
value exceeds 2

√
p/n.

A measure related computationally to DFFITS is Cook’s distance, Di:
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Di = (DFFITSi)
2 · s2

−i

ps2 .

Cook’s distance measures the effect of the ith observation on the whole
vector b = β̂. An observation is deemed influential if its Cook’s distance
exceeds 4/n.

Figure 14.7 shows ordinary residuals plotted against predicted values ŷ.
The radii of circles are proportional to |Dffits| in panel (a) and to Cook’s
distance in panel (b).

Influential observations are not necessarily outliers and should not be
eliminated from a model only on the basis of their influence. Such obser-
vations can be identified by their influence on a predicted value. One often
finds predictions of the ith response ŷi,−i in a regression in which the ith
case (yi, xi) is omitted (Figure 14.6).

%prediction of y_i with ith observation removed

%hat y_i(-i)

ind = 1:n;

Yhati = [];

for i = 1:n

indi = find(ind ~= i);

Yi = Y(indi);

Xi=X(indi,:);

bi = inv(Xi’ * Xi) * Xi’* Yi;

Yhatii = X(i,:) * bi;

Yhati =[Yhati; Yhatii];

end

Yhati %prediction of y_i without i-th observation

%-----------------------------------------------
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ŷ
(b
lu
e)

an
d
ŷ(
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Fig. 14.6 Predicted responses ŷi (blue) and predicted responses ŷi,−i (red). Large changes
in prediction signify an influential observation.
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%============ residual analysis==================

hii = diag(H); %leverages

resid = (I - H)*Y; %ordinary residuals

sresid = sqrt(MSE .* (1-hii));

stresid = resid./sresid %studentized residuals

%----------studentized deleted residuals---

di = Y - Yhati; %or di = resid./(1-hii)

%di is also called PRESS residual

PRESS =sum(di.^2)

R2pred = 1-PRESS/SST %R^2 predictive

sminusi = sqrt(((n-p)*MSE*ones(n,1) -...

resid.^2./(1-hii))/(n-p-1)); %stdev(-i)

ti = resid ./(sminusi .* sqrt(1-hii))

% externally studentized residuals

% outliers based on leverage = hii

outli=hii/mean(hii);

find(outli > 3)

% 31 36 39 41 42 86 159 175 206

%influential observations

Dffits = ti .* sqrt( hii ./(1-hii)) %influ ith to ith

find(abs(Dffits) > 2 * sqrt(p/n));

% 31 39 42 82 86 128 140 175 207 216 221 231 250

%

CooksD = resid.^2 .* (hii./(1-hii).^2)/(p * MSE)

% influence if ith to all;

find(CooksD > 4/n) %find influential

%31 39 42 82 86 128 175 207 216 221 250
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Fig. 14.7 Ordinary residuals plotted against predicted values ŷ. The radii of circles are
proportional to |Dffits| in panel (a) and to Cook’s distance in panel (b). The observations
with the largest circles are in both cases the 42nd and the 39th.

%DFBETAS- influence if ith obs on jth coefficient



716 14 Regression

cii = diag(inv(X’ * X));

DFBetas =[];

for i = 1:n

indi = find(ind ~= i);

Yi = Y(indi);

Xi=X(indi,:);

bi = inv(Xi’ * Xi) * Xi’* Yi;

Hi = Xi * inv(Xi’ * Xi) * Xi’;

SSEi = Yi’ * (eye(n-1) - Hi) * Yi;

MSEi = SSEi./(n-p-1);

DFBetasi = (b - bi)./sqrt(MSEi .* cii) ;

DFBetas = [DFBetas; DFBetasi’];

end
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Fig. 14.8 DFBETAS: The x-axis enumerates β0 − β14, while on the y-axis are plot-
ted the indices of observations. The black boxes are at combinations for which
abs(DFBetas)>2/sqrt(n)).

14.7.2 Multicollinearity

The multicollinearity problem in regression concerns the correlation among
the predictors. Suppose that matrix X contains two collinear columns xi

and xj = 2xi. Obviously covariates xi and xj are linearly dependent, and xj

does not bring any new information about the response. This collinearity
makes matrix X not of full rank and X ′X singular, that is, not invertible,
and normal equations (14.3) have no unique solution. In reality, if multi-
collinearity is present, then matrix X ′X is not singular, but near-singular,
in the sense that its determinant is close to 0, making the inversion of X ′X,
and consequently the solution β̂, numerically unstable. This happens when
either two or more variables are highly correlated or when a variable has a
small variance (and, in a sense, is correlated to the intercept).

In addition to numerical instability in computing the least squares es-
timators, the multicollinearity can lead to inferential inconsistencies. Mul-
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ticollinear predictors tend to have t-statistics for their corresponding coef-
ficients shrunk toward 0, leading to the possibility of having a significant
regression, as assessed by statistic F, in which none of the individual pre-
dictors turns out significant.

�
There are many measures of multicollinearity discussed in the lit-

erature. We will discuss the condition number, condition indexes, and multi-
collinearity index, which are global measures, and the variance inflation factor,
which is linked to a particular predictor.

Let Zn×k be a matrix obtained from the design matrix X by omitting the
vector of ones, Z = X(:,2:end). Let λ1 ≥ λ2 ≥ · · · ≥ λk be ordered eigenvalues
of correlation matrix of the predictors, in MATLAB, corr(Z). The condition
number (Belsley et al., 1980) is defined as the square root of the ratio of the
largest and smallest eigenvalues,

K =

√
λ1

λk
.

Values for K starting at around 10 are concerning, values between 30 and
100 influence the results, and values over 100 indicate a serious collinearity
problem.

The condition indexes for corr(Z) defined as

Kj =

√
λ1

λj
, j = 1, . . . ,k,

are indicative of possible presence of multiple near-linear relationships
among the predictors. For example, if three condition indexes are large,
say exceed 30, this would mean that among predictors there are three com-
peting near-linear dependencies independent of each other.

The multicollinearity index (MCI) suggested by Thisted (1980) is defined
as

MCI =
k

∑
j=1

(
λk

λj

)2

Here, λk is the smallest eigenvalue of corr(Z). The MCI falls between 1 and
k, it is equal to 1 for exactly collinear variables, and to k for orthogonal
variables. The values of MCI close to 1 indicate high collinearity, values
larger than 2 are not alarming.

The variance inflation factor (VIF) explains the extent of correlation of a
particular variable xj to the rest of predictors. It is defined as
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VIFj =
1

1− R2
j

,

where R2
j is the coefficient of determination in regression of xj to the rest

of predictors. The name variance inflation factor comes from an alternate
expression for variance of bj,

Var (bj) =
1

1− R2
j

× σ2

∑
n
i=1(xij − x j)2 , j = 1, . . . , p− 1,

where xij are elements of design matrix X without the column of 1’s cor-
responding to the intercept. It is obvious that when Rj approaches 1, the
variance of bj explodes. VIFs exceeding 10 are considered serious.

Computation of VIF’s is simple. One finds the inverse of the correlation
matrix for the predictors, The diagonal elements of this inverse are the VIFs,
diag(inv(corr(X(:,2:end)))), where X is the design matrix.

As a global measure of multicollinearity an average VIF is used,

VIF =
1
k

k

∑
j=1

VIFj, k = p− 1.

Values of VIF substantially larger than 1 indicate a multicollinearity prob-
lem.

A note of caution: VIF diagnostic sometimes can miss a problem since
the intercept is not included in the analysis.

Multicollinearity can be diminished by excluding problematic variables
causing the collinearity in the first place. Alternatively, groups of variables
can be combined and merged into a single variable.

Another way to diminish multicolinearity is to keep all variables but
“condition” matrix X ′X by adding kI, for some k > 0, to the normal equa-
tions. This is known as ridge regression (Hoerl and Kennard, 1970). There
is a tradeoff: the solutions of (X ′X + kI)β̂ = X ′y are more stable, but some
bias is introduced.

%

Z = X(:,2:end);

RXX = corr(Z);

lambdas = eig(RXX);

K = sqrt(max(lambdas)/min(lambdas)) % 19.3713

Ki = sqrt(max(lambdas)./lambdas);

Ki’

% 1.0000 2.4975 2.9039 3.6422 3.8436 5.2447 5.4643

% 5.8257 6.9182 8.1185 19.3713 12.4119 13.7500 10.6779

MCI = sum( (min(lambdas)./lambdas).^2 ) % 1.5853

VIF = diag (inv(RXX));

VIF’

% 2.2509 33.7869 2.2566 16.1634 4.4307 10.6846 13.3467
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% 15.1583 7.9615 4.8288 1.9455 3.6745 2.1934 3.3796

Alternatively, for most of the above calculations one can use MATLAB’s
regstats or diagnostics.m:

s = regstats(Y,Z,’linear’,’all’);

[index,res,stud_res,lev,DFFITS1,Cooks_D,DFBETAS]=diagnostics(Y,Z);

14.7.3 Variable Selection in Regression

Model selection involves finding a subset of predictors from a large number
of potential predictors that is optimal in some sense.

We defined the coefficient of determination R2 as the proportion of
model-explained variability, and it seems natural to choose a model that
maximizes R2. It turns out that this is not a good idea since the maximum
will always be achieved by that model that has the maximal number of pa-
rameters. It is a fact that R2 increases when even a random or unrelated
predictor is included.

The adjusted R2 penalizes the inclusion of new variables and represents
a better criterion for choosing a model. However, with p parameters there
would be 2p possible candidate models, and even for moderate p this could
be a formidable number.

There are two mirroring procedures, forward selection and backward
selection, that are routinely employed in cases where checking all possible
models is infeasible. Forward selection proceeds in the following way:

STEP 1. Start with the intercept-only model. Choose the predictor that has the
largest R2 among the models with a single variable. Call this variable x1.

STEP 2. Assume that the model already has m variables, x1, . . . , xm, for some
m≥ 1. Select the variable xm+1 that gives the maximal increase to R2 and refit the
model.

STEP 3. Denote by SSR(x1, . . . , xm) the regression sum of squares for a regres-
sion fitted with variables x1, . . . , xm. Then R(xm+1|x1, . . . , xm) = SSR(x1, . . . , xm+1)−
SSR(x1, . . . , xm) is the contribution of the (m + 1)st variable and it is considered
significant if

R(xm+1|x1, . . . , xm)/MSE(x1, . . . , xm+1) > F1,n−m−1,1−α, (14.5)

where MSE(x1, . . . , xm+1) the mean square error for a regression fitted with vari-
ables x1, . . . , xm+1. If relation (14.5) is satisfied, then variable xm+1 is included in
the model. Increase m by one and go to STEP 2.

If relation (14.5) is not satisfied, then the contribution of xm+1 is not significant, in
which case go to STEP 4.

STEP 4. Stop with the model that has m variables. END

The MSE in (14.5) was estimated from the full model. Note that the for-
ward selection algorithm is “greedy” and chooses the single best improving
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variable at each step. This, of course, may not lead to the optimal model
since in reality variable x1, which is the best for one-variable models, may
not be included in the best two-variable model.

Backward stepwise regression starts with the full model and removes
variables with insignificant contributions to R2. Seldom do these two ap-
proaches end with the same candidate model.

MATLAB’s Statistics Toolbox has two functions for stepwise regression:
stepwisefit, a function that proceeds automatically from a specified initial
model and entrance/exit tolerances, and stepwise, an interactive tool that
allows you to explore individual steps in a process.

An additional criterion for the goodness of a model is the Mallows Cp.
This criterion evaluates a proposed model with k variables and p = k + 1
parameters. The Mallows Cp is calculated as

Cp = (n− p)
s2

σ̂2 − n + 2p,

where s2 is the MSE of the candidate model and σ̂2 is an estimator of σ2,
usually taken to be the best available estimate. The MSE of the full model
is typically used as σ̂2.

�
A common misinterpretation is that in Cp, p is referred to as the

number of predictors instead of parameters. This is correct only for models
without the intercept (or when 1 from the vector of ones in the design
matrix is declared as a predictor).

Adequate models should have a small Cp that is close to p. Typically, a
plot of Cp against p for all models is made. The “southwesternmost” points
close to the line Cp = p correspond to adequate models. The Cp criterion can
also be employed in forward and backward variable selection as a stopping
rule.

14.7.4 Bayesian Model Selection in Multiple Regression

Next, we revisit fat.dat with some Bayesian analyses. Four compet-
ing models are compared using the Laud–Ibrahim predictive criterion, LI.
Models with smaller LI are favored.

Laud and Ibrahim (1995) argue that agreement of model-simulated pre-
dictions and original data should be used as a criterion for model selection.
If for yi responses ŷi,new are hypothetical replications according to the pos-
terior predictive distribution of competing model parameters, then

LI =
n

∑
i=1

(Eŷi,new− yi)
2 + Var (ŷi,new)
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measures the discrepancy between the observed and model-predicted data.
A smaller LI is better. The file fat.odc performs a Laud–Ibrahim Bayesian
model selection and prefers model #2 of the four models analyzed.

#fat.odc

model{

for(j in 1:N ){

# four competing models

mu[1, j] <- b1[1] + b1[2] *age[j] + b1[3]*wei[j] + b1[4]*hei[j] +

b1[5]*adip[j] + b1[6]*neck[j] + b1[7]*chest[j] +

b1[8]*abd[j] + b1[9]*hip[j] + b1[10]*thigh[j] +

b1[11]*knee[j]+b1[12]*ankle[j]+b1[13]*biceps[j] +

b1[14]*forea[j] + b1[15]*wrist[j]

mu[2, j] <- b2[1]+b2[2]*wei[j]+b2[3]*adip[j]+b2[4]*abd[j]

mu[3, j] <- b3[1]+b3[2]*adip[j]

mu[4, j] <- b4[1]*wei[j]+b4[2]*abd[j]+b4[3]*abd[j]+b4[4]*wrist[j]

}

#LI - Laud-Ibrahim Predictive Criterion. LI-smaller-better

for(i in 1:4 ){

tau[i] ~ dgamma(2,32)

LI[i] <- sqrt( sum(D2[i,]) + pow(sd(broz.new[i,]),2))

# data sets 1-4 for different models

for (j in 1:N) {

broz2[i,j] <- broz[j]

broz2[i,j] ~ dnorm(mu[i,j],tau[i])

broz.new[i,j] ~ dnorm(mu[i,j],tau[i])

D2[i,j] <- pow(broz[j]-broz.new[i,j],2)

}

}

# Compare predictive criteria between models i and j

# Comp[i,j] is 1 when LI[i]<LI[j], i-th model better.

for (i in 1:3) { for (j in i+1:4)

{Comp[i,j] <- step(LI[j]-LI[i])}}

# priors

for (j in 1:15) { b1[j] ~ dnorm(0,0.001)}

for(j in 1:4) { b2[j] ~ dnorm(0,0.001)

b4[j] ~ dnorm(0,0.001)}

for(j in 1:2) { b3[j] ~ dnorm(0,0.001)}

}

#DATA 1: Load this first

list(N = 252)

# DATA2: Then load the variables

broz[] age[] wei[] hei[] ... biceps[] forea[] wrist[]

12.6 23 154.25 67.75 ... 32.0 27.4 17.1

23.4 38.5 93.6 83.00 ... 30.5 28.9 18.2

...248 lines deleted...

25.3 72 190.75 70.50 ... 30.5 29.4 19.8

30.7 74 207.50 70.00 ... 33.7 30.0 20.9

END
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#the line behind ’END’ has to be empty

# INITS (initialize by loading tau’s

# and generating the rest

list(tau=c(1,1,1,1))

The output is given in the table below. Note that even though the pos-
terior mean of LI[4] is smaller that that of LI[2], it is the posterior median
that matters. Model #2 is more frequently selected as the best compared to
model #4.

mean sd MC error val2.5pc median val97.5pc start sample

LI[1] 186.5 209.2 17.63 84.0 104.6 910.5 1001 20000
LI[2] 96.58 23.46 1.924 85.08 93.14 131.2 1001 20000
LI[3] 119.6 5.301 0.03587 109.4 119.5 130.2 1001 20000
LI[4] 94.3 4.221 0.03596 86.33 94.2 103.0 1001 20000
Comp[1,2] 0.2974 0.4571 0.02785 0.0 0.0 1.0 1001 20000
Comp[1,3] 0.5844 0.4928 0.03939 0.0 1.0 1.0 1001 20000
Comp[1,4] 0.3261 0.4688 0.03008 0.0 0.0 1.0 1001 20000
Comp[2,3] 0.9725 0.1637 0.01344 0.0 1.0 1.0 1001 20000
Comp[2,4] 0.5611 0.4963 0.01003 0.0 1.0 1.0 1001 20000
Comp[3,4] 5.0E-5 0.007071 4.98E-5 0.0 0.0 0.0 1001 20000

More comprehensive treatment of Bayesian approaches in linear regression
can be found in O’Hagan (1994) and Ntzoufras (2009).

14.8 Sample Size in Regression

The evaluation of power in a regression with p − 1 variables and p pa-
rameters (an intercept is present) requires specification of a significance
level and precision. Suppose that we want a power such that a total sample
size of n = 61 would make R2 = 0.2 significant for α = 0.05 and the num-
ber of predictor variables p− 1 = 3. Cohen’s effect size here is defined as
f 2 = R2/(1− R2). Unlike the ANOVA where the values of f 2 ≈ 0.01 cor-
responded to small, f 2 ≈ 0.0625 to medium, and f 2 ≈ 0.16 to large effects,
in regression the values of f 2 ≈ 0.02 corresponded to small, f 2 ≈ 0.15 to
medium, and f 2 ≈ 0.35 to large effects. Note that from f 2 = R2/(1− R2)
one gets R2 = f 2/(1 + f 2), which can be used to check the adequacy of the
elicited/required effect size.

The power, similar to ANOVA, is found using the noncentral F-distribution,

1− β = P(Fnc(p− 1,n− p,λ) > F−1(1− α, p− 1,n− p)), (14.6)

where λ = n f 2 is the noncentrality parameter.
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Example 14.5. Power Analysis in Regression. For p = 4, R2 = 0.2, that is,
f 2 = 0.25 (a medium-to-large effect), and a sample size of n = 61, one gets
λ = 61× 0.25 = 15.25, and a power of approximately 90%.

p=4; n=61; lam=15.25;

1-ncfcdf( finv(1-0.05, p-1, n-p), p-1, n-p, lam)

% ans = 0.9014

�

14.9 Linear Regression That Is Nonlinear in Predictors

In linear regression, “linear” concerns the parameters, not the predictors.
For instance,

1
yi

= β0 +
β1

xi
+ ǫi, i = 1, . . . ,n,

and

yi = ǫi × exp{β0 + β1x1i + β2x2i}, i = 1, . . . ,n,

are examples of a linear regression. There are many functions where x and
y can be linearized by an obvious transformation of x or y or both; how-
ever, one needs to be mindful that in such transformations the normality
and homoscedasticity of errors is often compromised. In such a case, fitting
a regression is simply an optimization task without natural inferential sup-
port. Bayesian solutions involving MCMC are generally more informative
regarding the inference (Bayes estimators, credible sets, predictions).

An example where errors are not affected by the transformation of vari-
ables is a polynomial relationship between x and y postulated as

yi = β0 + β1xi + β2x2
i + · · ·+ βkxk

i + ǫi, i = 1, . . . ,n,

which is in fact a linear regression. Simply, the k predictors are x1i = xi,
x2i = x2

i , . . . , xki = xk
i , and estimating the polynomial relationship is straight-

forward. The example below is a research problem in which a quadratic
relationship is used.

Example 14.6. Von Willebrand Factor. Von Willebrand disease is a bleed-
ing disorder caused by a defect or deficiency of a blood clotting protein
called the von Willebrand factor. This glue-like protein, produced by the
cells that line blood vessel walls, interacts with blood cells called platelets
to form a plug that prevents bleeding. In order to understand the differ-
ential bonding mechanics underlying von Willebrand-type bleeding dis-
orders, researchers at Georgia Tech studied the interactions between the
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wild-type platelet GPIba molecule (receptor) and wild-type von Willebrand
factor (ligand).

The mean stop time rolling parameter was calculated from frame-by-
frame rolling velocity data collected at 250 frames per second. Mean stop
time indicates the amount of time a cell spends stopped, so it is analogous
to the bond lifetime. This parameter, being an indicator for how long a
bond is stopped before the platelet moves again, can be used to assess the
bond lifetime and off-rate (Yago et al., 2008).

For the purpose of exploring interactions between the force and the
mean stop times, Ficoll 6% is added to increase the viscosity.

Data are courtesy of Dr. Leslie Coburn. The mat file coburn.mat con-
tains the structure coburn with data fields coburn.fxssy, where x = 0, 6 is
a code for Ficoll absence/presence and y = 1, 2, 4, ..., 256 denotes the
shear stress (in dyn/cm2). For example, coburn.f0ss16 is a 243× 1 vector
of mean stop times obtained with no Ficoll, under a shear stress of 16
dyn/cm2.

Shear stress 2 4 8 16 32 64 128 256
Shear number 1 2 3 4 5 6 7 8
Mean stop time f0ss2 f0ss4 f0ss8 f0ss16 f0ss32 f0ss64 f0ss128 f0ss256
Sample size 26 57 157 243 256 185 62 14

We fit a regression on the logarithm (base 2) of mean stop time log2mst,
with no Ficoll present, as a quadratic function of share stress number
log2(dyn/cm2). This regression is linear in parameters with two predictors,
shearn and the squared shear, shearn2=shearn2.

The regression fit is

log2mst = −6.2423+ 0.8532 shear− 0.0978 shear2.

The regression is significant (F = 63.9650, p = 0); however, its predictive
power is rather weak, with R2 = 0.1137.

Figure 14.9 is plotted by the script coburnreg.m.

%coburnreg.mat

load ’coburn.mat’;

mst=[coburn.f0ss2; coburn.f0ss4; coburn.f0ss8; coburn.f0ss16; ...

coburn.f0ss32; coburn.f0ss64; coburn.f0ss128; coburn.f0ss256];

shearn = [1 * ones( 26,1); 2 * ones( 57,1); 3 * ones(157,1); ...

4 * ones(243,1); 5 * ones(256,1); 6 * ones(185,1); ...

7 * ones( 62,1); 8 * ones( 14,1)];

shearn2 = shearn.^2; %quadratic term

%design matrix

X = [ones(length(shearn),1) shearn shearn2];

[b,bint,res,resint,stats] = regress(log2(mst), X) ;
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Fig. 14.9 (a) Quadratic regression on log mean stop time. (b) Residuals fitted with nor-
mal density.

%b0=-6.2423, b1=0.8532, b2 =-0.0978

stats %R2, F, p, sigma2

%0.1137 63.9650 0.0000 0.5856

The R2 is about 11%, which is small, but represents improvement if
only simple linear regression with covariate sharen were used. Note that
residuals are approximately normal (Figure 14.9b), as expected.
�

14.10 Errors-in-Variables Linear Regression*

Assume that in the context of regression both responses Y and covariates
X are measured with error. This is a frequent scenario in research labs in
which it would be inappropriate to apply standard linear regression, which
assumes that covariates are designed and constant.

This scenario in which covariates are observed with error is called
errors-in-variables (EIV) linear regression. There are several formulations
for EIV regression (Fuller, 2006). For pairs from a bivariate normal distri-
bution (xi,yi), i = 1, . . . ,n, the EIV regression model is

yi ∼ N (β0 + β1ξi,σ
2
y )

xi ∼ N (ξi,σ
2
x).

In an equivalent form, the regression is Eyi = β0 + β1Exi = β0 + β1ξi, i =
1, . . . ,n, and the inference on parameters β0 and β1 is made conditionally

on ξi. To make the model identifiable, parameter η = σ2
x

σ2
y

is assumed known.

Note that we do not need to know individual variances, just their ratio.
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If the observations (xi,yi), i = 1, . . . ,n, produce sums of squares Sxx =
∑i(xi − x)2, Syy = ∑i(yi − y)2, and Sxy = ∑i(xi − x)(yi − y), then

β̂1 =
−(Sxx − ηSyy) +

√
(Sxx − ηSyy)2 + 4ηS2

xy

2ηSxy
, (14.7)

β̂0 = y− β̂1x.

The estimators of the errors are

σ̂2
x =

1
2n
× η

1 + ηβ̂2
1

n

∑
i=1

(
yi − (β̂0 + β̂1xi)

)2
,

σ̂2
y =

σ̂2
x

η
.

When η = 1, meaning variances of errors are the same, the solution
in (14.7) coincides with a numerical least-squares minimization (so called
orthogonal regression). However, for η = 0, meaning no errors in covari-

ates, σ2
x = 0, we are back to the standard regression where β̂1 =

Sxy

Sxx
(Exer-

cise 14.24).

Example 14.7. Predicting Albumin from Plasma Volume. Griffin et al.
(1945) reported plasma volume (in cc) and circulating albumin (in g) for
n = 58 healthy males. Both quantities were measured with error, and it was
assumed that the variance of plasma measurement exceeded the variance
of circulating albumin by a factor of 200. Using EIV regression, establish an
equation that would be used to predict circulating albumin from plasma
volume. The data are given in circalbumin.dat, where the first column
contains plasma volume and the second the measured albumin. The script

errorinvar.m calculates the following EIV regression equation: Eyi =
0.0521 · Exi − 13.1619. This straight line is plotted in red in Figure 14.10.
For comparison, the standard regression is Eyi = 0.0494xi − 5.7871, and it
is plotted in black. Parameter η was set to 200, and the variances are esti-
mated as s2

x = 4852.8 and s2
y = 24.2641.

�

14.11 Analysis of Covariance

Analysis of covariance (ANCOVA) is a linear model that includes two types
of predictors: quantitative, like regression, and categorical, like ANOVA. It
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Fig. 14.10 EIV regression (red) and standard regression (black) for circalbumin data.

can be formulated in quite general terms, but we will discuss the case of a
single predictor of each kind.

The quantitative variable x is linearly connected with the response, and
for a fixed categorical variable, the problem is exactly regression. However,
for a fixed value of x, the model is ANOVA with treatments/groups defined
by the categorical variable.

The rationale behind the merging of the two models is that in a range of
experiments, modeling the problem as regression only or as ANOVA only
may be inadequate. By introducing a quantitative covariate to ANOVA, or
equivalently groups/treatments to regression, we may better account for
the variability in data and produce better modeling and prediction results.

We will analyze two illustrative examples. In the first example, which
will be solved in MATLAB, the efficacies of two drugs for lowering blood
pressure are compared by analyzing the drop in blood pressure after taking
the drug. However, the initial blood pressure measured before the drug is
taken should be taken into account since a drop of 50, for example, is not
the same if the initial pressure was 90 as opposed to 180.

In the second example, which will be solved in WinBUGS, the mea-
sured response is the strength of synthetic fiber, and the two covariates are
the fiber’s diameter (quantitative) and the machine on which the fiber was
produced (categorical with three levels).

We assume the model

yij = µ + αi + β(xij − x) + ǫij, i = 1, . . . , a; j = 1, . . . ,n, (14.8)

where a is the number of levels/treatments, n is a common sample size
within each level, and x = 1

an ∑i,j xij is the overall mean of xs. The errors ǫi
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are assumed to be independent normal with mean 0 and constant variance
σ2.

For practical reasons the covariates xij are centered as xij − x in order
to simplify the expressions for the estimators. Let xi =

1
n ∑j xij be the ith

treatment mean for the xs. The means y and yi are defined analogously,
y = 1

an ∑i,j yij and yi =
1
n ∑j yij.

In ANCOVA we calculate the sums of squares and mixed-product sums
as

Sxx = ∑
a
i=1 ∑

n
j=1(xij − x)2

Sxy = ∑
a
i=1 ∑

n
j=1(xij − x)(yij − y)

Syy = ∑
a
i=1 ∑

n
j=1(yij − y)2

Txx = ∑
a
i=1(xi − x)2

Txy = ∑
a
i=1(xi − x)(yi − y)

Tyy = ∑
a
i=1(yi − y)2

Qxx = ∑
a
i=1 ∑

n
j=1(xij − xi)

2 = Sxx − Txx

Qxy = ∑
a
i=1 ∑

n
j=1(xij − xi)(yij− yi) = Sxy − Txy

Qyy = ∑
a
i=1 ∑

n
j=1(yij − yi)

2 = Syy − Tyy

We are interested in finding estimators for the parameters in model (14.8),
the common mean µ, treatment effects αi, regression slope β, and the vari-
ance of the error σ2.

The estimators are µ̂ = y, b = β̂ = Qxy/Qxx, and α̂i = yi − y− b(xi − x).
The estimator of the variance, σ2, is s2 = MSE = SSE/(a(n− 1)− 1), where
SSE = Qyy −Q2

xy/Qxx.
If there are no treatment effects, that is, if all αi = 0, then the model is a

plain regression and

yij = µ + β(xij − x) + ǫij, i = 1, . . . , a; j = 1, . . . ,n.

In this reduced case the error sum of squares is SSE′ = Syy − S2
xy/Sxx, with

an − 2 degrees of freedom. Thus, the test H0 : αi = 0 is based on an F-
statistic,

F =
(SSE′ − SSE)/(a− 1)

SSE/(a(n− 1)− 1)
,

that has an F-distribution with a− 1 and a(n− 1)− 1 degrees of freedom.
The test for regression H0 : β = 0 is based on the statistic

F =
Q2

xy/Qxx

SSE/(a(n− 1)− 1)
,
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which has an F-distribution with 1 and a(n− 1)− 1 degrees of freedom.
Next we provide a MATLAB solution for a simple ANCOVA layout.

Example 14.8. Kodlin’s Blood Pressure Experiment. Kodlin (1951) reported
an experiment that compared two substances for lowering blood pressure,
denoted as substances A and B. Two groups of animals are randomized to
the two substances and a decrease in pressure is recorded. The initial pres-
sure is recorded. The data for the blood pressure experiment appear in the
table below. Compare the two substances by accounting for the possible ef-
fect of the initial pressure on the decrease in pressure. Discuss the results of
the ANCOVA analysis and compare them with those obtained by ignoring
the potential effect of the initial pressure.

Substance A Substance B
Animal Decrease Initial Animal Decrease Initial

1 45 135 11 34 90
2 45 125 12 55 135
3 20 125 13 50 130
4 50 130 14 45 115
5 25 105 15 30 110
6 37 130 16 45 140
7 50 140 17 45 130
8 20 93 18 23 95
9 25 110 19 40 90

10 15 100 20 35 105

We will use α = 0.05 for all significance assessments.

%kodlin.m

%x = Initial; y = Decrease; g=1 for ’A’, g=2 for ’B’

x = [135 125 125 130 105 130 140 93 110 100 ...

90 135 130 115 110 140 130 95 90 105];

y = [45 45 20 50 25 37 50 20 25 15 ...

34 55 50 45 30 45 45 23 40 35];

g = [1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2];

a = 2; n = 10;

x1=x(g==1); x2=x(g==2);

y1=y(g==1); y2=y(g==2);

x1b=mean(x1); x2b=mean(x2);

y1b=mean(y1); y2b=mean(y2);

xb = mean(x); yb = mean(y);

SXX = sum( (x - xb).^2 );

SXY = sum( (x - xb).* (y - yb) );

SYY = sum( (y - yb).^2 );

QXX = sum( (x1-x1b).^2 + (x2-x2b).^2 );
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QXY = sum( (x1-x1b).* (y1 - y1b) + ...

(x2-x2b).*(y2 - y2b) );

QYY = sum( (y1-y1b).^2 + (y2-y2b).^2 );

% estimators of model parameters mu, alpha_i, beta

mu = yb %mu = 36.7

b = QXY/QXX %b = 0.5175

alpha = [y1b y2b] - [yb yb] - b*([x1b x2b]-[xb xb])

%alpha =[-4.8714 4.8714]

TXX = SXX - QXX;

TXY = SXY - QXY;

TYY = SYY - QYY;

SSE = QYY - QXY^2/QXX;

MSE = SSE/(a * (n-1) - 1 ) %MSE = 60.6542

SSEp = SYY - SXY^2/SXX;

% F-test for testing $H_0: alpha_i = 0 (all i)

F1 = ((SSEp - SSE)/(a-1)) /MSE %F1 = 7.6321

pvalF1 = 1- fcdf(F1,a-1, a*(n-1) - 1) %pvalF1=0.0133

% F-test for testing $H_0: beta = 0

F2 = (QXY^2/QXX)/MSE %F2 = 24.5668

pvalF2 = 1 - fcdf(F2, 1, a * (n-1)-1 )

%pvalF2 = 0.00012
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Fig. 14.11 Scatterplot of decrease (y) against the initial value (x) for substances A and B.

Note that both null hypotheses are found to be significant, but the test-
ing of the equality of treatments seems to be the more important hypothesis
in this example. The conclusion is that substances A and B are significantly
different at α = 5% significance level (p-value = 0.0133). Figure 14.11 plots
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the decrease (y) against the initial value (x) for substances A and B. The
ANCOVA fits ŷ = 36.7± 4.8714+ 0.5175 · (x− 116.65) are superimposed.

If we conducted the ANOVA test by ignoring the covariates, the test
would find no differences among the drugs (p-value = 0.2025). Likewise, if
both treatments were lumped together and the response regressed on x, the
regression would be significant but with a p-value more than eight times
larger than in ANCOVA.
oX = [ones(size(x’)) x’];

[b, bint, r, rint, stats] = regress(y’, oX);

stats % 0.4599 15.3268 0.0010 83.0023

[p, table, statan] = anova1(y, g);

p %0.2025

This example shows how important accounting for sensible predictors
is and how selecting the right statistical procedure is critical in modeling
and decision making.
�

MATLAB has a built-in function aoctool that, when invoked as aoctool(x,y,g),
opens a front-end suite with various modeling and graphing capabilities.
The output stats from aoctool can be imported into multcompare for a subse-
quent pairwise comparison analysis.

14.11.1 Sample Size in ANCOVA

ANCOVA can be thought of as an ANOVA for the transformed observa-
tions,

y∗ij = yij − β(xij − x), i = 1,2, . . . , a; j = 1, . . . ,n.

where, as before, a denotes the number of groups/treatments, and n is the
common group size. The total sample size is N = an.

Thus the power analysis in ANCOVA is related to that of ANOVA with
a small modification. Namely, for a single covariate the number of degrees
of freedom in the denominator of F statistic becomes (n− 1)a− 1 instead
of (n − 1)a. More generally, if k covariates are employed, the number of
degrees of freedom would reduce to (n− 1)a− k.

With this modification power analysis proceeds as it was described in
Section 11.8.

Example 14.9. Kodlin’s Experiment Revisited. If we are to repeat Kodlin’s
experiment described in Example 14.8 and wanted to be able to find
medium effect f 2 = 0.252 with the power of 85% in α = 0.05 level testing, we
will use (11.5). Here we have a single covariate, a = 2 treatments/groups,
and n = 10 observations per group. The power for such experiment would
be 0.1872.
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a=2; n=10; f2=0.25^2; c=1;

df1=a-1; df2=(n-1)*a - c; lam=a*n*f2;

1-ncfcdf( finv(0.95, df1, df2), df1, df2, lam) %ans =0.1842

Thus, the experimenters “were lucky” that the observed effect in the
experiment was large enough to produce a significant result (p-value was
0.0133).

If we were to design a new experiment and require a power of at least
85%, for the medium effect f 2 = 0.252, and α = 0.05, the required sample
size would be 73 per treatment.

a=2; f2=0.25^2;

f= @(n) 1-ncfcdf( finv(0.95, a-1, (n-1)*a - 1),...

a-1, (n-1)*a - 1, a*n*f2)-0.85

ssize=fzero(f,100) %ssize =72.8073

�

14.11.2 Bayesian Approach to ANCOVA

Bayesian approach implemented via WinBUGS is conceptually simple: the
ANCOVA model is stated in its direct form, constraints on the ANOVA
coefficients imposed (either STZ or CR), and the priors on all free parame-
ters are elicited and set. Unlike the classical approach where more than one
covariate in the regression part and more than one factor in the ANOVA
part significantly increase the complexity of ANCOVA model, the Bayesian
approach via WinBUGS remains simple and straightforward.

The following example solved in WinBUGS illustrates handling AN-
COVA in a Bayesian manner.

Example 14.10. ANCOVA Fibers. Three machines produce monofilament
synthetic fiber for medical use (surgery, implants, devices, etc.). The mea-
sured response is the strength y (in pounds, lb.) and a covariate is the
diameter x (in inches/1000).

#ancovafibers.odc

model{

for (i in 1:ntotal){

y[i] ~ dnorm( mui[i], tau )

mui[i] <- mu + alpha[g[i]] + beta1 *(x[i] - mean(x[]))

}

#alpha[1] <- 0.0; #CR constraints

alpha[1] <- -sum( alpha[2:a] );#STZ constraints

mu ~ dnorm(0, 0.0001)

beta1 ~ dnorm(0, 0.0001)

beta0 <- mu - beta1 * mean(x[])



14.11 Analysis of Covariance 733

alpha[2] ~ dnorm(0, 0.0001)

alpha[3] ~ dnorm(0, 0.0001)

tau ~ dgamma(0.001, 0.001)

var <- 1/tau

}

DATA

list(ntotal=15, a=3,

y = c(36, 41, 39, 42, 49,

40, 48, 39, 45, 44,

35, 37, 42, 34, 32),

x = c(20, 25, 24, 25, 32,

22, 28, 22, 30, 28,

21, 23, 26, 21, 15),

g = c( 1, 1, 1, 1, 1,

2, 2, 2, 2, 2,

3, 3, 3, 3, 3) )

INITS

list(mu=1, alpha=c(NA, 0, 0), beta1=0, tau=1)

The output from WinBUGS is

mean sd MC error val2.5pc median val97.5pc start sample

alpha[1] 0.182 0.6618 0.001848 −1.129 0.1833 1.494 10001 100000
alpha[2] 1.218 0.6888 0.003279 −0.1576 1.217 2.596 10001 100000
alpha[3] −1.4 0.743 0.003757 −2.876 −1.399 0.07178 10001 100000
beta0 17.18 3.086 0.01394 11.01 17.18 23.31 10001 100000
beta1 0.9547 0.1266 5.634E-4 0.7019 0.9543 1.207 10001 100000
mu 40.2 0.4564 0.001372 39.29 40.2 41.11 10001 100000
var 3.118 1.671 0.007652 1.276 2.716 7.348 10001 100000

The regression equations corresponding to the three treatments (ma-
chines) are

ŷ1i = 17.18+ 0.182+ 0.9547 · xi,

ŷ2i = 17.18+ 1.218+ 0.9547 · xi, and

ŷ3i = 17.18− 1.4 + 0.9547 · xi.

Note that all three 95% credible sets for alpha contain 0, while the cred-
ible set for the slope beta1 does not contain 0. This analysis of credible sets
is not a formal Bayesian testing, but it agrees with the output from

y = [36 41 39 42 49 40 48 39 45 44 35 37 42 34 32];

x = [20 25 24 25 32 22 28 22 30 28 21 23 26 21 15];

g = [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3];

aoctool(x, y, g) %parallel lines option

where the p-value corresponding to ANOVA part is 0.11808. The test for
the regression slope is significant with a p-value of 4.2645e-06.
�
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14.12 Exercises

14.1. Regression with Three Points. Points (x1,y1) = (1,1), (x2,y2) = (2,2),
and (x3,y3) = (3,2) are given.
(a) Find (by hand calculation) the regression line that best fits the points,
and sketch a scatterplot of points with the superimposed fit.
(b) What are the predictions at 1, 2, and 3 (i.e, ŷ1, ŷ2, and ŷ3)?
(c) What are SST, SSR, and SSE?
(d) Find an estimator of variance σ̂2.

14.2. Age and IVF Success Rate. The highly publicized (recent TV reports)
in vitro fertilization (IVF) success cases for women in their late fifties all
involve donors’ eggs. If the egg is the woman’s own, the story is quite
different.
IVF, an assisted reproductive technology (ART) procedure, involves ex-
tracting a woman’s eggs, fertilizing the eggs in the laboratory, and then
transferring the resulting embryos to the woman’s uterus through the
cervix. Fertilization involves a specialized technique known as intracy-
toplasmic sperm injection (ICSI).
The table below shows the live-birth success rate per transfer rate from
a woman’s own eggs, by age of recipient. The data are for the year 1999,
published by the CDC at http://www.cdc.gov/art/ARTReports.htm.

Age (x) 24 25 26 27 28 29 30 31 32 33 34 35
Percentage (y) 38.7 38.6 38.9 41.4 39.7 41.1 38.7 37.6 36.3 36.9 35.7 33.8

Age (x) 36 37 38 39 40 41 42 43 44 45 46
Percentage (y) 33.2 30.1 27.8 22.7 21.3 15.4 11.2 9.2 5.4 3.0 1.6

Select the ages in the range 33–46, which shows an almost linear decay of
the success rate (Figure 14.12). For the selected ages fit the linear model
ŷ = b0 + b1x. Would the quadratic relationship ŷ = b0 + b1x + b2x2 be
more appropriate than the linear?

14.3. Sharp Dissection and Severity of Postoperative Adhesions. Postoper-
ative adhesions are formed after surgical cardiac and great vessel proce-
dures as part of the healing process. Scar tissue makes reentry complex
and increases the rate of iatrogenic lesions. Currently, as reoperations
are needed in 10% to 20% of heart surgeries, various methods have been
investigated to prevent or decrease the severity of postoperative adhe-
sions.
The surgical time spent in the adhesiolysis procedure and amounts of
sharp dissection are informative summaries to to predict the severity of
pericardial adhesions, as reported by Lopes et al. (2009). For example,
the authors reported a linear relationship between the logarithm of the
amount of sharp dissection lasd and severity score sesco assessed by a

http://www.cdc.gov/art/ARTReports.htm
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Fig. 14.12 Success rate (in %) versus age (in years).

standard categorization. Use the data in MATLAB format to answer (a)–
(e).

shdiss = [14 108 39 311 24 112 104 ...

382 42 74 67 145 21 93 ...

75 381 36 36 73 239 35 69];

lasd = log(shdiss);

sesco = [6 12 9 18 7 12 12 ...

17 8 11 14 15 7 12 ...

13 18 9 9 10 16 7 10];

(a) Write down the linear relationship between lasd and sesco.
(b) What is R2 here and what does it represent?
(c) Test the hypothesis H0 : β0 = 0 versus the alternative H1 : β0 < 0. Use
α = 0.05. The critical cut points are provided at the back of the problem,
or, alternatively, you can report the p-value.
(d) Find a 95% confidence interval for the population slope β1.
(e) For lasd=4 predict the severity score. Find a 99% confidence interval
for the mean response.

14.4. Mg–CaO Data Revisited. Consider the data on CaO measurements
discussed in Example 13.2. In data matrix hazel.dat|mat there are
columns y and z corresponding to two ways to assess CaO (methods
A and B), as well as a column x that gives the exact CaO amount.
(a) Fit two linear regressions. The first regression should express CaO
found (A) (y) as a linear function of CaO present (x); that is, find the
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equation y = b0 + b1x. Then find the second regression as z = d0 + d1x.
Discuss the adequacy of regression fits.
(b) Test the hypothesis about the slope for the regression for (A) H0 :
β1 = 1 versus the alternative H1 : β1 < 1.
(c) Find a 95% confidence interval (CI) for the population intercepts for
each of the regressions. Is 0 in any of the intervals? What does it mean if
it is and if it is not?
(d) Find the average CaO found by method A if the CaO present was
x∗ = 15.
(e) A small sample is sent to your lab to be analyzed by method A. It is
known that the CaO present in the sample is x∗ = 15. What is the 95%
prediction interval (PI) for the CaO found?

14.5. Kanamycin Levels in Premature Babies. Miller (1980) describes a
project and provides data on assessing the precision of noninvasive mea-
suring of kanamycin concentration in neonates.
Premature babies are susceptible to infections, and kanamycin (an amino-
glycoside) is used for the treatment of sepsis. Since kanamycin is ineffec-
tive at low doses and potentially harmful at high doses, it is necessary
to constantly monitor its levels in a premature baby’s body during treat-
ment. The standard procedure for measuring serum kanamycin levels is
to take blood samples from a heel. Unfortunately, due to frequent blood
sampling, neonates are left with badly bruised heels.
Kanamycin is routinely administered through an umbilical catheter. An
alternative procedure for measuring serum kanamycin would be to re-
verse the flow in the catheter and draw a blood sample from it. The
concern about this noninvasive method is that the blood drawn from
the point close to an infusion may have an elevated level of kanamycin
compared to blood samples from more distant points in the body.
In a carefully designed experimental setup, blood samples from 20 ba-
bies were obtained simultaneously from an umbilical catheter and a heel
venapuncture (using a heelstick). If the agreement is satisfactory, physi-
cians would be willing to use the catheter values instead of heelstick
values.
Here are the data:
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Baby Heelstick Catheter Baby Heelstick Catheter
1 23.0 25.2 11 26.4 24.8
2 33.2 26.0 12 21.8 26.8
3 16.6 16.3 13 14.9 15.4
4 26.3 27.2 14 17.4 14.9
5 20.0 23.2 15 20.0 18.1
6 20.0 18.1 16 13.2 16.3
7 20.6 22.2 17 28.4 31.3
8 18.9 17.2 18 25.9 31.2
9 17.8 18.8 19 18.9 18.0

10 20.0 16.4 20 13.8 15.6

(a) Model the Heelstick responses with Catheter as the predictor in a
linear regression.
(b) Are there any unusual observations? Does regression improve when
unusual observations are removed from the analysis?
(c) Test H0 : β1 = 1 versus H1 : β1 < 1 at the level α = 0.05.
(d) Find a 97% confidence interval for the population intercept.
(e) Find 95% confidence and prediction intervals for the regression re-
sponse when cath = 20.
(f) Using WinBUGS, estimate the parameters in a Bayesian regression
with noninformative priors. Compare Bayesian and the least-squares so-
lutions.

14.6. Degradation of Scaffolds. In an experiment conducted at the Georgia
Tech/ Emory Center for the Engineering of Living Tissues, the goal was
to find a suitable biomechanical replacement for cartilage, better known
as tissue engineered cartilage. There are many factors (dimensional or
mechanical) at which the cartilage scaffold is tested to assess whether it
is a viable replacement. One of the problems is the degradation of scaf-
folds as the tissue grows, which affects all of the experimental metrics.
The experimental data collected comprise a tissue growth experiment
in which no cells were added, thus approximating the degradation of
the scaffold over a sequence of 8 days. The dynamic shear summaries
capture two physical phenomena, the modulus or the construct’s ability
to resist deformation under load and the frequency at which the mod-
ulus was evaluated. This modulus provides a measure of the extent of
interconnectivity within the fibrous scaffold.
The table below contains moduli, in 1000s, for the frequency f = 1 over
8 days, each day represented by three independent measurements.
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Fig. 14.13 Moduli measured against time for frequency f = 1.

Day Mod at f = 1 Day Mod at f = 1
0 42.520 4 44.929
0 71.590 4 29.348
0 40.063 4 37.259
1 68.397 5 28.625
1 53.527 5 25.956
1 40.676 5 20.179
2 21.724 6 14.994
2 35.032 6 9.051
2 56.687 6 14.923
3 44.029 7 2.692
3 45.058 7 15.688
3 27.579 7 3.420

The data and the code are available in the file degradation.m.
(a) Use the moduli for frequency f = 1. Write down the linear regression
model: mod1 = b0 + b1 ·day, where b0 and b1 are estimators of the popu-
lation intercept and slope (Figure 14.13). What is R2 for your regression?
(b) Test the hypothesis that the population intercept is equal to 100 ver-
sus the alternative that it is smaller than 100.
(c) Find a 96% confidence interval for the population slope.
(d) For day = 5.5, find the prediction of the modulus. What is the stan-
dard deviation for this predicted value?

14.7. Glucosis in Lactococcus Lactis. The data set Lactis.dat is courtesy of
Dr. Eberhard Voit at the Georgia Institute of Technology and is an excerpt
from a larger collection of data dealing with glycolysis in the bacterium
Lactococcus lactis MG1363 (which is involved in essentially all yogurts,
cheeses, etc.). The experiment was conducted in aerobic conditions with
cell suspension in a 50-mM KPi buffer with a pH of 6.5, and 20 mM
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[6-13C] glucose. There are four columns in the file Lactis.dat: time,
glycose, lactate, and acetate.
The levels of extracelular metabolites lactate and acetate are monitored
over time. After time t = 5, the level of lactate stabilizes around 30, while
the level of acetate shows a linearly increasing trend in time.
(a) Plot lactate level against time. Take a subset of lactate levels for times
> 5 (86 observations) and find basic descriptive statistics.
(b) Check the normality of the subset data. Test the hypothesis that the
mean lactate level for t > 5 is 30 against the two-sided alternative.
(c) Select acetate levels for t > 5. Fit a linear relationship of acetate level
against time and show that the linear model is justified by providing and
discussing the ANOVA table.

14.8. Weight and Latency in Rats. Data consisting of rat body weight (grams)
and latency to seizure (minutes) are given for 15 rats (adapted from
Kleinbaum et al., 1987):

Rat # Weight Latency Rat # Weight Latency Rat # Weight Latency
1 348 1.80 2 372 1.95 3 378 2.90
4 390 2.30 5 392 1.10 6 395 2.50
7 400 1.30 8 409 2.00 9 413 1.70

10 415 2.00 11 423 2.95 12 428 2.25
13 464 3.05 14 468 3.70 15 470 3.62

It is of interest to regress the latency (y) to weight (x).
(a) Test the hypothesis H0 : β0 = 0 against the two-sided alternative. Use
α = 0.05.
(b) Test the hypothesis H0 : β1 = 0.02 against the alternative H0 : β1 < 0.02.
Use α = 0.05.
(c) Find a 95% confidence interval for the slope β1.
(d) For weight wei = 410 find the mean latency response, ŷm. Test the
hypothesis H0 : ŷm = 3 versus the alternative H1 : ŷm < 3. Test the same
hypothesis for the predicted response ŷpred. In both tests use α = 0.05.

14.9. Rinderpest Virus in Rabbits. Temperatures (temp) were recorded in a
rabbit at various times (time) after the rabbit was inoculated with rinder-
pest virus (modified from Carter and Mitchell, 1958). Rinderpest (RP) is
an infectious viral disease of cattle, domestic buffalo, and some species
of wildlife; it is commonly referred to as cattle plague. It is characterized
by fever, oral erosions, diarrhea, lymphoid necrosis, and high mortality.
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Time after injection Temperature
(time in hrs) (temp in ◦ F)

24 102.8
32 104.5
48 106.5
56 107.0
70 105.1
72 103.9
80 103.2
96 102.1

(a) Demonstrate that a linear regression with one predictor (time) gives
an insignificant F-statistic and relatively low R2.
(b) Include time2 (squared time) as the second predictor, making the re-
gression quadratic in variables, but still linear in coefficients. Show that
this regression is significant and has a larger R2.
(c) Find the 90% confidence interval for the coefficient of the quadratic
term and test the hypothesis that the intercept is equal to 100 versus the
one-sided alternative that it is smaller than 100. Use α = 0.05.

14.10. Hemodilution. Clark et al. (1975) examined the fat filtration charac-
teristics of a packed polyester-and-wool filter used in arterial lines dur-
ing clinical hemodilution. They collected data on the filter’s recovery of
solids for ten patients who underwent surgery. The table below shows
removal rates of lipids and cholesterol:

Removal rates, mg/kg/L ·10−2

Patient Lipids (x) Cholesterol (y)
1 3.81 1.90
2 2.10 1.03
3 0.79 0.44
4 1.99 1.18
5 1.03 0.62
6 2.07 1.29
7 0.74 0.39
8 3.88 2.30
9 1.43 0.93

10 0.41 0.29

(a) Fit a regression line to the data, with cholesterol as the response vari-
able and lipids as the covariate. Discuss the adequacy of the proposed
linear fit.
(b) What test is the resulting regression p-value referring to? State H0
and H1.
(c) Find the 95% confidence interval for the population intercept β0.
(d) Test the hypothesis that the population slope β1 is equal to 2/3 versus
the one-sided alternative that it is less than 2/3. Use α = 0.05.
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(e) Predict the cholesterol rate for lipids at the level 1.65 mg/kg/L×10−2.
Find the 95% confidence interval for the mean response and prediction
interval for individual response.

14.11. Anscombe’s Data Sets. A celebrated classic example of the role of
residual analysis and statistical graphics in statistical modeling was
created by Anscombe (1973). He constructed four different data sets
(xi,yi), i = 1, . . . ,11, that share the descriptive statistics necessary to es-
tablish a linear regression fit ŷ = β̂0 + β̂1x.
A linear model is appropriate for data set 1; the scatterplots and residual
analysis suggest that data sets 2–4 seem not to be amenable to linear
modeling.

Set 1
x 10 8 13 9 11 14 6 4 12 7 5
y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Set 2
x 10 8 13 9 11 14 6 4 12 7 5
y 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74

Set 3
x 10 8 13 9 11 14 6 4 12 7 5
y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Set 4
x 8 8 8 8 8 8 8 19 8 8 8
y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.50 5.56 7.91 6.89

(a) Using MATLAB fit the regression line for the four sets and provide
four ANOVA tables. What statistics are the same? What statistics differ?
(b) Plot the residuals against the fitted values. Discuss the appropriate-
ness of the regressions.

14.12. Potato Leafhopper. Potato leafhopper (Empoasca fabae is found through-
out much of the United States east of the Rocky Mountains. It feeds on
nearly 200 kinds of plants. Feeding and egg laying cause the infested
plant damage. Eggs are deposited in the midrib or larger veins of the
leaves, or in the petioles or stems. The leaves turn yellow, or sometimes
pink or purple, and become wilted or stunted.
The length of the developmental period (in days) of the potato leafhop-
per, from egg to adult seems to be dependent on temperature (Kouskolekas
and Decker, 1966). The original data were weighted means, but for the
purpose of this exercise we consider them as though they were single
observed values.

Temp ◦F 59.8 67.6 70.0 70.4 74.0 75.3 78.0 80.4 81.4 83.2 88.4 91.4 92.5
Development (days) 58.1 27.3 26.8 26.3 19.1 19.0 16.5 15.9 14.8 14.2 14.4 14.6 15.3

(a) Find a 98% confidence interval for population slope β1.
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(b) Test the hypothesis that the intercept is equal to 60 against the alter-
native that it is larger than 60. Take α = 0.01.
(c) What is the 96% confidence interval for the mean response (mean
number of days) if the temperature is 85◦F?

14.13. Force Sensor Calibration. Your friend is conducting an experiment to
measure the grasping force a robot arm exerts on an object. To accom-
plish this, he puts a force sensor on an object so that when the robot
arm grasps it, he can measure the force. The force sensor maps change
in electric pressure (in Volts) to force (in Newtons).

Fig. 14.14 The robot arm grasps on an object that has a force sensor. The force sensor
outputs voltage readings which can be mapped to force.

The more you push on the force sensor, the higher is the electric pres-
sure, and the higher is the voltage reading. A setup is shown in Figure
14.14. Before starting the experiment, your friend runs into a problem: he
lost the force sensor data sheet! To calibrate the force sensor, he applies
known weights to the force sensor and records the voltage output. His
measurements are shown below:

Force (x) 0 1 2 3 5 7 10 15 20 25
Voltage (y) 326 375 403 438 555 646 799 1005 1223 1383

Force (x) 30 60 65 70 80 100 110 130 150 170
Voltage (y) 1653 2207 2250 2400 2767 3287 3727 4513 5170 5417

(a) Given the data he collected, fit a linear regression with force as the
independent, controlled variable and voltage as the response.
(b) When the robot grasps the object, your friend records a voltage of
850 Volts. Using the regression from (a) estimate what this voltage corre-
sponds to in force? Denote this force by x∗ and its estimator by x̂∗. Find
a 95% CI for x∗.
(c) Flip now the roles of x and y and fit a linear regression in which x
(force) is predicted by y (voltage). Predict now the force x∗ for a voltage
of 850 and compare it with the prediction in (b). Compare 95% CI’s as
well.
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(d) Although the prediction in part (c) looks “more natural,” it is not
formally correct; the prediction as in (b) is recommended. Can you guess
why? State your arguments in one or two sentences.

14.14. Determining Average Slope. One way to learn about the function of
the kidney is to study the rate at which it produces and consumes dif-
ferent substances. An important quantity is the rate at which oxygen is
consumed, since this is related to the kidney’s workload. Another item
of interest is the rate at which the kidney reabsorbs ionic sodium from
the urine. This activity, known as sodium pumping, requires energy.
Data kidneyouabain.dat|mat|xslx analyzed by Hyde (1980) contains
measurements from 8 kidneys treated by the drug ouabain. Ouabain,
from Somali waabaayo – “arrow poison,” is g-strophanthin, a poisonous
cardiac glycoside. This drug inhibits sodium pumping in kidneys.
The first column is the number of the kidney, the second column pro-
vides dry weight in milligrams multiplied by 10, the third column shows
sodium reabsorption in µEq/min, multiplied by 100. The last column is
oxygen consumption in µmoles/min, multiplied by 1000. The measure-
ments are taken over 10-minute intervals.
Although both measurements have errors, the investigators felt that
sodium measurements are more precise and should be taken as the co-
variate, and oxygen measurements as the response.
The average slope in regressions is of interest; in fact researchers were
interested in estimating the reciprocal of the slope, which measures
sodium pumping efficiency of the kidney.
(a) Find the slopes b1,i, i = 1, . . . ,8, in regressions of oxygen consumption
(as y) to sodium reabsorption (as x), one for each kidney.
(b) Find a weighted average b1 = ∑

8
i=1 wib1,i where the weights wi are

proportional to 1/Sxxi and sum up to 1. Here Sxxi is ∑
6
k=1(xk − x)2 for

the ith kidney. What is the variance of b1?
(c) Using Bayesian hierarchical model, estimate an overall slope. Use
noninformative priors. Compare this slope and its variance to results
from (b).

Hint: In (b) the weights are inverse proportional to slope variances. The
variance of weighted average slope is σ2/ ∑

8
i=1 Sxxi. For part (c) con-

sult Rats form Examples Vol I provided with the distribution of Win-
BUGS/OpenBUGS.

14.15. Cross-validating a Bayesian Regression. In this exercise covariates x1
and x2 are simulated as

x1 = rand(1, 40); x2 = floor(10 * rand(1,40)) + 1;

and the response variable y is obtained as

y = 2 + 6 * x1 - 0.5 * x2 + 0.8*randn(size(x1));
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Write a WinBUGS program that selects 20 triples (x1, x2,y) to train the
linear regression model ŷ = b0 + b1x1 + b2x2 and then uses the remaining
20 triples to evaluate the model by comparing the original responses
yi, i = 21, . . . ,40, with regression-predicted values ŷi, i = 21, . . . ,40. The
comparison involves calculating the MSE, the mean of (yi − ŷi)

2, i =
21, . . . ,40.
This is an example of how a cross-validation methodology is often em-
ployed to assess statistical models.
How do the Bayesian estimators of β0, β1, β2, and σ compare to the
“true” values 2, 6, −0.5, and 0.8?

14.16. Taste of Cheese. As cheddar cheese matures, a variety of chemical pro-
cesses take place. The taste of mature cheese is related to the concen-
tration of several chemicals in the final product. In a study of ched-
dar cheese from LaTrobe Valley of Victoria, Australia, samples of cheese
were analyzed for their chemical composition and were subjected to taste
tests. The table below presents data (from the experiments of G. T. Lloyd
and E. H. Ramshaw, CISRO Food Research, Victoria, Australia, analyzed
in Moore and McCabe, 2006) for one type of cheese manufacturing pro-
cess. Taste is the response variable of interest. The taste scores were ob-
tained by combining scores from several tasters. Three of the chemicals
whose concentrations were measured are acetic acid, hydrogen sulfide, and
lactic acid. For acetic acid and hydrogen sulfide, log transformations were
taken.

Taste Acetic H2S Lactic Taste Acetic H2S Lactic
12.3 4.54 3.13 0.86 20.9 5.16 5.04 1.53
39.0 5.37 5.44 1.57 47.9 5.76 7.59 1.81

5.6 4.66 3.81 0.99 25.9 5.70 7.60 1.09
37.3 5.89 8.73 1.29 21.9 6.08 7.97 1.78
18.1 4.90 3.85 1.29 21.0 5.24 4.17 1.58
34.9 5.74 6.14 1.68 57.2 6.45 7.91 1.90

0.7 4.48 3.00 1.06 25.9 5.24 4.94 1.30
54.9 6.15 6.75 1.52 40.9 6.37 9.59 1.74
15.9 4.79 3.91 1.16 6.4 5.41 4.70 1.49
18.0 5.25 6.17 1.63 38.9 5.44 9.06 1.99
14.0 4.56 4.95 1.15 15.2 5.30 5.22 1.33
32.0 5.46 9.24 1.44 56.7 5.86 10.20 2.01
16.8 5.37 3.66 1.31 11.6 6.04 3.22 1.46
26.5 6.46 6.92 1.72 0.7 5.33 3.91 1.25
13.4 5.80 6.69 1.08 5.5 6.18 4.79 1.25

(a) Find the equation in multiple linear regression that predicts Taste

using Acetic, H2S, and Lactic as covariates.
(b) For Acetic = 5, H2S = 8, and Lactic = 2, estimate the regression re-
sponse Ŷh and find standard deviations for the mean and individual
responses. [Ans. 43.37, 6.243, 11.886]
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(c) Find the 98% confidence interval for the intercept β0.
(d) Construct an ANOVA table.
(e) Find ordinary, studentized, and studentized deleted residuals for the
observation Y8.
(f) Find DFFITS8 and COOKSD8.
(g) Find DFBETAS8 on the Lactic coefficient.
(h) Find and discuss the VIF.

14.17. Slowing the Progression of Arthritis. Arthritis is caused by the break-
down of collagen in joint cartilage by the enzyme MMP-13. The antibi-
otic doxycycline is a general inhibitor of MMPs and, by inhibiting the
activity of MMP-13, is an effective method of slowing the progression of
arthritis. At present, doxycycline is used to treat both rheumatiod arthri-
tis and osteoarthritis. The rabbit’s HIG-82 synovial cell line was used to
model arthritis. MMP-13 was prepared by adding PMA, which guaran-
tees its presence, and APMA, which activates it. The enzyme MMP-13
was mixed with a quenched substrate. When the enzyme cleaves the sub-
strate, it fluoresces. This fluorescence was used to measure the amount
of MMP-13 activity. Doxycycline, which decreases the amount of enzyme
activity, was added in increasing concentrations: 0, 25, 50, 75, 100, and
200 micromols. The decrease in the fluorescence produced by the cleaved
substrate when doxycycline was present was used to measure the de-
crease in activity of the enzyme. The same experiment was performed
on three different plates, and the data was normalized.
The data set arthritis1.mat can be found on the book’s website. The
data file contains 72 observations (rows); the first column represents
doxycycline concentration (0, 25, 50, 75, 100, and 200), the second column
is the fluorescence response, and the third column is the plate number.
(a) Fit the linear regression where fluorescence is the response and doxy-
cycline concentration is the predictor. Predict the fluorescence if the
doxycycline concentration is equal to 125.
(b) Since three plates are present, run aoctool with doxycycline concentra-
tion as x, fluorescence as y, and plate number as g. Is there a significant
difference between the plates?

14.18. Drosophila Offspring Prediction. In a Genetics Lab at Duke Univer-
sity students4 were involved in a project aimed to predict the sizes of
Drosophila offspring population.
For 22 different mating bottles, a number of yeast flakes and a number
of virgin flies was set and recorded. After several days the number of
offsprings was counted.
For all bottles, the genotype of flies, temperature, and the number of
males (3 per bottle), were kept the same. The bottles were attended in
the same manner and the count was made at 4:00 pm for each bottle. The

4 David Lee and Craig Cook, Project in STAT110, ISDS, Duke University, Spring 1996.
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earliest counting day was after 2 weeks of setting the bottle, since virgin
flies need at least 13-14 days to reproduce after mating. Data is available
in the file drosophila.dat|mat|xlsx.

Bottle Flakes Virgins Days Offsprings Bottle Flakes Virgins Days Offsprings
1 8 11 23 75 12 3 1 19 4
2 2 6 15 13 13 7 5 16 14
3 5 9 20 48 14 10 4 21 35
4 9 7 17 32 15 8 12 22 72
5 10 15 18 67 16 11 12 24 85
6 6 9 17 39 17 3 11 22 51
7 5 6 25 60 18 10 6 16 20
8 4 10 20 45 19 3 8 21 50
9 8 7 16 30 20 7 9 21 61
10 6 11 23 75 21 5 7 24 48
11 9 10 18 61 22 8 10 19 51

Although counts of offsprings are integers and Poisson regression is ap-
propriate (to be covered in Chapter 15), since the average offspring count
is about 50, normal approximation is very good and the multiple linear
regression is adequate.
(a) Regress offsprings on flakes, virgins, and days. Write down the equa-
tion that links the number of offsprings to predictors.
(b) What is the overall R2? A new bottle is set with 10 flakes and 10
virgins. How many offsprings is predicted if the count is made after 22
days?
(c) Run MATLAB’s procedure stepwise. Is a smaller model recommended?
(d) Variable virgins enters during stepwise procedure first and accounts
for more than 66% of total variability in the response. How many off-
springs do you predict using univariate regression with only this vari-
able as the predictor (the same value as in (b): virgins=10)? Find a 95%
Prediction Interval for the number of offsprings in this case. Is the off-
spring prediction from (b) contained in this interval?

14.19. Insulin on Opossum Liver. Corkill (1932) provides data on the influence
of insulin on opossum liver. In the experimental setup the 20 animals
(common gray Australian opossums – Trichosurus) fasted for 24 or 36
hours. Ten animals, four from the 24-hour fasting group and six from the
36-hour fasting group, were injected with insulin, while the remaining
ten animals served as controls, that is, they received no insulin. After 3
to 4 hours liver glycogen and blood sugar were measured. The weights
of the animals were recorded as well.
The goal of the study was to explore the deposition of liver glycogen
after the insulin regimen in opossums. In rabbits and cats, for example, it
was previously found that insulin induced significant glycogen storage.
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This study found a slight depletion of liver glycogen after the insulin
treatment.
Our goal is to model the liver glycogen based on weight, level of blood
sugar, insulin indicator, and fasting regime.
Is the insulin indicator (0 no, 1 yes) an important covariate in the model?

Animal Weight Liver glycogen Blood sugar Fasting period Insulin
1 1502 1.80 0.124 24 0
2 1345 0.95 0.115 24 0
3 1425 1.12 0.128 24 0
4 1650 1.05 0.110 24 0
5 1520 0.45 0.052 24 1
6 1300 0.48 0.050 24 1
7 1250 0.75 0.045 24 1
8 1620 0.60 0.040 24 1
9 1725 0.76 0.130 36 0

10 1450 0.51 0.112 36 0
11 1800 0.48 0.105 36 0
12 1685 0.34 0.121 36 0
13 1560 0.38 0.116 36 0
14 1650 0.45 0.108 36 0
15 1650 0.65 0.032 36 1
16 1575 0.28 0.025 36 1
17 1260 0.10 0.045 36 1
18 1485 0.26 0.050 36 1
19 1520 0.18 0.030 36 1
20 1616 0.30 0.028 36 1

14.20. Prostate Cancer Data. This data set comes from the study by Stamey
et al. (1989) that examined the relationship between the level of serum
prostate specific antigen (Yang polyclonal radioimmunoassay) and a
number of histological and morphometric measures in 97 patients who
were about to receive a radical prostatectomy. The data are organized as
data structure prost with first 8 fields (prost.lcavol - prost.pgg45) as
predictors, and the 9th field (prost.lpsa) as the response.
(a) Load the data into MATLAB and run procedure stepwise. Write
down the regression equation suggested by stepwise.
(b) Mr. Smith (a new patient) has response y = 2.3 and covariates:

x1 = 1.4, x2 = 3.7, x3 = 65, x4 = 0.1, x5 = 0, x6 =−0.16, x7 = 7, and x8 = 30.

How close to the measured response y = 2.3 does the regression from
(a) predict y for Mr. Smith? Denote this prediction by ŷp. Calculate the
residual r = ŷp− y. Hint: In calculating ŷp you should use only covariates
xi suggested by stepwise procedure.
(c) The best, in an R2 sense, single predictor for y is x1 – the logarithm of
the cancer volume. Fit the univariate regression using x1 as the predictor.
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x1 prost.lcavol Logarithm of cancer volume
x2 prost.lweight Logarithm of prostate weight
x3 prost.age Patient’s age
x4 prost.lbph Logarithm of benign prostatic

hyperplasia amount
x5 prost.svi Seminal vesicle invasion, 0 – no, 1 – yes.
x6 prost.lcp Logarithm of capsular penetration
x7 prost.gleason Gleason score
x8 prost.pgg45 Percentage Gleason scores 4 or 5
y prost.lpsa Logarithm of prostate specific antigen

Table 14.2 Fields in structure file prost. First 8 fields are predictors, and the last is the
response to be modeled.

What is ŷp for Mr. Smith based on this univariate regression? Find a 95%
prediction interval for yp. Is y = 2.3 in the interval?

14.21. Assessing the Volume in Shortleaf Pine. Pinus echinata (shortleaf pine)
forests provided innumerable railroad ties for our nation’s expanding
railroad network in the late 19th and early 20th century. The wood is
now used for general construction, exterior and interior finishing, and
pulpwood.
Volume is the most widely used measure of wood quantity and is of-
ten estimated in standing trees for the assessment of economic value
or commercial utilization potential. Volume is usually estimated from
such measurements as diameter and merchantable height. The proposed
equation for volume is

V = α0Dα1 Hα2 η, (14.9)

where D is the diameter at breast height (1.3 m) and H is the mer-
chantable height. Parameters α0,α1, and α2 depend on the tree species
while η is a multiplicative error with lognormal distribution with pa-
rameters µ = 0 and σ2.
Bruce and Schumacher (1935) provided data on 70 shortleaf pine trees
consisting of D (inches), H (ft), and V (cu ft). The dataset is in file

shortleaf.dat.
(a) Apply logarithmic transformation on both sides of equation (14.9)
and by linear regression, estimate α0,α1, and α2 and σ2.
(b) For D = 15 in and H = 85 ft estimate the volume and find the 95%
confidence interval for the mean response.
(c) If you are to select a single best predictor for logV, which one would
you choose?

14.22. Hocking–Pendleton Data. This popular data set was constructed by
Hocking and Pendelton (1982) to illustrate that an influential observation
may not be outlier, and that an outlier may not be influential. The data,
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given in file hockpend.dat|mat, is organized as a matrix of size 26× 4;
the predictors x1, x2, and x3 are the first three columns, and the response
y is the fourth column.
(a) Fit the linear regression model with the three covariates, report the
parameter estimates and R2.
(b) Is the multicolinearity problem here?
(c) Is any of the 26 observations influential (in the sense of DFFITS, or
Cook’s Distance)?
(d) Is any of the 26 observations potential outlier (in the sense of a large
studentized residual)?
(e) Using forward variable selection propose a possibly simpler model.

14.23. Squids. Data, analyzed by Freund and Wilson (1998), were obtained on
22 squids. The dependent variable y is the weight of the squid in pounds.
The predictor variables represent measurements on the beak or mouth
of the squid. The data are provided in the file squids.csv|dat|xlsx|mat

Column 1 Observation –
Column 2 Rostral length in inches x1
Column 3 Wing length in inches x2
Column 4 Rostral to notch length x3
Column 5 Notch to wing length x4
Column 6 Width in inches x5
Column 7 Weight of the squid in pounds y

Scientists wanted to know how useful beak measurements are in pre-
dicting the weight of the squid. Answering this question was important
in the study of sizes of squid eaten by sharks and tuna, since the beak is
indigestible.
(a) Using multiple linear regression, estimate a linear model that ex-
presses the squid weight y using the predictors x1 − x5
(b) What y is predicted for x1 = 1.52,x2 = 1.12, x3 = 0.622, x4 = 0.917, and
x5 = 0.324? What is the 95% confidence interval for the mean response?
(c) Which of the 22 observations are influential? Answer by using either
DFFITS or Cook’s distance.
(d) Is the multicolinearity a problem here? Explain.
(e) Using the forward selection procedure propose a more compact
model.
(f) Redo (a) and (b) in Bayesian fashion using noninformative priors. A
shell-ODC with the data is provided as squids.odc. Are the results of
classical and Bayesian analyses similar?

14.24. Slope in EIV Regression. Show that the EIV regression slope in (14.7)
tends to Sxy/Sxx when η→ 0. [Hint: Apply L’Hôpital’s rule.]

14.25. Interparticular Spacing and Wavelength in Nanoprisms 2. In the con-
text of Example 13.4, let x = (separation)−1 and y = log(wavelength).
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The part of MATLAB regression output for nonoprism.dat data set is
given below.

[b, bint, r, rint, stats] = regress(y,[ones(size(x)) x])

%b =

% -4.7182

% 1.6289

%

%bint =

% -5.6578 -3.7787

% 1.3061 1.9516

%

%r =

% 0.0037

% -0.0084

% ...

% 0.0058

% 0.0046

%

%rint =

% -0.0101 0.0176

% -0.0232 0.0064

% ...

% -0.0096 0.0213

% -0.0110 0.0203

%

%stats =

% 0.8545 111.5735 0.0000 0.0001

Using information contained in this output, answer the following ques-
tions:
(a) What is the regression equation linking x and y?
(b) Predict y = log(wavelength) for x = 2.9. What is the wavelength for
such x?
(c) What is R2 here and how is it interpreted? What is the F-statistic
here? Is it significant?
(d) The 95% confidence interval for the population slope β1 is [1.3061,
1.9516]. Using information in this output construct a 99% confidence
interval for β1.

14.26. Kodlin’s Experiment Revisited. Estimate ANCOVA parameters for
Kodlin’s blood pressure experiment (Example 14.8) in a Bayesian fashion
using WinBUGS/OpenBUGS. Use noninformative priors. Compare clas-
sical parameter estimators from Example 14.8 with the Bayesian coun-
terparts.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch14.Reg/

adhesions.m, ancovafibers.m, caprolactone.m, coburnreg.m, cpeptide.m,

degradation.m, diabetes.m, diagnostics.m, dissection.m, errorinvar.m,

fatreg.m, fatreg1.m, fatregdiag.m, galton.m, hemo.m, histn.m, hubble.m,

invitro.m, kanamycin.m, kodlin.m, myeb.m, oldfaithful.m, pedometer1.m,

ratwei.m, silverzinc.m, tastecheese.m, vitalcapacity.m, vonneumann.m

ancovafibers.odc, fat.odc, mellitus.odc, regressionpred.odc, vortex.odc

adhesion.xls, alcos.dat|xls, arthritis1.dat|mat, bmp2.dat|mat|xlsx,

circalbumin.dat, coburn.mat, Cpaptide.dat|mat, Cpeptideext.dat|mat,

drosophila.dat|mat|xlsx, fat.dat|xlsx, galton.dat, galtoncompact.dat,

kanamycin.dat, kidneyouabain.dat|mat|xlsx, Lactis.dat, nanoprism.dat,

pearson.dat, pmr1.mat, prost.mat, prostate.dat, ranunculus.xlsx,

shortleaf.dat, silverzinc.dat|mat, vitalcapacity.xlsx
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Chapter 15

Regression for Binary and Count Data

There are 10 types of people in the world, those who can read binary, and those who can’t.

– Anonymous

WHAT IS COVERED IN THIS CHAPTER

• Logistic Regression: Fitting and Assessing the Model
• Probit and Complementary Log-Log Links
• Poisson Regression: Fitting and Assessing the Model
• Two Case Studies: Caesarean Sections and Danish IHGA Study
• Log-linear Models in Contingency Tables

15.1 Introduction

Traditional simple or multiple linear regression assumes a normally dis-
tributed response centered at a linear combination of the predictors. For
example, in simple regression, the response yi is modeled as normal
N (β0 + β1xi,σ2), where the expectation, conditional on covariate xi, is a
linear function of xi.

For some regression scenarios this model is inadequate because the re-
sponse is not normally distributed. The response could be categorical, for
example, with two or more categories (“disease present–disease absent,”
“survived–died,” “low–medium–high,” etc.) or be integer valued (“num-
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ber with the disease,” “number of failures,” etc.), and yet a response may
still depend on a covariate or a vector of covariates, x. In this chapter we
discuss logistic and Poisson regressions that are appropriate models for
binary and counting responses.

In logistic regression, the responses are binary, coded, without loss of
generality, as 0 and 1 (or as 1 and 2 in WinBUGS). In Poisson regression, the
responses are nonnegative integers well modeled by a Poisson distribution
in which the rate λ depends on one or more covariates. The covariates enter
the model in a linear fashion; however, their connection with the expected
response is nonlinear.

Both logistic and Poisson regressions are examples of a wide class of
models called generalized linear models (GLMs). The term generalized lin-
ear model refers to models introduced by Nelder and Wedderburn (1972)
and popularized by the monograph of McCullagh and Nelder (1982, sec-
ond edition 1989). In a canonical GLM model, the response variable yi is
assumed to follow a distribution from the class of distributions called the
exponential family, with mean µ, which is assumed to depend on covari-
ates via their linear combination. The exponential family is a rich family
of distributions and includes almost all important distributions (normal,
Bernoulli, binomial, Poisson, gamma, etc.). This link between the mean µ
and covariates can be nonlinear, but the distribution of yi depends on co-
variates only via their linear combination. Linear regression is a special case
of GLMs for normally distributed responses, in which the mean is directly
modeled by a linear combination of covariates.

15.2 Logistic Regression

Assume that a response yi, depending on a covariate xi, is categorical and
can take two possible values. Examples of such responses include male–
female, sick–healthy, alive–dead, pass–fail, success–failure, win–loss, etc.
One usually assigns provisional numerical values to the responses, say 0
and 1, mainly to simplify notation. Our interest is in modeling the proba-
bility of response y = 1 given the observed covariates.

Classical least-squares regression yi = β0 + β1xi + ǫi is clearly inade-
quate since for unbounded xi the linear term β0 + β1xi is unbounded as
well. In addition, the residuals have only two possible values, and the vari-
ance of yi is not free of xi.

We assume that y is Bernoulli distributed with Ey = P(y = 1) = p. Since
E(yi|X = xi) = P(yi = 1|X = xi) = pi is a number between 0 and 1, it is
reasonable to model pi as F(β0 + β1xi) for some probability CDF F. Equiv-
alently,

F−1 (p) = β0 + β1x.
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In principle, any monotone cumulative distribution function F can provide
a link between the probability p and the covariate(s), but the most used
distributions are logistic, normal, and complementary log-log, leading to
logistic, probit, and clog-log regressions. The most popular among the three
is the logistic regression because its coefficients, measuring the impact of
the predictors on the binary response y, have convenient interpretations via
the log odds of the events {y = 1}. In logistic regression, F−1(p) = log p

1−p

is called the logit and denoted as logit(p).

15.2.1 Fitting Logistic Regression

The basic statistical model for logistic regression is

yi ∼ Ber(pi), (15.1)

logit(pi) = log
pi

1− pi
= β0 + β1xi, i = 1, . . . ,n,

when the responses are Bernoulli, 0 or 1.
When multiple measurements correspond to the same covariate, it is

convenient to express the responses as binomial counts. That is, ni re-
sponses corresponding to covariate xi are grouped together and yi is the
number of responses equal to 1:

yi ∼ Bin(ni, pi), (15.2)

logit(pi) = log
pi

1− pi
= β0 + β1xi, i = 1, . . . ,k,

k

∑
i=1

ni = n.

In principle, it is always possible to express the binomial response model
via Bernoulli responses by repeating yi times the response 1 and ni − yi

times the response 0 for the same covariate xi. The converse is not possible
in general, especially if yi depends on a continuous covariate. Assessing
the goodness of fit for models of type (15.1) is a well-known problem since
the asymptotic distributional results do not hold even for arbitrarily large
sample sizes.

How does one estimate parameters β0 and β1 in logistic model (15.1)
or (15.2)? The traditional least-squares algorithm that is utilized in linear
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regression is not applicable. Estimating the model coefficients amounts to
solving a nonlinear equation, and this is done by an iterative procedure. The
algorithm for a single predictor is illustrated and implemented in the m-file

logisticmle.m. There, the Newton–Raphson method is used to solve non-
linear likelihood equations and calculate coefficients b0 and b1 as estimators
of population parameters β0 and β1. Details regarding the background and
convergence of methods for estimating model parameters are beyond the
scope of this text and can be found in McCullagh and Nelder (1989).

Once the parameters β0 and β1 are estimated, the probability pi =P(y =
1|x = xi) is obtained as

p̂i =
exp{b0 + b1xi}

1 + exp{b0 + b1xi}
=

1
1 + exp{−b0 − b1xi}

.

In addition to the nature of response yi, there is another key difference
between ordinary and logistic regressions. For linear regression, the vari-
ance does not depend on the mean β0 + β1xi; it is constant for all xi. This
is one of the assumptions for linear regression. In logistic regression, the
variance is not constant; it is a function of the mean. From (15.1), Eyi = pi

and Var yi = Eyi(1−Eyi).
If p− 1 covariates (p ≥ 2 parameters) are available, as is often the case,

then

X ′i b = ℓi = b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1

replaces b0 + b1xi, where X ′i is the ith row of a design matrix X of size
n× p, and b = (b0 b1 . . . bp−1)

′. Now,

p̂i =
exp{X ′i b}

1 + exp{X ′i b}
=

1
1 + exp{−X ′i b} ,

with b maximizing the log-likelihood

log L(β) = ℓ(β) =
n

∑
i=1

yi · (X ′i β)−
n

∑
i=1

log
(
1 + exp{X ′i β}

)
.

Example 15.1. Caesarean-Section Infections. A Caesarean-section, or C-
section, is major abdominal surgery, so mothers who undergo C-sections
are more likely to have an infection, excessive bleeding, blood clots, more
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postpartum pain, a longer hospital stay, and a significantly longer recov-
ery. The data in this example comes from Munich’s Klinikum Großharden
(Fahrmeir and Tutz, 1996) and concerns infections in births by C-section.
The response variable of interest is the occurrence or nonoccurrence of in-
fection. Three covariates, each at two levels, were considered as important
for the occurrence of infection:

noplan – C-section delivery was planned (0) or not planned (1);
riskfac – risk factors for the mother, such as diabetes, overweight, pre-

vious C-section birth, etc., are present (1) or not present (0); and
antibio – antibiotics as a prophylaxis are given (1) or not given (0).

Table 15.1 provides the results:

Table 15.1 Caesarean-section delivery data.

Planned No plan
Infection Infection

Yes No Total Yes No Total
Antibiotics

Risk factor yes 1 17 18 11 87 98
Risk factor no 0 2 2 0 0 0

No antibiotics
Risk factor yes 28 30 58 23 3 26
Risk factor no 8 32 40 0 9 9

Here is the MATLAB code that uses built-in functions glmfit and glmval

to fit and present the model:

infection = [ 1 11 0 0 28 23 8 0];

total = [18 98 2 0 58 26 40 9];

proportion = infection./total;

noplan = [ 0 1 0 1 0 1 0 1];

riskfac = [ 1 1 0 0 1 1 0 0];

antibio = [ 1 1 1 1 0 0 0 0];

[b,dev,stats] = glmfit([noplan’ riskfac’ antibio’],...

[infection’ total’],’binomial’,’logit’);

logitFit = ...

glmval(b,[noplan’ riskfac’ antibio’],’logit’);

The resulting additive model (with no interactions) is

log
P(infection)

P(no infection)
= β0 + β1 · noplan + β2 · riskfac + β3 · antibio

with estimators of βs as

b0 b1 b2 b3
–1.8926 1.0720 2.0299 –3.2544
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The interpretation of the estimators for β coefficients is illuminating if

we look at the odds ratio P(infection)

P(no infection)
:

P(infection)
P(no infection)

= exp(β0) · exp(β1 noplan) · exp(β2 riskfac) · exp(β3 antibio).

For example, when antibio=1, that is, when antibiotics are given, the esti-
mated odds of infection P(infection)/P(no infection) increase by the factor
exp(−3.25) = 0.0388, that is, the odds decrease 25.79 times. Of course, these
statements are valid only if the model is accurate. Other competing models,
such as probit or clog-log, may result in different changes in risk ratios.
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Fig. 15.1 Caesarean delivery infection predictions. For a triple (noplan, riskfac, antibio),
the numbers on the x-axis code as follows: 1 = (0, 1, 1), 2 = (1, 1, 1), 3 = (0, 0, 1), 4 = (1,
0, 1), 5 = (0, 1, 0), 6 = (1, 1, 0), 7 = (0, 0, 0), and 8 = (1, 0, 0). Blue squares are the observed
relative frequencies and green circles are the model-predicted probabilities of infection.
Note that point 4 does not have an observed proportion.

The m-function logisticmle.m also gives standard errors for estima-
tors of βs. Table 15.2 provides t-values, that is, ratios of coefficients and
their standard deviations, for testing if the coefficients are significantly dif-
ferent from 0. These are known as Wald’s Z statistics, since they are ap-
proximately normal.

The deviance (page 761) of this model as a measure of goodness of fit
is distributed as χ2 with 3 degrees of freedom. The number of degrees
of freedom is calculated as 7 (the number of groups with observations)
minus 4 (four estimated parameters β0 − β3). Since the deviance is found
significant,

dev = 10.9967;
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Table 15.2 t-ratios (Wald’s Z statistic) for the estimators b = β̂.

b sb t
Intercept –1.8926 0.4124 –4.5893
noplan 1.0720 0.4253 2.5203
riskfac 2.0299 0.4553 4.4588
antibio –3.2544 0.4812 –6.7624

pval = 1 - chi2cdf(dev, 7-4) % 0.0117

the fit of this model is inadequate. To improve the fit, one may include the
interactions.

One may ask why the regression model was needed in the first place.
The probabilities of interest could be predicted by relative frequencies. For
example, in the case (noplan = 0, riskfac = 1, antibio = 1), the relative fre-
quency of infection was 1/18 = 0.0556, just slightly larger than the model-
predicted p̂ = 0.0424. There are two benefits in using regression. First, the
model is able to predict probabilities in the cases where no patients are
present, such as for (noplan = 1, riskfac = 0, antibio = 1). Second, the predic-
tions for the cases where y = 1 is not observed are “borrowing strength”
from other data and are not modeled individually. For example, zero as an
estimator in the case (noplan = 1, riskfac = 0, antibio = 0) is not reasonable;
the model-based estimator p̂ = 0.3056 is more realistic. Figure 15.1 com-
pares observed and model-predicted infection rates. For a triple of covari-
ates (noplan, riskfac, antibio), the numbers on the x-axis code as follows:
1 = (0, 1, 1), 2 = (1, 1, 1), 3 = (0, 0, 1), 4 = (1, 0, 1), 5 = (0, 1, 0), 6 = (1, 1,
0), 7 = (0, 0, 0), and 8 = (1, 0, 0). Note that point 4 does not have an ob-
served proportion; however, the model-predicted proportion can be found.
For computational aspects refer to file caesarean.m.

Next, we provide a Bayesian solution to this example and compare the
model fit with the classical fit above. The comparisons are summarized in
Table 15.1.

C-SECTION INFECTIONS

model{

for(i in 1:N){

inf[i] ~ dbin(p[i],total[i])

logit(p[i]) <- beta0 + beta1*noplan[i] +

beta2*riskfac[i] + beta3*antibio[i]

}

beta0 ~dnorm(0, 0.00001)

beta1 ~dnorm(0, 0.00001)

beta2 ~dnorm(0, 0.00001)

beta3 ~dnorm(0, 0.00001)

}

DATA
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list(inf=c(1, 11, 0, 0, 28, 23, 8, 0),

total = c(18, 98, 2, 0, 58, 26, 40, 9),

noplan = c(0,1,0,1,0,1,0,1),

riskfac = c(1,1, 0, 0, 1,1, 0, 0),

antibio =c(1,1,1,1,0,0,0,0), N=8)

INITS

list(beta0 =0, beta1=0, beta2=0, beta3=0)

mean sd MC error val2.5pc median val97.5pc start sample

beta0 –1.964 0.4258 0.001468 –2.853 –1.945 –1.183 1001 1000000
beta1 1.111 0.4339 8.857E-4 0.2851 1.102 1.986 1001 1000000
beta2 2.104 0.4681 0.00159 1.226 2.09 3.066 1001 1000000
beta3 –3.335 0.4915 9.756E-4 –4.337 –3.322 –2.411 1001 1000000
deviance 32.24 2.873 0.00566 28.67 31.59 39.49 1001 1000000

Table 15.3 Comparison of classical and noninformative Bayes estimators b = β̂, with
estimators of standard deviations.

b sb β̂B σ̂B

Intercept −1.8926 0.4124 −1.964 0.4258
noplan 1.0720 0.4253 1.111 0.4339
riskfac 2.0299 0.4553 2.104 0.4681
antibio −3.2544 0.4812 −3.335 0.4915

�

15.2.2 Assessing the Logistic Regression Fit

The measures for assessing the goodness of linear regression fit that we
covered in Chapter 14, R2, F, MSE, etc., are not appropriate for logistic
regression. As in the case of linear regression, there is a range of measures
for assessing the performance of logistic regression, and we will briefly
discuss a few.

The significance of model parameters β0, β1, . . . , βp−1 is tested by the so-

called Wald’s test. One finds the statistic Zi =
bi

s(bi)
that has an approximate

normal distribution if the coefficient βi is 0. Equivalently, Wi =
b2

i

s2(bi)
with an

approximate χ2-distribution with 1 degree of freedom can be used. Large
values of |Zi| or Wi are critical for H0 : βi = 0.

The sample variances s2(bi) are diagonal elements of (X′VX)−1, where
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X =




1 x11 x12 . . . x1,p−1
1 x21 x22 . . . x2,p−1

. . .
1 xn1 xn2 . . . xn,p−1




is the design matrix and

V =




p̂1(1− p̂1) 0 . . . 0
0 p̂2(1− p̂2) . . . 0

. . .
0 0 . . . p̂n(1− p̂n)


 .

The customary measure for goodness of fit is deviance, defined as

D = −2log
likelihood of the fitted model

likelihood of the saturated model
.

For the logistic regression in (15.2), where yi is the number of 1s and ni − yi

is the number of 0s in class i, the likelihood is L = ∏
k
i=1 p

yi
i (1− pi)

ni−yi and
the deviance is

D = −2
k

∑
1=1

{
yi log

(
ŷi

yi

)
+ (ni − yi) log

(
ni − ŷi

ni − yi

)}
,

where ŷi = ni p̂i is the model fit for yi. The saturated model estimates pi as
p̂i = yi/ni and ŷi = yi, providing the fit that matches the observations.

The deviance statistic in this case has a χ2-distribution with k − p de-
grees of freedom, where k is the number of classes/groups and p is the
number of parameters in the model. Recall that in the previous example
the deviance of the model was distributed as χ2 with k − p = 7 − 4 = 3
degrees of freedom.

For both Bernoulli and binomial observations, the mean and variance
depend on a single parameter, p. When the mean is well fitted, the variance
may be underfitted (overdispersion in data) or overfitted (underdispersion
in data). The ratio D/df is often used to indicate over- or underdispersion
in the data.

The traditional χ2-statistic for the goodness of fit in model (15.2) is de-
fined as

χ2 =
k

∑
i=1

[
(yi − ŷi)

2

ŷi
+

(yi − ŷi)
2

ni − ŷi

]
,

where ni is the number of observations in class i, i = 1, . . . ,k. This statistic
has an approx. χ2-distribution with k− p degrees of freedom.
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Goodness of fit measure G is defined as the difference of deviance be-
tween the null model (intercept-only model) and the model under consid-
eration. G has a χ2-distribution with p− 1 degrees of freedom, and small
values of G are critical, suggesting that the deviance did not improve sig-
nificantly by adding covariates.

The logistic model can always be expressed in terms of Bernoulli out-
comes, where yi is 0 or 1, as in (15.1). Then k = n, ni = 1, the likelihood
for the saturated model, is ∏

n
i=1 y

yi
i (1− yi)

1−yi = 1 (we assume that 00 = 1),
and the deviance for the Bernoulli representation becomes

D =−2
n

∑
i=1

[yi log p̂i + (1− yi) log(1− p̂i)] .

Statistic D does not follow any specific distribution, regardless of the
sample size. Likewise, the Pearson χ2 becomes

χ2 =
n

∑
i=1

(yi − p̂i)
2

p̂i(1− p̂i)
(15.3)

in model (15.1) and does not follow any specific distribution, either.
To further evaluate the model, several types of residuals are available.
Deviance residuals are defined as

rD
i = sign(yi − ŷi)

√
2
{

yi log
(

yi

ŷi

)
+ (ni − yi) log

(
ni − yi

ni − ŷi

)}
, i = 1, . . . ,k,

for model (15.2) and

rD
i = sign(yi − p̂i)

√
2yi log p̂i + (1− yi) log(1− p̂i), i = 1, . . . ,n,

for model (15.1). The deviance D is decomposed to the sum of squares of
deviance residuals in an ANOVA-like fashion as D = ∑(rD

i )
2. The squared

residual (rD
i )

2 measures the contribution of the ith case to the deviance.
Deviance residuals can be plotted against the order of sampling to ex-

plore for possible trends and outliers. Also useful for checking the model
are half-normal plots where the ordered absolute values rD

i are plotted

against the normal quantiles Φ−1
(

i+n−1/8
2n+1/2

)
. These kinds of plots are an

extension of Atkinson’s (1985) half-normal plots in regular linear regres-
sion models. Deviation from a straight line in a half-normal plot indicates
model inadequacy.

For the model in (15.1), the Pearson residual is defined as

r
pea
i =

yi − p̂i√
p̂i(1− p̂i)

,
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and the sum of squares of r
pea
i constitutes Pearson’s χ2 statistic,

n

∑
i=1

(r
pea
i )2 =

n

∑
i=1

(yi − p̂i)
2

p̂i(1− p̂i)
,

as in (15.3). This statistic represents a discrepancy measure; however, as we
mentioned, it does not follow the χ2-distribution, even asymptotically.

In the case of continuous covariates, large n and small ni, Hosmer and
Lemeshow proposed a χ2-statistic based on the grouping of predicted val-
ues p̂i. All p̂i are ordered and divided into g approximately equal groups,
usually 10. For 10 groups, sample deciles of ordered p̂i can be used.

The Hosmer–Lemeshow statistic is

χ2
HL =

g

∑
i=1

(ni − npi)
2

npi

,

where g is the number of groups, ni is the number of cases in the ith group,
and pi is the average of model (predicted) probabilities for the cases in
the ith group. The χ2

hl statistic is compared to χ2
g−2 quantiles, and small

p-values indicate that the fit is poor. In the case of ties, that is, when there
are blocks of items with the same predicted probability p̂, the blocks are
not split but assigned to one of the two groups that share the block. The
details of the algorithm can be found in Hosmer and Lemeshow (1989).

In the case of linear regression, R2, as a proportion of model-explained
variability in observations, has a strong intuitive appeal in assessing the
regression fit. In the case of logistic regression, there is no such intu-
itive R2. However, there are several proposals of R2-like measures, called
pseudo-R2. Most of them are defined in terms of model likelihood or log-
likelihood. The model likelihood and log-likelihood are calculated using
the logit model,

ℓi = b0 + b1xi1 + · · ·+ bp−1xi,p−1,

LLp = LL(b0, . . . ,bp−1) =
n

∑
i=1

(yi × ℓi − log(1 + exp{ℓi})) ,

and the model likelihood is Lp = exp{LLp}. The null model is fitted without
covariates, and

ℓ0 = b0,

LLnull = LL(b0) =
n

∑
i=1

(yi × ℓ0 − log(1 + exp{ℓ0})) .

The null model likelihood is Lnull = exp{LLnull}.
By analogy to linear regression, R2 = SSR

SST = SST−SSE
SST ,
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R2
m f =

LLnull − LLp

LLnull
= 1− LLp

LLnull
,

defines McFadden’s pseudo-R2. Some other counterparts of R2 are

Cox–Snell: R2
cs = 1−

[
Lnull

Lp

]2/n

;

Nagelkerke: R2
n =

1−
[

Lnull
Lp

]2/n

1− (Lnull)
2/n

;

Effron: R2
e = 1− ∑

n
i=1(yi − p̂i)

2

∑
n
i=1(yi − y)2 , y =

∑
n
i=1 yi

n
.

Example 15.2. Arrhythmia. Patients who undergo coronary artery bypass
graft (CABG) surgery have an approximately 19% to 40% chance of devel-
oping atrial fibrillation (AF). AF is a quivering, chaotic motion in the upper
chambers of the heart, known as the atria. AF can lead to the formation of
blood clots, causing greater in-hospital mortality, strokes, and longer hos-
pital stays. While this can be alleviated with drugs, it is very expensive
and sometimes dangerous if not warranted. Ideally, several risk factors that
would indicate an increased risk of developing AF in this population could
save lives and money by indicating which patients need pharmacological
intervention. Researchers began collecting data from CABG patients during
their hospital stay such as demographics like age and sex, as well as heart
rate, cholesterol, operation time, etc. Then the researchers recorded which
patients developed AF during their hospital stay. The goal was to evaluate
the probability of AF given the measured demographic and risk factors.

The data set arrhythmia.dat, courtesy of Dr. Matthew C. Wiggins, con-
tains the following variables:

Y Fibrillation
X1 Age
X2 Aortic cross clamp time
X3 Cardiopulmonary bypass time
X4 Intensive care unit (ICU) time
X5 Average heart rate
X6 Left ventricle ejection fraction
X7 Anamnesis of hypertension
X8 Gender [1 - female; 0 - male]
X9 Anamnesis of diabetes
X10 Previous MI

The MATLAB script arrhythmia.m provides a logistic regression fit.
The script calculates deviance and several goodness-of-fit measures.
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load ’Arrhythmia.mat’

Y = Arrhythmia(:,1);

X = Arrhythmia(:,2:11); %Design matrix n x (p-1) without

%vector 1 (intercept)

Xdes =[ones(size(Y)) X]; %with the intercept: n x p

n = length(Y); %number of subjects

alpha = 0.05; %alpha for CIs

[b, dev, stats]=glmfit(X,Y, ’binomial’,’link’,’logit’)

lin = Xdes * b %linear predictor, n x 1 vector

Figure 15.2 shows observed arrhythmia responses (0 or 1) with their
logistic fit.
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Fig. 15.2 Arrhythmia responses 0 or 1 with their logistic fit. The abscise axis is the linear
predictor lin.

With the linear predictor, fitted probabilities for {Yi = 1} are given as
p̂i. The estimators of the βs with their standard deviations and p-values for
the Wald test are given next. The intercept is significantly nonzero (0.0158),
and the variable X1 (age) is strongly significant (0.0005). This agrees with the
inference based on confidence intervals; only the intervals for β0 and β1 do
not contain 0, or, equivalently, the intervals for the odds ratio, exp{β0} and
exp{β1}, do not contain 1.

phat = exp(lin)./(1 + exp(lin));

V = diag( phat .* (1 - phat) );

sqrtV = diag( sqrt(phat .* (1 - phat) ))

sb = sqrt( diag( inv( Xdes’ * V * Xdes ) ) )
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% inv( Xdes’ * V * Xdes ) is stats.covb

% Wald tests for parameters beta

z = b./sb %tests for beta_i = 0, i=0,...,p-1

pvals = 2 * normcdf(-abs(z)) %p-values

%[0.0158; 0.0005; 0.3007; 0.2803; 0.1347; 0.8061

% 0.4217; 0.3810; 0.6762; 0.0842; 0.5942]

%(1-alpha)*100% CI for betas

CIs = [b - norminv(1 - alpha/2) * sb , b + norminv(1-alpha/2) * sb]

%(1-alpha)*100% CIs for odds ratios

CIsOR = exp([b-norminv(1-alpha/2)*sb , b+norminv(1-alpha/2)*sb])

% 0.0000 0.1281

% 1.0697 1.2711

% 0.9781 1.0744

% ...

% 0.8628 10.3273

% 0.4004 4.9453

Figure 15.3 shows estimators of β0− β10 (as green circles) and 95% con-
fidence bounds. Since the intervals for β0 and β1 do not contain 0, both
the intercept and covariate age are important in the model. It is tempting to
do variable/model selection based on outcomes of Wald’s test – but this is
not advisable. Exclusion of a parameter/variable from the model will nec-
essarily change the estimators and confidence intervals for the remaining
parameters and previously insignificant parameters may become signifi-
cant. As in linear regression, best subset, forward, and backward variable
selection procedures exist and may be implemented.
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Fig. 15.3 Estimators of β0 − β10 are shown as green circles, and 95% confidence intervals
are given. For comparison, the intervals for β1 − β6 are shown separately on a different
scale.
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Next, we find the log-likelihoods for the model and null model. The
model deviance is 78.2515, while the difference of deviances between the
models is 26.1949. This would be a basis for a likelihood ratio test if the
response were grouped. Since in a Bernoulli setup the distributions of de-
viance and G are not χ2, the testing needs to be done by one of the response-
grouping methods, such as the Hosmer–Lemeshaw method.

%Log-likelihood

loglik = sum( Y .* lin - log( 1 + exp(lin) )) %-39.1258

%fitting null model.

[b0, dev0, stats0] = glmfit(zeros(size(Y)),Y,’binomial’,’link’,’logit’)

%b0=-0.6381, dev0=104.4464, stats=... (structure)

loglik0 = sum( Y .* b0(1) - log(1 + exp(b0(1))) ) %-52.2232

%

G = -2 * (loglik0 - loglik) % 26.1949

dev0 - dev %26.1949, the same as G, difference of deviances

%

%model deviance

devi = -2 * sum( Y .* log( phat + eps) + (1-Y ).*log(1 - phat + eps) )

%78.2515, directly

dev %78.2515, glmfit output

-2 * loglik %78.2515, as a link between loglik and deviance

Several measures correspond to R2 in the linear regression context: Mac-
Fadden’s pseudo-R2, Cox–Snell R2, Nagelkerke R2, and Effron’s R2. All
measures fall between 0.25 and 0.4.
%McFadden Pseudo R^2, equivalent expressions

mcfadden = -2*(loglik0-loglik)/(-2*loglik0) %0.2508

1 - loglik/loglik0 %0.2508

%

coxsnell =1-(exp(loglik0)/exp(loglik))^(2/n) %0.2763

%

nagelkerke=(1-(exp(loglik0)/exp(loglik))^(2/n))/...

(1-exp(loglik0)^(2/n)) %0.3813

%

effron=1-sum((Y-phat).^2)/sum((Y-sum(Y)/n).^2) %0.2811

Next we find several types of residuals: ordinary, Pearson, deviance, and
Anscombe.

ro = Y - phat; %Ordinary residuals

%Deviance Residuals

rdev = sign(Y - phat) .* sqrt(-2 * Y .* log(phat+eps) - ...

2*(1 - Y) .* log(1 - phat+eps));

%Anscombe Residuals

ransc = (betainc(Y,2/3,2/3) - betainc(phat,2/3,2/3) ) .* ...

( phat .* (1-phat) + eps).^(1/6);

%

% Model deviance is recovered as

%the sum of squared dev. residuals

sum(rdev.^2) %78.2515
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Figure 15.4 shows four kinds of residuals (ordinary, Pearson, deviance,
and Anscombe), plotted against p̂.
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Fig. 15.4 Ordinary, Pearson, deviance, and Anscombe residuals plotted against p̂.

If the model is adequate, the smoothed residuals should result in a func-
tion close to 0. Figure 15.5 shows Pearson’s residuals smoothed by a loess
smoothing method ( loess.m).

Influential and outlying observations can be detected with a plot of ab-
solute values of residuals against half-normal quantiles. Figure 15.6 was
produced by the script below and shows a half-normal plot. The upper and
lower bounds (in red) show an empirical 95% confidence interval and were
obtained by simulation. The sample of size 19 was obtained from Bernoulli
Ber( p̂), where p̂ is the model fit, and then the minimum, mean, and maxi-
mum of the absolute residuals of the simulated values were plotted.

k = 1:n;

q = norminv((k + n - 1/8)./(2 * n + 1/2));

plot( q, sort(abs(rdev)), ’k-’,’LineWidth’,1.5);

% Simulated Envelope

rand(’state’,1)

env =[];

for i = 1:19

surrogate = binornd(1, phat);

rdevsu = sign(surrogate - phat).*sqrt(- 2*surrogate .* ...

log(phat+eps)- 2*(1 - surrogate) .* log(1 - phat+eps) );

env = [env sort(abs(rdevsu))];
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Fig. 15.5 Pearson’s residuals (green circles) smoothed. The red circles show the result of
smoothing.

end

envel=[min(env’); mean(env’ ); max(env’ )]’;

hold on

plot( q , envel(:,1), ’r-’);

plot( q , envel(:,2), ’g-’);

plot( q , envel(:,3), ’r-’);

xlabel(’Half-Normal Quantiles’,’Interpreter’,’LaTeX’)

ylabel(’Abs. Dev. Residuals’,’Interpreter’,’LaTeX’)

h=legend(’Abs. Residuals’,’Simul. $95%$ CI’,’Simul. Mean’,2)

set(h,’Interpreter’,’LaTeX’)

axis tight

To predict the mean response for a new observation, we selected a “new
person” with specific covariate values. For this person the estimator for
P(Y = 1) is 0.3179, and 0 for a single future response. A single future re-
sponse is in fact a classification problem: individuals with a specific set of
covariates are classified as either 0 or 1.

%Probability of Y=1 for a new observation

Xh =[1 72 81 130 15 78 43 1 0 0 1]’ ;

% responses for a new person

pXh = exp(Xh’ * b)/(1 + exp(Xh’ * b) ) %0.3179

%(1-alpha) * 100% CI

ppXh = Xh’ * b %-0.7633

s2pXp = Xh’ * inv( Xdes’ * V * Xdes ) * Xh %0.5115

spXh = sqrt(s2pXp) %0.7152

% confidence interval on the linear part

li = [ppXh-norminv(1-alpha/2)*spXh ...

ppXh+norminv(1-alpha/2)*spXh] %-2.1651 0.6385

% transformation to the CI for the mean response

exp(li)./(1 + exp(li)) %0.1029 0.6544
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Fig. 15.6 Half-normal plot for deviance residuals.

%Predicting single future observation

cutoff = sum(Y)/n %0.3457

%

pXh > cutoff %Ynew = 0

Next, we provide a Bayesian solution to the Arrhythmia logistic model
( Arrhythmia.odc) and compare classical and Bayesian model parameters.

model{

eps <- 0.00001

for(i in 1:N){

Y[i] ~ dbern(p[i])

logit(p[i]) <- beta[1] + beta[2] * X1[i]+

beta[3] * X2[i] + beta[4] * X3[i]+ beta[5] * X4[i] +

beta[6] * X5[i] + beta[7] * X6[i] + beta[8] * X7[i] +

beta[9] * X8[i] + beta[10] * X9[i] + beta[11] * X10[i]

devres[i] <- 2*Y[i]* log(Y[i]/p[i] +eps) +

2*(1 - Y[i])*log((1-Y[i])/(1-p[i])+eps)

}

for(j in 1:11){

beta[j] ~ dnorm(0, 0.0001)

}

dev <- sum(devres[])

}

DATA + INITS (see Arrhythmia.odc)

The classical and Bayesian model parameters are shown in the table:
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β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10 Dev.
Classical −10.95 0.1536 0.0248 −0.0168 −0.1295 0.0071 0.0207 −0.5377 −0.2638 1.0936 0.3416 78.25
Bayes −13.15 0.1863 0.0335 −0.0236 −0.1541 0.0081 0.0025 −0.6419 −0.3157 1.313 0.4027 89.89

�

15.2.3 Probit and Complementary Log-Log Links

We have seen that for logistic regression,

p̂i = F(ℓi) =
exp{ℓi}

1 + exp{ℓi}
,

where ℓi = b0 + b1xi1 + · · ·+ bp−1xi,p−1 is the linear part of the model.
A probit regression uses a normal distribution instead,

p̂i = Φ(ℓi),

while for the complementary log-log, the extreme value (Gumbel type I for
the minimum) distribution

F(x) = 1− exp{−exp{x}}

is used.
The complementary log-log link interprets the regression coefficients in

terms of the hazard ratio rather than the log odds ratio. It is defined as

clog-log = log(− log(1− p)).

The clog-log regression is typically used when the outcome {y = 1} is rare.
See also Remark on page 775 on a link between clog-log and Poisson re-
gressions. Unlike the logit and probit links, the clog-log link is asymmetric,
that is, clog-log(p) 6= −clog-log(1− p).

Probit models are popular in a bioassay context. A disadvantage of pro-
bit models is that the link Φ−1 does not have an explicit expression, al-
though approximations and numerical algorithms for its calculation are
readily available.

Once the linear part ℓi in a probit or clog-log model is fitted, the proba-
bilities are estimated as

p̂i = Φ(ℓi) or p̂i = 1− exp(−exp(ℓi)),

respectively. In MATLAB, the probit and complementary log-log links are
optional arguments, ’link’,’probit’ or ’link’,’comploglog’.

Example 15.3. Bliss Data. In his 1935 paper, Bliss provides a table showing
a number of flour beetles killed after 5 hours of exposure to gaseous car-
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bon disulfide at various concentrations. This data set has since been used
extensively by statisticians to illustrate and compare models for binary and
binomial data.

Table 15.4 Bliss beetle data.
Dose Number of Number

(log10 CS2 mgl−1) Beetles Killed
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

The following Bayesian model is applied on the Bliss data, and a probit
fit is provided ( bliss.odc).

model{

for( i in 1 : N ) {

y[i] ~ dbin(p[i],n[i])

probit(p[i]) <- alpha.star + beta * (x[i] - mean(x[]))

yhat[i] <- n[i] * p[i]

}

alpha <- alpha.star - beta * mean(x[])

beta ~ dnorm(0.0,0.001)

alpha.star ~ dnorm(0.0,0.001)

}

DATA

list( x = c(1.6907, 1.7242, 1.7552, 1.7842,

1.8113, 1.8369, 1.8610, 1.8839),

n = c(59, 60, 62, 56, 63, 59, 62, 60),

y = c(6, 13, 18, 28, 52, 53, 61, 60), N = 8)

INITS

list(alpha.star=0, beta=0)

mean sd MC error val2.5pc median val97.5pc start sample

alpha –35.03 2.652 0.01837 –40.35 –35.01 –29.98 1001 100000
alpha.star 0.4461 0.07724 5.435E-4 0.2938 0.4461 0.5973 1001 100000
beta 19.78 1.491 0.0104 16.94 19.77 22.78 1001 100000
yhat[1] 3.445 1.018 0.006083 1.757 3.336 5.725 1001 100000
yhat[2] 10.76 1.69 0.009674 7.643 10.7 14.26 1001 100000
yhat[3] 23.48 1.896 0.01095 19.77 23.47 27.2 1001 100000
yhat[4] 33.81 1.597 0.01072 30.62 33.83 36.85 1001 100000
yhat[5] 49.59 1.623 0.01208 46.28 49.63 52.64 1001 100000
yhat[6] 53.26 1.158 0.008777 50.8 53.33 55.33 1001 100000
yhat[7] 59.59 0.7477 0.00561 57.91 59.68 60.82 1001 100000
yhat[8] 59.17 0.3694 0.002721 58.28 59.23 59.71 1001 100000
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If instead of probit, the clog-log was used, as cloglog(p[i]) <- alpha.star

+ beta * (x[i] - mean(x[])), then the coefficients are

mean sd MC error val2.5pc median val97.5pc start sample

alpha –39.73 3.216 0.02195 –46.24 –39.66 –33.61 1001 100000
beta 22.13 1.786 0.01214 18.73 22.09 25.74 1001 100000

For comparisons we take a look at the classical solution ( beetleBliss2.m).
Figure 15.7 shows three binary regressions (logit, probit and clog-log) fit-
ting the Bliss data.

disp(’Logistic Regression 2: Bliss Beetle Data’)

lw = 2.5;

set(0, ’DefaultAxesFontSize’, 16);

fs = 15;

msize = 10;

beetle=[...

1.6907 6 59; 1.7242 13 60; 1.7552 18 62; 1.7842 28 56;...

1.8113 52 63; 1.8369 53 59; 1.8610 61 62; 1.8839 60 60];

%%%%%%%%%%%%%%%%%

xi = beetle(:,1); yi=beetle(:,2); ni=beetle(:,3);

figure(1)

[b, dev, stats] = glmfit(xi,[yi ni],’binomial’,’link’,’logit’);

[b1, dev1, stats1] = glmfit(xi,[yi ni],’binomial’,’link’,’probit’);

[b2, dev2, stats2] = glmfit(xi,[yi ni],’binomial’,’link’,’comploglog’);

xs = 1.5:0.01:2.0;

ys = glmval(b, xs, ’logit’);

y1s = glmval(b1, xs, ’probit’);

y2s = glmval(b2, xs, ’comploglog’);

% Plot

plot(xs,ys,’r-’,’LineWidth’,lw)

hold on

plot(xs,y1s,’k--’,’LineWidth’,lw)

plot(xs,y2s,’-.’,’LineWidth’,lw)

plot(xi, yi./ni, ’o’,’MarkerSize’,msize,...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’)

axis([1.5 2.0 0 1])

grid on

xlabel(’Log concentration’)

ylabel(’Proportion killed’)

legend(’Obs. proportions’,’Logit’,’Probit’,’Clog-log’,2)

The table below compares the coefficients of the linear part of the three
models. Note that classical and Bayesian results are close because the priors
in the Bayesian model are noninformative.

Classical Bayes
Link Logit Probit Clog-log Logit Probit Clog-log
Intercept –60.72 –34.94 –39.57 –60.78 –35.03 –39.73
Slope 34.27 19.73 22.04 34.31 19.78 22.13

�
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Fig. 15.7 Bliss data (green dots). Regression fit with logit link red, probit link black, and
clog-log link blue.

15.3 Poisson Regression

Poisson regression models the counts y = {0,1,2,3, . . .} of rare events in a
large number of trials. Typical examples are unusual adverse events, acci-
dents, incidence of a rare disease, device failures during a particular time
interval, etc. Recall that Poisson random variable Y ∼ Poi(λ) has the prob-
ability mass function

f (y) = P(Y = y) =
λy

y!
exp{−λ}, y = 0,1,2,3, . . . ,

with both mean and variance equal to the rate parameter λ > 0.
Suppose that n counts of yi, i = 1, . . . ,n are observed and that each count

corresponds to a particular value of a covariate xi, i = 1, . . . ,n. A typical
Poisson regression can be formulated as follows:

yi ∼ Poi(λi), (15.4)

log(λi) = β0 + β1xi, i = 1, . . . ,n,

although other relations between λi and the linear part β0 + β1xi are pos-
sible as long as λi remains positive. More generally, λi can be linked to a
linear expression containing p− 1 covariates and p parameters as

log(λi) = β0 + β1xi1 + β2xi2 + · · ·+ βp−1xi,p−1, i = 1, . . . ,n.
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In terms of model (15.4) the Poisson rate λi is the expectation, and its
logarithm can be expressed as logE(yi|X = xi) = β0 + β1xi. When the co-
variate xi gets a unit increment, xi + 1, then

logE(yi|X = xi + 1) = β0 + β1xi + β1 = logE(yi|X = xi) + β1.

Thus, parameter β1 can be interpreted as the increment to log rate when
the covariate gets an increment of 1. Equivalently, exp{β1} is the ratio of
rates,

exp{β1} =
E(yi|xi + 1)

E(yi|xi)
.

The model-assessed mean response is ŷi = exp{b0 + b1xi}, where b0 and
b1 are the estimators of β0 and β1. Strictly speaking, the model predicts the
rate λ̂i, but the rate is interpreted as the expected response.

Remark. If a Poisson regression model

yi ∼ Poi(λi), λi = exp{β0 + β1xi1 + · · ·+ βkxik}= exp{ℓi}, i = 1, . . . ,n,

is dichotomized as

y∗i =
{

1, yi > 0
0, yi = 0 ,

then an adequate model for y∗i is a binary regression with the clog-log link.
Indeed,

P(y∗i = 1) = 1−P(y∗i = 0) = 1− exp{−λi}= 1− exp{−exp(ℓi)} .

The deviance of the model, D, is defined as

D = 2
n

∑
i=1

(
yi log

yi

ŷi
− (yi − ŷi)

)
,

where yi log yi = 0 if yi = 0. As in logistic regression, the deviance is a
measure of goodness of fit of a model and for a Poisson model has a χ2-
distribution with n− p degrees of freedom.

Deviance residuals, defined as

rdev
i = sign(yi − ŷi)×

√
2yi log

yi

ŷi
− 2(yi − ŷi) ,
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satisfy D = ∑
n
i=1

(
rdev

i

)2
. Note that the sum of squares of the deviance

residuals simplifies to D = 2 ∑
n
i=1 yi log(yi/ŷi), since in the Poisson regres-

sion ∑
n
i=1(yi − ŷi) = 0.

Pearson’s residuals are defined as

r
pea
i =

yi − ŷi√
ŷi

.

Then the Pearson goodness-of-model-fit statistic χ2 = ∑
n
i=1(r

pea
i )2 also has

a χ2-distribution with n− p degrees of freedom. Although homoscedastic,
those residuals are asymmetric.

Freedman–Tukey residuals are defined as

r
f t
i =
√

yi +
√

yi + 1−
√

4ŷi + 1

and Anscombe residuals (closest to normality) as

ra
i =

3
2
× y2/3

i − ŷ2/3
i

ŷ1/6
i

.

The pseudo-R2 for the Poisson regression is defined as 1− D/D0. Here
D is deviance of the model in question, and D0 is deviance of the intercept-
only model,

D0 = 2
n

∑
i=1

yi log(yi/y),

where y is the sample mean of the observations.
Some additional diagnostic tools are exemplified in the following case

study ( ihga.m):

Example 15.4. Case Study: Danish IHGA Data. In an experiment con-
ducted in the 1980s (Hendriksen et al., 1984), 572 elderly people living
in a number of villages in Denmark were randomized, 287 to a control
(C) group who received standard care, and 285 to an experimental group
who received standard care plus IHGA: a kind of preventive assessment
in which each person’s medical and social needs were assessed and acted
upon individually. The important outcome was the number of hospitaliza-
tions during the 3-year life of the study.

% IHGA

% data

x0 = 0 * ones(287,1); x1 = 1 * ones(285,1);

%covariate 0-no intervention, 1- intervention

y0 = [0*ones(138,1); 1*ones(77,1); 2*ones(46,1);...
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Table 15.5 Distribution of number of hospitalizations in IHGA study.

Group # of hospitalizations n Mean Variance
0 1 2 3 4 5 6 7

Control 138 77 46 12 8 4 0 2 287 0.944 1.54
Treatment 147 83 37 13 3 1 1 0 285 0.768 1.02

3*ones(12,1); 4 * ones(8,1); 5*ones(4,1); 7*ones(2,1)];

y1 = [0*ones(147,1); 1*ones(83,1); 2*ones(37,1);...

3*ones(13,1); 4 * ones(3,1); 5*ones(1,1); 6*ones(1,1)];

%response # of hospitalizations

x =[x0; x1]; y=[y0; y1];

xdes = [ones(size(y)) x];

[n p] = size(xdes)

[b dev stats] = glmfit(x,y,’poisson’,’link’,’log’)

yhat = glmval(b, x,’log’) %model predicted responses

% Pearson residuals

rpea = (y - yhat)./sqrt(yhat);

% deviance residuals

rdev = sign(y - yhat) .* sqrt(-2*y.*log(yhat./(y + eps))-2*(y - yhat));

% Friedman-Tukey residuals

rft = sqrt(y) + sqrt(y + 1) - sqrt(4 * yhat + 1)

% Anscombe residuals

ransc = 3/2 * (y.^(2/3) - yhat.^(2/3) )./(yhat.^(1/6))

Figure 15.8 shows four our types of residuals in Poisson regression fit
of IHGA data: Pearson, deviance, Friedman–Tukey, and Anscombe. The
residuals are plotted against responses y.

loglik = sum(y .* log(yhat+eps) - yhat - log(factorial(y)));

%

[b0, dev0, stats0] = glmfit(zeros(size(y)),y,’poisson’,’link’,’log’)

yhat0 = glmval(b0, zeros(size(y)),’log’);

loglik0 = sum( y .* log(yhat0 + eps) - yhat0 - log(factorial(y)))

G = -2 * (loglik0 - loglik) %LR test, nested model chi2 5.1711

dev0 - dev % the same as G, difference of deviances 5.1711

pval = 1-chi2cdf(G,1) %0.0230

Under H0 stating that the model is null (model with an intercept and
no covariates), the statistic G will have d f = p− 1 degrees of freedom, in
our case d f = 1. Since this test is significant (p = 0.0230), the covariate con-
tributes significantly to the model.

Below are several ways to express the deviance of the model.
%log-likelihood for saturated model

logliksat = sum(y.*log(y+eps)-y-log(factorial(y))) %-338.1663

m2LL = -2 * sum( y .* log(yhat./(y + eps)) ) %819.8369

deviance = sum(rdev.^2) %819.8369

dev %819.8369 from glmfit

-2*(loglik - logliksat) % 819.8369
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Fig. 15.8 (a) Four types of residuals in a Poisson regression fit of IHGA data: Pearson,
deviance, Friedman–Tukey, and Anscombe. The residuals are plotted against responses
y.

The following is a Bayesian model fit in WinBUGS ( geriatric.odc).
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model

{

for (i in 1:n)

{

y[i] ~ dpois(lambda[i] )

log( lambda[i]) <- beta.0 + beta.1 * x[i]

}

beta.0 ~ dnorm(0, 0.0001)

beta.1 ~ dnorm(0, 0.0001)

lambda.C <- exp(beta.0)

lambda.E <- exp(beta.0 + beta.1 )

diff <- lambda.E - lambda.C

meffect <- exp( beta.1 )

}

DATA

list( y = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

...

4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

...

2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

4, 4, 4, 5, 6 ),

x = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,

...

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1 ), n = 572 )

INITS

list( beta.0 = 0.0, beta.1 = 0.0 )

mean sd MC error val2.5pc median val97.5pc start sample

beta.0 -0.05915 0.06093 2.279E-4 -0.1801 -0.05861 0.05881 1001 100000
beta.1 -0.2072 0.09096 3.374E-4 -0.3861 -0.2071 -0.02923 1001 100000
deviance 1498.0 2.012 0.006664 1496.0 1498.0 1504.0 1001 100000
diff -0.1764 0.07737 2.872E-4 -0.3285 -0.1763 -0.02493 1001 100000
lambda.C 0.9443 0.05749 2.137E-4 0.8352 0.9431 1.061 1001 100000
lambda.T 0.7679 0.05188 1.784E-4 0.6693 0.7668 0.8732 1001 100000
meffect 0.8162 0.07437 2.76E-4 0.6797 0.8129 0.9712 1001 100000

�

Example 15.5. Cellular Differentiation Data. In a biomedical study of the
immunoactivating ability of the agents TNF (tumor necrosis factor) and IFN
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(interferon) to induce cell differentiation, the number of cells that exhib-
ited markers of differentiation after exposure to TNF or IFN was recorded
(Piergorsch et al., 1988; Fahrmeir and Tutz, 1994). At each of the 16 dose
combinations of TNF/IFN, 200 cells were examined. The number y of dif-
ferentiating cells corresponding to a TNF/IFN combination are given in
Table 15.6.

Table 15.6 Cellular differentiation data.
Number Dose of Dose of Number Dose of Dose of
cells diff TNF (U/ml) IFN (U/ml) cells diff TNF (U/ml) IFN (U/ml)

11 0 0 31 10 0
18 0 4 68 10 4
20 0 20 69 10 20
39 0 100 128 10 100
22 1 0 102 100 0
38 1 4 171 100 4
52 1 20 180 100 20
69 1 100 193 100 100

The suggested model is Poisson with the form

λ = E(y|TNF, IFN) = exp{β0 + β1 TNF + β2 IFN + β3 TNF×IFN} .

From

load ’celular.dat’

number = celular(:,1);

TNF = celular(:,2);

IFN = celular(:,3);

[b, dev, stats] = glmfit([TNF IFN TNF.*IFN],number,...

’poisson’,’link’,’log’)

the estimators for β0–β3 are

b0 b1 b2 b3
3.43463 0.01553 0.00895 −0.0000567

Since b3 < 0.0001, it is tempting to drop the interaction term. However, since
the standard error of b3 is s.e.(b3) = 0.000013484, Wald’s Z = b3/s.e.(b3)
statistic is −4.2050, suggesting that the term TNF×IFN might be signif-
icant. However, the overdispersion parameter, which theoretically should
be stats.s=1, is estimated as stats.s=3.42566, and the Wald statistic should
be adjusted to Z′ =−0.0000567/(3.42566× 0.000013484) = 1.2275. Since the
p-value is 2 * normcdf(-1.2275) = 0.2196, after all, the interaction term turns
out not to be significant and the additive model could be fit:

[b, dev, stats] = glmfit([TNF IFN],number,...

’poisson’,’link’,’log’)
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which gives estimates b0 = 3.57311, b1 = 0.01314, and b3 = 0.00585. Details
can be found in celular.m.

The additive model was also fit in a Bayesian manner.

model

{

for (i in 1:n)

{

numbercells[i] ~ dpois(lambda[i])

lambda[i] <- exp(beta0 + beta1 * tnf[i] + beta2 * ifn[i])

}

beta0 ~ dnorm(0, 0.00001)

beta1 ~ dnorm(0, 0.00001)

beta2 ~ dnorm(0, 0.00001)

}

DATA

list(n=16,

numbercells = c(11,18,20,39,22,38,52,69,31,68,69,128,102,171,180,193),

tnf = c(0,0,0,0, 1,1,1,1, 10,10,10,10, 100,100,100,100),

ifn = c(0,4,20,100, 0,2,20,100, 0,4,20,100, 0,4,20,100 ) )

INITS

list(b0=0, b1=0, b2=0)

mean sd MC error val2.5pc median val97.5pc start sample

b0 3.573 0.05139 0.001267 3.473 3.574 3.672 1001 100000
b1 0.01313 5.921E-4 1.18E-5 0.01197 0.01314 0.01431 1001 100000
b2 0.00585 6.399E-4 1.142E-5 0.004585 0.005855 0.007086 1001 100000

Note that, because of the noninformative priors on β0, β1, and β3, the
Bayesian estimators almost coincide with the MLEs from glmfit.
�

15.4 Log-linear Models

Poisson regression can be employed in the context of contingency tables
(Chapter 12). The logarithm of the table cell count is modeled in a linear
fashion.

In an r× c contingency table, let the probability of a cell (i, j) be pij. If
n subjects are cross-tabulated, let nij be the number of subjects classified in
the cell (i, j). The count nij is realization of random variable Nij. We assume
that the sample size n is random, since in that case the cell frequency Nij is a
Poisson random variable with the intensity µij. If the sample size n is fixed,
then the Nijs are realizations of a multinomial random variable. In Fisher’s
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exact test context (page 602), we saw that if in addition the marginal counts
are fixed, the Nijs are hypergeometric random variables.

Then the expected table is

1 2 · · · c Total
1 np11 np12 np1c np1·
2 np21 np22 np2c np2·

r npr1 npr2 nprc npr·
Total np·1 np·2 np·c n

Note that both nij and eij = ni· × n·j/n involve observations and empirical
marginal probabilities defined by the observed marginal frequencies. If we
denote µij = ENij = npij, then both nij and eij are estimators of µij; the
first is unconstrained and the second is constrained by the assumption of
independence of factors, pij = pi·p·j. This point is important since eij are
“expected” under independence once the table is observed and fixed, while
µij are expectations of the random variables Nij.

The log-linear model for the expected frequency µij is given as

log µij = λ0 + λR
i + λC

j + (λRC)ij, i = 1, . . . ,r; j = 1, . . . , c,

where λR
i and λC are contributions by row and column, respectively, and

λRC
ij is a row–column interaction term.

This model is called a saturated log-linear model and is similar to the two-
factor ANOVA model. Note that an unconstrained model has (1 + r + c +
r × c) free parameters but only r × c observations, nij. To make this over-
parameterized model identifiable, constraints on parameters are imposed.
A standard choice is STZ: ∑ λR

i = 0, ∑j λC
j = 0, ∑i(λ

RC)ij = ∑j(λ
RC)ij = 0.

Thus, with the constraints we have 1− (r− 1) + (c− 1) + (r− 1)(c− 1) =
r × c free parameters, which is equal to the number of observations, and
the model gives a perfect fit for the observed frequencies. This is the reason
why this model is called saturated.

The hypothesis of independence in a contingency table that was dis-
cussed Chapter 12 has simple form:

H0 : λRC
ij = 0, i = 2, . . . ,r; j = 2, . . . , c.

Under H0 the log-linear model becomes additive:

log µij = λ0 + λR
i + λC

j , i = 1, . . . ,r; j = 1, . . . , c.

The MLEs of components in the log-linear model (not derived here, but
see Agresti, 2002) are
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λ̂0 =
∑i,j log nij

rc
,

λ̂R
i =

∑j log nij

c
− λ̂0,

λ̂C
j =

∑i log nij

r
− λ̂0,

λ̂RC
ij = log nij − (λ̂0 + λ̂R

i + λ̂C
j ).

If any nij is equal to 0, then all entries in the table are replaced by nij + 0.5.
Traditional analysis involves testing that particular λ components are

equal to 0. One approach, often implemented in statistical software, would
be to find the variance of λ̂, Var (λ̂), using a hypergeometric model, and
then use the statistic (λ̂)2/Var (λ̂) that has a χ2-distribution with one de-
gree of freedom (λ here is any of λ0, λR

i , λC
j , or λRC

ij ). Large values of this
statistic are critical for H0.

Next, we focus on the Bayesian analysis of a log-linear model.

Example 15.6. Log-linear Model and Bystanders. In the psychological ex-
periment of Exercise 12.9, seeking assistance (help) was dependent on a
subject’s perception of the number of bystanders. The resulting chi-square
statistic χ2 = 7.908 was significant with a p-value of about 2%. We revisit
this exercise and provide a Bayesian solution using a log-linear approach.
The WinBUGS program bystanders.odc is used to conduct statistical infer-
ence.

model{

for (i in 1:r) for (j in 1:c) n[i,j] ~ dpois(mu[i,j]);

log(mu[i,j]) <- lambda0+ lambdaR[i]+lambdaC[j]+lambdaRC[i,j]

}

lambda0 ~ dnorm(0,prec)

lambdaR[1] <- 0

lambdaC[1] <- 0

for (i in 2:r) { lambdaR[i] ~ dnorm(0,prec) }

for (i in 2:c) { lambdaC[i] ~ dnorm(0,prec) }

for (j in 1 : c) { lambdaRC[1, j] <- 0 }

for (i in 2 : r) { lambdaRC[i, 1] <- 0;

for (j in 2 : c) { lambdaRC[i, j] ~ dnorm(0, prec)}

}

DATA

list(r=3,c=2,prec=0.0001,

n=structure(.Data=c(11,2,16,10,4,9),.Dim=c(3,2)))
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INITS

list(lambda0 = 0,lambdaR = c(NA,0,0), lambdaC=c(NA,0),

lambdaRC = structure(.Data = c(NA, NA, NA,0,NA,0),

.Dim = c(3,2)) )

mean sd MC error val2.5pc median val97.5pc start sample

lambda0 2.351 0.3075 0.003347 1.707 2.366 2.908 2001 100000
lambdaC[2] −1.922 0.8446 0.01376 −3.796 −1.85 −0.481 2001 100000
lambdaR[2] 0.3895 0.3977 0.004085 −0.372 0.3842 1.186 2001 100000
lambdaR[3] −1.089 0.6145 0.006468 −2.375 −1.061 0.03655 2001 100000
lambdaRC[2,2] 1.435 0.9372 0.01451 −0.2453 1.38 3.465 2001 100000
lambdaRC[3,2] 2.801 1.051 0.01653 0.9045 2.744 5.041 2001 100000

The hypothesis of independence is assessed by testing that all λRC are
equal to 0. In this case lambdaRC[1,1], lambdaRC[1,2], and lambdaRC[2,1] are set
to 0 because of identifiability constraints. The 95% credible set for interac-
tion lambdaRC[2,2] contains 0 – therefore, this interaction is not significant.
However, lambdaRC[3,2] is significantly positive since the credible set [0.9045,
5.041] does not contain 0.
�

Example 15.7. Upton–Fingleton Square. An example from Upton and Fin-
gleton (1985) concerns finding directional trends in spatial count data. The
simple count data set is given as follows:

0 0 0 1 0
3 3 5 2 0
2 3 6 2 5
1 5 4 6 7
6 2 4 3 4

We are interested in testing if there are any north–south or east–west trends
present in the spatial pattern. The idea of Upton and Fingleton was to
establish a Poisson regression where the response was the intensity nij in
the location (i, j) and the covariates are x-coordinate, related to the east–
west trend, and y-coordinate, related to the north–south trend.

Thus, the observed frequencies nij will be modeled as

E(nij) = exp{β0 + β1xi + β2yj}, i, j = 1, . . . ,5,

where xi = i and yj = j. A significant β1 or β2 in a well-fitting Pois-
son regression will indicate the presence of corresponding trends (see

UptonFingleton.m for details).
�
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15.5 Exercises

15.1. Blood Pressure and Heart Disease. This example is based on data
given by Cornfield (1962). A sample of male residents of Framingham,
Massachusetts, aged 40–59, were chosen. During a 6-year follow-up pe-
riod they were classified according to several factors, including blood
pressure and whether they had developed coronary heart disease. The
results for these two variables are given in the table below. The covari-
ate for blood pressure represents an interval, for example, 122 stands for
blood pressure in the interval 117–126.

Blood pressure No disease Disease Total
112 (<117) 156 3 159
122 (117–126) 252 17 269
132 (127–136) 284 12 296
142 (137–146) 271 16 287
152 (147–156) 139 12 151
162 (157–166) 85 8 93
177 (167–186) 99 16 115
197 (> 186) 43 8 51

Using logistic regression, estimate the probability of disease for a person
with an average blood pressure equal to 158.

15.2. Blood Pressure and Heart Disease in WinBUGS. Use data from the
previous exercise. Parameter p represents the probability of developing
coronary disease and can be estimated as

p̂ =
eb0+b1BP

1 + eb0+b1BP
,

where b0 and b1 are Bayes estimators of β0 and β1 obtained by WinBUGS.
Use noninfromative priors on β0 and β1.
(a) What are the values b0 and b1? Provide plots of posterior densities
for b0 and b1.
(b) What are the 95% credible intervals for β0 and β1?
(c) Estimate the probability of disease for a person with an average blood
pressure of 158.

15.3. Sex of Diamond-backed Terrapins and Incubation Temperature.
Temperature-dependent sex determination, observed in some reptiles
and fish, is a type of environmental sex determination in which the tem-
peratures experienced during embryonic development determine the sex
of the offspring. Below are data on the relationship between the ratio of
male/female diamond-backed terrapins (Malaclemys terrapin) and incu-
bation temperature, as reported by Burke and Calichio (2014):
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Temp in ◦C Male Female
24 21 0
26 39 7
28 34 19
30 2 36
32 0 29

Predict the probability of a female terrapin for a temperature of 29◦C.

15.4. Health Promotion. Students at the University of the Best in England
(UBE) investigated the use of a health promotion video in a doctor’s
surgery. Covariates Age and Amount of Weekly Exercise for a sample
of 30 men were obtained, and each man was asked a series of questions
on the video. On the basis of the responses to these questions the psy-
chologist simply recorded whether the promotion video was Effective
or Not effective. The collected data are provided in Table 15.7.

Number Age Exercise Code of response Response
1 27 3 0 Not effective
2 26 5 0 Not effective
3 28 10 1 Effective
4 40 4 1 Effective
5 19 3 0 Not effective
6 36 14 0 Not effective
7 41 5 1 Effective
8 27 5 0 Not effective
9 33 1 0 Not effective

10 34 2 1 Effective
11 51 8 1 Effective
12 33 21 1 Effective
13 23 12 0 Not effective
14 41 19 1 Effective
15 38 2 0 Not effective
16 25 9 0 Not effective
17 40 6 0 Not effective
18 36 25 1 Effective
19 40 13 0 Not effective
20 39 3 0 Not effective
21 45 10 1 Effective
22 39 5 0 Not effective
23 40 2 1 Effective
24 20 1 0 Not effective
25 47 9 1 Effective
26 31 17 1 Effective
27 37 7 1 Effective
28 30 0 0 Not effective
29 32 13 1 Effective
30 25 10 0 Not effective

Table 15.7 Age, exercise, and effectiveness of the video.
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(a) Use the fitted model to estimate the probability that a male of age 40
who exercises 10 hours a week would find the video “effective.”
Comment: The linear predictor is

−7.498+ 0.17465 Age + 0.16324 Exercise.

The positive coefficient with covariate Age means that older subjects
tend to respond “video is effective” with higher probabilities. Similarly,
the positive coefficient with predictor Exercise indicates that increasing
the values of Exercise also increases the probabilities for the response
“video is effective.”
(b) Comment on the fit of the model based on deviance and residuals.

15.5. IOP. Laser refractive surgery often decreases Intraocular Pressure (IOP)
and may lead to hypotony (clinically significant low IOP that may lead
to corneal decompensation, accelerated cataract formation, maculopathy,
and discomfort).
An investigator wished to determine whether the post-operative IOP in
patients after laser refractive surgery was related to the residual thick-
ness of the cornea. In a sample of 140 patients who had undergone laser
surgery, post-operative IOP and the thickness of the cornea were mea-
sured. The data set is provided in iop2.dat|mat which consists of two
columns, (1) indicator of low IOP (IOP < 10) and (2) central corneal
thickness (in micrometers).

(a) Fit the logistic regression with cornea thickness as the predictor of
incidence of low IOP.
(b) For a person who had a refractive surgery with residual thickness of
cornea of 480 micrometers, what is the risk of a low IOP?
(c) Compare deviances for two links: logit (as in (a)), probit and comploglog.
Which link provides the best fit? (Hint: Deviances are in the output of
glmfit).

15.6. PONV. Despite advances over the past decade, including the advent of
5-HT3 receptor antagonists, combination therapy, and multimodal strate-
gies, postoperative nausea and vomiting (PONV) remains a serious and
frequent adverse event associated with surgery and anesthesia. PONV
can be very distressing for patients, can lead to medical complications,
and impose economic burdens. A meta-analysis of several studies gives
rates of 37% for nausea and 20% for vomiting in patients undergoing
general anesthesia. However, indiscriminate prophylaxis is not recom-
mended (the “prevent-or-cure” dilemma).
There are considerable variations in the reported incidence of PONV,
which can be attributed to a number of factors. Risk factors for PONV
can be divided into patient risk factors, procedural risk factors, anes-
thetic risk factors, and postoperative risk factors. The main and well-
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understood risk factors are gender, history of motion sickness/PONV,
smoking status, and use of postoperative opioids.
A data set PONV.xls or PONV.mat (courtesy of Jelena Velickovic, MD
anesthesiologist from Belgrade) contains records of 916 patients consist-
ing of some demographic, anamnetic, clinical, and procedural variables.
Several variables are of interest to be modeled and controlled: manifesta-
tion of PONV from 0 to 2 hours after surgery, PONV from 2 to 24 hours,
and PONV from 0 to 24 hours (PONV0to2, PONV2to24, and PONV0to24).
Three score variables (SinclairScore, ApfelScore, and LelaScore) sum-
marize the relevant demographic and clinical information prior to surgery
with the goal of predicting PONV.
The starter file ponv.m gives a basic explanation of variables and helps to
read all the variables into MATLAB.
Fit a logistic model for predicting PONV0to24 based on a modified Sin-
clair Score defined as MSS = SinclairScore + 1/20 * LelaScore. What is the
probability of PONV0to24 for a person with MSS = 1.3?

15.7. Mannose-6-phosphate Isomerase. McDonald (1985) counted allele fre-
quencies at the mannose-6-phosphate isomerase (Mpi) locus in the
amphipod crustacean Megalorchestia californiana, which lives on sandy
beaches of the Pacific coast of North America. There were two common
alleles, Mpi90 and Mpi100. The latitude of each collection location, the
number of each allele, and the proportion of the Mpi100 allele are shown
here:

Location Latitude Mpi90 Mpi100 Prop Mpi100
Port Townsend, WA 48.1 47 139 0.748
Neskowin, OR 45.2 177 241 0.577
Siuslaw River, OR 44.0 1087 1183 0.521
Umpqua River, OR 43.7 187 175 0.483
Coos Bay, OR 43.5 397 671 0.628
San Francisco, CA 37.8 40 14 0.259
Carmel, CA 36.6 39 17 0.304
Santa Barbara, CA 34.3 30 0 0.000

Estimate the probability of seeing allele Mpi100, taking into account lat-
itude as a covariate, using logistic regression.

15.8. Arthritis Treatment Data. The data were obtained from Koch and Ed-
wards (1988) for a double-blind clinical trial investigating a new treat-
ment for rheumatoid arthritis. In this data set, there were 84 subjects
of different ages who received an active or placebo treatment for their
arthritis pain, and the subsequent extent of improvement was recorded
as marked, some, or none. The dependent variable improve was an ordi-
nal categorical observation with three categories (0 for none, 1 for some,
and 2 for marked). The three explanatory variables were treatment (1
for active or 0 for placebo), gender (1 for male, 2 for female), and age
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(recorded as a continuous variable). The data in arthritis2.dat is orga-
nized as a matrix, with 84 rows corresponding to subjects and 5 columns
containing ID number, treatment, gender, age, and improvement status:

57 1 1 27 1
9 0 1 37 0

46 1 1 29 0
· · ·
15 0 2 66 1

1 0 2 74 2
71 0 2 68 1

Dichotomize the variable improve as improve01=improve>0; and fit the bi-
nary regression with improve01 as a response and treatment, gender,
and age as covariates. Use the three links logit, probit, and comploglog
and compare the models by comparing the deviances.

15.9. Third-degree Burns. The data for this exercise, discussed in Fan et al.
(1995), refer to n = 435 adults who were treated for third-degree burns by
the University of Southern California General Hospital Burn Center. The
patients were grouped according to the area of third-degree burns on the
body. For each midpoint of the groupings “log(area +1),” the number of
patients in the corresponding group who survived and the number who
died from the burns was recorded:

Log(area+1) Survived Died
1.35 13 0
1.60 19 0
1.75 67 2
1.85 45 5
1.95 71 8
2.05 50 20
2.15 35 31
2.25 7 49
2.35 1 12

(a) Fit the logistic regression on the probability of death due to third-
degree burns with the covariate log(area+1).
(b) Using your model, estimate the probability of survival for a person
for which log(area + 1) equals 2.

15.10. Diabetes Data. The data repository of Andrews and Herzberg (1985)
features a data set containing measures of blood glucose, insulin levels,
relative weights, and clinical classifications of 145 subjects in diabetes.dat:
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1 0.81 80 356 124 55 1
2 0.95 97 289 117 76 1
3 0.94 105 319 143 105 1
· · ·
143 0.90 213 1025 29 209 3
144 1.11 328 1246 124 442 3
145 0.74 346 1568 15 253 3

The columns represent the following variables:

Variable Meaning
relwt Relative weight
glufast Fasting plasma glucose
glutest Test plasma glucose
instest Plasma insulin during test
sspg Steady-state plasma glucose
group Clinical group: (3) overt diabetic; (2) chem. diabetic; (1) normal

From the variable group form the variable dia and set it to 1 if diabetes is
present (group=1,2) and 0 if the subject has no diabetes (group=1). Find the
regression of the five other variables on dia.

15.11. Remission Ratios over Time. A clinical trial on a new anticancer agent
produced the following remission ratios for 40 patients on trial at each
of the six stages of the trial:

9/40 14/40 22/40 29/40 33/40 35/40

Fit the logistic model for the probability of remission if the stages are
measured in equal time units. Give the probability that a new patient
on this regiment will be in remission at stage 4 and discuss how this
probability compares to 29/40.

15.12. Death of Sprayed Flour Beetles. Hewlett (1974) and Morgan (2000)
provide data that have been considered by many researchers in bioassay
theory. The data consist of a quantal bioassay for pyrethrum in which
the mortality of adult flour beetles (Tribolium castaneum) was measured
over time under four dose levels. The columns are cumulative numbers
of dead adult flour beetles exposed initially to pyrethrum, a well-known
plant-based insecticide. Mixed with oil, the pyrethrum was sprayed at
the given dosages over small experimental areas in which the groups
of beetles were confined but allowed to move freely. The beetles were
fed during the experiment in order to eliminate the effect of natural
mortality.
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Dose(mg/cm2) 0.20 0.32 0.50 0.80
Sex M F M F M F M F

Day 1 3 0 7 1 5 0 4 2
2 14 2 17 6 13 4 14 9
3 24 6 28 17 24 10 22 24
4 31 14 44 27 39 16 36 33
5 35 23 47 32 43 19 44 36
6 38 26 49 33 45 20 46 40
7 40 26 50 33 46 21 47 41
8 41 26 50 34 47 25 47 42
9 41 26 50 34 47 25 47 42

10 41 26 50 34 47 25 48 43
11 41 26 50 34 47 25 48 43
12 42 26 50 34 47 26 48 43
13 43 26 50 34 47 27 48 43

Group size 144 152 69 81 54 44 50 47

Using WinBUGS, model the proportion of dead beetles using sex, dosage,
and day as covariates. The data set in WinBUGS format can be found in

tribolium.odc.

15.13. Mortality in Swiss White Mice. An experiment concerning the influ-
ence of diet on the rate of Salmonella enteritidis infection (mouse typhoid)
among W-Swiss mice was conducted by Schneider and Webster (1945).
Two diets, one of whole wheat and whole dried milk (coded 100) and the
other synthetic (coded 191), are compared against two doses of bacilli,
50K and 500K. The experimental results are summarized in the following
table.

Dose 50K Dose 500K
Number Number of Number Number of

Diet of mice surviving of mice surviving
100 293 194 144 54
191 296 120 141 25

The authors conclude that diet is able to condition natural resistance, but
one of the factors was the genetic constitution of the mice employed.
Model the probability of survival using an additive logistic regression
with the covariates Diet and Dose.

15.14. Kyphosis Data. The measurements in kyphosis.dat are from Hastie
and Tibshirani (1990, p. 301) and were collected on 83 patients under-
going corrective spinal surgery (Bell et al., 1994). The objective was to
determine the important risk factors for kyphosis, or the forward flex-
ion of the spine at least 40 degrees from vertical following surgery. The
covariates are age in months, the vertebrae level at which the surgery
started, and the number of vertebrae involved.
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The data set kyphosis.dat has four columns:

71 5 3 0
158 14 3 0
128 5 4 1
· · ·
120 13 2 0

42 6 7 1
36 13 4 0

where the first three columns are age, start, and number, and where the
fourth column is binary indicator for the presence of kyphosis, 0 if absent
and 1 if present.
Using logistic regression, model the probability of present kyphosis
given the risk factors age, start, and number.

15.15. Prostate Cancer. The prostate cancer clinical trial data of Byar and Green
(1980) is given in the file prostatecanc.dat with a description of the

variables in prostatecanc.txt or prostatecanc.m. There are 475 obser-
vations with 12 measured covariates. The response is the stage (3 or 4)
of a patient assessed by a physician.
Propose a model for predicting the stage by a subset of predictors.

15.16. Pediculosis Capitis. An outbreak of Pediculosis capitis is being investi-
gated in a girls’ school containing 291 pupils. Of 130 children who live in
a nearby housing estate, 18 were infested, and of 161 who live elsewhere,
37 were infested. Thus, the school girls are stratified by the housing at-
tribute into two groups: (A) the nearby housing estate and (B) elsewhere.
(a) Test the hypothesis that the population proportions of infested girls
for groups A and B are the same.
(b) Run a logistic regression that predicts the probability of a girl being
infested including the predictor housing that takes value 1 if the girl is
from group A and 0 if she is from group B. All you need are the sample
sizes from groups A and B and the corresponding incidences of infesta-
tion. You might need to recode the data and represent the summarized
data as 291 individual cases containing the incidence of infestation and
housing status.
(c) A sample of 26 girls from group A and 34 from group B are randomly
selected for more detailed modeling analysis. The instances of infestation
(0-no, 1-yes), housing (A=1, B=0), family income (in thousands), family
size, and girl’s age are recorded. The data are available in the file
lice.xls. Propose the logistic model that predicts the probability that a
girl who is infested will possess some or all of the predictors (housing,
income, size, age). This is an open-ended question, and you are expected
to defend your proposed model.
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(c.1) According to your model, what is the probability of a girl being
infested if housing is A, family income is 74, family size is 4, and age is
12? Of course, you will use only the values of the predictors included in
your model.
(c.2) If the family size is increased by 1 and all other covariates remain
the same, how much do the odds of infestation change?
(d) The 55 affected girls were divided randomly into two groups of 29
and 26. The first group received a standard local application and the
second group a new local application. The efficacy of each was measured
by clearance of the infestation after one application. By this measure the
standard application failed in ten cases and the new application in five. Is
the new treatment more effective? This part may mimic the methodology
in (a).

15.17. Finney Data. In a controlled experiment to study the effect of the rate
and volume of air inspired on a transient reflex vasoconstriction in the
skin of the digits, 39 tests under various combinations of rate and volume
of air inspired were conducted (Finney, 1947). The end point of each test
was whether or not vasoconstriction occurred.

Volume Rate Response Volume Rate Response Volume Rate Response
3.70 0.825 Constrict 3.50 1.09 Constrict 1.80 1.50 Constrict
1.25 2.50 Constrict 0.75 1.50 Constrict 0.95 1.90 No constrict
0.80 3.20 Constrict 0.70 3.50 Constrict 1.90 0.95 Constrict
0.60 0.75 No constrict 1.10 1.70 No constrict 1.60 0.40 No constrict
0.90 0.75 No constrict 0.90 0.45 No constrict 2.70 0.75 Constrict
0.80 0.57 No constrict 0.55 2.75 No constrict 2.35 0.03 No constrict
0.60 3.00 No constrict 1.40 2.33 Constrict 1.10 1.83 No constrict
0.75 3.75 Constrict 2.30 1.64 Constrict 1.10 2.20 Constrict
3.20 1.60 Constrict 0.85 1.415 Constrict 1.20 2.00 Constrict
1.70 1.06 No constrict 1.80 1.80 Constrict 0.80 3.33 Constrict
0.40 2.00 No constrict 0.95 1.36 No constrict 0.95 1.90 No constrict
1.35 1.35 No constrict 1.50 1.36 No constrict 0.75 1.90 No constrict
1.60 1.78 Constrict 0.60 1.50 No constrict 1.30 1.625 Constrict

Model the probability of vasoconstriction as a function of two covariates,
Volume and Rates. Use MATLAB and compare the results with Win-
BUGS output. The data in MATLAB and WinBUGS formats is provided
in finney.dat.

15.18. Diagnosing Sagittal Synostosis. (Courtesy of Dr. Marcus Walker.) In
early human development, the skull is made up of many different bones,
and the gaps between these bones are called cranial sutures. During the
first few years after birth, these cranial sutures allow the bones to grow
and the skull to expand to make room for the growing brain. These
bones naturally grow closer together and fuse to form one solid skull
for protection, but if any of these cranial sutures fuse too early while the
brain is still rapidly growing, a condition known as craniosynostosis oc-
curs that results in skull deformation and constriction of the developing
brain. Craniosynostosis occurs in approximately 1 in every 2,000 chil-
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dren can lead to developmental disabilities, blindness, and even death if
left untreated. One specific type of craniosynostosis, called sagittal syn-
ostosis, is characterized by a premature fusion of the suture that runs
from the front to the back of the skull. This has been observed to cause
an elongation of the skull and opening of two sutures that run down the
sides of the skull. Using measurements from a CT scan of the volume
inside the skull at different areas and the distances between the bones
in the cranial sutures, it is possible to diagnose sagittal synostosis. Data

Fig. 15.9 Types of suture in early human development.

set sagittal.dat|mat|xlsx contains measurements on 60 children, 20
with diagnosed sagittal synostosis and 40 normal controls (Walker, 2013;
Credits to Dr. Barbara Boyan, Dr. Zvi Schwartz and Dr. Chris Hermann)
The variables are described in the following table:

Column Variable Meaning
1 y 1 - Synostosis, 0 - Normal
2 x1 Percent of volume in the front of the skull
3 x2 Percent of sagittal suture that is open
4 x3 Tangent distance in the left coronal suture
5 x4 Tangent distance in the right coronal suture

(a) Model y by a logistic regression that uses x1 and x2 as predictors.
Write down the model. Predict the probability of synostosis for a child
with measured x1 = 20 and x2 = 61.
(b) If the predicted probability exceeds 0.5, decide ŷ = 1. What is the total
number of errors made by your model, that is, how many predicted ŷi’s
differ from the corresponding observed ŷi?
(c) Show that the logistic model with all four variables x1, . . . , x4 as pre-
dictors makes no errors; that is, all ŷi are equal to yi.

15.19. Shocks. An experiment was conducted (Dalziel et al., 1941) to assess the
effect of small electrical currents on farm animals, with the eventual goal
of understanding the effects of high-voltage power lines on livestock. The
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experiment was carried out with seven cows using six shock intensities,
0, 1, 2, 3, 4, and 5 milliamps (shocks on the order of 15 milliamps are
painful for many humans). Each cow was given 30 shocks, 5 at each
intensity, in random order. The entire experiment was then repeated, so
each cow received a total of 60 shocks. For each shock, the response of
mouth movement was either present or absent. The data as quoted give
the total number of responses, out of 70 trials, at each shock level. We
ignore cow differences and differences between blocks (experiments).

Current Number of Number of Proportion of
(milliamps) x responses y trials n responses p

0 0 70 0.000
1 9 70 0.129
2 21 70 0.300
3 47 70 0.671
4 60 70 0.857
5 63 70 0.900

Using logistic regression and noninformative priors on its parameters,
estimate the proportion of responses after a shock of 2.5 milliamps. Find
95% credible set for the population proportion.

15.20. Separating Wild and Mutant C. elegans. C. elegans, a soil dwelling ne-
matode, is a highly studied multicellular organism that offers several
experimental advantages such as a short life span, ease of culture, and
transparency. Synapses in C. elegans can be imaged with fluorescent gene
reporters such as GFP. San Miguel Delgadillo, et al. (2012) monitored
presynaptic sites in motorneurons through a GFP-tagged protein located
in synaptic vesicles. From these images, descriptors for the morphology
of synaptic sites can be extracted to provide a phenotypic profile of the
animal.
Researchers were faced with the problem of differentiating wild type and
mutant C. elegans populations based on the very subtle phenotypic dif-
ferences that can be presented at presynaptic sites, as quantified through
74 descriptors obtained through quantitative analysis of fluorescent im-
ages.
The data celegans.dat|mat|xlsx (courtesy of Hang Lu Lab at Georgia
Tech) contains 1,584 rows (observations) and 76 columns. The first 74
columns contain descriptors for synapse morphology (features), the 75th
column is type of mutant (1–7, 0 is wild), and the last column contains
an indicator of mutation (0 – wild, 1 – mutant).
Denote the matrix of features by X and the indicator of mutation by y.
The features X2, X20, X37, X51, and X56 are selected as the most predictive
columns in X for determination of mutation.
(a) Fit the logistic regression



796 15 Regression for Binary and Count Data

logit(P(y = 1)) = β0 + β1X2 + β2X20 + β3X37 + β4X51 + β5X56 + ǫ.

(b) Using the fit from (a) estimate the probability that an observed C.
elegans is a mutant if the recorded features were X2 = 8.5, X20 = 12.5,
X37 = 600, X51 = 90, and X56 = 0.5, respectively.
(c) Find the deviance and McFadden pseudo-R2 for the model in (a).
(d) Describe in words (one paragraph) how you would classify C. elegans
to mutant and wild using logistic regression. According to your descrip-
tion, how would you classify the C. elegans from (b)?

15.21. Ants. The data set ants.csv|dat|mat|xlsx, discussed in Gotelli and
Ellison (2002), provides the ant species richness (number of ant species)
found in 64-square-meter sampling grids in 22 forests (coded as 1) and 22
bogs (coded as 2) surrounding the forests in Connecticut, Massachusetts,
and Vermont. The sites span 3◦ of latitude in New England. There are
44 observations on four variables (columns in data set): Ants – number
of species, Habitat – forests (1) and bogs (2), Latitude, and Elevation – in
meters above sea level.
(a) Using Poisson regression, model the number of ant species (Ants)
with covariates Habitat and Elevation. Report the model coefficients and
deviance.
(b) For a sampling grid unit located in a forest at the elevation of 100 m
how many species the model from (a) predicts?
(c) Do the calculations from (a) and (b) using Open/WinBUGS with non-
informative priors on all parameters. For the model coefficients and the
prediction report 95% credible sets.

15.22. Sharp Dissection and Postoperative Adhesions Revisited. In Exercise
14.3 we fitted a linear relationship between the logarithm of the amount
of sharp dissection lasd (predictor) and severity score sesco (response).
Criticize this linear model. Model this relationship using Poisson regres-
sion and graphically compare the linear and Poisson fits.

15.23. Airfreight breakage. A substance used in biological and medical re-
search is shipped by air freight to users in cartons of 1,000 ampules.
The data below, involving ten shipments, were collected on the number
of times a carton was transferred from one aircraft to another over the
shipment route (X) and the number of ampules found to be broken upon
arrival (Y).

X 1 0 2 0 3 1 0 1 2 0
Y 16 9 17 12 22 13 8 15 19 11

Using WinBUGS, fit Y by Poisson regression, with X as a covariate. Ac-
cording to your model, how many packages will be broken if the number
of shipment routes is X = 4?
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15.24. Body Fat Affecting Accuracy of Heart Rate Monitors. In the course
Problems in Biomedical Engineering I at Georgia Tech, a team of students
investigated whether the readings of heart rate from a chest strap moni-
tor (Polar T31) were influenced by the subject’s percentage of body fat.
Hand counts facilitated by a stethoscope served as the gold standard.
The absolute differences between device and hand counts (AD) were re-
gressed on body fat (BF) measurements. The measurements for 28 sub-
jects are provided below:

Subj. BF AD Subj. BF AD Subj. BF AD Subj. BF AD
1 17.8 4 8 18.8 1 15 25.1 3 22 24.1 6
2 13.2 3 9 13.4 0 16 18.3 2 23 12.9 2
3 7.7 3 10 39.4 7 17 16.9 3 24 30.1 6
4 11.8 1 11 6.8 1 18 27.8 6 25 17.1 4
5 23.9 0 12 25.0 6 19 36.0 5 26 18.4 4
6 27.2 0 13 19.9 0 20 31.9 1 27 14.6 4
7 27.6 0 14 23.0 9 21 17.4 2 28 26.8 3

A significant nonconstant representation of AD as a function of BF can be
translated as a significant influence of percent body fat on the accuracy
of the device.
(a) Why is linear regression not adequate here?
(b) Fit the Poisson regression AD∼ Poi(exp{b0 + b1BF}). Is the slope b1
from the linear part significantly positive?
(c) Using WinBUGS find the 95% credible set for the slope b1 in the linear
part of a Bayesian Poisson regression model. Use non-informative priors.

15.25. Micronuclei Assay. The micronuclei (MN) assay procedure involves
breaking the DNA of lymphocytes in a blood sample with a powerful
dose of radiation, then measuring the efficiency of its ability to repair
itself. Micronuclei are fragments of DNA that have not healed back into
either of the two daughter nuclei after irradiation. The MN assay entails
scoring the number of micronuclei; the higher the number, the less effi-
cient is a person’s DNA repair system. The dose response of the number
of micronuclei in cytokinesis-blocked lymphocytes after in-vitro irradia-
tion of whole blood with X-rays in the dose range 0–4 Gy was studied
by Thierens et al. (1991). The data provided in table are from one patient
(male, 54 y.o.) and represent the frequency of micronuclei numbers for
six levels of radiation, 0, 0.5, 1, 2, 3, and 4 Gy.
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Number of micronuclei
0 1 2 3 4 5 6

0 976 21 3 0 0 0 0
0.5 936 61 3 0 0 0 0

Dose 1 895 94 11 0 0 0 0
(in Gy) 2 760 207 32 1 0 0 0

3 583 302 97 12 6 0 0
4 485 319 147 35 11 2 1

(a) Fit a Poisson regression in which the number of micronuclei is the
response (y) and dose is a covariate (x). Plot Poisson intensity λ as a
function of dose.
(b) What is the average number of micronuclei for dose of 3.5 Gy?
(c) Simulate 1,000 micronuclei counts for λ corresponding to dose 3.5 Gy.
Summarize the simulation output.
Hint: Use MATLAB’s glmfit with ’poisson’ distribution and ’log’ link,
This will estimate the regression coefficients needed for (b–c). For plot-
ting, use glmval.
The data need to be appropriately recoded and one way to do so is
shown below:

y=[ zeros(976,1); ones(21,1); 2*ones(3,1); ...

zeros(936,1); ones(61,1); 2*ones(3,1); ...

zeros(895,1); ones(94,1); 2*ones(11,1); ...

zeros(760,1); ones(207,1); 2*ones(32,1); 3*ones(1,1);...

zeros(583,1); ones(302,1); 2*ones(97,1); 3*ones(12,1); 4*ones(6,1);...

zeros(485,1); ones(319,1); 2*ones(147,1); 3*ones(35,1); 4*ones(11,1);...

5*ones(2,1); 6*ones(1,1)];

x =[zeros(976+21+3,1); ...

0.5 * ones(936+61+3,1);...

ones(895+94+11,1);...

2*ones(760+207+32+1,1);...

3*ones(583+302+97+12+6,1);...

4*ones(485+319+147+35+11+2+1,1)];

15.26. Miller Lumber Company Customer Survey. Kutner et al. (2005) ana-
lyze a data set from a survey of customers of the Miller Lumber Com-
pany. The response is the total number of customers (in a representative
2-week period) coming from a tract of a metropolitan area within 10
miles from the store. The covariates include five variables concerning
the tracts: number of housing units, average income in dollars, average
housing unit age in years, distance to nearest competitor in miles, and
distance to store in miles. Fit and assess a Poisson regression model for
the number of customers as predicted by the covariates. The data are in

lumber.m.

15.27. SO2, NO2, and Hospital Admissions. Fan and Chen (1999) discuss
a public health data set consisting of daily measurements of pollutants
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and other environmental factors in Hong Kong between January 1, 1994
and December 31, 1995. The association between levels of pollutants and
the number of daily hospital admissions for circulation and respiratory
problems is of particular interest.
The data file hospitaladmissions.dat consists of six columns: (1) year,
(2) month, (3) day in month, (4) concentration of sulfur dioxide SO2,
(5) concentration of pollutant nitrogen NO2, and (6) daily number of
hospital admissions.

(a) Using logistic regression, determine how the probability of a high
level of sulfur dioxide (with values > 20 µg/m3) is associated with the
level of pollutant nitrogen NO2.
(b) Using a Poisson regression model, explore how the expected number
of hospital admissions varies with the level of NO2.
(c) Suppose that on a particular day the level of NO2 was measured at
100. Estimate the probability of a high level of sulfur dioxide in (a) and
the expected number of hospital admissions in (b).

15.28. Kidney Stones. Charig et al. (1986) provide data on the success rates
of two methods of treating kidney stones: open surgery methods and
percutaneous nephrolithotomy. There are two predictors: size of stone
and method. Size of stone is set at two levels: < 2 cm in diameter, coded
as Small, and > 2 cm in diameter, coded as Large. The two methods are
coded as A (open surgery) and B (percutaneous nephrolithotomy). The
outcome of interest is the outcome of the treatment (Success, Failure).

Count Size Method Outcome
81 Small A Success

6 Small A Failure
234 Small B Success
36 Small B Failure

192 Large A Success
71 Large A Failure
55 Large B Success
25 Large B Failure

There are four combinations of the covariates: Small A, Small B, Large
A, and Large B. Find the relative frequencies of the outcome “Success”
and compare them with the model-predicted probabilities using logistic
regression.
Show that these data hide Simpson’s paradox.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch15.Logistic/

arrhythmia.m, arthritis2.m, beetleBliss1.m, beetleBliss2.m, bumpus.m,

caesarean.m, celular.m, counterr.m, dmdreg.m, ihga.m, kyphosis.m,

logisticmle.m, logisticSeed.m, lumber.m, outbreak.m, ponv.m,

prostatecanc.m, sagittal.m, UptonFingleton.m

accidentssimple.odc, arrhythmia.odc, beetles.odc, bliss.odc,

bystanders.odc, caesarean.odc, celldifferentiation.odc, errors1.odc,

geriatric.odc, microdamage.odc, raynaud.odc, remission.odc,

tribolium.odc, tromboembolism.odc

ants.dat, arrhythmia.mat|xlsx, arrhythmiadata.m, arthritis2.dat,

birthweight.dat, bumpus.mat, cardiac.mat|txt, celegans.dat|mat|xlsx,

celular.dat, diabetes.dat, dmd.dat|mat, finney.dat,

hospitaladmissions.dat, ihgadat.m, kyphosis.dat|txt, lowbwt.dat,

microdamage.dat|mat, outbreak.mat, pima.dat, PONV.mat|xls, programm.mat,

prostatecanc.dat, sagittal.mat|xlsx, tribolium.mat
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Chapter 16

Inference for Censored Data and Survival
Analysis

The first condition of progress is the removal of censorship.

– George Bernard Shaw

WHAT IS COVERED IN THIS CHAPTER

• Parametric Models for Time-to-Event Data
• Kaplan–Meier Estimator, Mantel’s Logrank Test
• Cox Proportional Hazards Model
• Bayesian Approaches

16.1 Introduction

Survival analysis models the survival times of a group of subjects, usually
with some kind of medical condition, and generates a survival curve, which
shows how many of the subjects are “alive” or survive over time.

What makes survival analysis different from standard regression method-
ology is the presence of censored observations; in addition, some subjects
may leave the study and will be lost to follow-up. Such subjects were known
to have survived for some amount of time (up until the time we last saw
them), but we do not know how much longer they might ultimately have
survived. Several methods have been developed for using this “at least this
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long” information to finding unbiased survival curve estimates, the most
popular being the nonparametric method of Kaplan and Meier.

An observation is said to be censored if we know only that it is less than
(or greater than) a certain known value. For instance, in clinical trials, one
could be interested in patients’ survival times. Survival time is defined as
the length of time between diagnosis and death, although other “start”
events, such as surgery, and other “end” events, such as relapse of dis-
ease, increase in tumor size beyond a particular threshold, rejection of a
transplant, etc., are commonly used. Because of many constraints, trials
cannot be run until the endpoints are observed for all patients. Just because
for a particular subject the time to endpoint is not fully observed, partial
information is still available: the patient survived up to the end of the ob-
servational period, and this should be incorporated into the analysis. Such
observations are called right censored. Observations can also be left censored,
for example, an assay may have a detection threshold. In order to utilize in-
formation contained in censored observations, special methods of analysis
are required.

Engineers are often interested in the reliability of various devices, and
most of the methodology from survival analysis is applicable in device
reliability analyses. There are of course important differences. In the reli-
ability of multicomponent systems an important aspect is optimization of
the number and position of components. Analogous considerations with
organs or parts of organs as components in living systems (animals or hu-
mans) are impossible. Methods such as “accelerated life testing” commonly
used in engineering reliability are inappropriate when dealing with human
subjects.

However, in comparing the lifetimes of subjects in clinical trials involv-
ing different treatments (humans, animals) or different engineering inter-
ventions (systems, medical devices), the methodology that deals with cen-
sored observations is shared.

16.2 Definitions

Let T be a continuous random variable with CDF F(t) representing a life-
time. The survival (or survivor) function is the tail probability for T, ex-
pressed as S(t) = 1− F(t), t > 0. The function S(t) gives the probability of
surviving up to time t, that is,

S(t) = P(T > t).
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The hazard function or hazard rate is defined as

h(t) =
f (t)

S(t)
=

f (t)

1− F(t)
,

when T has a density f (t). Note that S′(t) = − f (t). It is insightful to rep-
resent h(t) in limit terms,

S(t)− S(t + ∆t)

∆t
× 1

S(t)
=

F(t + ∆t)− F(t)

∆t
× 1

S(t)

=
P(t < T ≤ t + ∆t)

∆t P(T > t)

=
P(T ≤ t + ∆t|T > t)

∆t
,

when ∆t→ 0. It represents an instantaneous probability that an event that
was not observed up to time t will be observed before t + ∆t, when ∆t→ 0.

Cumulative hazard is defined as

H(t) =
∫ t

0
h(s)ds.

Both hazard and cumulative hazard uniquely determine the distribution of
lifetime F,

F(t) = 1− exp
{
−
∫ t

0
h(s)ds

}
= 1− exp{−H(t)}.

Cumulative hazard can also be connected to the survival function as H(t) =
− log S(t), or

S(t) = exp{−H(t)}. (16.1)

Example 16.1. Constant Hazard. The hazard function for an exponential
distribution with density f (t) = λe−λt, t≥ 0,λ> 0 is constant in time, h(t) =
λ.
�

Example 16.2. Linear Hazard. Identify distributions for which the hazard
rate is linear, h(t) = a + bt, t ≥ 0.

Since

H(t) =
∫ t

0
h(u)du = at +

bt2

2
,
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according to (16.1),

S(t) = 1− F(t) = exp
{
−at− bt2

2

}
,

and

f (t) = (a + bt)exp
{
−at− bt2

2

}
.

This represents a density if b≥ 0. For a = 0 the above is the Rayleigh distri-
bution, and for b = 0 it is the exponential.
�

Example 16.3. Weibull’s Hazard. The hazard rate for a one-parameter
Weibull distribution with CDF F(t) = 1 − exp{−tγ} and density f (t) =

γt(γ−1)exp{−tγ}, t ≥ 0,γ > 0 is h(t) = γtγ−1. The parameter γ is called a
shape parameter. Depending on the shape parameter γ, the hazard function
h(t) could model various types of survival analyses.

The two-parameter version of Weibull that was introduced in Section
5.5.9 is used more frequently. It is defined as F(t) = 1− exp{−λtγ}, with
density f (t) = λγtγ−1 exp{−λtγ}, t ≥ 0,γ > 0,λ > 0. The parameter λ is
called a rate parameter. In this case h(t) = λγtγ−1. Figure 16.1 shows hazard
functions for different values of shape parameters γ. For γ = 1, the hazard is
constant (Weibull distribution becomes exponential), for γ < 1, the hazard
is decreasing, and for γ > 1, it is increasing.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

 

 

γ=1
γ=0.9
γ=1.1

Fig. 16.1 Hazard function of two parameter Weibull distribution with λ = 1 and γ =
0.9,1, and 1.1.

�
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Two important summaries in the parametric case (where the survival
distribution is specified up to a parameter) are mean residual life (mrl) and
median life, defined, respectively, as

mrl(t) =

∫ ∞

t S(x)dx

S(t)
,

t0.5 : S(t0.5) = 0.5.

The hazard rate h(t) and mean residual life mrl(t) are connected,

h(t) =
1 + (mrl(t))′

mrl(t)
.

Example 16.4. Exponential Mean Residual Life. For an exponential life-
time, the expected lifetime and mrl coincide. Indeed, ET = 1/λ, while

mrl(t) =

∫ ∞

t e−λxdx

e−λt
=

1
λ

.

At first glance this looks like a paradox; the expected total lifetime ET is
equal to the residual lifetime mrt(t) regardless of t. This is an example of
the “inspection paradox” that follows from the memoryless property of the
exponential distribution, page 201.

The median lifetime of an exponential distribution is t0.5 = (log2)/λ.
�

Example 16.5. Estimation Parameters in Weibull Distribution by Regres-
sion. Recall that the CDF of a two-parameter Weibull distribution is

F(x) = 1− e−λxr
,

where λ is rate parameter and r is the shape parameter. Given a sample
X1, X2, . . . , Xn, the goal is to estimate λ and r.

The MLE equations do not have solutions in closed form and numerical
approximations are used. Simpler and often superior estimation is based
on a combination of method of moments and linear regression.

Note that
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1− F(x) = e−λxr

log(1− F(x)) =−λxr

log
(

1
1− F(x)

)
= λxr.

After taking the logarithm, the equation becomes,

log
(

log
(

1
1− F(x)

))
= log(λ) + r log x.

If X(i) is ith order statistic from X1, . . . , Xn coming from distribution with
a CDF F, it holds that

EF(X(i)) =
i

n + 1
.

This is true for any distribution, since F(X(i)) = U(i) where U(i) is the ith
order statistic from uniform U (0,1) distribution, and EU(i) = i/(n + 1).

The idea is to calculate regression responses yi using EF(X(i)) in place
of F(X(i)),

yi = log

(
log

(
1

1−EF(X(i))

))
= log

(
log
(

n + 1
n + 1− i

))
,

and regress the responses against ordered observations xi = X(i).
If b0 and b1 are estimated intercept and slope in this regression, then

λ̂ = eb0 and r̂ = b1.

The following MATLAB script simulates 2,000 observations from Weibull
Wei(2,3) distribution. The estimation of parameters r and λ is done by
regression, and estimators are compared results from built in MATLAB’s
weblfit.

%estimweibull.m

s= RandStream(’mt19937ar’,’Seed’,0);

RandStream.setGlobalStream(s);

%

lambda=3;

r=2;

% Simulate 2000 Wei(r=2, lambda=3)

n = 2000;

xx = wblrnd( lambda^(-1/r), r,[n 1]);

%In MATLAB’s parametrization of Weibull distribution

% the scale parameter is lambda^(-1/r)

x = sort(xx); i=(1:n)’;

y = log(log((n+1)./(n +1 - i)));
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b = regress(y, [ones(size(x)) log(x)]);

lambdahat = exp(b(1)) %3.0676

rhat = b(2) %2.0371

%

%Built in Weibull fits

parmhat = wblfit(x);

lambdahat = parmhat(1)^(-parmhat(2)) %3.1063

rhat = parmhat(2) %2.0538

�

16.3 Inference with Censored Observations

We will consider the case of right-censored data (the most common type
of censoring) and two approaches: a parametric approach, in which the
survival function S(t) would have a specific functional form, and a non-
parametric approach, in which no such functional form is assumed.

16.3.1 Parametric Approach

In the parametric approach the models depend on the parameters, and
the parameters are estimated by taking into account both uncensored and
censored observations. We will show how to find an MLE in the general
case and illustrate it on an exponential lifetime distribution.

Let (ti,δi), i = 1, . . . ,n be observations of a lifetime T for n individuals,
with δ ∈ {0,1} indicating fully observed and censored lifetimes, and let k
observations be fully observed while n− k are censored. Suppose that the
underlying lifetime T has a density f (t|θ) with survival function S(t|θ).
Then the likelihood is

L(θ|t1, . . . , tn) =
n

∏
i=1

( f (ti|θ)1−δi × (S(ti|θ))δi =
k

∏
i=1

f (ti|θ)×
n

∏
i=k+1

S(ti|θ).

Since h(ti|θ)× (S(ti|θ)) = f (ti|θ), then

L(θ|t1, . . . , tn) =
n

∏
i=1

(
h(ti|θ)1−δi × S(ti|θ)

)
. (16.2)

Example 16.6. MLE for Censored Exponential Lifetimes. We will show that
for an exponential lifetime in the presence of right-censoring, the MLE for
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λ is

λ̂ =
k

∑
n
i=1 ti

, (16.3)

where k is the number of noncensored data points and ∑
n
i=1 ti is the

sum of all observed and censored times. From (16.2), the likelihood is
L = λk exp{−λ ∑

n
i=1 ti}. By taking the log and differentiating, we get the

MLE as the solution to k
λ −∑

n
i=1 ti = 0.

The variance of the MLE λ̂ is k/(∑n
i=1 ti)

2 and can be used to find the
confidence interval for λ (Exercise 16.2).
�

Example 16.7. Immunoperoxidase and BC. Data analyzed in Sedmak et al.
(1989) and also in Klein and Moeschberger (2003) represent times to death
(in months) for breast cancer patients with different immunohistochemi-
cal responses. Out of 45 patients in the study, 9 were immunoperoxidase
positive while the remaining 36 were negative (+ denotes censored time).

Immunoperoxidase negative
19, 25, 30, 34, 37, 46, 47, 51, 56, 57, 61, 66, 67, 74, 78, 86, 122+,
123+, 130+, 130+, 133+, 134+, 136+, 141+, 143+, 148+, 151+, 152+,
153+, 154+, 156+, 162+, 164+, 165+, 182+, 189+
Immunoperoxidase positive
22, 23, 38, 42, 73, 77, 89, 115, 144+

Assume that lifetimes are exponentially distributed and that rates λ1 (for
Immunoperoxidase negative) and λ2 (for Immunoperoxidase positive) are
to be estimated. The following MATLAB code finds MLEs of λ1 and λ2,
first directly by using (16.3) and then by using MATLAB’s built-in function
mle with option ’censoring’.
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ImmPeroxNeg=[...

19, 25, 30, 34, 37, 46, 47, 51, 56, 57, 61, 66, 67, 74, 78, 86,...

122, 123, 130, 130, 133, 134, 136, 141, 143, 148, 151, 152,...

153, 154, 156, 162, 164, 165, 182, 189];

CensorIPN=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

ImmPeroxPos=[...

22, 23, 38, 42, 73, 77, 89, 115, 144];

CensorIPP=[0,0,0,0,0,0,0,0,1];

%number of observed (non-censored)

k1 = sum(1-CensorIPN) %16

k2 = sum(1-CensorIPP) %8

% MLEs of rate lambda for 2 samples.

hatlam1 = k1/sum(ImmPeroxNeg) %0.0042

hatlam2 = k2/sum(ImmPeroxPos) %0.0128

[reclambdahat1 lamci1] = mle(ImmPeroxNeg, ...

’distribution’,’exponential’,’censoring’,CensorIPN)

% 237.6250

% 153.6769 415.7289

[reclambdahat2 lamci2] = mle(ImmPeroxPos, ...

’distribution’,’exponential’,’censoring’,CensorIPP)

% 77.8750

% 43.1959 180.3793

%(MATLAB parametrization) scale to rate

lambdahat1 = 1/reclambdahat1 %0.0042

lambdahat2 = 1/reclambdahat2 %0.0128

As is indicated by the code, the patients who are immunoperoxidase posi-
tive are at increased risk since the rate λ̂2 = 0.0128 exceeds λ̂1 = 0.0042.
�

In MATLAB, dfittool, normfit, wblfit, and other commands for fitting
parametric distributions can be applied to censored data by specifying the
censoring vector at the input.

16.3.2 Nonparametric Approach: Kaplan–Meier or
Product–Limit Estimator

Assume that individuals in the study are assessed at discrete time instances
t1, t2, . . . , tk, which may not be equally spaced. Typically, the times ti are se-
lected when failures occur. If we want to calculate the probability of sur-
vival up to time ti, then by the chain rule of conditional probabilities and
their Markovian property,



812 16 Inference for Censored Data and Survival Analysis

Ŝ(ti) = P( surviving to time ti ) = P( survived up to time t1 )

× P( surviving to time t2 | survived up to time t1 )

× P( surviving to time t3 | survived up to time t2 )

. . .

× P( surviving to time ti | survived up to time ti−1 ).

It is assumed that t0 = 0.
Suppose that ri subjects are at risk at time ti−1 and are not censored

at time ti−1. In the ith interval [ti−1, ti) among these ri subjects di have an
event, ℓi are censored, and ri+1 survive. The ri+1 subjects will be at risk at
the beginning of the (i + 1)th time interval [ti, ti+1), that is, at time ti. Thus,
ri = di + ℓi + ri+1. We can estimate the probability of survival up to time ti,
given that one survived up to time ti−1, as 1− di/(ri+1 + di + ℓi) = 1− di/ri.

The ℓi subjects censored at time ti do not contribute to the survival
function for times t > ti.

Ŝ(t) =

(
1− d1

r1

)
×
(

1− d2

r2

)
× · · · ×

(
1− di

ri

)

= ∏
ti≤t

(
1− di

ri

)
, for t ≥ t1;

Ŝ(t) = 1, for t < t1.

This is the celebrated Kaplan–Meier or product-limit estimator (Kaplan
and Meier, 1958). This result has been one of the most influential develop-
ments in the past century in statistics; the paper by Kaplan and Meier is
the most cited paper in the field of statistics (Stigler, 1994).

For uncensored observations, the Kaplan–Meier estimator is identical to
the complement of the empirical CDF. The difference occurs when there is a
censored observation – then the Kaplan–Meier estimator takes the “weight”
normally assigned to that observation and distributes it evenly among all
observed values to the right of the censored observation. This is intuitive
because we know that the true value of the censored observation must be
somewhere to the right of the censored value, but information about what
the exact value should be is lacking. Thus all observed values larger than
the censored observation are treated in the same way.

The variance of Kaplan–Meier estimator is estimated by Greenwood’s
formula (Greenwood, 1926):

τ2
S(t) =

(
Ŝ(t)

)2 × ∑
ti≤t

di

ri(ri − di)
.
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The pointwise confidence intervals (for a fixed time t∗) for the survival
function S(t∗) can be found in several ways. The most popular confidence
intervals are

linear

[
Ŝ(t∗)− z1−α/2 τS(t∗), Ŝ(t∗) + z1−α/2 τS(t∗)

]
,

log-transformed

[
(Ŝ(t∗)) exp

{−z1−α/2 τS(t∗)
Ŝ(t∗)

}
, (Ŝ(t∗)) exp

{
z1−α/2 τS(t∗)

Ŝ(t∗)

}]
,

and log-log-transformed

[
(Ŝ(t∗))v, (Ŝ(t∗))1/v

]
, v = exp

{
z1−α/2 τS(t∗)

Ŝ(t∗) | log Ŝ(t∗)|

}
.

Although not centered at Ŝ(t∗), the log- and log-log-transformed intervals
are considered superior to the linear. This is because Ŝ(t∗) is not well ap-
proximated by a normal distribution, especially when S(t∗) is close to 0 or
1.

The pointwise confidence intervals given above differ from simultane-
ous confidence bounds on S(t) for which the confidence of 1 − α means
that the probability that any part of the curve S(t) will fall outside the
bounds does not exceed α. Such general bounds are naturally wider than
those generated by pointwise confidence intervals, since the overall confi-
dence is controlled. Two important types of confidence bands are Nair’s
equal precision bands and the Hall–Wellner bands. Description of these
bounds are beyond the scope of this text; see Klein and Moeschberger (2003,
p. 109), for further discussion and implementation. The bounds computed
in MATLAB’s [f,t,flo,fup]=ecdf(...) also return lower and upper confi-
dence bounds for the CDF. These bounds are calculated using Greenwood’s
formula and are not simultaneous confidence bounds.

The Kaplan–Meier estimator also provides an estimator for the cumula-
tive hazard H(t) as

Ĥ(t) = − log
(
Ŝ(t)

)
.

Better small-sample performance in estimating the cumulative hazard can
be achieved by the Nelson–Aalen estimator,
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∼
H (t) =

{
0, for t ≤ t1
∑ti<t di/ri , for t > t1,

with an estimated variance σ2∼
H
(t) = ∑ti<t di/r2

i . By using
∼
H (t) and σ2∼

H
(t),

pointwise confidence intervals on H(t) can be obtained.

Example 16.8. Catheter Complications in Peritoneal Dialysis. The follow-
ing example is from Chadha et al. (2000). The authors studied a sample
of 36 pediatric patients undergoing acute peritoneal dialysis through Cook
catheters. They wished to examine how long these catheters performed
properly. They noted the date of complication (either occlusion, leakage,
exit-site infection, or peritonitis).

Half of the subjects had no complications before the catheter was re-
moved. Reasons for removal of the catheter in this group of patients were
that the patient recovered (n = 4), the patient died (n = 9), or the catheter
was changed to a different type electively (n = 5). If the catheter was re-
moved prior to complications, that represented a censored observation, be-
cause they knew that the catheter remained complication free at least until
the time of removal.

Day At Risk, ri Censored, ℓi Fail, di 1− di
ri

KM
1 36 8 2 1 − 2/36 = 0.944 0.9444
2 36 − 8 − 2 = 26 2 2 1 − 2/26 = 0.92 0.92 · 0.944 = 0.8718
3 26 − 2 − 2 = 22 1 2 1 − 2/22 = 0.91 0.91 · 0.872 = 0.7925
4 22 − 1 − 2 = 19 1 1 1 − 1/19 = 0.95 0.95 · 0.793 = 0.7508
5 19 − 1 − 1 = 17 6 3 1 − 3/17 = 0.82 0.6183
6 17 − 6 − 3 = 8 0 2 1 − 2/8 = 0.75 0.4637
7 8 − 0 − 2 = 6 0 1 1 − 1/6 = 0.83 0.3865

10 6 − 0 − 1 = 5 0 2 1 − 2/5 = 0.60 0.2319
12 5 − 0 − 2 = 3 0 2 1 − 2/3 = 0.33 0.0773
13 3 − 0 − 2 = 1 0 1 1 − 1/1 = 0.00 0.0000

MATLAB script chada.m finds the Kaplan–Meier estimator and gen-
erates Figure 16.2. plots

%chada.m

times=[1,1,1,1,1,1,1,1,1,1,2,2,2,2,...

3,3,3,4,4,5,5,5,5,5,5,5,5,5,...

6,6,7,10,10,12,12,13];

censored =[1,1,1,1,1,1,1,1,0,0,1,1,...

0,0,1,0,0,1,0,1,1,1,1,1,...

1,0,0,0,0,0,0,0,0,0,0,0];

% Calculate and plot KM estimator

ple(times, censored)

�
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Fig. 16.2 Kaplan–Meier estimator for Catheter Complications data.

Example 16.9. Strength of Weathered Cord. Data from Crowder et al. (1991)
lists strength measurements (in coded units) for 48 pieces of weathered
cord. Seven of the pieces of cord were damaged and yielded strength mea-
surements that are considered right-censored. That is, because the damaged
cord was taken off the test, we know only the lower limit of its strength. In
the MATLAB code below, the vector data represents the strength measure-
ments, and the vector censor indicates (with a zero) if the corresponding
observation in data is censored.

data=[36.3, 41.7, 43.9, 49.9, 50.1, 50.8, 51.9, 52.1, 52.3, 52.3,...

52.4, 52.6, 52.7, 53.1, 53.6, 53.6, 53.9, 53.9, 54.1, 54.6,...

54.8, 54.8, 55.1, 55.4, 55.9, 56.0, 56.1, 56.5, 56.9, 57.1,...

57.1, 57.3, 57.7, 57.8, 58.1, 58.9, 59.0, 59.1, 59.6, 60.4,...

60.7, 26.8, 29.6, 33.4, 35.0, 40.0, 41.9, 42.5];

censor=[zeros(1,41), ones(1,7)];

[table] = ple(data, censor)

The table below shows how the Kaplan–Meier estimator is calculated for
the first 16 measurements, which includes 7 censored observations. Fig-
ure 16.3 shows the estimated survival function for the cord strength data.
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Fig. 16.3 Kaplan–Meier estimator cord strength (in coded units).

ti ri di ℓi 1− di
ri

Ŝ(ti)

0 48 0 4 1.0000 1.0000
36.3 44 1 1 0.9773 0.9773
41.7 42 1 2 0.9762 0.9540
43.9 39 1 0 0.9744 0.9295
49.9 38 1 0 0.9737 0.9051
50.1 37 1 0 0.9730 0.8806
50.8 36 1 0 0.9722 0.8562
51.9 35 1 0 0.9714 0.8317
52.1 34 1 0 0.9706 0.8072
52.3 33 2 0 0.9394 0.7583
52.4 31 1 0 0.9677 0.7338

...
...

...
...

...
...

57.8 8 1 0 0.8750 0.1712
58.1 7 1 0 0.8571 0.1468
58.9 6 1 0 0.8333 0.1223
59.0 5 1 0 0.8000 0.0978
59.1 4 1 0 0.7500 0.0734
59.6 3 1 0 0.6667 0.0489
60.4 2 1 0 0.5000 0.0245
60.7 1 1 0 0 0

�
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16.3.3 Comparing Survival Curves

In clinical trials it is often important to compare survival curves calculated
for cohorts undergoing different treatments. Often one is interested in com-
paring the new treatment to the existing one or to a placebo. In comparing
two survival curves, we are testing whether the corresponding hazard func-
tions h1(t) and h2(t) coincide:

H0 : h1(t) = h2(t) versus H1 : h1(t)>, 6=,< h2(t).

The simplest comparison involves exponential lifetime distributions
where the comparison between survival/hazard functions is simply a com-
parison of constant rate parameters. The statistic is calculated using loga-
rithms of hazard rates as

Z =
log λ1 − log λ2√

1/k1 + 1/k2
,

where k1 and k2 are numbers of observed (uncensored) survival times in the
two comparison groups. Now, the inference relies on the fact that statistic Z
is approximately standard normal.

Example 16.10. Comparing the Rates. In Example 16.7 the rate for immunoperoxidase-
positive patients was larger than that of immunoperoxidase-negative pa-
tients. Was this difference significant?

z = (log(lambdahat1)-log(lambdahat2))/sqrt(1/k1+1/k2) %-2.5763

p = normcdf(z) %0.0050

As is evident from the code, the hazard rate λ2 (and, in the case of expo-
nential distribution, hazard function) for the immunoperoxidase-positive
patients is significantly larger than the rate for negative patients, λ1, with a
p-value of half a percent.
�

Logrank Test. The logrank test compares survival functions in a nonpara-
metric fashion. It was proposed by Mantel (1966) and applies Haenszel–
Mantel theory on survival data in the form of 2× 2 tables.

Let (r11,d11), (r12,d12), . . . , (r1k,d1k) be the number of people at risk and
the number of people who died at times t11, t12, . . . , t1k in the first cohort,
and (r21,d21), (r22,d22), . . . , (r2m,d2m) be the number of people at risk and
the number of people who died at times t21, t22, . . . , t1m in the second cohort.
We merge the two data sets together with the corresponding times. Thus,
there will be D = k + m time points if there are no ties, and each time point
corresponds to a death from either the first or second cohort. For example,
if times of events in the first sample are 1, 4, and 10 and in the second 2, 3,
7, and 8, then in the merged data sets the times will be 1, 2, 3, 4, 7, 8, and
10.
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For a time ti from the merged data set, let r1i and r2i correspond to the
number of subjects at risk in cohorts 1 and 2, respectively, and let ri = r1i +
r2i be the number of subjects at risk in the combined sample. Analogously,
let d1i, d2i, and di = d1i + d2i be the number of events at time ti.

Then, if H0 : h1(t) = h2(t) is true, d1i has a hypergeometric distribution
with parameters (ri,di,r1i).

Event No event At risk
Treatment 1 d1i r1i − d1i r1i

Treatment 2 d2i r2i − d2i r2i

Merged di ri − di ri

Since d1i ∼HG(ri,di,r1i), the expectation and variance of d1i are

Ed1i = r1i ×
di

ri
,

Var (d1i) =
ri1

ri

(
1− ri1

ri

)(
ri − di

ri − 1

)
di.

Note that in the terminology of the Kaplan–Meier estimator, the number
of subjects with no event at time ti is equal to ri − di = ri+1 + ℓi, where ℓi

is the number of subjects censored in the time interval (ti−1, ti) and ri+1 is
the number of subjects at risk at the beginning of the subsequent interval
(ti, ti+1).

The test statistic for testing H0 : h1(t) = h2(t) against the two-sided al-
ternative H1 : h1(t) 6= h2(t) is

χ2 =

(
∑

D
i=1 (d1i −E(d1i))

)2

∑
D
i=1 Var (d1i)

, (16.4)

which has a χ2-distribution with 1 degree of freedom. The continuity cor-
rection 0.5 can be added to the numerator of the χ2-statistic as (|∑D

i=1(d1i−
E(d1i))| − 0.5)2 when the sample size is small. If the statistic is calculated
as chi2, then its large values are critical and the p-value of the test is equal
to 1-chi2cdf(chi2,1).

If the alternative is one-sided, H1 : h1(t) < h2(t) or H1 : h1(t) > h2(t),
then the preferable statistic is
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Z =
∑

D
i=1 (d1i −E(d1i))√

∑
D
i=1 Var (d1i)

and the p-values are normcdf(Z) and 1-normcdf(Z), respectively. A more gen-
eral statistic is of the form

Z =
∑

D
i=1 W(ti) (d1i −E(d1i))√

∑
D
i=1 W2(ti)Var (d1i)

,

where W(ti) = 1 (as above), W(ti) = ri (Gehan’s statistic), and W(ti) =
√

ri

(Tarone–Ware statistic).

Example 16.11. Mantel’s Logrank Step-by-Step. To illustrate the logrank
test, we consider a simple example. Consider two trials A and B with out-
comes 4.5, 7, 7, 8.9+, 9.1, and 6.1+, 7, 9, 10+.

At combined event times ti the tables

Event No event At risk
A d1i r1i − d1i r1i

B d2i r2i − d2i r2i

di ri − di ri

need to be formed. Organize the data as follows:

A 4.5 7 7 8.9+ 9.1
B 6.1+ 7 9 10+

In the merged sample, there are four times with events: 4.5, 7, 9, and 9.1,
leading to four tables. At time 4.5, five in group A are at risk, one with the
event. In group B, four are at risk, none with the event. For time 7, four are
at risk and two with the event in A, and three are at risk and one with the
event in B. Likewise for times 9 and 9.1. The four tables are

A 1 4 5
B 0 4 4

1 8 9
,

A 2 2 4
B 1 2 3

3 4 7
,

A 0 1 1
B 1 1 2

1 2 3
, and

A 1 0 1
B 0 1 1

1 1 2
.

Since d11 ∼HG(9,1,5), the expectation and variance of d11 are respectively

Ed11 = 5× 1
9 =

5
9 , and Var (d11) =

5
9

(
1− 5

9

)( 9−1
9−1

)
× 1 = 20

81 . Thus, observed
events for group A, their expectations, and variances are:

d1i 1 2 0 1
Ed1i 5/9 12/7 1/3 1/2
Var (d1i) 20/81 24/49 2/9 1/4

Equation in (16.4) leads to χ2 = 0.6653. Under the null hypothesis this
statistic has a χ2-distribution with one degree of freedom, so the p-value is
0.4147 (1-chi2cdf(0.6653,1)).

Notice that manteltwo.m produces the same result:
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tA = [4.5 7 7 8.9 9.1]; cA = [0 0 0 1 0];

tB = [6.1 7 9 10]; cB = [1 0 0 1];

[p ch2]= manteltwo(tA, cA, tB, cB)

% p = 0.4147

% ch2 = 0.6653

�

Example 16.12. Histiocytic Lymphoma. The data (from McKelvey et al.,
1976; Armitage and Berry, 1994) given below are survival times (in days)
since entry to a trial by patients with diffuse histiocytic lymphoma. Two
cohorts of patients are considered: (1) with stage III and (2) with stage IV
of the disease. The observations with + are censored.

Stage 6 19 32 42 42 43+ 94 126+ 169+ 207 211+
III 227+ 253 255+ 270+ 310+ 316+ 335+ 346+

Stage 4 6 10 11 11 11 13 17 20 20 21
IV 22 24 24 29 30 30 31 33 34 35 39

40 41+ 43+ 45 46 50 56 61+ 61+ 63 68
82 85 88 89 90 93 104 110 134 137 160+

169 171 173 175 184 201 222 235+ 247+ 260+ 284+
290+ 291+ 302+ 304+ 341+ 345+

Using a logrank test, we will assess the equality of the two survival
curves. The function manteltwo.m calculates χ2 statistic and the corre-
sponding p-value:

load ’YourDataPath\limphoma.mat’

tA = limphoma.survive(limphoma.stage == 1);

cA = limphoma.censored(limphoma.stage == 1);

tB = limphoma.survive(limphoma.stage == 2);

cB = limphoma.censored(limphoma.stage == 2);

[p chi2] = manteltwo(tA, cA, tB, cB)

% p = 0.0096

% chi2 = 6.7097

The hypothesis of equality of survival curves in this case is rejected, p-value
is 0.0096. Kaplan–Meier estimators of the two survival functions are shown
in Figure 16.4. MATLAB Central contains several functions conducting lo-
grank test. Function logrank.m (Cardillo, 2008) is an example.
�

16.4 The Cox Proportional Hazards Model

We often need to take into account that survival is influenced by one or
more covariates, which may be categorical (e.g., the kind of treatment a
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Fig. 16.4 Kaplan–Meier estimators of the two survival functions. The groups correspond
to stage III and stage IV cohorts of patients.

patient received) or continuous (e.g., the patient’s age, weight, or drug
dosage). For simple situations involving a single factor with just two val-
ues (e.g., drug versus placebo), we discussed a method for comparing the
survival curves for the two groups of subjects. For more complicated situa-
tions, a regression-type model that incorporates the effect of each predictor
on the shape of the survival curve is needed.

Assume that the log hazard for subject i can be modeled via a linear
relationship:

log h(t, xi) = β0 + β1x1,i + · · ·+ βpxp,i,

where xi = x1,i, . . . , xp,i is p-dimensional vector of covariates associated
with subject i. The Cox model assumes that β0 is a log baseline hazard,
log h0(t) = β0, namely the log hazard for a “person” for whom all covari-
ates are 0 (Cox, 1972; Cox and Oakes, 1984). Alternatively, we can set the
baseline hazard to correspond to a typical person for whom all covariates
are averages of covariates from all subjects in the study. For the Cox model,

log h(t, xi) = log h0(t) + β1x1,i + · · ·+ βpxp,i,

or, equivalently,

h(t, xi) = h0(t)× exp{β1x1,i + · · ·+ βpxp,i}= h0(t)× exp{x′i β}.

Inclusion of an intercept would lead to nonidentifiability because
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h0(t)× exp{x′i β} = (h0(t)e
−α)× exp{α + x′i β}.

This allows for some freedom in choosing the baseline hazard.
For two subjects, i and j, the ratio of hazard functions

h(t, xi)/h(t, xj) = exp{(x′i − x′j)β}

is free of t, motivating the name proportional. Also, for a subject i,

S(t, xi) = (S0(t))
exp{x′i β} ,

where S0(t) is the survival function corresponding to the baseline hazard
h0(t). This follows directly from (16.1) and H(t, xi) = H0(t)exp{x′i β}.

In MATLAB, coxphfit fits the Cox proportional hazards regression model,
which relates survival times to predictor variables. The following example
uses coxphfit to fit Cox’s proportional hazards model.

Example 16.13. Mayo Clinic Trial in PBC. Primary biliary cirrhosis (PBC)
is a rare but fatal chronic liver disease of unknown cause, with a prevalence
of about 1/20,000. The primary pathologic event appears to be the destruc-
tion of interlobular bile ducts, which may be mediated by immunologic
mechanisms.

The PBC data set available at StatLib is an excerpt from the Mayo Clinic
trial in PBC of the liver conducted between 1974 and 1984. From a to-
tal of 424 patients that met eligibility criteria, 312 PBC patients partici-
pated in the double-blind, randomized, placebo-controlled trial of the drug
D-penicillamine. Details of the trial can be found in Markus et al. (1989).

Survival statuses were recorded for as many patients as possible until
July 1986. By that date, 125 of the 312 patients had died and 187 were
censored.

The variables contained in the data set pbc.xls|dat are described in
the following table:

casen = pbc(:,1); %case number 1-312

lived = pbc(:,2); %days lived (from registration to study date)

indicatord = pbc(:,3); %0 censored, 1 death

treatment = pbc(:,4); %1 - D-Penicillamine, 2 - Placebo

age = pbc(:,5); %age in years

gender = pbc(:,6); %0 male, 1 female

ascites= pbc(:,7); %0 no, 1 yes

hepatomegaly=pbc(:,8); %0 no, 1 yes

spiders = pbc(:,9); %0 no, 1 yes

edema = pbc(:,10); %0 no, 0.5 yes/no therapy, 1 yes/therapy

bilirubin = pbc(:,11); %bilirubin [mg/dl]

cholesterol = pbc(:,12); %cholesterol [mg/dl]

albumin = pbc(:,13); %albumin [gm/dl]

ucopper =pbc(:,14); %urine copper [mg/day]

aphosp =pbc(:,15); %alcaline phosphatase [U/liter]
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sgot = pbc(:,16); %SGOT [U/ml]

trig =pbc(:,17); %triglycerides [mg/dl]

platelet = pbc(:,18); %# platelet count [#/mm^3]/1000

prothro = pbc(:,19); %prothrombin time [sec]

histage = pbc(:,20); %hystologic stage [1,2,3,4]

To illustrate the CPH model, in this example we selected four predictors
and formed a design matrix X as

X = [treatment age gender edema];

The treatment has two values, 1 for treatment by D-penicillamine and 2 for
placebo. The variable edema takes three values: 0 if no edema is present,
0.5 when edema is present but no diuretic therapy was given or edema
resolved with diuretic therapy, and 1 if edema is present despite adminis-
tration of diuretic therapy.

The variable lived is the lifetime observed or censored, a censoring vec-
tor is 1-indicatord, and a baseline hazard is taken to be a hazard for which
all covariates are set to 0.

[b,logL,H,stats] = coxphfit(X,lived,...

’censoring’,1-indicatord,’baseline’,0);

The output H is a two-column matrix as a discretized cumulative hazard
estimate. The first column of H contains values from the vector lived, while
the second column contains the estimated baseline cumulative hazard eval-
uated at lived.

To illustrate the model, we selected two subjects from the study to find
survival curves corresponding to their covariates. Subject #100 is a 51-year-
old male with no edema who received placebo while subject #275 is a 38-
year-old female with no edema who received D-penicillamine treatment.

X(100,:) %2.0000 51.4689 0 0

% placebo; 51 y.o.; male; no edema;

X(275,:) %1.0000 38.3162 1.0000 0

% D-Penicillamine; 38 y.o.; female; no edema;

First, we find cumulative hazards at the mean values of predictors, as
well as for subjects #100 and #275, as

H(t, x) = H0(t)× exp{β1x1 + · · ·+ β4x4},
H(t, xi) = H0(t)× exp{β1x1,i + · · ·+ β4x4,i}, i = 100, 275.

Hmean(:,2) = H(:,2) .* exp(mean(X)*b); %c.haz. average

Hsubj100(:,2) = H(:,2) .* exp(X(100,:)*b); %subject #100

Hsubj275(:,2) = H(:,2) .* exp(X(275,:)*b); %subject #275

Here the estimators of coefficients β1, . . . , β4 are

b’

% 0.0831 0.0324 -0.3940 2.2424
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Note that the treatment coefficient 0.0831 > 0 indicates that, given all
other covariates fixed, the placebo increases the risk over the treatment.
Also note that age and edema statuses also increase the risk, while the risk
for female subjects is smaller.

Next, from cumulative hazards we find survival functions

Smean = exp(-Hmean(:,2));

Ssubj100 = exp(-Hsubj100(:,2));

Ssubj275 = exp(-Hsubj275(:,2));

The subsequent commands plot the survival curves for an “average”
subject (blue), as well as for subjects #100 (black) and #275 (red); see Fig-
ure 16.5.

stairs(H(:,1),Smean,’b-’,’linewidth’,2)

hold on

stairs(H(:,1),Ssubj100,’k-’)

stairs(H(:,1),Ssubj275,’r-’)

xlabel(’$t$ (days)’,’Interpreter’,’LaTeX’)

ylabel(’$\hat S(t)$’,’Interpreter’,’LaTeX’)

legend(’average subject’,’subject #100’, ’subject #275’, 3)

axis tight
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Fig. 16.5 Cox model for survival curves for a “subject” with average covariates, subject
#100 (51-year-old male on placebo, no edema), and subject #275 (38-year-old female on
treatment, no edema).

�
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16.5 Bayesian Approach

We will focus on parametric models in which the lifetime distributions are
specified up to unknown parameters. The unknown parameters will be as-
signed prior distributions and the inference will proceed in a Bayesian fash-
ion. Nonparametric Bayesian modeling of survival data is possible; how-
ever, the methodology is advanced and beyond the scope of this text. For a
comprehensive coverage, see Ibrahim et al. (2001).

Let survival time T have distribution f (t|θ), where θ is unknown param-
eter. For t1, . . . , tk observed and tk+1, . . . , tn censored times, the likelihood is

L(θ|t1, . . . , tn) =
k

∏
i=1

f (ti|θ)×
n

∏
i=k+1

S(ti|θ).

If the prior on θ is π(θ), then the posterior is

π(θ|t1, . . . , tn) ∝ L(θ|t1, . . . , tn)× π(θ).

The Bayesian estimator of hazard is

ĥB(t) =
∫

h(t|θ)π(θ|t1, . . . , tn)dθ

and the survival function is

ŜB(t) =
∫

S(t|θ)π(θ|t1, . . . , tn)dθ.

Example 16.14. Exponential Lifetimes with Gamma Prior. In Example 16.6
we found that for the exponential lifetime in the presence of censoring,
the likelihood was L(λ) = λk exp{−λ ∑

n
i=1 ti}, where k is the number of

uncensored data and ∑
n
i=1 ti is the sum of all observed and censored times.

The resulting MLE for λ was

λ̂ = k/
n

∑
i=1

ti.

If a gamma Ga(α, β) prior on λ is adopted, π(λ) ∝ λα−1 exp{−βλ}, then
the conjugacy of the exponential/gamma pair (page 341) leads to the pos-
terior

π(λ|t1, . . . , tn) ∝ λk+α−1 exp{−(β +
n

∑
i=1

ti) λ},

from which the Bayes estimator of λ is the posterior mean,
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λ̂B =
k + α

β + ∑
n
i=1 ti

.

The posterior predictive distribution of future failure time tn+1 is

f (tn+1|t1, . . . , tn) =
∫ ∞

0
λe−λtn+1 × π(λ|t1, . . . , tn)dλ

=
(k + α) (β + ∑

n
i=1 ti)

α+k

(β + ∑
n
i=1 ti + tn+1)

α+k+1 , tn+1 > 0.

This distribution is known as an inverse beta distribution.
The Bayes estimator of hazard function coincides with the Bayes estima-

tor of λ,

ĥB(t) =
k + α

β + ∑
n
i=1 ti

,

while the Bayes estimator of the survival function is

ŜB(t) =

(
1 +

t

β + ∑
n
i=1 ti

)−(k+α)

.

The expression for ŜB(t) can be derived from the moment-generating func-
tion of a gamma distribution.
�

When the posterior distribution is intractable, one can use WinBUGS.

16.6 Survival Analysis in WinBUGS

WinBUGS uses two arrays to define censored observations: observed (un-
censored) times and censored times. For example, an input such as

list(times = c(0.5, NA, 1, 2, 6, NA, NA),

t.censored = c(0, 0.9, 0, 0, 0, 9, 12))

corresponds to times {0.5, 0.9+, 1, 2, 6, 9+, 12+}.
In WinBUGS, direct time-to-event modeling is possible with exponen-

tial, Weibull, gamma, and log-normal densities.
There is a multiplier I that is used to implement censoring. For example,

if Weibull dweib(r, mu) observations are on the input, the multiplier is an
indicator that the observation exceeded time t.censored[i]:

t[i] ~ dweib(r, mu) I(t.censored[i],)
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For uncensored data one sets t.censored[i] = 0. The above describes
right-censoring. Left-censored observations are modeled using the multi-
plier I(,t.censored[i]).

Example 16.15. Bayesian Immunoperoxidase and BC. In Example 16.7
MLEs and confidence intervals on λ1 and λ2 were found. In this example
we find Bayes estimators and credible sets.

Before discussing the results, note that when observations are censored,
their values are unknown parameters in the Bayesian model and predic-
tions can be found. Because they are treated as parameters, all censored
observations need to be initialized, and the initial values should exceed the
censoring times. Here is the WinBUGS program that estimates λ1 and λ2.

model{

for(i in 1:n1) {

ImmPeroxNeg[i] ~ dexp(lam1) I(CensorIPN[i], )

}

for(i in 1:n2) {

ImmPeroxPos[i] ~ dexp(lam2) I(CensorIPP[i], )

}

lam1 ~ dgamma(0.001, 0.001)

lam2 ~ dgamma(0.001, 0.001)

}

DATA

list( n1 = 36, n2 = 9,

ImmPeroxNeg=c(19, 25, 30, 34, 37, 46, 47, 51,

56, 57, 61, 66, 67, 74, 78, 86,

NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),

CensorIPN = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

122, 123, 130, 130, 133, 134, 136, 141, 143, 148,

151, 152, 153, 154, 156, 162, 164, 165, 182, 189),

ImmPeroxPos = c(22, 23, 38, 42, 73, 77, 89, 115, NA),

CensorIPP= c(0,0,0,0,0,0,0,0,144))

INITS

list(lam1=1, lam2 = 1,

ImmPeroxNeg=c(NA, NA, NA, NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA, NA, NA, NA,

200, 200, 200, 200, 200, 200, 200, 200, 200, 200,

200, 200, 200, 200, 200, 200, 200, 200, 200, 200),

ImmPeroxPos = c(NA, NA, NA, NA, NA, NA, NA, NA, 200) )
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mean sd MCrror val2.5pc median val97.5pc start sample

ImmPeroxNeg[17] 374.8 270.8 0.4261 128.0 289.7 1107.0 1001 500000
ImmPeroxNeg[18] 376.2 270.6 0.4568 129.0 291.2 1107.0 1001 500000
ImmPeroxNeg[19] 383.2 270.6 0.4342 136.0 298.0 1115.0 1001 500000

· · ·
ImmPeroxNeg[35] 435.1 270.2 0.4319 188.1 349.9 1166.0 1001 500000
ImmPeroxNeg[36] 442.3 270.6 0.4272 195.0 357.1 1173.0 1001 500000
ImmPeroxPos[9] 233.1 102.8 0.1730 146.0 200.5 508.2 1001 500000
lam1 0.0042 0.0010 2.849E-6 0.0024 0.0041 0.0065 1001 500000
lam2 0.0128 0.0045 7.496E-6 0.0055 0.0123 0.0231 1001 500000

The Bayes estimator of λ1 is λ̂1,B = 0.004211, and the 95% credible set
is [0.002404, 0.006505]. The Bayes estimator and interval are close to their
classical counterparts (Exercise 16.2).
�

Example 16.16. Smoking Cessation Experiment. The data set for this ex-
ample comes from a clinical trial discussed in Banerjee and Carlin (2004).
A number of smokers entered into a smoking cessation study, and 263 of
them quit. These 263 quitters were monitored and checked to see if and
when they relapsed. RelapseT is the time to relapse; it is either observed or
censored, with the censoring indicator contained in the vector censored.time.
The independent covariates are Age (age of the individual), AgeStart (age
when he/she started smoking), SexF (Female=1, Male=0), SIUC (whether the
individual received an intervention or not), and F10Cigs (the average num-
ber of cigarettes smoked per day).

A logistic distribution is constrained to a nonnegative domain to model
RelapseT. The parameters of dlogis(mu,tau) are the mean mu, which depends
on the linear combination of covariates, and tau, which is a rate parameter.
The standard deviation is π/(

√
3τ)≈ 1.8138/τ.

model {

for (i in 1:N)

{

RelapseT[i] ~ dlogis(mu[i],tau) I(censored.time[i],)

mu[i] <- beta[1] + beta[2] * Age[i] + beta[3] * AgeStart[i] +

beta[4] * SexF[i] + beta[5] * SIUC[i] + beta[6] * F10Cigs[i]

}

for( j in 1:6){

beta[j] ~ dnorm(0, 0.01)

}

tau ~ dgamma(1,0.01)

meanT <- mean(mu[])

sigma <- 1.8138/tau #1.8138 ~ pi/sqrt(3)

# Evaluate Survival Curve for a Subject with covariates:

Ag <- 50; AgSt <- 18; SxF <- 0; S <- 1; Cigs <- 20;

fmu <- beta[1] + beta[2] * Ag + beta[3] * AgSt +

beta[4] * SxF + beta[5] * S + beta[6] * Cigs
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for(i in 1:100) {

time[i] <- i/10

Surv[i] <- 1/(1 + exp(tau*(time[i] - fmu)))

}

}

# Data and Inits omitted (see Smoking.odc)

mean sd MCrror val2.5pc median val97.5pc start sample

beta[1] 2.686 2.289 0.1254 –2.026 2.701 7.284 1001 100000
beta[2] 0.07817 0.03844 0.002078 0.009544 0.07815 0.1509 1001 100000
beta[3] –0.07785 0.07222 0.003745 –0.2181 –0.07965 0.06802 1001 100000
beta[4] –0.9555 0.5382 0.009515 –2.02 –0.9494 0.08981 1001 100000
beta[5] 1.666 0.5993 0.01482 0.4886 1.672 2.817 1001 100000
beta[6] –0.02347 0.02459 9.21E-4 –0.07072 –0.02394 0.0281 1001 100000
meanT 5.314 0.3382 0.00604 4.712 5.292 6.034 1001 100000
sigma 3.445 0.345 0.005367 2.841 3.421 4.187 1001 100000
tau 0.5317 0.05256 8.15E-4 0.4332 0.5302 0.6384 1001 100000
Surv[1] 0.9628 0.01129 5.199E-4 0.9366 0.9642 0.9808 1001 100000
Surv[2] 0.9609 0.01173 5.459E-4 0.9336 0.9623 0.9797 1001 100000

· · ·
Surv[99] 0.1402 0.05249 0.003402 0.06123 0.1334 0.2645 1001 100000
Surv[100] 0.1342 0.05118 0.003311 0.05765 0.1274 0.2557 1001 100000

The Surv values (ordinate, mean, standard deviation, median, and quan-
tiles) are exported to MATLAB as data file smokingoutbugs.mat. The file smokingbugs.m

reads in the data and plots the posterior estimator of the survival curve
(Figure 16.6). Note that the survival curve is S(t|µ,τ) = 1/(1 + exp{τ(t−
µ)}). The posterior distribution of S(t|µ,τ) is understood as a distribution
of a function of µ and τ for t fixed.
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Fig. 16.6 Bayesian estimator of survival curve. The green bands are the 0.025 and 0.975
percentiles of the posterior distribution for S(t), while the blue errorbars have a size of
posterior standard deviations.
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Example 16.17. Duration of Remissions in Acute Leukemia. A data set an-
alyzed by Freireich et al. (1963), and subsequently by many authors, comes
from a trial of 42 leukemia patients (under age of 20) treated in 11 US
hospitals.

The effect of 6-mercaptopurine (6-MP) therapy on the duration of remis-
sions induced by adrenal corticosteroids has been studied as a model for
testing new agents. Some patients were treated with 6-MP and the rest were
controls. The trial was designed as matched pairs. The matching was done
with respect to remission status (partial = 1, complete = 2). Randomization
to 6-MP or control arms was done within a pair. Patients were followed
until leukemia relapsed or until the end of the study. Overall survival was
not significantly different for the two treatment programs since patients
maintained on placebo were treated with 6-MP when relapse occurred.

# Status Contr 6-MP # Status Contr 6-MP # Status Contr 6-MP
1 1 1 10 8 2 11 34+ 15 2 8 17+
2 2 22 7 9 2 8 32+ 16 1 23 35+
3 2 3 32+ 10 2 12 25+ 17 1 5 6
4 2 12 23 11 2 2 11+ 18 2 11 13
5 2 8 22 12 1 5 20+ 19 2 4 9+
6 1 17 6 13 2 4 19+ 20 2 1 6+
7 2 2 16 14 2 15 6 21 2 8 10+

#Duration of Steroid-induced Remissions in Acute Leukemia

model {

for (i in 1:n) {

log(mu[i]) <- b0+ b1[treat[i]] + b2[status[i]]

t[i] ~ dweib(r,mu[i]) I(t.cen[i],)

S[i] <- exp(-mu[i]*pow(t[i],r));

f[i] <- mu[i]*r*pow(t[i],r-1)*S[i]

Lik[i] <- pow(f[i],1-delta[i])*pow(S[i],delta[i]);

logLik[i] <- log(Lik[i])

}

b0 ~ dnorm(0,0.00001)

b1[1] <- 0

b1[2] ~ dnorm(0,0.001)

b2[1] <- 0

b2[2] ~ dnorm(0,0.001)

r ~ dgamma(0.01,0.01)

Dev <- -2*sum(logLik[]) #deviance

}

DATA

list(n=42,

t = c(1, 22, 3, 12, 8, 17, 2, 11, 8, 12,

2, 5, 4, 15, 8, 23, 5, 11, 4, 1, 8,
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10, 7, NA, 23, 22, 6, 16, NA, NA, NA,

NA, NA, NA, 6, NA, NA, 6, 13, NA, NA, NA),

t.cen = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,32,0,0,0,0,

34,32,25,11,20,19,0,17,35,0,0,9,6,10),

treat = c(1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1,1,

2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2,2),

status = c(1,2,2,2,2,1,2,2,2,2,2,1,2,2,2,1,1,2,2,2,2,

1,2,2,2,2,1,2,2,2,2,2,1,2,2,2,1,1,2,2,2,2),

delta = c(0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,0,

0,0,1,0,0, 0,0,1,1,1, 1,1,1,0,1, 1,0,0,1,1,1) )

INITS

list(r=1,b0 = 0, b1=c(NA,0),b2=c(NA,0),

t = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA,NA,NA,32,NA,NA,NA,NA,34,32,

25,11,20,19,NA,17,35,NA,NA,9,6,10))

mean sd MCrror val2.5pc median val97.5pc start sample

Dev 241.2 7.527 0.02825 228.5 240.6 257.8 1001 200000
b0 –3.209 0.6867 0.009883 –4.636 –3.181 –1.949 1001 200000
b1[2] –1.772 0.4241 0.003255 –2.629 –1.76 –0.9696 1001 200000
b2[2] 0.1084 0.4306 0.002543 –0.6967 0.09381 0.9995 1001 200000
r 1.37 0.2069 0.003338 0.9877 1.361 1.798 1001 200000
t[24] 57.34 29.86 0.1341 32.62 48.55 132.9 1001 200000
t[29] 58.96 29.15 0.1345 34.6 50.17 134.7 1001 200000

· · ·
t[41] 37.21 30.96 0.1128 7.161 29.06 115.5 1001 200000
t[42] 39.68 31.09 0.1177 10.95 31.45 117.3 1001 200000

�

Example 16.18. Photocarcinogenicity. Grieve (1987) and Dellaportas and
Smith (1993) explored photocarcinogenicity in four treatment groups with
20 rats in each treatment group. Treatment 3 is the test drug, and the others
are some type of control. Response is time to death or censoring time.

We will find Bayes’ estimators for median survival times for the four
treatments. The survival times are modeled as Weibull Wei(r,µi), i =
1, . . . ,4. The WinBUGS code specifies the censoring and priors on the
Weibull model. The data part of the code provides observed and censored
times. Posterior densities for median survival times are given in Figure 16.7.

model{

for(i in 1 : M) {

for(j in 1 : N) {

t[i, j] ~ dweib(r, mu[i])I(t.cen[i, j],)

}

mu[i] <- exp(beta[i])
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beta[i] ~ dnorm(0.0, 0.001)

median[i] <- pow(log(2) * exp(-beta[i]), 1/r)

}

r ~ dexp(0.001)

}

DATA

list( t = structure(.Data = c(12, 1, 21, 25, 11, 26, 27, 30, 13,

12, 21, 20, 23, 25, 23, 29, 35, NA, 31, 36, 32, 27, 23, 12,

18, NA, NA, 38, 29, 30, NA, 32, NA, NA, NA, NA, 25, 30,

37, 27, 22, 26, NA, 28, 19, 15, 12, 35, 35, 10, 22, 18, NA,

12, NA, NA, 31, 24, 37, 29, 27, 18, 22, 13, 18, 29, 28, NA,

16, 22, 26, 19, NA, NA, 17, 28, 26, 12, 17, 26), .Dim = c(4,20)),

t.cen = structure(.Data = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 40, 40, 0, 0, 0, 40, 0, 40,

40, 40, 40, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0,

40, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 29, 10, 0,

0, 0, 0, 0, 0), .Dim = c(4, 20)), M = 4, N = 20)

INITS

list( r=1, beta=c(0,0,0,0) ) #generate the rest

mean sd MCrror val2.5pc median val97.5pc start sample

median[1] 23.82 1.977 0.02301 20.20 23.74 27.96 1001 100000
median[2] 35.11 3.459 0.01650 29.23 34.79 42.82 1001 100000
median[3] 26.80 2.401 0.02169 22.46 26.66 31.94 1001 100000
median[4] 21.38 1.845 0.01446 18.09 21.26 25.34 1001 100000

Fig. 16.7 Posterior densities of median survival times median[1]–median[4].

�
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16.7 Exercises

16.1. Simulation of Censoring.

y = exprnd(10,50,1); % Random failure times exponential(10)

d = exprnd(20,50,1); % Drop-out times exponential(20)

t = min(y,d); % Observe the minimum of these times

censored = (y>d); % Observe whether the subject failed

Using MATLAB’s ecdf calculate and plot empirical CDF and confidence
bounds for arguments t and censored.

16.2. Immunoperoxidase. In the context of Example 16.7 find a confidence
interval for λ1, the rate parameter for immunoperoxidase-negative pa-
tients. Use the fact that for MLE λ̂1,

λ̂1 − λ1

λ̂/
√

k1
or

√
k1 (log λ̂1 − log λ1),

both have an approximately standard normal distribution. Here, k1 is the
number of non-censored life-times.

16.3. Expected Lifetime. Let T be a lifetime with survival function S(t). Using
integration by parts in the definition of ET, show

ET =
∫ ∞

0
S(t)dt.

16.4. Rayleigh Lifetimes. A lifetime T would have Rayleigh distribution with
scale parameter θ if its CDF is given by

F(t) = 1− exp
{
− t2

2θ

}
, t ≥ 0.

(a) Find the PDF, survival function S(t), hazard h(t), and cumulative
hazard H(t).
(b) Assume that lifetimes T1 = 10, T2 = 8, T3 = 6 and T4 = 10 have been
observed. Find the MLE of θ. If ET2 = 2θ, show that the corresponding
moment matching estimator coincides with MLE. Evaluate the MLE for
the four observed values.
(c) Find the theoretical median life tmed. Is it close to observed median
life Tmed = (8 + 10)/2 = 9?

16.5. Log-logistic Lifetimes. A lifetime T would have log-logistic LL(α, β)
distribution if its PDF and CDF are given by
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f (t|α, β) =

α
β

(
t
β

)α−1

(
1 +

(
t
β

)α)2 , t ≥ 0,

and

F(t|α, β) = 1− 1

1 +
(

t
β

)α =
tα

βα + tα
, t ≥ 0.

Here the parameters α (shape) and β (scale) are both positive.
If T has a log-logistic distribution with shape parameter α and scale
parameter β, then Y = log(T) has a logistic distribution with location
parameter log(β) and scale parameter 1/α.
The kth raw moment of T is given by

ETk = βk kπ/α

sin(kπ/α)
, k < α.

(a) Find the survival function S(t), hazard h(t), and cumulative hazard
H(t).
(b) Assume that α = 2 and that lifetimes T1 = 4, T2 = 2, T3 = 2, and T4 = 7
from LL(2, β) have been observed. Find the moment matching estimator
of β. Evaluate the estimator for the four observed values.
(c) Find tp, the p-quantile for T. Estimate the median life t1/2 and quar-
tiles t1/4 and t3/4 for the given data.

HINT. For cumulative hazard no need to integrate. Since in (b) α = 2 only
the first moments can be matched.

16.6. Weathered Cord Data Parametric Fit. Using one of MATLAB’s built-in
functions, mle or evfit, fit the EV distribution to the data in Example 16.9.
The PDF and CDF of EV distribution (Gumbel type I distribution for the
minimum) are

f (t) =
1
b

exp
(

t− a

b

)
exp

(
−exp

(
t− a

b

))
,

F(t) = 1− exp
(
−exp

(
t− a

b

))
, t ∈R.

Plot the fitted survival function S(t|â, b̂) over the Kaplan–Meier estimator
from Example 16.9. Comment on the agreement of the parametric and
nonparametric estimators of the survival function.
Hint: Estimators of a and b for EV distribution are theta(1) and theta(2)

in
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% Strength of Weathered Cord Data

T=[36.3,41.7, ... ,41.9,42.5];

censor=[zeros(1,41),ones(1,7)];

[theta,thetaCI] = mle(T, ’distribution’, ’ev’, ’censoring’, censor)

% or: [theta thetaCI] = evfit(T,0.05,censor)

16.7. Cumulative Hazards and Maxwell. The components E1, E2, and E3 are
connected as in the graph below.

The components E1 and E2 have cumulative hazards

H(t) =

{
λt, 0≤ t < 1
λt2, t ≥ 1

with λ1 = 2 and λ2 = 0.5, respectively. The component E3 has a lifetime
T3 with the Maxwell distribution for which the PDF and CDF are

f (t) =

√
2
π

t2

σ2 exp
{
− t2

2σ2

}
, and

F(x) = 2Φ

(
t

σ

)
− 1−

√
2
π

t

σ
exp

{
− t2

2σ2

}
.

The expectation of T3 is ET3 = 2σ
√

2/π. Unlike the λ’s, the parameter σ
is not known in advance. From the previous experiments with compo-
nents identical to E3, the following survival times are available: 1, 3, 4, 1,
and 1.
Using the above information, find the probability of the system being
operational up to time (a) t = 0.5, (b) t = 2.

16.8. A System with Log-Burr Lifetimes. In the network from Exercise 16.7
all three components are identical and have a lifetime T given by the
log-Burr CDF:

F(t) =

(
1− eλt

)2

1 +
(
1− eλt

)2 = 1− 1

1 +
(
1− eλt

)2 , t ≥ 0,λ > 0.
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The parameter λ is not known; however, it could be estimated. In pre-
vious experiments involving n = 6 of such components the following
lifetimes were obtained: T1 = 3, T2 = 5, T3 = 3, T4 = 6, T5 = 2, and T6 = 5.
(a) If it is known that for this distribution

ET =
π

4λ
,

estimate λ by the moment-matching approach.
(b) What is the probability that the network is operational at time t = 4?

16.9. Censored Rayleigh. The lifetime (in hours) of a certain sensor has
Rayleigh distribution, with survival function

S(t) = exp
{
−1

2
λt2
}

, λ > 0.

Twelve sensors are placed under test for 100 hours, and the following
failure times are recorded 23, 40, 41, 67, 69, 72, 84, 84, 88, 100+, 100+.
Here + denotes a censored time.
(a) If failure times t1, . . . , tr are observed, and t+r+1, . . . , t+n are censored,
show that the MLE of λ is

λ̂ =
2r

∑
r
i=1 ti + ∑

n
i=r+1 t+2

i

.

Evaluate the MLE for the given data. Consult Example 16.6.
(b) Calculate and plot the Kaplan–Meier estimator and superimpose S(t)
evaluated at λ̂.

16.10. MLE for Equally Censored Data. A cohort of n subjects is monitored
in the time interval [0, T], where T is fixed in advance. Suppose that
r failures are observed (r can be any number from 0 to n) at times
t1, t2, . . . , tr ≤ T. There are (n − r) subjects that survived the entire pe-
riod [0, T], and their failure times are not observed.
Suppose that f (t) is the density of a lifetime. The likelihood is

L = C
r

∏
i=1

f (ti) (1− F(T))n−r

for some normalizing constant C.
(a) Express the likelihood L for the exponential lifetime distribution, that
is, f (t) = λe−λt, t ≥ 0, and F(t) = 1− e−λt, t ≥ 0.
(b) Take the log of the likelihood, ℓ= log(L).
(c) Find the derivative of ℓ with respect to λ. Set the derivative to 0 and
solve for λ. If the solution λ̂ maximizes ℓ, (ℓ′′(λ̂)< 0), then λ̂ is the MLE
of λ.
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(d) Show that the MLE is

λ̂mle =
r

∑
r
i=1 ti + (n− r)T

.

(e) If in the interval [0,8] four subjects failed at times t1 = 2, t2 = 5/2,
t3 = 4, and t4 = 5, and two subjects survived without failure, find the
estimator λ, assuming that the lifetime has an exponential distribution.
Check your calculations with

data = [2 2.5 4 5 8 8];

cens = [0 0 0 0 1 1];

lamrec = mle(data, ’distribution’,’exponential’,’censoring’,cens)

lammle = 1/lamrec %MATLAB uses reciprocal parametrization

(f) What is the MLE of λ if the unobserved failure times are ignored, that
is, only four observed failure times, t1, t2, t3, and t4, are used?

16.11. Cancer of Tongue. Sickle-Santanello et al. (1988) analyze data on 80
males diagnosed with cancer of the tongue. Data are provided in the file

tongue.dat. The columns in the dataset are as follows:
(i) Tumor DNA profile (1=aneuploid tumor, 2 = diploid tumor);
(ii) Time to death or on-study time (in weeks); and
(iii) Censoring indicator (1 = censored, 0 = observed)
(a) Calculate and plot Kaplan–Meier estimators for the two types of tu-
mor.
(b) Using Mantel’s logrank procedure manteltwo.m, test the hypothesis
that the two survival functions do not differ significantly.
(c) Fit the Cox proportional hazard regression with tumor profile as the
covariate. What is the 95% CI for the slope β? Compare the results with
the conclusions from (b).

16.12. Rayleigh and Bayes. It was observed that in clinical studies dealing
with cancer survival times follow Rayleigh distribution with pdf

f (x) = 2λte−λt2
, t ≥ 0, λ > 0.

(a) Show that the hazard function is linear.
(b) Find the mean survival time as a function of λ.
(c) For t1, . . . , tk observed and tk+1, . . . , tn censored times, show that the
likelihood is proportional to

L ∝ λk exp{−λ
n

∑
i=1

t2
i }.

If the prior on λ is gamma G(α, β), show that the posterior is gamma
G(α + k, β + ∑

n
i=1 t2

i ).
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(d) Show that the Bayes estimators of the hazard and survival functions
are

ĥB(t) =
2(k + α)t

β + ∑
n
i=1 t2

i

and ŜB(t) =

(
1 +

t2

β + ∑
n
i=1 t2

i

)−(k+α)

.

16.13. Experiment at Strangeways Lab. Pike (1966) provides data from an ex-
periment conducted by Glücksmann and Cherry at Strangeways Labora-
tory, Cambridge, UK, in which two groups of female rats were exposed
to carcinogen DMBA, and the number of days to death from vaginal can-
cer was recorded. The two groups were distinguished by pretreatment
regime.

Group 1 143 164 188 188 190 192 206 209 213 216 216*
220 227 230 234 244* 246 265 304

Group 2 142 156 163 198 204* 205 232 232 233 233 233
233 239 240 261 280 280 296 296 323 344*

The * on two entries in each group indicate that the observation was
censored.
(a) Find and plot Kaplan–Meier estimators of survival functions for the
two groups.
(b) Using the logrank procedure, test the hypothesis that the two survival
functions are the same at significance level α = 0.05.

16.14. Exercise Stress Test. Campbell and Swinscow (2009) describe an exper-
iment in which 20 patients, 10 of normal weight and 10 severely over-
weight, underwent an exercise stress test. The patients had to lift a pro-
gressively increasing load for up to 12 minutes, but they were allowed to
stop earlier if they could do no more. On two occasions the equipment
failed before 12 minutes. The times (in minutes) achieved were:

Normal weigh 2, 4, 6, 8, 8**, 9, 10, 12*, 12*, 12*
Overweight 1, 3, 4, 5, 6, 7, 7**, 9, 11, 12*

Here * means that the end of test was reached, and ** stands for equip-
ment failure.
Use the logrank test to compare these two groups. Report the p-value.

16.15. Western White Clematis. Muenchow (1986) tested whether male or fe-
male flowers (of Clematis ligusticifolia) were equally attractive to insects.
The data in table represent waiting times (in minutes), which includes
censored data (observations with +).
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Male flowers Female flowers
1 6 11 19 54 1 8 28 43 90+
1 7 14 19 61 2 9 29 56 94+
2 7 14 27 68 4 14 29 57 96
2 8 14 27 69 4 15 29 59 96+
4 8 16 30 70 5 18 30 67 100+
4 8 16 31 83 6 18 32 71 102+
5 9 17 35 95 7 19 35 75 105+
5 9 17 36 102+ 7 23 35 75+
6 9 18 40 104+ 8 23 37 78+
6 11 19 43 8 26 39 81

Compare survival functions for male and female flowers.

16.16. Gastric Cancer Data. Stablein et al. (1981) provide data on 90 patients
affected by locally advanced, nonresectable gastric carcinoma. The pa-
tients are randomized to two treatments: chemotherapy alone (coded as
0) and chemotherapy plus radiation (coded as 1). Survival time is re-
ported in days, with censoring indicator (1 = censored, 0 = death).
Data are provided in file: gastric.cls|dat|xlsx where the column 1
is the treatment code, column 2 is the survival time, and column 3 is
censoring indicator:

1 17 0

1 42 0

1 44 0

...

0 1512 1

0 1519 1

Is the treatment type significantly affecting the survival time? Use the lo-
grank test and Cox proportional hazards regression to answer this ques-
tion.

16.17. Duration of Remissions in Acute Leukemia. In Example 16.17 times to
remission in leukemia patients (controls and treated with 6-MP drug)
were analyzed using a Bayesian model. For this data compare the
two survival functions, for 6-MP treatment and control, using the lo-
grank test. Ignore matching by variable status. You can use the function

manteltwo.m.

16.18. Time to Second Birth. The Medical Birth Registry of Norway was es-
tablished in 1967 and contains information on all births in Norway since
that time. The data set secondbirth.dat|xlsx distilled from the registry



840 16 Inference for Censored Data and Survival Analysis

provides the time between first and second births for a selection of 53,558
women.1

It is of interest to explore whether this time was possibly affected if the
first child died within one year of its birth.
The data set contains the following variables (as columns)

age Age of mother at first birth (in years)
sex Sex of first child (1 = boy, 2 = girl)
death First child died within one year (0 = no, 1 = yes)
time Time from first birth to second birth or censoring (in days)
status Censoring indicator (0 = censored, 1 = birth)

(a) Fit the Cox proportional hazard regression with variables age, sex,
and death as covariates. What is the 95% CI for the parameter β3 corre-
sponding to variable death? Is the variable sex significant?
(b) Plot survival functions for death = 0 and death = 1.
(c) Using Mantel’s procedure manteltwo.m, test the hypothesis that the
two survival functions are not significantly different.

16.19. Rats on Three Diets. The data is taken from the study by King et al.
(1979). The researchers studied influence of dietary fat, food type and
amount, and the dietary antioxidant butylated hydroxytoluene (BHT) on
tumor induction and tumor growth by 7,12-dimethyl-benz[a]anthracene.
The study was to determine whether ingestion of polyunsaturated fat
decreased or antagonized the inhibitory action of the antioxidant in com-
parison to diets that either contained equivalent amounts of a saturated
fat or were very low in fat. The data provided in rat.csv|dat|mat|xlsx

consist of the tumor-free time (in days) in 90 rats on three different diets
(column 1), censoring indicator (column 2), and a diet code (column 3).
The three diets are coded according to the fat content: 1 stands for a low
fat diet, 2 for a saturated fat diet, and 3 for a unsaturated fat diet.
(a) Fit the Weibull distribution for each of the three diets. Are the confi-
dence intervals for the Weibull parameters overlapping?
(b) Find the Kaplan–Meier estimators for each of the three diets and
superimpose the Weibull survival functions fitted in (a).
(c) Compare survival functions for the low fat and saturated fat diets.
Use Mantel’s logrank test with α = 0.05.

16.20. Dukes’ C Colorectal Cancer and Diet Treatment. Colorectal cancer is a
common cause of death. In the advanced stage of disease, when the dis-
ease is first diagnosed in many patients, surgery is the only treatment.
Cytotoxic drugs, when given as an adjunct to surgery, do not prevent re-
lapse and do not increase the survival in patients with advanced disease.

1 The Medical Birth Registry of Norway is acknowledged for allowing the usage of the
data and Dr. Stein Emil Vollset for providing the data.
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Interest has been shown, at least by patients, in a nutritional approach
to treatment, where diet plays a critical role in the disease management
program.
In a controlled clinical trial, McIllmurray and Turkie (1987) evaluated
the diet treatment in patients with Dukes’ C colorectal cancer, because
the residual tumour mass is small after operation, the relapse rate is
high, and no other effective treatment is available. The diet treatment
consisted of linolenic acid, an oil extract of the seed from the evening
primrose plant Onagraceae Oenothera biennis and vitamin E.
The data for the treatment and control patients are given below:

Treatment Survival time (months)
Linoleic acid 1+, 5+, 6, 6, 9+, 10, 10, 10+, 12, 12, 12, 12, 12+, 13+, 15+,
(n1 = 25) 16+, 20+, 24, 24+, 27+, 32, 34+, 36+, 36+, 44+
Control 3+, 6, 6, 6, 6, 8, 8, 12, 12, 12+, 15+, 16+, 18+, 18+, 20, 22+,
(n2 = 24) 24, 28+, 28+, 28+, 30, 30+, 33+, 42

(a) Estimate the Weibull parameters for the two groups and superimpose
the resulting Ŝ(t) on the corresponding Kaplan–Meier estimators.
(b) For both treatment (linoleic acid) and control groups, find times at
which 50% of the patients are surviving. Use Ŝ(t) from (a).
(c) Using Mantel’s logrank procedure manteltwo.m, test the hypothesis that
the two survival functions are the same.
A starter MATLAB file with data, dukes.m, is provided.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch16.Survival/

chada.m, cordband.m, coxreadmissions.m, ImmunoPerox.m, KMmuenchow.m,

leukemiadirect.m, leukemiaremission.m, lifetables.m, limphomaLR.m,

logrank.m, logrank1.m, MacDonaldCancer.m, matneltwo.m, Muenchow.m,

PBC.m, ple.m, secondbrth.m, simulation1.m, simulation2.m, smokingbugs.m,

tongue.m, weibullsim.m

ibrahim1.odc, ibrahim2.odc, Immunoperoxidase.odc, Leukemia.odc,

photocar.odc, Smoking.odc

gehan.dat, KMmuenchow.txt, limphoma.mat, pbc.xls, pbcdata.dat,

prostatecanc.dat, secondbirth.dat|xlsx, smokingoutbugs.mat,

tongue.dat|xlsx

http://statbook.gatech.edu/Ch16.Survival/
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Chapter 17

Goodness-of-Fit Tests

Although Fisher was fond of pointing out the difficulties of assuming the correct prior
distribution p(θ), he did not disdain to make a prodigious leap of faith in his selection of
f (x|θ).

– Richard A. Tapia and James R. Thompson

WHAT IS COVERED IN THIS CHAPTER

• Quantile–Quantile Plots
• Pearson’s χ2-Test
• Kolmogorov–Smirnov Goodness-of-Fit Test
• Smirnov’s Two-Sample Test
• Cramér–von Mises and Watson’s Tests
• Rosenblatt’s Test
• Moran’s Test
• Testing Departures from Normality

17.1 Introduction

In traditional exposition of inferential statistics usually the family of dis-
tributions that model the data is given or assumed. Typically, the family
is generated by a single distribution known up to a parameter or vector
of parameters. Then the analysis proceeds to estimate or test the parame-
ters which results in narrowing the family to a specific distribution. Often

845



846 17 Goodness-of-Fit Tests

the distribution is tacitly assumed (Poisson, binomial, normal, exponential,
etc.) and the interest is only in the parameters specifying the location or
spread of such distributions. All this was done in Chapters 7 through 11.

Should we be more critical? Before the model or a family of models
describing data is “assumed known,” we should think how to select the
model and test its adequacy.

Goodness-of-fit tests are procedures that test whether the distribution of
a sample conforms to some fixed-in-advance distribution. We already saw
Q–Q plots in Chapter 5 where the samples were compared to some theoret-
ical distributions but in a descriptive fashion, without formal inference. In
this chapter we discuss the celebrated Pearson’s χ2-test, the Kolmogorov–
Smirnov (K-S) test, and several other inferential procedures for goodness
of fit.

17.2 Probability Plots

Probability plots are graphical tools used to evaluate the agreement of the
observed distribution to a postulated theoretical distribution. Two kinds
of plots are traditionally used: Q–Q (quantile-quantile) plots and P–P
(probability-probability) plots.

The Q–Q plots are more robust and considerably more popular, so we
discuss them first.

17.2.1 Q–Q Plots

Quantile–quantile, or Q–Q, plots are a popular and informal diagnostic tool
for assessing the distribution of data or comparing two distributions. There
are two kinds of Q–Q plots, one that compares an empirical distribution
with a theoretical one and another that compares two empirical distribu-
tions.

We will explain the plots with an example. Suppose that we generated
some random sample X from a uniform U (−10,10) distribution of size n =
200. Suppose, for a moment, that we do not know the distribution of this
data and want to check for normality by a Q–Q plot. We generate quantiles
of a normal distribution for n equally spaced probabilities between 0 and
1, starting at 0.5/n and ending at 1− 0.5/n. The empirical quantiles for X
are simply the elements of a sorted sample. If the empirical distribution
matches the theoretical, the Q–Q plot is close to a straight line.

n=200;

X = unifrnd(-10, 10, [1 n]);
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q=((0.5/n):1/n:(1-0.5/n));

qY = norminv(q);

qZ = unifinv(q);

qX = sort(X);

figure(1); plot(qX, qY, ’*’)

figure(2); plot(qX, qZ, ’*’)

The Q–Q plot is given in Figure 17.1a. Note that the ends of the Q–Q
plot curve up and down from the straight line, indicating that the sample
is not normal.
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Fig. 17.1 (a) Q–Q plot of a uniform sample against normal quantiles. (b) Q–Q plot of a
uniform sample against uniform quantiles.

If instead the statement qY = norminv(q) is replaced by qY = unifinv(q),
then the Q–Q plot indicates that the match is good and that the sample
is consistent with uniform distribution (Figure 17.1b). Note that while the
moments (mean and variance) of the sample and theoretical distributions
may differ, matching the family of distributions is important. If the mean
and variance differ, the straight line in the plot is shifted and has a differ-
ent slope. Sometimes the straight line passing through the first and third
quartiles is added to Q–Q plots for reference.

It has been part of the general knowledge that Q–Q plots can be mislead-
ing. Given a data set, the Q–Q plots may look approximately linear in the
central part for many candidate distributions. A formal justification of why
Q–Q plots cannot be used to develop a satisfactory GOF test is provided in
Brown et al (2004).

MATLAB has built-in functions qqplot, normplot, probplot, and cdfplot for
a variety of visualization and diagnostic tasks.
�

In our example we used pi-quantiles for pi = (i− 0.5)/n, i = 1, . . . ,n. In
general, one can use pi = (i− c)/(n− 2c + 1) for any c ∈ [0,1], and popular
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choices are c = 1/3, c = 1/2 (our choice), and c = 1. The choice c = 0.3175 is
recommended if the distributions are long-tailed, since the extreme points
on a Q–Q plot are more stable. This choice of c approximates the medians
of order statistics from a uniform distribution on (0,1) and has invariance
property; F−1(pi) are medians of order statistics from F.

Multivariate extensions are possible. A simple procedure that can be
used to assess multivariate normality is described next.
�

Given multivariate data yi = (yi1,yi2, . . . ,yip)
′, i = 1, . . . ,n one finds

d2
i = (yi − y)′ S−1 (yi − y), (17.1)

where y = 1
n ∑

n
i=1 yi is the sample mean and S = 1

n−1 ∑
n
i=1(yi− y)(yi− y)′ is

the sample covariance matrix. If the yis are distributed as multivariate nor-
mal, then the d2

i s have an approximately a χ2-distribution with p degrees
of freedom, and plotting the empirical quantiles of d2

i against the corre-
sponding quantiles of χ2

p assesses the goodness of a multivariate normal
fit.

Example 17.1. Pearson’s Data on Hereditary Stature. The data set pearson.dat

compiled by K. Pearson contains the hereditary stature of 1078 fathers and
their sons. This data set was analyzed in Chapter 14 in the context of re-
gression. We will visualize the agreement of pairs of heights to a bivariate
normal distribution by inspecting a Q–Q plot. We will calculate and sort d2s
in (17.1) and plot them against quantiles of a χ2

2-distribution (Figure 17.2).

%qqbivariatenormal.m

load ’pearson.dat’

S = cov(pearson)

[m n] = size(pearson) %[1078 2]

mp = repmat(mean(pearson), m, 1);

d2 = diag((pearson - mp) * inv(S) * (pearson - mp)’);

% chi-square (2 df) quantiles

p = 0.5/m:1/m:1;

quanch2 = chi2inv(p,2);

figure(1)

loglog(quanch2, sort(d2),’o’,’Markersize’,msize,...

’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’g’)

hold on

loglog([0.0002 50],[0.0002 50],’r’,’linewidth’,lw)

axis([10^-4, 100, 10^-4, 100])

xlabel(’Quantiles of chi^2_2 ’)

ylabel(’Sorted d^2’)

�
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Fig. 17.2 Sorted values of d2 plotted against the χ2
2 quantiles. The linearity of the plot

indicates a good fit of Pearson’s data to a bivariate normal distribution.

17.2.2 P–P Plots

A P–P plot compares the empirical CDF of a variable with a proposed
theoretical cumulative distribution function F. Recall that the empirical
CDF, denoted by Fn(x), is defined as the proportion of all observations
less than or equal to x, so for ith order statistic Fn(x(i)) = i/n. The P–
P plot is constructed by first sorting n observations in increasing order:
x(1) ≤ x(2) ≤ · · · ≤ x(n). Then the ith ordered value is represented on the
plot by the point whose ordinate is F(x(i)) and whose abscissa is i/n.

Similar to the Q–Q plots, the P–P plots are used to visualize how close
the selected theoretical distribution fits the data. Some disadvantages of
P–P plots when compared to Q–Q plots are: (i) location and scale of the
theoretical distribution have to be specified for P–P plots, and (ii) P–P plots
are less sensitive to extreme observations, which are most influential in the
model fit.

P–P plots are more discriminatory in the regions of high probability
density. For example, if you compare a data distribution with a particular
normal distribution, differences in the middle of the two distributions are
more apparent on a P–P plot than on a Q–Q plot.

Example 17.2. P–P and Q–Q Plots Compared. In ppqq.m we generated
100 observations from a t-distribution with 7 degrees of freedom. We are in-
terested in checking whether the distribution is normal by inspecting both
P–P and Q–Q plots. The P–P plots require exact theoretical distribution pa-
rameters, so for the normal distribution we use the mean and standard de-
viation used to generate the observations. As is evident from Figure 17.3a,
the P–P plot is not indicating a systematic deviation from the normality.



850 17 Goodness-of-Fit Tests

However, the Q–Q plot, which does not require parameter specification, is
sensitive to observations from the tails, which in fact distinguishes normal
and t-distributions. From the Q–Q plot in Figure 17.3b we see that extreme
observations deviate from the straight line.
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Fig. 17.3 P–P (left) and Q–Q (right) plots of 100 random random variables simulated
from t7-distribution, contrasted against the normal distribution.

�

17.2.3 Poissonness Plots

Poissonness plots were developed by Hoaglin (1980) and consist of assess-
ing the goodness of fit of observed frequencies to frequencies correspond-
ing to Poisson-distributed data. Suppose that frequencies ni, i = 0,1, . . . ,k
corresponding to realizations 0,1, . . . ,k are observed and that for i > k all
ni = 0. Let N = ∑

k
i=0 ni.

Then, the frequency ni and the theoretical counterpart ei = N× λi

i! exp{−λ}
should be close, if the data are consistent with a Poisson distribution,

ni ∼ N × λi

i!
exp{−λ}.

By taking the logarithms of both sides one gets
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log ni + log(i!)− log N ∼ log λ · i− λ.

Thus, the plot of log ni + log(i!)− log N against integer i should be linear
with slope logλ if the frequencies are consistent with a Poisson Poi(λ)
distribution. Such a plot is called a poissonness plot.

Example 17.3. Poissonness. The script poissonness.m illustrates this. N =
50,000 Poisson random variables with λ = 4 are generated, observed fre-
quencies are calculated, and a poisonness plot is made (Figure 17.4).

rand(’state’,2)

N = 50000; xx = poissrnd(4, 1, N); %simulate N Poisson(4) rv’s.

% observed frequencies

ni = [sum(xx==0) sum(xx==1) sum(xx==2) sum(xx==3) sum(xx==4) ...

sum(xx==5) sum(xx==6) sum(xx==7) sum(xx==8) sum(xx==9) ...

sum(xx==10) sum(xx==11) sum(xx==12) sum(xx==13) sum(xx==14)]’ ;

i=(0:14)’

poissonness = log(ni) + log(factorial(i)) - log(N);

plot(i, poissonness,’o’)

xlabel(’i’)

ylabel(’log(n_i) + log(i!) - log(N)’)

hold on

plot(i, log(4)*i - 4,’r:’) %theoretical line with lambda=4

[beta] = regress(poissonness, [ones(size(i)) i])

% beta =

% -4.0591

% 1.4006

%

% Slope in the linear fit is 1.4006

% lambda can be estimated as exp(1.4006) = 4.0576,

% also, as negative intercept, 4.0509

�

17.3 Pearson’s Chi-Square Test

Pearson’s χ2-test (Pearson, 1900) is the first formally formulated testing
procedure in the history of statistical inference. In his 1984 Science arti-
cle entitled “Trial by number,” Ian Hacking states that the goodness-of-fit
chi-square test introduced by Karl Pearson ushered in a new kind of decision
making and places it among the top 20 discoveries since 1900, considering
all branches of science and technology.

Suppose that X1, X2, . . . , Xn is a sample from an unknown distribution
with CDF FX(x). We are interested in testing that this distribution is equal
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Fig. 17.4 Poissonness plot for simulated example involving N = 50,000 Poisson Poi(4)
random variates. The slope of this plot estimates logλ, while the intercept estimates −λ.
The theoretical line, log(4)i− 4 (in red), fits the points (i, log(ni) + log(i!)− log(N)) well.

to some specific distribution F0, i.e., in testing the goodness-of-fit hypothe-
sis H0 : FX(x) = F0(x).

Suppose that the domain (a,b) of the distribution F0 is split into r
nonoverlapping intervals, I1 = (a, x1], I2 = (x1, x2] . . . Ir = (xr−1,b). Such
intervals have probabilities p1 = F0(x1) − F0(a), p2 = F0(x2) − F0(x1), . . . ,
pr = F0(b)− F0(xr−1), under the assumption that H0 is true. Of course it is
understood that the observations belong to the domain of F0; if this is not
the case, the null hypothesis is automatically rejected.

Let n1,n2, . . . ,nr be the observed frequencies of observations falling in
the intervals I1, I2, . . . , Ir. In this notation, n1 is the count of observations
from the sample X1, . . . , Xn that fall in the interval I1. Of course, n1 + · · ·+
nr = n, since the intervals partition the domain of the sample.

The discrepancy between observed frequencies ni and frequencies under
F0, npi is the rationale for forming the statistic

χ2 =
r

∑
i=1

(ni − npi)
2

npi
, (17.2)

which has an approximate χ2-distribution with r − 1 degrees of freedom.
Alternative representations include

χ2 =
r

∑
i=1

n2
i

npi
− n and χ2 = n

[
r

∑
i=1

(
p̂i

pi

)
p̂i − 1

]
, (17.3)

where p̂i = ni/n.
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In some cases, the distribution under H0 is not fully specified; for exam-
ple, one might conjecture that the data is exponentially distributed without
knowing the exact value of λ. In this case, the unknown parameter can be
estimated from the sample.

If k parameters needed to fully specify F0 are estimated from the sam-
ple, the χ2-statistic in (17.2) has a χ2-distribution with r− k− 1 degrees of
freedom. A degree of freedom in the test statistic is lost for each estimated
parameter.

Firm recommendations on how to select the intervals or even the num-
ber of intervals for a χ2-test do not exist. For a continuous distribution
function one may make the intervals approximately equal in probability.
Practitioners may want to arrange interval selection so that all npi > 1 and
that at least 80% of the npis exceed 5. The rule of thumb is n ≥ 10, r ≥ 3,
n2/r ≥ 10, npi ≥ 0.25.

Remark. Pearson’s χ2-test is sometimes referred to as “poorness-of-fit”
test. This attribute is appropriate since the test can be decisive only if the
model does not fit the data well. If the postulated distribution fits the data
well, then it may not be unique, and possibly other distributions could
be found that would pass the test as well. In terms of testing hypotheses,
not rejecting H0 does not mean that the distribution specified in the null
hypothesis is the only distribution consistent with the data.

When some of the expected frequencies are less than 5, or when the
number of classes is small, then the χ2-test with Yates (Yates, 1934) correc-
tions is recommended,

χ2 =
r

∑
i=1

(|ni − npi| − 0.5)2

npi
,

which, under H0, has a χ2-distribution with r− 1 degrees of freedom.
Sometimes, instead of χ2, the Freeman–Tukey statistic is used. This

statistic, defined as

FT = 4
r

∑
i=1

(
√

ni −
√

npi)
2 ,

which under H0 has approximately a χ2 distribution with r− 1 degrees of
freedom, is sometimes preferred to Pearson’s χ2-statistic.

Example 17.4. Weldon’s 26,306 Rolls of 12 Dice. Pearson (1900) discusses
Weldon’s data (table below) as the main illustration for his test. Raphael
Weldon, an evolutionary biologist and founder of biometry, rolled 12 dice
simultaneously and recorded the number of times a 5 or a 6 was rolled.
In his letter to Galton, dated February 2, 1894, Weldon provided the data
and asked for Galton’s opinion about their validity. Three contemporary
British statisticians, Pearson, Edgeworth, and Yule, have also considered
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Weldon’s data. An interesting historic account can be found in Kemp and
Kemp (1991).

The results from 26,306 rolls of 12 dice are summarized in the following
table:

No. of dice resulting in Observed
	 or 
 when 12 dice are rolled frequency

0 185
1 1149
2 3265
3 5475
4 6114
5 5194
6 3067
7 1331
8 403
9 105

10 14
11 4
12 0

In Pearson (1900), the value of χ2-statistic was quoted as 43.9, which is
slightly different than the correct value. The discrepancy is probably due to
the use of expected frequencies rounded to the nearest integer and due to
the accumulation of rounding errors when calculating χ2.

To find the expected frequencies, recall the binomial distribution. The
number of times	 or
 was rolled with 12 dice is binomial: Bin(12,1/3).
To find the expected frequencies, multiply the total number of rolls 26,306
by the expected (theoretical) probabilities obtained from Bin(12,1/3), as in
the following MATLAB output:

%weldon.m

obsfreq = [ 185 1149 3265 5475 6114 5194 ...

3067 1331 403 105 14 4 0];

n = sum(obsfreq) %26306

expected = n * binopdf(0:12, 12, 1/3)

%expected =

% 1.0e+003 *
%

% 0.2027 1.2165 3.3454 5.5756 6.2726 5.0180 2.9272

% 1.2545 0.3920 0.0871 0.0131 0.0012 0.0000

chisqs = (obsfreq - expected).^2./expected

%chisqs =

% 1.5539 3.7450 1.9306 1.8155 4.0082 6.1695 6.6772

% 4.6635 0.3067 3.6701 0.0665 6.6562 0.0495
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chi2 = sum(chisqs)

%chi2 = 41.3122

pval=1 - chi2cdf(chi2, 13-1)

% pval = 4.3449e-005

crit = chi2inv(0.95, 13-1)

% crit = 21.0261

As is evident from the MATLAB output, the observations are not support-
ing the fact that the dice were fair (p-value of 4.3449e-05); see also Fig-
ure 17.5.
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Fig. 17.5 Bar plot of observed frequencies and theoretical frequencies. Although the
graphs appear close, the large sample size makes the discrepancy of this size very un-
likely. It is almost certain that one or more of Weldon’s 12 dice were not well balanced.

Although the observed frequencies are fairly close to the theoretical,
given the large sample size n = 26306, the test exhibits excessive power and
rejects H0 with a p-value smaller than 0.00005.
�

Example 17.5. Is the Process Poisson? The Poisson process is one of the
most important stochastic models. For example, random arrival times of
patients to a clinic are well modeled by a Poisson process. This means that
in any interval of time, say [0, t], the number of arrivals is Poisson with
parameter λt. For such Poisson processes, the interarrival times follow an
exponential distribution with density f (t) = λe−λt, t ≥ 0,λ > 0. It is often
of interest to establish the Poissonity of a process since many theoretical
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results available for such processes are ubiquitous in queueing theory and
various engineering applications.

The interarrival times of the arrival process were recorded, and it was
observed that n = 109 recorded times could be categorized as follows:

Interval 0≤ T < 1 1≤ T < 2 2≤ T < 3 3≤ T < 4 4≤ T < 5 5≤ T < 6 T ≥ 6
Frequency 34 20 16 15 9 7 8

A simple calculation determined that the sample mean was T = 5/2. Test
the hypothesis that the process, with the interarrival times described above,
is Poisson, at level α = 0.05.

Given this data, one should test the hypothesis that the interarrival times
are exponential. The density f (t) = λe−λt, t ≥ 0, λ > 0 corresponds to the
CDF F(t) = 1 − e−λt, t ≥ 0, λ > 0, and the theoretical probability of an
interval [a,b] is F(b)− F(a).

However, we first need to estimate the parameter λ in order to calculate
the the theoretical probabilities. A standard estimator for the parameter λ
is the reciprocal of the sample mean, λ̂ = 1/T = 1/(5/2) = 0.4.

With this λ̂ the theoretical frequencies of intervals [3,4] and [4,5], for
example, are np4 = 109 · (F(4)− F(3)) = 109 · (1− e−0.4·4 − (1− e−0.4·3)) =
109 · (e−0.4·3 − e−0.4·3) = 0.099298 · 109 = 10.823 and np5 = 0.066561 · 109 =
7.255, respectively. Overall, the χ2 statistic is equal to

(34− 35.9335)2

35.935
+

(20− 24.089)2

24.089
+

(16− 16.147)2

16.147
+

(15− 10.823)2

10.823
+

(9− 7.255)2

7.255
+

(7− 4.863)2

4.863
+

(8− 9.888)2

9.888
= 4.13.

The number of degrees of freedom is d f = 7− 1− 1 = 5 and the 95%
quantile for χ2

5 is chi2inv(0.95,5)=11.071. Thus, we do not reject the hypoth-
esis that the interarrival times are exponential, that is, the observed process
is consistent with a Poisson process.
�

How should the number of classes be selected? For discrete distribu-
tions, the discrete values usually define the classes. For continuous distri-
butions, both the number and sizes of classes can vary. In the previous
example, for n = 109 we selected r = 7. A popular recommendation, in-
fluenced by Mann and Wald (1942), is to take r as a multiple of n2/5 in
the case of equiprobable classes. Although asymptotically optimal from the
power-of-test considerations, the growth proportional to n2/5 leads to a
large number of classes for large n, inflating the variance of the χ2 statistic,
which affects even the nominal significance level of the test. Thus, in prac-
tice, the number of classes should increase with sample size but seldom to
exceed 15.
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Example 17.6. Simulation of Exponentials. A sample of n = 1000 exponen-
tial E (1/2) random variates is generated. For a moment, we pretend that
the generating distribution is unknown. Using MATLAB’s built-in function
chi2gof, we test the consistency of the generated data with an exponential
distribution with the rate λ estimated from the sample. Note that MAT-
LAB parameterizes the exponential distribution with the reciprocal of rate
parameter, which is estimated by sample mean.

X = exprnd(2, [1, 1000]);

[h,p,stats] = ...

chi2gof(X,’cdf’,@(z)expcdf(z,mean(X)),’nparams’,1,’nbins’,7)

%

%h = 0

%p = 0.6220

%stats = chi2stat: 2.6271

% df: 4

% edges: [1x7 double]

% O: [590 258 96 34 14 8]

% E: [1x6 double]

The sample is consistent with the exponential distribution with p-value
of 0.6220. Note that the number of intervals selected by MATLAB is 6, not
the requested 7. This is because the upper tail intervals with a low expected
count (< 5) are merged.
�

Example 17.7. Wrinkled Peas. Mendel crossed peas that were heterozygotes
for smooth/wrinkled, where smooth is dominant. The expected ratio in the
offspring is 3 smooth to 1 wrinkled. He observed 423 smooth and 133 wrin-
kled peas. The expected frequency of smooth is calculated by multiplying
the sample size (556) by the expected proportion (3/4) to yield 417. The
same is done for wrinkled to yield 139. The number of degrees of free-
dom when an extrinsic hypothesis is used is the number of values of the
nominal variable minus one. In this case, there are two values (smooth and
wrinkled), so there is one degree of freedom.

chisq = (556/4 - 133)^2/(556/4) + (556*3/4 - 423)^2/(556*3/4)

%chisq = 0.3453

1 - chi2cdf(chisq, 2-1)

%ans = 0.5568

chisqy = (abs(556/4 - 133)-0.5)^2/(556/4) + ...

(abs(556*3/4 - 423)-0.5)^2/(556*3/4) %with Yates correction

%chisq = 0.2902

1-chi2cdf(chisqy, 2-1)

%ans = 0.5901

We conclude that the theoretical odds 3:1 in favor of smooth peas are con-
sistent with the observations at level α = 0.05.
�
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Example 17.8. Horse-Kick Fatalities. During the latter part of the nine-
teenth century, Prussian officials gathered information on the hazards that
horses posed to cavalry soldiers. Fatal accidents for 10 cavalry corps were
collected over a period of 20 years (Preussischen Statistik). The number of
fatalities due to kicks, x, was recorded for each year and each corps. The
table below shows the distribution of x for these 200 “corps-years.”

Observed number of corps-years
Number of deaths, x in which x fatalities occurred

0 109
1 65
2 22
3 3
≥ 4 1

200

Altogether there were 122 fatalities [109(0) +65(1) + 22(2) +3(3) +
1(4)], meaning that the observed fatality rate was 122/200, or 0.61 fatali-
ties per corps-year. Von Bortkiewicz (1898) proposed a Poisson model for X
with a mean of c = 0.61. The table below shows the observed and expected
frequencies corresponding to x = 0,1,2, . . . , etc. The expected frequencies
are

n× 0.61i

i!
exp{−0.61},

for n = 200 and i = 0,1,2, and 3. We put together all values ≥ 4 as a single
class; this will ensure that the sum of the theoretical probabilities is equal
to 1. For example, the expected frequencies npi are

npi = 200 * [poisspdf(0:3, 0.61) 1-poisscdf(3, 0.61)]

%npi = 108.6702 66.2888 20.2181 4.1110 0.7119

Observed number of Expected number of
i Fatalities corps-years, ni corps-years, ei

1 0 109 108.6702
2 1 65 66.2888
3 2 22 20.2181
4 3 3 4.1110
5 ≥ 4 1 0.7119

200 200

Now we calculate the statistic χ2 = ∑
5
i=1 (ni − npi)

2/(npi) and find the
p-value for the test and rejection region. Note that the number of degrees
of freedom is df = 5− 1− 1 since λ = 0.61 was estimated from the data.
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Fig. 17.6 Poissonness plot for von Bortkiewicz’s data. The theoretical line, log(0.61)i−
0.61, is shown in red. In this plot frequencies corresponding to x = 3 and x ≥ 4 are
grouped.

ni = [109 65 22 3 1]

% ni = 109 65 22 3 1

ch2 = sum( (ni-npi).^2 ./npi )

% ch2 = 0.5999

1-chi2cdf(0.5999, 5-1-1)

% ans = 0.8965, pvalue

chi2inv(0.95, 5-1-1)

% ans = 7.8147, critical value

% rejection region [7.8147, infinity)

The Poisson distribution in H0 is consistent with the data at the level α =
0.05. Clearly the agreement between the observed and expected frequencies
is remarkable; see also the poissonness plot in Figure 17.6.
�

Although very popular, Pearson’s χ2-test has several serious shortcom-
ings. The most important is the dependence of statistic χ2 on sample size,
as in (17.3). In addition, for continuous distribution there is a degree of
arbitrariness in setting the frequency intervals.

All this implies that χ2 may not be well calibrated to measure close-
ness of empirical and theoretical distributions. For example, under H0, the
variance of χ2-statistic is

Var H0 (χ
2) =

1
n

(
2(n− 1)(r− 1)− r2 +

r

∑
i=1

1
pi

)
.

When r is large, some of the theoretical cell probabilities may be quite small,
which inflates the variance and makes it much larger than the nominal
2(r− 1). Another example is overpowering, as in the case of Weldon’s data



860 17 Goodness-of-Fit Tests

in Example 17.4. However, with smaller sample sizes, the χ2-test may lack
adequate power.

Kolmogorov–Smirnov family of tests described next have the advantage
that they are genuinely distribution free as long as the underlying distri-
bution is continuous and fully specified. Kolmogorov–Smirnov tests have
no sample size or observed frequency limitations inherent for Pearson’s
χ2-test.

17.4 Kolmogorov–Smirnov Tests

The first measure of goodness of fit for general distributions was derived
by Kolmogorov (1933). Andrei Nikolaevich Kolmogorov the most accom-
plished and celebrated Russian mathematician of all time, made fundamen-
tal contributions to probability theory, including a test statistic for distribu-
tion functions, some of which are named after him. Nikolai Vasilyevich
Smirnov another Russian mathematician, extended Kolmogorov’s results
to two samples.

17.4.1 Kolmogorov’s Test

Let X1, X2, . . . , Xn be a sample from a population with a continuous, but
unknown, CDF F. As in (2.2), let Fn(x) be the empirical CDF based on
X1, X2, . . . , Xn.

We are interested in testing the hypothesis

H0 : (For all x) F(x) = F0(x) versus H1 : (There exists x) F(x) 6= F0(x),

where F0(x) is a fully specified continuous distribution.
The test statistic Dn is

Dn = sup
−∞<x<∞

|Fn(x)− F0(x)|, (17.4)

where sup stands for supremum, the smallest upper bound for a set.
This statistic is calculated from the sample as

Dn = max
{

max
1≤i≤n

(
i

n
− F0(X(i))

)
, max

1≤i≤n

(
F0(X(i))−

i− 1
n

)}
.
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The first maximum in the curly brackets is sometimes denoted as D+
n

and the second as D−n , so Dn = max{D+
n , D−n }. When hypothesis H0 is

true, Kolmogorov (1933) showed that the statistic
√

nDn is approximately
distributed as

lim
n→∞

P(
√

nDn ≤ x) = K(x) = 1− 2
∞

∑
k=1

(−1)k−1e−2k2x2
, x ≥ 0,

which allows one to approximate critical regions and p-values for this test.
The MATLAB file kscdf.m calculates the CDF K. Since large values of

Dn are critical for H0, the p-value of the test is approximated as

p ≈ 1− K(
√

nDn),

or in MATLAB as 1-kscdf(sqrt(n)*Dn).
In practice, most K-S-type tests are two-sided, testing whether or not F is

equal to F0, the distribution postulated by H0. Alternatively, one might test
to see if the distribution is larger or smaller than a hypothesized F0 (e.g.,
Kvam and Vidakovic, 2007). We remark that Dn 6= max1≤i≤n |F0(X(i))− i

n |.
The usage of max1≤i≤n |F0(X(i)) − i

n | as Dn is a common error, probably
influenced by (17.4).

Example 17.9. Kolmogorov Test and 30 Exponentials. To illustrate the Kol-
mogorov test, we simulate 30 observations from an exponential distribution
with λ = 1/2.

% rand(’state’, 0);

% n = 30; i = 1:n;

% x = exprnd(1/2,[1,n]); x = sort(x);

x = [...

0.0256 0.0334 0.0407 0.0434 0.0562 0.0575...

0.0984 0.1034 0.1166 0.1358 0.1518 0.2427...

0.2497 0.2523 0.3608 0.3921 0.4052 0.4455...

0.4511 0.5208 0.6506 0.7324 0.7979 0.8077...

0.8079 0.8679 0.9870 1.4246 1.9949 2.309];

n = length(x); i = 1:n;

distances = [i./n - expcdf(x, 1/2); expcdf(x, 1/2) - (i-1)./n ];

Dn = max(max(distances)) %0.1048

pval = 1 - kscdf(sqrt(n)*Dn) %0.8966

The p-value is 0.8966 and H0 is not rejected. In other words, the sample
is consistent with the hypothesis of the population’s exponential distribu-
tion E (1/2).

The CDF K(x) is an approximate distribution for
√

nDn, and for small
values of n it may not be precise. Better approximations use a continuity
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correction:

p ≈ 1− K

(√
nDn +

1
6
√

n

)
.

This approximation, known as Bolshev’s correction, is satisfactory for n ≥
20.
1 - kscdf(sqrt(n) * Dn + 1/(6 * sqrt(n)) ) %0.8582

MATLAB has a built-in function, kstest, that produces similar output.

% form theoretical cdf

t = 0:0.01:20;

y = expcdf(t,1/2);

cdf = [t’ y’];

[decision, pval, KSstat, critValue] = kstest(x, cdf, 0.01, 0)

%decision = 0

%pval = 0.8626

%KSstat = 0.1048

%critValue = 0.2899

Figure 17.7 shows the empirical and theoretical distribution in this ex-
ample, and it is produced by the code below.
%Plot

xx = 0:0.01:4;

plo = cdfplot(x); set(plo,’LineWidth’,2);

hold on

plot(xx,expcdf(xx, 1/2),’r-’,’LineWidth’,2);

legend(’Empirical’,’Theoretical Exponential’,...

’Location’,’SE’)

Note that in the two calculations the values of Dn statistic coincide but
the p-values differ. This is because kstest uses a different approximation to
the p-value.
�

The Kolmogorov test has advantages over exact tests based on the χ2

goodness-of-fit statistic, which depend on an adequate sample size and
proper interval assignments for the approximations to be valid. A short-
coming of the Kolmogorov test is that the F0 CDF in H0 must be fully
specified. That is, if location, scale, or shape parameters are estimated from
the data, the critical region of the Kolmogorov test is no longer valid. An
example is Lilliefors’ test for departures from normality when the null dis-
tribution is not fully specified.

17.4.2 Smirnov’s Test to Compare Two Distributions

Russian mathematician Nikolai Smirnov (Smirnov, 1939) extended the Kol-
mogorov test to compare two distributions based on independent samples
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Fig. 17.7 Empirical and theoretical distributions in the simulated example.

from each population. Let X1, X2, . . . , Xm and Y1,Y2, . . . ,Yn be two indepen-
dent samples from populations with unknown CDFs FX and GY. Let Fm(x)
and Gn(x) be the corresponding empirical distribution functions.

We would like to test

H0 : (For all x) FX(x) = GY(x) versus H1 : (There exists x) FX(x) 6= GY(x),

We will use an analogue of the Kolmogorov statistic

Dm,n = max
{

max
1≤i≤m

{
i

m
− Gn(X(i))

}
, max

1≤j≤n

{
j

n
− Fm(Y(j))

} }
.

The limiting distribution for Dm,n can be expressed by Kolmogorov’s
CDF K as

lim
m,n→∞

P

(√
mn

m + n
Dm,n ≤ x

)
= K(x),

and the p-value for the test is approximated as



864 17 Goodness-of-Fit Tests

p≈ 1− K

(√
mn

m + n
Dm,n

)
. (17.5)

This approximation is good when both m and n are large.

Remark. The approximation of the p-value in (17.5) can be improved by
continuity corrections as

p ≈ 1− K

(√
mn

m + n

(
Dm,n +

|m− n|
6mn

+ bm,n

) )
,

where

bm,n =
(m + n) (min(m,n)− gcd(m,n))

2mn(m + n + gcd(m,n))

and gcd(m,n) is the greatest common divisor of m and n. This approxima-
tion is satisfactory if m,n > 20.

If m = n, exact p-values can be found by using ranks and combinatorial
calculations. This has a practical value only when this common sample size
is small.

Example 17.10. Normal and t. To illustrate Smirnov’s test, we simulate
m = 39 observations from a normal N (−1,22) distribution and n = 35 ob-
servations from t-distribution with 10 degrees of freedom, Figure 17.8. The
hypothesis of equality of distributions is rejected at the level α = 0.05 since
the p-values are approximately 2%.

Notice that the corrected p-value 0.0196 is close to that in kstest2, and
the differences are due to different approximation formulas.

x =[...

-5.75 -3.89 -3.69 -3.68 -3.54 -2.59 ...

-2.53 -2.40 -2.39 -2.27 -2.02 -1.72 ...

-1.64 -1.54 -1.27 -1.11 -1.08 -1.00 ...

-0.88 -0.84 -0.47 -0.36 -0.29 -0.24 ...

-0.20 -0.19 0.02 0.15 0.25 0.45 ...

0.51 0.72 0.74 0.96 1.25 1.33 ...

1.49 2.39 2.59 ];

y=[...

-2.72 -2.18 -1.31 -1.17 -1.00 -0.94 ...

-0.78 -0.65 -0.63 -0.52 -0.40 -0.37 ...

-0.30 -0.21 -0.19 -0.11 -0.05 0.12 ...

0.14 0.25 0.27 0.35 0.45 0.48 ...

0.48 0.60 0.71 0.76 0.79 1.01 ...

1.10 1.10 1.12 1.36 2.03 ];
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Fig. 17.8 Empirical distributions for the simulated example.

m = length(x); n=length(y);

i = 1:m; j = 1:n;

distances = [i./m - empiricalcdf(x, y), j./n - empiricalcdf(y, x)];

Dmn = max(max(distances)) %0.3414

z = sqrt(m * n/(m + n))*Dmn %1.4662

pval1 = 1 - kscdf(z) %0.0271

%

bmn = (m+n)/(2*m*n) * (min(m,n) - gcd(m, n))/(m + n + gcd(m,n)) %0.0123

zz = sqrt(m * n/(m + n))*(Dmn + abs(m-n)/(6*m*n) + bmn ) %1.5211

pval2 = 1 - kscdf(zz) %0.0196

% MATLAB’s built in function

[h,p,k] = kstest2(x,y)

% 1

% 0.0202

% 0.3414

�

Before discussing Cramér–von Mises, Watson, and Moran’s tests, we
note that any goodness-of-fit null hypothesis H0 : F = F0, where F0 is a fixed
continuous distribution, can be restated in terms of a uniform distribution.
This is a simple consequence of the following result:

Result. Let random variable X have a continuous distribution F.
Then, F(X) has a uniform distribution on [0,1].

This important fact has a simple proof, since the continuity of F ensures the
existence of F−1:
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P(F(X) ≤ x) = P(X ≤ F−1(x)) = F(F−1(x)) = x, 0≤ x ≤ 1.

17.5 Cramér–von Mises and Watson’s Tests*

Cramér–von Mises and Watson’s tests belong to a family of tests that com-
pare empirical and true CDF’s, Fn and F, similarly to K-S tests, but instead
of a distance measure depending on the supremum distance between Fn

and F, these two tests integrate the difference.
Cramér–von Mises’ Wn (Cramér, 1928; von Mises, 1928) and Watson’s

U2
n (Watson, 1961) statistics are defined as

W2
n = n

∫

R

[Fn(x)− F(x)]2 dF(x), and

U2
n = n

∫

R

{
Fn(x)− F(x)−

∫

R

[Fn(x)− F(x)]dF(x)

}2

dF(x).

We are interested in testing H0 : F = F0 versus H1 : F 6= F0 if the sample
x1, . . . , xn is observed.

If x′1 ≤ x′2 ≤ · · · ≤ x′n is the ordered sample, then statistics W2
n and U2

n are
calculated as

W2
n =

1
12n

+
n

∑
i=1

(
yi −

2i− 1
2n

)2

, and

U2
n =

1
12n

+
n

∑
i=1

(
yi −

2i− 1
2n

− y + 1/2
)2

,

where yi = F0(x′i) and y = 1
n ∑i yi. Note that the two statistics are connected,

U2
n = W2

n − n

(
y− 1

2

)2

.

Precise tables for assessing significance of W2
n and U2

n are available from
various sources (e.g., Pearson and Hartley, 1972). We will use Tiku’s χ2

approximation (Tiku, 1965) that is quite precise even for small values of n.

The statistic χ2 = W2
n−a1
b1

has approximately a χ2-distribution with k1

degrees of freedom for

a1 =
48n2 − 137n + 87

30C
, b1 =

C

84n(4n− 3)
, and k1 =

98n(4n− 3)3

5C2 ,

with C = 32n2 − 61n + 30.
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The statistic χ2 = U2
n−a2
b2

has approximately a χ2-distribution with k2

degrees of freedom for

a2 =
3n− 8

60(2n− 3)
, b2 =

2n− 3
84n

, and k2 =
49n(n− 1)
5(2n− 3)2 .

In both cases large values of χ2 are critical. The test is significant, that
is, H0 : F(x) = F0(x) is rejected, if χ2 > χ2

k,1−α, where k is either k1 or k2
depending on the test used.

The Tiku approximations are precise when Wn and Un are not small.
Small values of these statistics are not interesting for the inference, since in
this case respective p-values are close to 1.

�
The limiting CDF of Wn involves special functions

W(x) = lim
n→∞

P(Wn ≤ x)

=
1√
2x

∞

∑
i=1

Γ(i + 1/2)
Γ(1/2)Γ(i + 1)

√
4i + 1exp

{
− (4i + 1)2

16x

}

×
{

I−1/4

[
(4i + 1)2

16x

]
− I1/4

[
(4i + 1)2

16x

]}
, (17.6)

where Ia(x) is modified Bessel function of the first kind implemented in
MATLAB as besseli. This CDF is calculated as MATLAB funcion cvmcdf.

If n < 40, corrected values (W2
n)
′ and (U2

n)
′ in place of W2

n and U2
n are

recommended (Stephens, 1974):

(W2
n)
′ =

(
W2

n −
4

10n
+

6
10n2

)(
1 +

1
n

)
, and

(U2
n)
′ =

(
U2

n −
1

10n
+

1
10n2

)(
1 +

8
10n

)
.

We illustrate Cramér–von Mises and Watson’s tests on the data taken
from Exercise 5.32.

Example 17.11. Insulin Sensitivity Distribution. In Exercise 5.32 a data set
diabetes.xlsx was analyzed. The 8th column contained measurements of

insulin sensitivity for 232 subjects, denoted here by X. This column was
extracted to a separate data set diasi.dat. We are interested in testing
whether the measurements X are consistent with gamma Ga(3, 3/10) dis-
tribution at the significance level α = 0.05. Is the data consistent with χ2

10
model?

Here we will use Cramér–von Mises and Watson’s goodness-of-fit tests
with their respective χ2 approximations for the critical points.
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%insens.m

alpha=0.05

load(’diasi.dat’)

x = sort(diasi);

n= length(x);

%model X ~ Ga(3, 3/10), 3/10 rate parameter.

y=gamcdf(x’, 3, 10/3); %10/3 scale parameter

i1n = ( 2*(1:n) - 1 )/(2*n);

%Cramer-von Mises’ W2

w2 = 1/(12 * n) + sum( (y - i1n).^2 ) %0.1793

a1 = (48*n^2 - 137*n + 87)/(30*(32*n^2 - 61*n + 30)) %0.0498

b1 = (32*n^2 - 61*n + 30)/(84*n*(4*n - 3)) %0.0948

k1 = (98*n*(4*n - 3)^3)/(5*(32*n^2 - 61*n + 30)^2) %1.2333

w2crit = a1 + b1* chi2inv(1-alpha, k1) %0.4662

chi2 = (w2 - a1)/b1 %1.3667

pval1 = 1 - chi2cdf(chi2, k1) %0.3056

%Watson’s U2

u2=w2 - n*(mean(y)-1/2)^2 %0.1134

%or directly

u2 = sum( (y - i1n - mean(y) + 1/2).^2 )+ 1/(12*n) %0.1134

a2= (3*n - 8)/(60*(2*n - 3)) %0.0249

b2=(2*n - 3)/(84*n) %0.0237

k2 = 49*n*(n-1)/(5*(2*n - 3)^2) %2.4713

u2crit = a2 + b2* chi2inv(1-alpha, k2) %0.1875

chi2 = (u2 - a2)/b2 %3.7413

pval2 = 1 - chi2cdf(chi2, k2) %0.2152

Thus, insulin sensitivity measurements are consistent with gamma Ga(3,
3/10) distribution with respect both Cramér–von Mises (approx p-value
0.3056) and Watson (approx p-value 0.2152) tests. The mean of this distri-
bution is 10, so it was natural to check χ2

10 as a potential model. As an
exercise, check that the model χ2

10 would be rejected by the tests, with p-
values of 0.0123 and 1.2× 10−6, respectively.
�

Remark. Anderson and Darling (1952, 1954) proposed a modification of
Cramér–von Mises statistic

A2
n = n

∫

R
[Fn(x)− F(x)]2

1
F(x)(1− F(x))

dF(x). (17.7)

The weight function (F(x)(1− F(x)))−1 puts more emphasis in the tails of
F, compared to unweighed Cramér–von Mises statistic W2

n .
At first glance the calculation of A2

n may look uninviting. However, it
can be shown that

A2
n = −n− 1

n

n

∑
i=1

(2i− 1) [log ui + log(1− un+1−i)] (17.8)
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for ui = F(X(i)). Under the null hypothesis, ui = F0(X(i)) = U(i), where
U(i) is the ith order statistics in a sample from uniform U (0,1) distribu-
tion. Large values of A2

n are critical for H0. The problem is the distribu-
tion of A2

n. In applications the tabulated quantiles of the limiting statistic
A2 = limn→∞ A2

n are usually used. See also Exercise 17.24 for simulational
approximations of quantiles and test p-value.

17.6 Rosenblatt’s Test*

Rosenblatt (1952) extended Cramér–von Mises’ test to compare two dis-
tributions, in the same spirit as Smirnov’s test extended the Kolmogorov
test. In many situations Rosenblatt’s test may be more sensitive compared
to Smirnov’s test. Let, as in Section 17.4.2, X1, . . . , Xm and Y1, . . . ,Yn be two
samples with cumulative distributions F and G respectively. It is of interest
to test the hypothesis of homogeneity, H0 : F(x) = G(x).

Define

Wm,n =
mn

m + n

∫

R

[Fm(x)− Gn(x)]2 dHm+n(x),

where Fm and Gn are empirical CDF’s based on samples X1, . . . , Xm and
Y1, . . . ,Yn, while Hm+n is an empirical CDF based on the combined sam-
ple X1, . . . , Xm,Y1, . . . ,Yn. The statistic Wm,n can be expressed using only the
ranks of X’s and Y’s in the combined sample,

Wm,n =
1

m + n

[
1
6
+

1
n

m

∑
i=1

(Ri − i)2 +
1
m

n

∑
j=1

(Sj − j)2

]
− 2mn

3(m + n)
.

Here Ri and Sj are ranks of X(i) and Y(j) in the ordered combined sample.
The statistic Wm,n has the same limiting distribution (m,n→ ∞, m/n→
const) as that of Wn in (13.5), implemented by cvmcdf.m. Large values of
Wm,n are critical for H0.

When m,n are small, a correction

W ′m,n =
1
6
+

Wm,n −EWm,n√
45 Var (Wm,n)

,

where

EWm,n =
1
6

(
1 +

1
m + n

)
, and

Var Wm,n =
1
45

(
1 +

1
m + n

)[
1 +

1
m + n

− 3
4

(
1
m

+
1
n

)]
,
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is used. The statistic W ′m,n has the same limiting distribution as Wm,n and
can be used for m,n as small as 7.

Example 17.12. Normal and t Revisited. In Example 17.12 we illustrated
Smirnov’s test to test equality of distributions of two simulated samples.
In this example we illustrate Rosenblatt’s test using the same data set. The
following excerpt is from MATLAB file rosenblatt.m:

% From rosenblatt.m

x =[ -5.75 -3.89 -3.69 -3.68 -3.54 -2.59 ...

... deleted ...

1.49 2.39 2.59 ];

y=[ -2.72 -2.18 -1.31 -1.17 -1.00 -0.94 ...

... deleted ...

1.10 1.10 1.12 1.36 2.03 ];

m = length(x); n=length(y);

i = 1:m; j = 1:n;

z = [x y]; %combined sample

rz = ranks(z);

Ri = rz(1:m); Sj=rz(m+1:m+n);

Wmn = 1/(m+n)*(1/6 + 1/n * sum( (Ri - (1:m)).^2) + ...

1/m * sum( (Sj - (1:n) ).^2 )) - 2 * m * n/(3*(m+n)) %0.6715

pval1 = 1-cvmcdf(Wmn) %0.0149

%Test with corrections

EWmn = 1/6 * (1 + 1/(m+n)) %0.1689

VarWmn = 1/45 * (1+1/(m+n) )*(1+ 1/(m+n) - ...

3/4 * (1/m + 1/n)) %0.0219

Wprimemn = 1/6 + (Wmn-EWmn)/sqrt(45*VarWmn) %0.6728

pval2 = 1-cvmcdf(Wprimemn) %0.0148

Consistent with Smirnov’s test, Rosenblatt’s test rejects the hypothesis of
homogeneity (H0 : F = G) with p-value of 0.0149. The p-value for corrected
statistic W ′m,n is 0.0148, close to that of Wm,n. The correction is insignificant
in this case but recommended when m,n are small. To compare the perfor-
mance of Smirnov’s and Rosenblatt’s tests, we simulated 20,000 data sets as
in this example, 39 observations from normalN (−1,22) distribution and 35
observations from t-distribution with 10 degrees of freedom. The Smirnov
test rejected the homogeneity hypothesis 84.67% of the time, while Rosen-
blatt’s test rejected the null hypothesis 85.27% of the time. For both tests,
corrections were used for increased precision. The simulations and results
are given in MATLAB file smirrosen.m.
�
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17.7 Moran’s Test*

The result on page 865 stated the equivalence of testing the hypothesis
H0 : F = F0 for observed x1, . . . , xn, and testing for the uniformity of y1 =
F0(x1),y2 = F0(x2), . . . ,yn = F0(xn), as long as the CDF F0 is continuous.

Moran’s test is based on spacings between ranked y1 ≤ y2 ≤ · · · ≤ yn

which are, under H0, an ordered sample form uniform U (0,1) distribution.
Define spacings

di = y(i+1)− y(i), i = 0,1,2, . . . ,n,

where y(1) ≤ y(2) ≤ · · · ≤ y(n) is the order statistic of y1, . . . ,yn and y(0) = 0
and y(n+1) = 1. Then Moran’s statistic

Mn =
√

n

(
n

2

n

∑
i=0

d2
i − 1

)

has an approximately standard normal distribution, (Moran, 1947, 1951).
This approximation is adequate if n > 30.

The hypothesis H0 : F = F0 is rejected if Mn > zα. The p-value is
1-normcdf(M).

Since Moran’s Mn is minimized by identical spacing di = 1/(n + 1), small
values of Mn may indicate nonrandom data.

Moran’s test is complementary to other goodness-of-fit tests since it is
sensitive to data clustering and anomalous spacing. The alternatives, con-
sisting of long-tailed densities that remain undetected by Pearson’s χ2 or
K-S-type tests, may be detected by Moran’s test. The following example
demonstrates that Moran’s test is superior in detecting a long-tailed alter-
native compared to Kolmogorov’s test.

Example 17.13. Moran versus K-S. In the following MATLAB script we
repeated 1,000 times the following: (i) a sample of size 200 was gener-
ated from a t-distribution with 4 degrees of freedom, and (ii) the sample
was tested for standard normality using Moran’s and Kolmogorov’s tests.
Moran’s test rejected H0 203 times while Kolmogorov’s test rejected H0 122
times. The exact number of times H0 was rejected varies slightly depending
on the random number seed; in this example we used a combined multiple
recursive generator: stream=RandStream(’mrg32k3a’);

%moran.m

n=200;

stream = RandStream(’mrg32k3a’);
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RandStream.setDefaultStream(stream);

pvalmoran =[]; pvalks=[];

for i = 1:1000

x = trnd(4,[n 1]); %simulate t_4

y=normcdf(x,0,1); %H0: F=N(0,1)

yy =[0; sort(y); 1];

Sd = sum(diff(yy,1).^2);

Mn =sqrt(n)*(n * Sd/2 - 1); %Moran’s Stat

p = 1-normcdf(Mn);

pvalmoran = [pvalmoran p];

[h pv dn] = kstest(x, [x normcdf(x, 0, 1)]);

pvalks = [pvalks pv];

end

%Number of times H_0 was rejected in 1000 runs

sum(pvalmoran < 0.05) %203

sum(pvalks < 0.05) %122

This example emphasizes one of the shortcomings of K-S goodness-of-fit
tests: they are sensitive in the middle of the distribution where the CDF is
steep but not in the tails. The difference between t and normal distributions
is mostly in the tails and Moran’s spacings showed superior sensitivity.
�

Remark. Moran’s statistic is a special case of Kimball’s result (Kimball,

1947). The statistic Kn,α =
∑

n
i=0 dα

i −µn,α
σn,α

has a standard normal limiting distri-

bution. Here µn,α = Γ(α + 1)/nα−1, and σ2
n,α = [Γ(2α + 1)− (α2 + 1)Γ2(α +

1)]/n2α−1. One can show that Kn,2 = Mn.
Darling (1953) proved that the sum of the log-spacings, properly nor-

malized, has normal limiting distribution, as well.

17.8 Departures from Normality

Several tests are available specifically for the normal distribution. The
Jarque–Bera test (Jarque and Bera, 1980) is a goodness-of-fit measure of
departure from normality, based on the sample kurtosis and skewness. The
test statistic is defined as

χ2
JB =

n

6

(
γ2

n +
(κn − 3)2

4

)
,

where n is the sample size, γn is the sample skewness,
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γn =
1
n ∑

n
i=1(Xi − X)3

(
1
n ∑

n
i=1(Xi − X)2

)3/2 ,

and κn is the sample kurtosis,

κn =
1
n ∑

n
i=1(Xi − X)4

(
1
n ∑

n
i=1(Xi − X)2

)2 ,

as on page 20.
Note that the first four moments are used jointly for the calculation of

χ2
JB. The statistic χ2

JB has an asymptotic chi-square distribution with 2 de-
grees of freedom and measure of deviation from the skewness and kurtosis
of normal distribution (Sk = 0 and κ = 3). This test was originally proposed
by Bowman and Shenton (1975) who derived the χ2

2 asymptotics. Jarque
and Bera built on those results by exploring the power and finite sample
properties.

In general, the approximation by a χ2-distribution is crude even for
large sample sizes since the convergence is slow. A case of an inadequate
approximation is discussed in Example 17.14.

�
For this reason, the χ2

2 approximation should not be used for sample
sizes below 300. For small sample sizes one can use approximate p-values
obtained by simulation, as in jarqueberatest.m

In MATLAB, the built-in Jarque–Bera test is called jbtest(x,alpha).

Example 17.14. PCB in Yolks of Pelican Eggs. A well-known data set
for testing agreement with a normal distribution comes from Risebrough
(1972) who explored concentrations of polychlorinated biphenyl (PCB) in
yolk lipids of pelican eggs. For n = 65 pelicans from Anacapa Island (north-
west of Los Angeles), the concentrations of PCB were as follows:

452 184 115 315 139 177 214 356 166 246 177 289 175
296 205 324 260 188 208 109 204 89 320 256 138 198
191 193 316 122 305 203 396 250 230 214 46 256 204
150 218 261 143 229 173 132 175 236 220 212 119 144
147 171 216 232 216 164 185 216 199 236 237 206 87

Using the Jarque–Bera procedure, test the hypothesis that PCB concen-
trations are consistent with the normal distribution at the level α = 0.05.

%anacapa1.m

anacapa=[452 184 % <60 observations deleted> 237 206 87];

n=length(anacapa); alpha=0.05;

skew = skewness(anacapa) %0.7084

kurt = kurtosis(anacapa) %4.2337
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chi2jb = n/6 * (skew^2 + (kurt-3)^2/4) %9.5588

approxp=1- chi2cdf(chi2jb, 2) %0.0084

crit1 = chi2inv(1-alpha,2) %5.9915

%more precise test by simulation...

[h stat pval crit] = jarqueberatest(anacapa)

%h = 1; stat =9.5588; pval = 0.0174; crit =5.2363

The sample size of 65 was not large enough to give an acceptable χ2
2

approximation to the distribution of χ2
JB statistic. The p-value found was

0.0084 suggesting decisive rejection of H0. It turns out that this p-value is
more than two times smaller than the exact p-value; see Figure 17.9a,b.
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Fig. 17.9 (a) Empirical distribution of null distribution of JB statistic and its χ2
2 approxi-

mation. Note inadequate approximation for the sample size of n = 65 as in this example.
(b) Detail of tail behavior explaining why the approximation yielded incorrect p-value
of 0.0084, when the correct p-value is close to 0.0174.

A better approximation is obtained by jarqueberatest.m, which finds the
p-value as 0.0174. This is still significant at 5% level. The decisions by rely-
ing on χ2

2 approximation would be wrong if the significance level was set
to 1%.
�

Kolmogorov–Smirnov test with Lilliefors’ correction (Lilliefors, 1967)
for departures from normality is a modification of the Kolmogorov’s test,
where the theoretical distribution is normal but not fully specified, as the
Kolmogorov test requires. When the sample mean and variance are used to
specify the null distribution, the usual K-S quantiles become conservative
and simulations are used for their better approximation.

The MATLAB command for Kolmogorov’s test with Lilliefors’ cor-
rection is [h,p,ksstat,critval] = lillietest(x, alpha), where the data to be
tested are in vector x.
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17.9 Ellimination of Unknown Parameters by
Transformations

Instead of plugging in the estimators of unknown parameters to make the
null distribution-specific, in some cases it is possible to transform obser-
vations and obtain parameter-free distributions. This freedom is “paid” by
lowering the sample size, but only slightly. We demonstrate how this can
be done in testing for exponentiality and normality.

Testing for Exponentiality. Let the null hypothesis be that a sample
X1, X2, . . . , Xn is exponential E (λ) with rate parameter λ unspecified.

Sort the sample and define scaled spacings di = (n + 1 − i)(X(i) −
X(i−1)), i = 1,2, . . . ,n with X(0) = 0. Using the scaled spacings di, define

Yj =
∑

j
i=1 di

∑
n
i=1 di

, j = 1,2, . . . ,n− 1.

The values Y1, . . . ,Yn−1 are i.i.d. uniform U (0,1). A test for exponentiality
of X1, . . . , Xn is equivalent to a test for uniformity of Y1, . . . ,Yn−1, which can
be conducted by methods described in previous sections of this chapter.

Testing for Normality. Let the null hypothesis be that X1, X2, . . . , Xn

came from normal N (µ,σ2) distribution, with parameters µ and σ2 un-
known. Fix any k, 1≤ k≤ n, and define

mk =
1

n +
√

n

n

∑
i=1

Xi +
1

1 +
√

n
Xk.

Define now

Yi =

{
mk − Xi, i = 1,2, . . . ,k− 1
mk − Xi+1, i = k, . . . ,n− 1

Then Yi, i = 1, . . . ,n− 1 are i.i.d. normal N (0,σ2). Note that we could have
eliminated unknown location parameter µ simply by subtracting the sam-
ple mean, Yi = Xi − X, but the resulting Yi’s would not be independent.

To eliminate σ2, we transform Yi as

Tj =
Yj√

1
n−j−1 ∑

n−1
k=j+1 Y2

k

, j = 1,2, . . . ,n− 2.

The Tj’s are independent, t-distributed with n− j− 1 degrees of freedom.
Finally, if Fn−j−1 is the CDF of t-distribution with n− j− 1 degrees of free-
dom, the variables
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Uj = Fn−j−1(Tj), j = 1, . . . ,n− 2

are distributed as i.i.d. uniform U (0,1).
Testing for the normality of X1, . . . , Xn is now equivalent to testing for

the uniformity of U1, . . . ,Un−2, which again can be done by using the tests
discussed in previous sections.

These two cases of parameter elimination are illustrated in MATLAB
script elimination.m. Two samples of size 200, one from exponential E (λ)
distribution and the other from normal N (µ,σ2) distribution, are trans-
formed to uniform U (0,1) distribution of respective sizes 199 and 198. To
make simulation of the samples specific, we took λ = 2.5, µ = 3, and σ2 = 22,
but these values have not been used in the transformations.

17.10 Exercises

17.1. Q–Q Plot for
√

2χ2. Simulate N = 10,000 χ2 random variables with
k = 40 degrees of freedom. Demonstrate empirically that

Z =
√

2χ2 −
√

2k− 1

is approximately standard normal N (0,1) by plotting a histogram and
Q–Q plot.
Hint: df=40; zs=sqrt(2*chi2rnd(df,[1 10000]))-sqrt(2*df-1);

17.2. Not at All Like Me. You have a theory that if you ask subjects to sort
one-sentence characteristics of people (e.g., “I like to get up early in the
morning”) into five groups ranging from not at all like me (group 1) to very
much like me (group 5), the percentage falling in each of the five groups
will be approximately 10, 20, 40, 20, and 10. You have one of your friends
sort 50 statements, and you obtain the following data: 8, 9, 21, 8, and 4.
Do these data support your hypothesis at α = 5%?

17.3. Different Expressions for χ2. Derive expressions in (17.3) from the ex-
pression in (17.2).

17.4. Cell Counts. A student takes the blood cell count of five random blood
samples from a larger volume of solution to determine if it is well mixed.
She expects the cell counts to be distributed uniformly. The data is given
below:
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Sample blood Expected blood
cell count cell count

35 27.2
20 27.2
25 27.2
25 27.2
31 27.2

136 136

Can she depend on the results to be uniformly distributed? Perform a
chi-square test with α = 0.05.

17.5. GSS Data. Below is part of the data from the 1984 and 1990 General
Social Survey, conducted annually by the National Opinion Research
Center. Random samples of 1,473 persons in 1984 and 899 persons in
1990 were taken using multistage cluster sampling. One of the questions
in a 67-question-long questionnaire was: Do you think most people would
try to take advantage of you if they get a chance, or would they try to be fair?

1984 survey 1990 survey
1. Would take advantage of you 507 325
2. Would try to be fair 913 515
3. Depends 47 53
4. No answer 6 6

Assuming that the 1984 frequencies are theoretical, using Pearson’s χ2

test, explore how the 1990 frequencies agree. Use α = 0.05. State your
findings clearly.

17.6. Strokes on “Black Monday.” In a long-term study of heart disease, the
day of the week on which 63 seemingly healthy men died was recorded.
These men had no history of disease and died suddenly.

Day of week Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Deaths 22 7 6 13 5 4 6

(a) Test the hypothesis that these men were just as likely to die on one
day as on any other. Use α = 0.05.
(b) Explain in words what constitutes the error of the second kind in the
testing from (a).

17.7. Monocytes among Blood Cells Revisited. In Exercise 7.12 we assumed
Poisson and Binomial models to estimate parameters λ and p. We also
found expected frequencies for the number of monocytes in 100 blood
cells, for both models.
For which model is the χ2 statistic smaller? Compare the p-values.

bv20
Cross-Out

bv20
Inserted Text
correct this
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17.8. Benford’s Law. Benford’s law (Benford, 1938; Hill, 1998) concerns the
relative frequencies of leading digits of various data sets, numerical ta-
bles, accounting data, etc. Benford’s law, also called the first digit law,
states that in numbers from many sources, the leading digit is much
more often a 1 than it is any other digit (specifically about 30% of the
time). Furthermore, the higher the digit, the less likely it is to occur as
the leading digit of a number. This applies to figures related to the nat-
ural world or figures of social significance, be it numbers taken from
electricity bills, newspaper articles, street addresses, stock prices, popu-
lation numbers, death rates, areas or lengths of rivers, or physical and
mathematical constants.
More precisely, the Benford law states that the leading digit n, (n =
1, . . . ,9) occurs with probability P(n) = log10(n + 1)− log10(n), or as in
the table below [probabilities P(n) rounded to 4 decimal places]:

Digit n 1 2 3 4 5 6 7 8 9
P(n) 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

An oft-cited data set is the distribution of the leading digit of all 309
numbers appearing in a particular issue of Reader’s Digest.

Digit 1 2 3 4 5 6 7 8 9
Count 103 57 38 23 20 23 17 15 13

At level α = 0.05, test the hypothesis that the observed distribution of
leading digits in Reader’s Digest numbers is consistent with Benford’s
law.
Hint: To speed up the calculation, some theoretical frequencies rounded
to two decimal places are provided:

93.01 54.41 • 29.94 24.47 • • 15.82 14.15

17.9. Cholestyramine. In a type II coronary intervention study, patients with
type II hyperlipoproteinemia (a condition characterized by high levels of
beta-lipoproteins in the blood) and coronary heart disease were assigned
at random to a daily dose of 24 g of cholestyramine or to a placebo.
Cholestyramine removes bile acids from the body by forming insoluble
complexes. In the process, plasma cholesterol is converted to bile acid to
normalize acid levels, which ultimately lowers plasma cholesterol con-
centrations.
After 5 years, the number of vascular lesions were counted on each pa-
tient’s angiogram. The data in table below are reported by Barnhart and
Sampson (1995):
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Number of Number of patients
lesions Cholestyramine group Placebo group

0 5 2
1 4 4
2 6 6
3 5 4
4 7 6
5 8 9
6 6 7
7 6 5
8 7 2
9 2 4

≥ 10 4 8
Total 60 57

You have a choice between Poisson and negative binomial distributions,
as possible models for the number of lesions in the cholestyramine
group. Using the χ2-test check which distribution better fits the data
(e.g., results in smaller chi-square statistic).
For the negative binomial use r = 4 and p = 0.44, and for the Poisson use
λ = 4.6.

17.10. Simulational Exercise.
(a) Generate a sample of size n = 216 from a standard normal distribu-
tion.
(b) Select intervals by cutting the range of simulated values by points
−2.7, −2.2, −2, −1.7, −1.5, −1.2, −1, −0.8, −0.5, −0.3, 0, 0.2, 0.4, 0.9, 1,
1.4, 1.6, 1.9, 2, 2.5, and 2.8.
(c) Using a χ2-test confirm the normality of the sample.
(d) Repeat the previous test if your sample is contaminated by a Cauchy
Ca(0,1) distribution in the following way: 0.95 * normal_sample + 0.05 *

cauchy_sample.

17.11. Black Wednesday. This exercise concerns the analysis of 5-year data
on association of temporal factors (day-of-the-week) to suicides in the
United States. The number of suicides (in thousands) provided in the
table below was pooled from the Multiple Cause of Death Files from the
years 2000 to 2004.
Is the probability distribution of suicide in the US uniform over days of
the week?
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Day of the Suicides
week (in thousands)
Sunday 14.5
Monday 18.8
Tuesday 17.6
Wednesday 32.9
Thursday 14.6
Friday 14.7
Saturday 18.9
Total 132.0

(a) Using Pearson’s χ2 procedure, test the hypothesis that the probability
distribution is discrete uniform, that is that the probability of a suicide
on any given day of the week is 1/7. Use α = 0.05 as significance level.
(b) The data suggest an unusual Black Wednesday effect, and researchers
tried to explain the phenomenon (Kposowa and D’Auria, 2010). Test the
hypothesis that the probability distribution of a suicide on a particular
weekday is

pSU = pMO = pTU = pTH = pFR = pSA =
1
8

, pWE =
1
4

.

For both (a) and (b) find p-values and compare them to 0.05-significance
level.

Hint: Retain data as presented, in units of thousands. Using the actual
numbers (e.g., for Monday the exact number was 18,824) would exten-
sively overpower the test and a distribution with a satisfactory fit would
be unreasonably close to the empirical distribution (relative frequencies).

17.12. Deathbed Scenes. Can some people postpone their death until after a
special event takes place? It is believed that famous people do so with
respect to their birthdays to which they attach some importance. A study
by Philips (1972) seems to be consistent with this notion. Philips obtained
data1 on the months of birth and death of 1,251 famous Americans; the
deaths were classified by the time period between the birth dates and
death dates as shown in the following table:

B e f o r e Birth A f t e r
6 5 4 3 2 1 month 1 2 3 4 5

90 100 87 96 101 86 119 118 121 114 113 106

1 348 were people listed in Four Hundred Notable Americans and 903 are listed as the
foremost families in three volumes of Who Was Who for the years 1951–1960, 1943–1950,
and 1897–1942.
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(a) Clearly formulate the statistical question based on the observations
above.
(b) Provide a solution for the question formulated in (a). Use α = 0.05.

17.13. Grouping in a Vervet Monkey Troop. Struhsaker (1965) recorded, indi-
vidual by individual, the composition of sleeping groups of wild vervet
monkeys (Cercopithecus aethiops) in East Africa. A particular large troop
was observed for 22 nights.

Size 1 2 3 4 5 6 7 8 9 10 11 ≥12
Freq 19 14 19 11 7 7 3 2 3 1 2 1

It is well known that the sizes of groups among humans in various social
settings (shoppers, playgroups, pedestrians) follows a truncated Poisson
distribution:

P(X = k) =
λk exp{−λ}

k!(1− exp{−λ}) , k = 1,2,3, . . . .

Using a χ2 goodness-of-fit test, demonstrate that the truncated Poisson
is not a good model for this data at the significance level α = 0.05. To
find the theoretical frequencies, λ can be estimated by the method of
moments using an average size of X = 3.74 and the equation λ/(1 −
exp{−λ}) = 3.74. In MATLAB fzero(@(lam) lam - 3.74*(1-exp(-lam)), 3)

gives λ̂ = 3.642.
Struhsaker further argues that in this context the truncated negative bi-
nomial gives a reasonably good fit. Check this.

17.14. Crossing Mushrooms. In a botany experiment the results of crossing
two hybrids of a species of mushrooms (Agaricus bisporus) gave observed
frequencies of 120, 53, 36, and 15. Do these results disagree with theoret-
ical frequencies that specify a 9:3:3:1 ratio? Use α = 0.05.

17.15. Renner’s Honey Data Revisited. In Example 6.11 we argued that a
lognormal distribution with parameters µ = −0.6084 and σ2 = 1.00402

provides a good fit for Renner’s honey data. Find χ2-statistics and the p-
value of the fit. State your decision at level α = 0.05. The midintervals in
the first column of data set renner.mat|dat, 0.125,0.375,0.625, . . . , 7.125
correspond to the intervals (0,0.25], (0.25,0.5], (0.5,0.75], . . . , (7,7.25].

17.16. Beta-Geometric Distribution, Smoking and Pregnancy. Beta-Geometric
distribution is defined in the following way. Given π, X is geometric
Geom(π),

P(X = m|π) = (1− π)m−1π, m = 1,2, . . . .

When π has beta distribution Be(a,b), the marginal (unconditional) dis-
tribution for X is beta-geometric
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P(X = m) =
B(a + 1,b + m− 1)

B(a,b)
, m = 1,2, . . .

where B(a,b) is beta function, in MATLAB beta(a,b). The beta-geometric
distribution has a mean EX = a+b−1

a−1 . Higher moments involve special
functions.
Weinberg and Gladen (1986) provide data in which the times (in men-
strual cycles) taken by the couples who are attempting to conceive until
pregnancy results. The data is retrospective, starting from the pregnancy
in each case. This fecundity data set features 586 women contributing to
a total of 1,844 cycles.

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 > 12
Smokers 29 16 17 4 3 9 4 5 1 1 1 3 7

Nonsmokers 198 107 55 38 18 22 7 9 5 3 6 6 12

The authors fitted this data with beta-geometric distributions and found
a satisfactory fit.
Using the chi-square goodness of fit test, confirm Weinberg and Gladen’s
findings for Nonsmokers only (n = 486). Use a = 3.5 and b = 5 at the level
α = 0.05.
Hint: Observed frequency for m = 3 is 55. The theoretical frequency is

betageom = @(n, a, b) beta(a+1, b+n-1)/beta(a,b);

486*betageom(3, 3.5, 5) %60.1858

17.17. Deviations From 90%-Circularity. Refer to Exercise 2.29 for the descrip-
tion of the experiment. The data set dcirc.dat|mat contains deviations
from 90% of circularity parameter, for static condition after 2 days of
growth. The researchers believe that this deviation is distributed as beta
with parameters 3/2 and 5.
Using Kolmogorov’s procedure test the hypothesis that the distribution
of deviations from 90% circularity is indeed consistent with Be(3/2,5).
State your decision at the α = 0.05 significance level. Report the p-value.

17.18. PCB in Yolks of Pelican Eggs. In Example 17.14 we tested the hypoth-
esis that PCB concentrations are consistent with the normal distribution
at the level α = 0.05 using Jarque–Bera test. It was found that data sig-
nificantly deviate from normality.
For the same data test for the normality using (a) Pearson’s χ2-test and
(b) Lilliefors test. Compare the results.
Suppose that the null distribution is fully specified as normalN (200,702).
Test for the null distribution using (c) Kolmogorov’s test, (d) Cramér–von
Mises’ test, and (e) Moran’s test.

17.19. Number of Leaves per Whorl in Ceratophyllum demersum. After spend-
ing a year with Karl Pearson in London, biometrician Raymond Pearl
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published his work on mathematical and statistical modeling of growth
of an aquatic plant, Ceratophyllum demersum (Pearl, 1907, p. 17). Among
several interesting data sets, Pearl gives the table of frequencies of num-
bers of leaves per whorl (Series I, Plant 4)

Leaves 6 7 8 9 10 11 Total
Whorls 17 35 71 77 58 5 263

(a) Are the observed frequencies consistent with binomial Bin(11, p) dis-
tribution at 5% significance level when p is estimated from the data?
(b) If p = 0.777 is considered to be known in advance, that is, no estima-
tion from the given data was made, would the decision be the same as
in (a)?

17.20. From 1998–2002 US National Health Interview Survey (NHIS). Stans-
field and Carlton (2007) analyzed data in sibships of size 2 and 3 from
the 1998–2002 US National Health Interview Survey (NHIS).
For the 25,468 sibships of size 2, among all 50,936 children 10 years of age
and younger in the NHIS data set (the youngest age cohort available),
they found that 51.38% were boys (B) and 48.62% were girls (G); the B/G
ratio was 1.0566, or about 106 boys for every 100 girls. The number of
boys is given in the following table:

Number of boys 0 1 2
Observed sibships 5,844 13,079 6,545

For the 7,541 sibships of size 3 from the same NHIS data set the number
of boys among the first two children is given in the following table:

Number of boys 0 1 2
Observed sibships 1,941 3,393 2,207

(a) If the number of boys among the first two children in sibships of
size 3 is binomial Bin(2,0.515), find what theoretical frequencies are ex-
pected in the table for sibships of size 3. Are the observed and theoretical
frequencies close? Comment.
Hint: Find the binomial probabilities and multiply them by n = 7,541.
(b) For the 25,468 sibships of size 2, test the hypothesis that the proba-
bility of a boy is 1/2 versus the one-sided alternative, that is,

H0 : p = 0.5 versus H1 : p > 0.5,

at the level α = 0.05.
Hint: Be careful about the n here. The rejection region of this test is
RR = [1.645,∞).

17.21. Neuron Fires Revisited. The 989 firing times of a cell culture of neurons
have been recorded. The records are time instances when a neuron sends
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a signal to another linked neuron (a spike) and the largest time instance
is 1001.
The count of firings in 200 consecutive time intervals of length 5 (=
1000/200) time units is as follows:

2 7 5 5 1 6 8 4 6 4 5 7 7 5 4 7 4 4 5 9 6 5 6 6 5
5 6 4 10 7 8 8 2 9 5 4 4 4 3 8 3 2 7 6 7 5 6 6 4 6
5 7 3 5 6 5 5 2 7 7 6 4 8 8 9 7 3 3 3 5 6 6 4 6 4
5 4 4 5 2 3 5 1 4 4 3 2 10 4 7 2 1 7 9 4 3 6 8 6 5
2 4 4 3 7 2 2 6 1 3 7 6 6 4 7 5 5 8 7 3 5 5 4 5 6

10 3 6 9 5 7 2 8 4 4 2 3 4 3 3 3 5 4 2 2 7 4 5 4 5
3 5 3 5 5 7 2 5 5 4 8 4 3 5 7 4 4 8 5 4 3 6 4 6 4
1 7 9 4 2 5 4 4 4 4 7 2 4 4 5 2 4 7 5 12 1 5 4 6 7

Are the data consistent with a Poisson distribution?

17.22. Cloudiness in Greenwich. Pearse (1928) cites data describing the degree
of cloudiness in Greenwich, UK, for days in the month of July between
1890 and 1904.

Cloudiness 0 1 2 3 4 5 6 7 8 9 10 Total
Days 320 129 74 68 45 45 55 65 90 148 676 1715

Assume that the measure of cloudiness can be modeled as a continuous
random variable C = 10 · X, where X has a beta Be(α, β) distribution.
Find the best-fitting parameters α and β and assess the goodness of fit.

17.23. Distance between Spiral Reversals in Cotton Fibers. Tippett (1941)
discusses a frequency histogram for a data set consisting of intervals
and counts for a distance between spiral reversals in cotton fiber (Fig-
ure 17.10). The distances are given in units of mm−2, and the sample
size was 1,117.

Distance [0,2.5) [2.5,4.5) [4.5,6.5) [6.5,8.5) [8.5,10.5)
Number 7 48 100 106 84

[10.5,12.5) [12.5,16.5) [16.5,20.5) [20.5,24.5) [24.5,28.5)
72 136 94 78 69

[28.5,32.5) [32.5,36.5) [36.5,40.5) [40.5,50.5) [50.5,60.5)
53 45 36 69 40

[60.5,70.5) [70.5,80.5) [80.5,90.5) [90.5,∞) Total
31 21 17 11 1117

Using Pearson’s χ2 criterion and significance level α = 0.05, test the
hypothesis that the data are consistent with the χ2-distribution. Use
the midpoints of intervals to estimate the mean of a theoretical χ2-
distribution. Recall that the mean in this case is equal to the number
of degrees of freedom.
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Fig. 17.10 Structure of spiral reversals in cotton fiber.

17.24. Lin–Mudholkar Test. Lin and Mudholkar (1980) proposed a test for
normality that is based on the following fact: the mean and variance in
a random sample are independent, if and only if, the parent population
is normal. See also Exercise 6.13. The Lin–Mudholkar test is sensitive
only to departures from normality due to skewness. test The procedure
has little power in detecting non-normal symmetrical distributions. For
example, uniform distributions or bimodal symmetric distributions will
pass this test easily. Therefore, other tests should also be consulted if
there is a concern for these types of departure from normality. MATLAB
script LinMudholkar.m implements the test.
(a) Show that Lin–Mudholkar’s test rejects the hypothesis of symmetry
for data in Example 17.14, page 873.
(b) Generate two vectors:

x1=[normrnd(2,1,[1000 1]); normrnd(-2,1,[1000 1])];

x2=[normrnd(2,1,[1000 1]); normrnd(-2,1.15,[1000 1])];

The distributions of x1 and x2 are bimodal, thus clearly non-gaussian.
Show that x1 easily passes Lin–Mudholkar’s test while x2 fails to pass at
5% significance level. Can you explain why?

Anderson–Darling by Simulation. In this exercise you are asked to
approximate quantiles of statistic A2

n given in (17.8) by simulation.
Follow these steps:

• Take n equal to the size of the original sample.

• Take B runs (say B = 10,000 or more), and for each run b = 1, . . . , B:

• Simulate n uniforms Ui, i = 1, . . . , n, find their order statistics ui = U(i), by
(17.8) calculate A2

n,b, and save it.

• The empirical distribution, based on B simulated A2
n,b, produces an approxi-

mation to the quantiles and test p-value.

’
For example, for observed statistics A2

n, the test p-value is approximated
by #{A2

n,b ≥ A2
n}/B. The quantiles can be approximated by sample quan-

tiles of A2
n,b. When n is large, this simulation approximates the limiting

distribution, that of A2.
The following 54 observations were generated from gamma Ga(2,3) dis-
tribution. Here 3 is the rate parameter.
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1.2346 0.1205 0.2018 0.3438 0.6359
0.8481 0.9760 1.0241 0.6305 0.1686
1.9662 0.8579 1.7217 0.2149 1.4038
0.4389 0.5844 0.4281 1.0587 1.0276
0.8505 0.8577 0.4915 0.2164 0.1886
1.0571 0.3483 0.1317 0.0610 0.7597
0.3718 0.4449 0.5733 0.5834 0.7581
0.2152 0.9859 0.1797 0.3645 0.7342
0.7709 0.3281 1.5775 0.6292 0.8452
0.7634 0.2071 0.6350 0.6514 0.5634
0.3921 0.7281 1.8689 0.8891

(a) Find an approximation to 0.90, 0.95, and 0.99 quantiles for A2
54. Check

against Marsaglia and Marsaglia (2004) corresponding A2 quantiles, ac-
curate up to 20 decimal places, 1.9329578327415937304, 2.4923671600494096176
and 3.8781250216053948842.
(b) For the simulated data test the hypothesis

H0 : F(x) is CDF of gamma Ga(2,3) vs. H1 = Hc
0.

Use approximate p-values, based on simulation in (a).
(c) As in (b), test the hypothesis

H0 : F(x) is CDF of exponential E (3/2) vs. H1 = Hc
0.

MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch17.Goodness/

airconditions.m, anacapa.m, anacapa1.m, anacapapict.m, betageometric.m,

consolidator.m, cvmcdf.m, elimination.m, empiricalcdf.m, examples.m,

horsekicks.m, insens.m, jarqueberatest.m, kolsm.m, ks2cdf.m,

kscdf.m, kscdfcensor.m, ksexample.m, mises.m, mises2.m, moran.m,

mrjones.m, neuronfiresqq.m, neurongof.m, nomega2.m, nomega2cdf.m,

notatalllikeme.m, omega2cdf.m, perk.m, plotsimulqq.m, poissonness.m,

ppqq.m, qqbivariatenormal.m, qqnorm.m, qqplotsGOF.m, RANDmillion.m,

rosenblatt.m, shapirowilksimulation.m, smirnov.m, smirnov2.m,

smirrosen.m, swdist.m, tippett.m, watson.m, watson1.m, weldon.m

dcirc.dat|mat, diasi.dat, mrjones.mat, neuronfires.mat,

RAND1Millrandomdigits.txt, renner.dat|mat

http://statbook.gatech.edu/Ch17.Goodness/
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Chapter 18

Distribution-Free Methods

Assumptions are the termites of relationships.

– Henry Winkler

WHAT IS COVERED IN THIS CHAPTER

• Sign Test
• Ranks
•Wilcoxon Signed-Rank and Wilcoxon Sum Rank Tests
• Kruskal–Wallis and Friedman Tests
• Jackknife
• Bootstrap Methodology

18.1 Introduction

Most of the methods we have covered until now are based on parametric
assumptions; the data are assumed to follow some well-known family of
distributions, such as normal, exponential, or Poisson. Each of these distri-
butions is indexed by one or more parameters (e.g., the normal distribution
has µ and σ2), and at least one is presumed unknown and must be inferred.
However, with complex experiments and messy sampling plans, the gen-
erated data might not conform to any well-known distribution. In the case
where the experimenter is not sure about the underlying distribution of the

889
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data, statistical techniques that can be applied regardless of the true distri-
bution of the data are needed. These techniques are called distribution-free
or nonparametric. To quote statistician James V. Bradley (1968, p. 15):

The terms nonparametric and distribution-free are not synonymous, and neither
term provides an entirely satisfactory description of the class of statistics to which
they are intended to refer. . . . . Popular usage, however, has equated the terms. . . .
Roughly speaking, a nonparametric test is one which makes no hypothesis about
the value of a parameter in a statistical density function, whereas a distribution-
free test is one which makes no assumptions about the precise form of the sampled
population.

Many basic statistical procedures, such as the t-test, test for Pearson’s
correlation coefficient, and analysis of variance, assume that the sampled
data come from a normal distribution or that the sample size is sufficiently
large for the CLT to make the normality assumption reasonable.

In this chapter, we will revisit the testing of means, the two-sample prob-
lem, ANOVA, and the repeated measures design, without making strict
distributional assumptions about the data. The material in the next chap-
ter dealing with goodness-of-fit tests is also considered a nonparametric
methodology. For a more comprehensive account on the theory and use
of nonparametric methods in engineering research, we direct the reader to
Kvam and Vidakovic (2007).

The following table gives nonparametric counterparts to a few of the
most popular inferential procedures. The acronym WSiRT stands for Wilcoxon’s
signed-rank test, while WSuRT stands for Wilcoxon’s sum-rank test.

Parametric Nonparametric
One-sample t-test for the location Sign test, WSiRT

Paired t-test Sign test, WSiRT
Two-sample t-test WSuRT, Wilcoxon–Mann–Whitney
One-way ANOVA Kruskal–Wallis test

Block design ANOVA Friedman test

18.2 Sign Test

We start with the simplest nonparametric procedure, the sign test. It was
used in an informal way as early as 1710 (Arbuthnot, 1710).

Suppose we are interested in testing the hypothesis H0 that a population
with a continuous CDF has a median m0 against one of the alternatives
H1 : med > 6=< m0.

We assign a + sign when Xi > m0, i.e., when the difference Xi −m0 is
positive, and a − sign when Xi < m0. The case Xi = m0 (a tie) is theoretically
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impossible for continuous distributions, although when observations are
coded with limited precision, ties are quite possible and most of the time
present. Henceforth we will assume an ideal situation in which no ties
occur.

If m0 is the median and if H0 is true, then from the definition of the
median and continuity of CDF, P(Xi > m0) = P(Xi < m0) =

1
2 . Thus, the

statistic T representing the total number of + is equal to

T =
n

∑
i=1

1(Xi > m0)

and has a binomial distribution with parameters n and 1/2.
Let the level of the test, α, be specified. When the alternative is H1 :

med > m0, the critical values of T are integers greater than or equal to kα,
which is defined as the smallest integer for which the relationship

n

∑
k=kα

(
n

k

)(
1
2

)n

< α

holds.
Likewise, if the alternative is H1 : med < m0, the critical values of T are

integers less than or equal to k′α, which is defined as the largest integer for
which the relationship

k′α
∑
k=0

(
n

k

)(
1
2

)n

< α

holds.
If the alternative is two-sided, namely H1 : med 6= m0, the critical values

of T are integers less than or equal to k′α/2 and greater than or equal to
kα/2, which are defined, respectively, as the largest and smallest integers
for which the inequalities

k′α/2

∑
k=0

(
n

k

)(
1
2

)n

< α/2, and
n

∑
k=kα/2

(
n

k

)(
1
2

)n

< α/2

hold.
If the value T is observed, then in testing against the alternative H1 :

med > m0, large values of T are critical and the p-value is p = ∑
n
i=T (

n
i )2
−n =

∑
n−T
i=0 (n

i )2
−n. When testing against the alternative H1 : med < m0, small val-

ues of T are critical and the p-value is p = ∑
T
i=0 (

n
i )2
−n. When the alternative

is two-sided, the p-value is p = 2 ∑
T′
i=0 (

n
i)2
−n for T′ = min{T,n− T}.
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Alternative p-value
H1 : med > m0 ∑

n
i=T (

n
i )2
−n

H1 : med 6= m0 2 ∑
T′
i=0 (

n
i)2
−n for T′ = min{T,n− T}

H1 : med < m0 ∑
T
i=0 (

n
i )2
−n

Consider now the two-paired-sample case, and suppose that the sam-
ples X1, . . . , Xn and Y1, . . . ,Yn are observed. We are interested in knowing
whether the population median of the differences X1−Y1, X2−Y2, . . . , Xn−
Yn is equal to 0. In this case, T = ∑

n
i=1 1(Xi > Yi), is the total number of

strictly positive differences.
Although it is true that the hypothesis of equality of means is equivalent

to the hypothesis that the mean of the differences is 0, for the medians an
analogous statement is not true in general. More precisely, if for samples
X and Y, D = X − Y, then med(D) may not be equal to med(X)−med(Y).
Thus, with the sign test, we are not testing the equality of medians, but
whether the median of the differences is 0.

Ties complicate the calculations but can be handled. Even when obser-
vations come from a continuous distribution, ties appear due to limited
precision in the application part. There are several ways of dealing with
ties:

(i) Ignore them. If there are s ties, use only the “untied” observations.
Of course, the sample size drops to n− s.

(ii) Assign the winning sign to tied pairs. For example, if there are two
minuses, two ties, and six pluses, consider the two ties as pluses.

(iii) Randomize. For each tie, flip a coin and assign a plus if the coin
lands heads and minus if the coin lands tails.

In script signtst.m conducting the sign test (not to be mixed with
MATLAB’s built in signtest), the options for handling ties are: I, C, and R,
for policies described in (i)–(iii).

Example 18.1. TCDD Levels. Many Vietnam veterans have dangerously
high levels of the dioxin 2,3,7,8-TCDD in their blood and fat tissue as a re-
sult of their exposure to the defoliant Agent Orange. A study published in
Chemosphere (vol. 20, 1990) reported on the TCDD levels of 20 Massachusetts
Vietnam veterans who had possibly been exposed to Agent Orange. The
amounts of TCDD (measured in parts per trillion) in blood plasma and fat
tissue drawn from each veteran are shown in the table below:

TCDD in plasma TCDD in fat tissue
2.5 3.1 2.1 4.6 1.6 4.9 5.9 4.4 4.6 1.4
3.5 3.1 1.8 7.2 1.8 3.5 7.0 4.2 7.7 1.8
6.8 3.0 36.0 20.0 2.0 10.0 5.5 41.0 11.0 2.5
4.7 6.9 3.3 2.5 4.1 4.4 7.0 2.9 2.3 2.5
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Is there sufficient evidence of a difference between the distributions of
TCDD levels in plasma and fat tissue for Vietnam veterans exposed to
Agent Orange? Use the sign test and report the p-value.

tcddpla=[2.5 3.1 2.1 4.6 1.6 ...

3.5 3.1 1.8 7.2 1.8 ...

6.8 3.0 36.0 20.0 2.0 ...

4.7 6.9 3.3 2.5 4.1];

tcddfat=[4.9 5.9 4.4 4.6 1.4 ...

3.5 7.0 4.2 7.7 1.8 ...

10.0 5.5 41.0 11.0 2.5 ...

4.4 7.0 2.9 2.3 2.5];

% ignore ties

[pvae, pvaa, n, plusses, ties] = signtst(tcddpla, tcddfat)

%pvae = 0.3323

%pvaa = 0.3320

%n = 17

%plusses = 6

%ties = 3

% randomize ties

[pvae, pvaa, n, plusses, ties] = signtst(tcddpla, tcddfat,’R’)

% pvae = 0.2632

% take the conservative, least favorable approach

[pvae, pvaa, n, plusses, ties] = signtst(tcddpla, tcddfat,’C’)

% pvae = 0.1153

Overall, the sign test failed to find significant differences between the
distributions of TCDD levels irrespective of the ties handling policy. The
p-values in this example are for the two-sided alternative. The sensible one-
sided alternative can be easily accommodated by reporting half of the two-
sided p-values, although the care is needed.

Compare these results with MATLAB’s built-in function signtest.
�

Remark. The sign test is discussed for its historic significance and its sim-
plicity. For applications this test is suboptimal to other nonparametric pro-
cedures, such as Wilcoxon’s signed-rank test covered in the next section.
Nevertheless, the relative efficiency of sign test, compared to the t-test is
2/π ≈ 63.7% when the data come from the normal distribution. Informally,
this means that for normal data, the testing precision of sign test achieved
with 1000 observations will require 637 observations for the t-test.

Many distribution-free procedures are based on how observations within
the sample are ranked compared to either a parameter θ or to another sam-
ple. Recall (Section 2.5) that ranks of a sample X1, X2, . . . , Xn are defined as
indices of the ordered sample

r(X1),r(X2), . . . ,r(Xn).



894 18 Distribution-Free Methods

Suppose that a random sample X1, . . . , Xn from a continuous distribution F
is ranked and that Ri = r(Xi), i = 1, . . . ,n are the ranks. Ranks Ri are random
variables with discrete uniform distribution (page 171). The properties of
integer sums lead to the following properties for ranks:

E(Ri) =
n

∑
j=1

j

n
=

n + 1
2

,

E(R2
i ) =

n

∑
j=1

j2

n
=

n(n + 1)(2n + 1)
6n

=
(n + 1)(2n+ 1)

6

Var (Ri) =
n2 − 1

12
.

These relationships follow from the fact that for a random sample, ranks
are distributed as discrete uniform, namely, for any i,

P(Ri = j) =
1
n

, 1≤ j≤ n.

As we discussed in Chapter 2 (page 25), script ranks.m outputs ranks
for an input sample:

ranks([2 1 7 1 15 9])

%ans = 3.0000 1.5000 4.0000 1.5000 6.0000 5.0000

Several statistical procedures described next are based on ranks.

18.3 Wilcoxon Signed-Rank Test

More powerful than the sign test is Wilcoxon’s signed-rank test (Wilcoxon,
1945), where, in addition to signs, the corresponding ranks are taken into
account.

Let the paired sample (Xi,Yi), i = 1, . . . ,n be observed and let Di = Xi −
Yi, i = 1, . . . ,n be the differences. In a two-sample problem, we are interested
in testing that the true mean of the differences is 0. The only assumption is
that under H0 the distribution of the differences Di, i = 1, . . . ,n is symmetric
about 0.

It is also possible to consider a one-sample scenario in which testing the
hypothesis about the median med is of interest. Here H0 : med = m0 is tested
versus the one- or two-sided alternative. Then observations Xi, i = 1, . . . ,n
are compared to m0, and the differences are Di = Xi − m0, i = 1, . . . ,n. In
this case, no assumption on the symmetry of Xi is needed. If Xi’s have
symmetric distribution, the word median may be replaced with mean.
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For the WSiRT test, the absolute values of the differences (|D1|, |D2|, . . . , |Dn|)
are ranked. Let r(|D1|),r(|D2|), . . . ,r(|Dn|) be the ranks of the differences.

Under H0, the expectations of the sum of positive differences and the
sum of negative differences should be equal. Define

W+ =
n

∑
i=1

Si r(|Di|)

and

W− =
n

∑
i=1

(1− Si) r(|Di|),

where Si = 1 if Di > 0 and Si = 0 if Di < 0. Cases where Di = 0 are ties
and are ignored. Thus, W+ +W− is the sum of all ranks, and in the case of
no ties, it is equal to ∑

n
i=1 i = n(n + 1)/2. The statistic for the WSiRT is the

difference between the ranks of positive differences and ranks of negative
differences:

W = W+ −W− = 2
n

∑
i=1

r(|Di|)Si − n(n + 1)/2.

Rule: For the WSiRT, it is suggested that a large-sample approximation
should be used for W. If the samples are from the same population, the
differences should be well mixed, and the sum of the ranks of positive
differences should be close to the sum of the ranks of negative differences.
Thus, in this case, E(W) = 0 and Var (W) = ∑i(r(|Di|)2) = ∑i i2 = n(n +
1)(2n + 1)/6 under H0 and no ties in differences. The statistic

Z =
W√

Var (W)

has an approximately standard normal distribution, so normcdf can be used
to evaluate the p-values of the observed statistic W with respect to a partic-
ular alternative.

Equivalently, the WSiRT can be based on the sum of the ranks of
positive differences only (or, equivalently, the sum of the ranks of neg-
ative differences only). In that case, under H0, EW+ = n(n + 1)/4 and
Var (W+) = n(n + 1)(2n+ 1)/24, leading to

Z =
W+ − n(n + 1)/4√
n(n + 1)(2n+ 1)/24

,

which also has an approximately standard normal distribution.
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A function that performs WSiRT is wsirt.m. The preamble of this file
is given below:

function [W, Z, p] = wsirt( data1, data2, alt )

% -----------------------------------------------------

% WILCOXON SIGNED RANK TEST, AN APPROXIMATION

% Input: data1, data2 - first and second sample

% data2 can be a scalar if the test is one sample

% alt - code for alternative hypothesis;

% -1 for mu1<mu2; 0 for mu1 ~= mu2; and 1 for mu1>mu2

% Output: W - sum of all signed ranks

% Z - standardized R but adjusted for the ties

% p - p-value for testing the null hypothesis

% against the alternative specified by the input alt

% Examples of use:

% > dat1=[1 3 2 4 3 5 5 4 2 3 4 3 1 7 6 6 5 4 5 8 7];

% > dat2=[2 5 4 3 4 3 2 2 1 2 3 2 3 4 3 2 3 4 4 3 5];

% > [W, Zstat, pval] = wsirt(dat1, dat2, 1)

%

% When using wsirt as one sample test in testing

% H0: mu=mu0 vs. H1:mu~= mu0

% > mu0 = 3.5;

% > dat1=[1 3 2 4 3 5 5 4 2 3 4 3 1 7 6 6 5 4 5 8 7];

% > [W, Zstat, pval] = wsirt(dat1,mu0, 0)

%

% wsirt.m comes with function ranks.m (ranking procedure)

%------------------------------------------------------

Example 18.2. Identical Twins. This data set was discussed in Conover
(1999). Twelve pairs of identical twins underwent psychological tests to
measure the amount of aggressiveness in each person’s personality. We are
interested in comparing the twins to each other to see if the first-born twin
tends to be more aggressive than the other. The results are as follows (the
higher score indicates more aggressiveness).

First-born twin, Xi 86 71 77 68 91 72 77 91 70 71 88 87
Second-born twin, Yi 88 77 76 64 96 72 65 90 65 80 81 72

The hypotheses are: H0 : the mean aggressiveness scores for the two
twins are the same, that is, E(Xi) =E(Yi), and H1 : the first-born twin tends
to be more aggressive than the other, that is, E(Xi) > E(Yi). The WSiRT is
appropriate if we assume that Di = Xi−Yi are independent and symmetric.

Below is the output of several tests wsirt, wsirtexa, and signrank. The
null hypothesis is not rejected by wsirt; the p-value is 0.2382. The function
wsirtexa performs exact test (p-value 0.2324), while signrank is MATLAB’s
built in function (p-value 0.2378).

%Aggressiveness Score in Twins

fb = [86 71 77 68 91 72 77 91 70 71 88 87];
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sb = [88 77 76 64 96 72 65 90 65 80 81 72];

[~, ~, p] = wsirt(fb, sb, 1 )

% p = 0.2382

% Exact test

[~, p] = wsirtexa(fb, sb, 1)

% p = 0.2324 % exact for n<100

% MATLAB’s built in

[p,~] = signrank(fb, sb,’tail’,’right’)

% p = 0.2378

Note that all tests have approximately the same p-values, and failed to reject
H0.
�

The WSiRT can be used to test the hypothesis of location H0 : µ = µ0 us-
ing a single sample, as in a one-sample t-test. The differences in the WSiRT
are X1 − µ0, X2 − µ0, . . . , Xn − µ0 instead of X1 − Y1, X2 −Y2, . . . , Xn −Yn, as
in the two-sample WSiRT. However, the assumption of symmetry of distri-
bution of X’s is needed; without this assumption, µ0 in H0 is the median
and not the mean.

Example 18.3. WSiRT for the Moon Illusion. In the Moon Illusion (Exam-
ple 9.5), we tested H0 : µ = 1 against H1 : µ > 1. Here is the WSiRT version
of this test.

moon = [1.73 1.06 2.03 1.40 0.95 1.13 1.41 1.73 1.63 1.56];

mu0 = 1;

mu0vec = mu0 * ones(size(moon));

[w, z, p]=wsirt(moon, mu0vec, 1)

%w = 53

%z = 2.7029

%p = 0.0040

Compared to the t-test where the p-value was found to be pval =

9.9885e-04, the WSiRT still rejects H0 even though the p-value is higher,
p = 0.004.

If the data are normal and WSiRT is used instead of the optimal t-test,
then the relative efficiency is 95%. This efficiency is quite high: for a preci-
sion achieved with WSiRT using 100 observations, the t-test would require
95 observations.
�

18.4 Wilcoxon Sum-Rank and Mann–Whitney Tests

The Wilcoxon sum-rank (WSuRT) and Mann-Whitney (MW) tests are equiv-
alent and often referred together as Wilcoxon-Mann-Whitney (WMW) test.
Here we will discuss only the former, WSuRT.
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The WSuRT is often used in place of a two-sample t-test when the pop-
ulations being compared are independent, but possibly not normally dis-
tributed. An example of the sort of data for which this test could be used is
responses on a Likert scale (e.g., 1 = much worse, 2 = worse, 3 = no change,
4 = better, 5 = much better). It would be inappropriate to use the t-test for
such data because of their ordinal nature.

The WSuRT tells us more generally whether the groups are homoge-
neous or if one group is “better” than the other. More generally, the basic
null hypothesis of the WSuRT is that the two populations are equal. That
is, H0 : FX(x) = FY(x). When stated in this way, this test assumes that the
shapes of the distributions are similar, which is not a stringent assumption.

Let X = X1, . . . , Xn1 and Y = Y1, . . . ,Yn2 be two samples of sizes n1 and
n2, respectively, from the populations that we want to compare. Assume
that the samples are put together and that n = n1 + n2 ranks are assigned
to their concatenation. The test statistic Wn is the sum of ranks (1 to n)
corresponding to the first sample, X. For example, if X1 = 1, X2 = 13, X3 =
7, X4 = 9, and Y1 = 2,Y2 = 0,Y3 = 18, then the value of Wn is 2 + 4+ 5 + 6 =
17.

If the two populations have the same distribution, then the sum of the
ranks of the first sample and those in the second sample should be close,
relative to their sample sizes. The WSuRT statistic is

Wn =
n

∑
i=1

iSi(X,Y),

where Si(X,Y) is an indicator function defined as 1 if the ith ranked obser-
vation is from the first sample and 0 if the observation is from the second
sample.

For example, for X1 = 1, X2 = 13, X3 = 7, X4 = 9 and Y1 = 2,Y2 = 0,Y3 =
18, S1 = 0,S2 = 1,S3 = 0,S4 = 1,S5 = 1,S6 = 1,S7 = 0. Thus

Wn = 1× 0 + 2× 1 + 3× 0 + 4× 1 + 5× 1 + 6× 1 + 7× 0 = 2 + 4 + 5 + 6 = 17.

If there are no ties, then under H0

E(Wn) =
n1(n + 1)

2
and Var (Wn) =

n1n2(n + 1)
12

.

The statistic Wn achieves its minimum when the first sample is entirely
smaller than the second, and its maximum when the opposite occurs:

minWn =
n1

∑
i=1

i =
n1(n1 + 1)

2
, maxWn =

n

∑
i=n−n1+1

i =
n1(2n− n1 + 1)

2
.
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For the statistic Wn a normal approximation holds:

Wn ∼ N
(

n1(n + 1)
2

,
n1n2(n + 1)

12

)
.

A better approximation is

P(Wn ≤ w) ≈ Φ(x) + φ(x)(x3− 3x)
n2

1 + n2
2 + n1n2 + n

20n1n2(n + 1)
,

where φ(x) and Φ(x) are the PDF and CDF of a standard normal distri-
bution, respectively, and x = (w−E(Wn) + 0.5)/

√
Var (Wn). This approx-

imation is satisfactory for n1 > 5 and n2 > 5 if there are no ties.
The MATLAB function that performs WSuRT is wsurt.m. The pream-

ble of this function is given below:

function [W, Z, p] = wsurt( data1, data2, alt )

% --------------------------------------------------------

% WILCOXON SUM RANK TEST

% Input: data1, data2 - first and second sample

% alt - code for alternative hypothesis;

% -1 mu1<m2; 0 mu1 ~= m2; and 1 mu1>mu2

% Output: W - sum of the ranks for the first sample. If

% there is no ties, the standardization by EW &

% Var W allows using standard normal quantiles

% as long as sample sizes are larger than 15-20.

% Z - standardized W but adjusted for the ties

% p - p-value for testing equality of distributions

% (equality of locations) against the alternative

% specified by input "alt"

% Example of use:

% > dat1=[1 3 2 4 3 5 5 4 2 3 4 3 1 7 6 6 5 4 5 8 7 3 3 4];

% > dat2=[2 5 4 3 4 3 2 2 1 2 3 2 3 4 3 2 3 4 4 3 5];

% > [sumranks1, zstat, pval] = wsurt(dat1, dat2, 1)

%

% Comes with function ranks.m (ranking procedure)

%-----------------------------------------------------------

Example 18.4. Nanoscale Probes. The development of intracellular nanoscale
probes against various biomolecules is very important in furthering the
basic studies of cellular biology and pathology. One way to improve the
binding properties of these probes is to have multiple binding domains or
ligands on the surface of the probes. The more ligands, the greater is the
chance of binding. One issue that comes up with such probes is whether,
due to the multiple ligands, they will cause aggregation of target molecules
within the cell. In order to show that new probes do not induce aggrega-
tion, researchers in the lab of Dr. Phil Santangelo at Georgia Tech compared
the number of granules using a monovalent and a tetravalent probe in a cell
plated at the same time and under the same biological conditions. The num-
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ber of granules detected by each probe was recorded, and the researchers
were interested to see if there were real differences between the numbers.

Using WSuRT, we want test the hypothesis of equality of the distribu-
tions and, subsequently, all theoretical moments at the significance level
α = 0.05.

monovalent = [117 92 84 213 89 76 96 104 114 142 ...

122 154 124 65 129 67 100 127 63 82 ...

114 93 117 83 82 83 111 78 92 91];

tetravalent = [103 78 155 107 113 75 74 80 120 112 ...

158 72 81 124 110 90 64 74 110 149 ...

97 70 105 94 110 93 115 114 110 95];

[sumranks1, tstat, pval] = wsurt(monovalent, tetravalent, 0)

% sumranks1 = 925.5000

% tstat = 0.1553

% pval = 0.8737

The hypothesis that the two samples come from distributions with the same
location is not rejected since the p-value is 0.8737.�

18.5 Kruskal–Wallis Test

The Kruskal–Wallis (KW) test is a generalization of the WSuRT. It is a non-
parametric test used to compare three or more samples. It is used to test
the null hypothesis that all populations have identical distribution func-
tions against the alternative hypothesis that at least two of the samples
differ only with respect to location (median), if at all.

The KW test is an analogue to the F-test used in one-way ANOVA.
While ANOVA tests depend on the assumption that all populations under
comparison are independent and normally distributed, the KW test places
no distributional restriction, although the independence among the popu-
lations is required. Suppose that the data consist of k independent random
samples with sample sizes n1, . . . ,nk. Let n = n1 + · · ·+ nk.

Sample 1 X11, X12, . . . X1,n1
Sample 2 X21, X22, . . . X2,n2
...

...
Sample k− 1 Xk−1,1, Xk−1,2, . . . Xk−1,nk−1
Sample k Xk1, Xk2, . . . Xk,nk

Under the null hypothesis, we can claim that all of the k samples are from
a common population.
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The expected sum of ranks for sample i, E(Ri), would be ni times the
expected rank for a single observation. That is, ni(n + 1)/2, and the vari-
ance can be calculated as Var (Ri) = ni(n + 1)(n− ni)/12. One way to test
H0 is to calculate Ri = ∑

ni
j=1 r(Xij) – the total sum of ranks in sample i. The

statistic

k

∑
i=1

[
Ri −

ni(n + 1)
2

]2

(18.1)

will be large if the samples differ, so the idea is to reject H0 if (18.1) is “too
large.” However, its distribution is quite messy, even for small samples, so
we can use the normal approximation

Ri −E(Ri)√
Var (Ri)

appr∼ N (0,1)⇒
k

∑
i=1

(Ri −E(Ri))
2

Var (Ri)

appr∼ χ2
k−1,

where the χ2-statistic has only k− 1 degrees of freedom due to the fact that
only k− 1 ranks are unique.

Based on this idea, Kruskal and Wallis (1952) proposed the test statistic

H′ =
1

S2

[
k

∑
i=1

R2
i

ni
− n(n + 1)2

4

]
, (18.2)

where

S2 =
1

n− 1

[
k

∑
i=1

ni

∑
j=1

r(Xij)
2 − n(n + 1)2

4

]
.

If there are no ties in the data, S2 becomes n(n+ 1)/12 and (18.2) simplifies
to

H =
12

n(n + 1)

k

∑
i=1

R2
i

ni
− 3(n + 1). (18.3)

Kruskal and Wallis showed that this statistic has an approximate χ2-
distribution with k− 1 degrees of freedom.

Correction for the ties in observations can be done in the following way.
Let c = 1−∑

s
i=1(t

3
i − ti)/(n3 − n), where s is the number of different ranks

and ti is the number of observations that share ith rank. For example, in
[8,2,2,4,2,5,7,5,8,8], s = 5 and tis are [3,1,2,1,3] indicating the number of
tied observations for 2, 3, 5, 7, and 8. Then the corrected statistics is

Hc = H/c.
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Note when there are no ties, s = n and all ti = 1 resulting in no correction,
c = 1.

The MATLAB routine kruskalwallistest.m implements the KW test
using a vector to represent the responses and another to identify the group
from which the response came. It calculates Hc, the p-value for the test,
and the average ranks for the groups. As an example, suppose we have the
following responses from three treatment groups:

(1,3,4), (3,4,5), (4,4,4,6,5).

The code for testing the equality of locations of the three populations com-
putes the corrected H as 3.8923 and a p-value of 0.1428. The average ranks
in the three groups are 3.1667, 6, and 7.7.

data = [ 1 3 4 3 4 5 4 4 4 6 5 ];

belong = [ 1 1 1 2 2 2 3 3 3 3 3 ];

[p, H, aver] = kruskalwallistest(data, belong)

%p = 0.1428

%H = 3.8923

%aver = 3.1667 6.0000 7.7000

Example 18.5. Crop Yield. The following data are from a classic agricultural
experiment measuring crop yield in four different plots. For simplicity, we
identify the treatment (plot) using the integers {1,2,3,4}. The null hypothesis
(the treatment means are equal) is rejected with a p-value less than 0.0002.
The average ranks for the four treatments are 21, 15.5, 26.6875, and 4.5714.
In the context of this example, larger average rank is better and, given the
significant test, the best treatment is 3, followed by 1, 2, and 4.

data= [83 91 94 89 89 96 91 92 90 84 91 90 81 83 84 83 ...

88 91 89 101 100 91 93 96 95 94 81 78 82 81 77 79 81 80];

belong = [1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ...

3 3 3 3 3 3 3 3 4 4 4 4 4 4 4];

[p, H, aver1] = kruskalwallistest(data, belong)

%p = 1.4451e-04

%H = 20.3371

%aver1 = [21.0000 15.5000 26.6875 4.5714]

�

Kruskal–Wallis Pairwise Comparisons. If the KW test detects treatment
differences, we can determine if two particular treatment groups (e.g., i and
j) are different at level α if

∣∣∣∣∣
Ri

ni
− Rj

nj

∣∣∣∣∣ > tn−k,1−α/2

√√√√S2(n− 1− H′)
n− k

·
(

1
ni

+
1
nj

)
. (18.4)
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Example 18.6. Comparisons for Crop Treatments. Since in Example 18.5 we
found the four crop treatments significantly different, it would be natural
to find out which ones seem better and which ones seem worse. In the table
below, we compute the statistic

T =

∣∣∣ Ri
ni
− Rj

nj

∣∣∣
√

S2(n−1−H′)
n−k

(
1
ni
+ 1

nj

)

for every combination of 1≤ i 6= j ≤ 4 and compare it to t30,0.975 = 2.042.

(i, j) 1 2 3 4
1 0 1.856 1.859 5.169
2 1.856 0 3.570 3.363
3 1.859 3.570 0 6.626
4 5.169 3.363 6.626 0

This shows that the third treatment is the best, but not significantly different
from the first treatment, which is second best. Treatment 2, which is third
best, is not significantly different from treatment 1, but is different from
treatments 4 and 3.

Confidence intervals for pairwise comparisons can be found using the
function

% Kruskal-Wallis pairwise comparisons

kwpairwise(data, belong)

%

% 1.0000 2.0000 -0.5515 5.5000 11.5515

% 1.0000 3.0000 -11.9349 -5.6875 0.5599

% 1.0000 4.0000 9.9380 16.4286 22.9191

% 2.0000 3.0000 -17.5873 -11.1875 -4.7877

% 2.0000 4.0000 4.2912 10.9286 17.5659

% 3.0000 4.0000 15.2996 22.1161 28.9325

For example, the CI for difference of average ranks for treatments 1 and
2 is [−0.5515,11.5515]. Since 0 belongs to this interval, the average ranks for
treatments 1 and 2 are not significantly different, at the level of 0.05 that
controls simultaneously all 6 comparisons.
�

MATLAB’s built in function for KW test is [p t stats]=kruskalwallis(data,

belong). The outputs are the p-value, ANOVA table, and a structure stats

that can be used for multiple comparisons by multcompare similarly as in
anovan.

Example 18.7. Kruskal–Wallis versus ANOVA. Kruskal–Wallis test does
not assume normality but requires the group population distributions to
be “similar in shape.” To illustrate this point and differentiate between
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ANOVA and Kruskal–Wallis test outcomes, we compiled a simple script
kwvsanova.m where 30 observations are simulated from each, normal

N (1/2,12), gamma Ga(1/4,1/2), and double exponentialDE (1/2,
√

2) dis-
tributions. All three distributions have mean 1/2 and variance 1, but their
shapes differ. Given the three samples, we test ANOVA and Kruskal–Wallis
hypotheses and save the p-values. This is repeated M = 20,000 times on the
new random samples, and p-values for both tests are summarized as back-
to-back histograms, Figure 18.1. Under H0, p-values are always uniform on
(0,1), and this shows that ANOVA was not affected by nonnormality, as
long as the group sample means and variances were close. the Kruskal–
Wallis test, however, uses ranks and therefore is sensitive to the differences
between the corresponding sample quantiles, in particular the medians.
The median of gamma Ga(1/4,1/2) distribution is not 1/2, and the ranks
do not mix well among the samples. This causes Kruskal–Wallis’ H statistic
to render significant more often than ANOVA’s F statistic.

2000 1000 0 1000 2000
−0.0167
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0.317

0.483

0.65

0.817

0.983
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Fig. 18.1 Back-to-back histograms of p-values in Kruskal–Wallis (blue) and ANOVA
(green) tests where the locations of three populations are compared: normal N (1/2,12),
gamma Ga(1/4,1/2), and double exponential DE(1/2,

√
2).

�

18.6 Friedman’s Test

Friedman’s test is a nonparametric alternative to the repeated measures de-
sign from Section 11.6. It replaces the repeated measures design, or more
generally, the randomized block design, when the assumptions of normal-
ity are in question or when the variances vary from population to popula-
tion. This test uses ranks of the data rather than their raw values to calculate
the test statistic. Due to the fact that Friedman’s test does not make distri-
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butional assumptions, it is not as powerful as the repeated measures design
if the populations are indeed normal.

Milton Friedman published the first results for this test, which was even-
tually named after him. He received the Nobel Prize in economics in 1976,
and one of the listed breakthrough publications was his article “The use
of ranks to avoid the assumption of normality implicit in the analysis of
variance,” published in 1937 (Friedman, 1937).

Recall that the repeated measures design requires measurements for
each subject (block) at each level of treatment. Let Xij represent the experi-
mental outcome of subject (block) i with treatment j, where i = 1, . . . ,b, and
j = 1, . . . ,k.

Treatment
Block 1 2 . . . k

1 X11 X12 . . . X1k

2 X21 X22 . . . X2k
...

...
...

...
b Xb1 Xb2 . . . Xbk

Unlike the KW test where the ranks are assigned to all observations
grouped together, here we assign ranks {1,2, . . . ,k} to each row in the table
of observations. Thus the expected rank of any observation under H0 is
(k + 1)/2. We next sum all the ranks by columns (by treatments) to obtain
Rj = ∑

b
i=1 r(Xij), 1≤ j≤ k. If H0 is true, the expected value for Rj is E(Rj) =

b(k + 1)/2. The statistic

k

∑
j=1

(
Rj −

b(k + 1)
2

)2

is an intuitive formula to reveal treatment differences. It has expectation
bk(k2 − 1)/12 and variance k2b(b− 1)(k− 1)(k + 1)2/72. Once normalized
to

S =
12

bk(k + 1)

k

∑
j=1

(
Rj −

b(k + 1)
2

)2

=
12

bk(k + 1)

k

∑
j=1

R2
j − 3b(k + 1), (18.5)

it has moments E(S) = k− 1 and Var (S) = 2(k− 1)(b− 1)/b ≈ 2(k− 1),
which coincide with the first two moments of χ2

k−1. Higher moments of S

also approximate well those of χ2
k−1 when b is large.

In the case of ties, a modification to S is suggested. Let C = bk(k + 1)2/4
and R∗ = ∑

b
i=1 ∑

k
j=1 r(Xij)

2. Then,
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S′ =
k− 1

R∗ − C

(
k

∑
j=1

R2
j − bC

)
(18.6)

is also approximately distributed as χ2
k−1.

Although the Friedman statistic makes for a sensible, intuitive test, it
turns out there is a better one to use. As an alternative to S (or S′), the test
statistic

F =
(b− 1)S

b(k− 1)− S

is approximately distributed as Fk−1,(b−1)(k−1), and tests based on this ap-
proximation are generally superior to those based on chi-square approx-
imation used for S. For details on the comparison between S and F, see
Iman and Davenport (1980).

Example 18.8. Cerebral Blood Flow and Metabolic Rate of Oxygen. In the
human brain, structures having high blood flow (e.g., gray matter) also
tend to have increased metabolic rates, and structures containing low blood
flow (e.g., white matter) have lower metabolic rates. This phenomenon is
known as coupling, and it can be modeled by measuring cerebral blood
flow (CBF) and comparing it with the variable cerebral metabolic rate of
oxygen (CMRO2). This technique has been used to show how various brain
regions differ in their metabolism characteristics and has been used as a
fundamental basis for fMRI imaging. Fox and Raichle (1986) tested whether
the measurements of CBF and CMRO2 were dynamically coupled in the
measurements they collected.

Three sets of stimulated-state measurements and one set of resting state
measurements were acquired for each of the 9 subjects undergoing sensory
stimulation. The 3 stimulation levels (S1, S2, S3) differed only in stimulus
duration. The measured response to tactile stimulation for each subject was
the regional blood flow ratio (contralateral/ipsilateral). Data are provided
in the table below.

Subject Resting S1 S2 S3
1 0.82 1.14 1.05 1.12
2 1.05 1.45 1.38 1.42
3 1.10 1.45 1.49 1.58
4 0.90 1.05 1.22 1.14
5 1.02 1.27 1.27 1.39
6 1.03 1.25 1.23 1.20
7 1.04 1.30 1.33 1.29
8 0.98 1.30 1.42 1.34
9 1.04 1.29 1.23 1.24
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We will conduct the repeated measures analysis in a nonparametric
fashion and test the hypothesis that population distributions of regional
blood flow ratios are the same. This would imply that the population means
for the four groups are the same,

H0 : µResting = µS1 = µS2 = µS3.

To use the procedure friedmantest the input data should be formatted as
a matrix in which the rows are blocks and the columns are treatments.

%cbfcmro2.m

cbf=[...

0.82 1.14 1.05 1.12;

1.05 1.45 1.38 1.42;

1.10 1.45 1.49 1.58;

0.90 1.05 1.22 1.14;

1.02 1.27 1.27 1.39;

1.03 1.25 1.23 1.20;

1.04 1.30 1.33 1.29;

0.98 1.30 1.42 1.34;

1.04 1.29 1.23 1.24];

%or cbf=xlsread (’cbfcmro2.xls’);

[S F pS pF] = friedmantest(cbf)

% S =16.4157

% F =12.4076

% pS =9.3179e-004

% pF =4.2382e-005

The null hypothesis is rejected with respect to both S and F statistic. It is of
interest to find which population locations differ.

Friedman’s Pairwise Comparisons. If the p-value is small enough to war-
rant multiple comparisons of treatments, we consider two treatments i and
j to be different at level α if

∣∣Ri − Rj

∣∣ > t(b−1)(k−1),1−α/2

√√√√2 ·
bR∗ −∑

k
j=1 R2

j

(b− 1)(k− 1)
. (18.7)

To conduct Friedman’s pairwise comparisons on data from Example
18.8, we will use function friedmanpairwise.m which implements (18.7).

%cbfcmro2.m continued

out=friedmanpairwise(cbf)

% 1.0000 2.0000 -25.9653 -18.5000 -11.0347

% 1.0000 3.0000 -24.9653 -17.5000 -10.0347

% 1.0000 4.0000 -25.4653 -18.0000 -10.5347

% 2.0000 3.0000 -6.4653 1.0000 8.4653

% 2.0000 4.0000 -6.9653 0.5000 7.9653
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% 3.0000 4.0000 -7.9653 -0.5000 6.9653

Since zero is not in the intervals for differences 1-2, 1-3, and 1-4, the
Control treatment is significantly different from S1, S2, and S3 treatments.
The intervals are all negative, meaning that the control measurements are
significantly smaller. Yet, zero is in the intervals for differences 2-3, 2-4, and
3-4, and the locations for S1, S2, and S3 are not statistically different.
�

18.7 Resampling Methods

... I was still a couple of miles above the clouds when it broke, and with such violence I
fell to the ground that I found myself stunned, and in a hole nine fathoms under the grass,
when I recovered, hardly knowing how to get out again. Looking down, I observed that I
had on a pair of boots with exceptionally sturdy straps. Grasping them firmly, I pulled with
all my might. Soon I had hoist myself to the top and stepped out on terra firma without
further ado.

–Rudolph Raspe (1786, p. 22)

Resampling methods in statistics are computer-intensive procedures
that use an observed sample to produce many surrogate samples subse-
quently used in the inference. Resampling can be applied in a broad range
of statistical scenarios (estimation, testing, regression, experimental design,
etc.), often providing answers of equal or higher quality compared to the
traditional methods. This goes at the expense of computer time, but nowa-
days this hardly can be a serious objection.

18.7.1 The Jackknife

The jackknife method was introduced by Maurice Henry Quenouille in
1949 to correct for the bias of an estimator. In addition to bias reduction,
the method is also used to estimate the variance of an estimator and to
construct confidence intervals.

Recall that any estimator θ̂ is a function of the sample,

θ̂ = f (X1, X2, . . . , Xn).

Define n estimators θ̂(−i) re-computed the same way as θ̂, but with ob-
servation Xi omitted, that is, by using the remaining n − 1 observations,
(X1, . . . , Xi−1, Xi+1, . . . , Xn). One gets exactly n such estimators, θ̂(−1), θ̂(−2),
. . . , θ̂(−n), one for each Xi omitted.

Define the pseudo-observation (pseudo-value) X∗i as
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X∗i = nθ̂− (n− 1)θ̂(−i)

The motivation for this naming can be seen by considering the estimator
θ̂ = X, for which the pseodo-observation X∗i coincides with the observation
Xi. Let θ̂(·) be the average of all θ̂(−i)’s,

θ̂(·) =
1
n

n

∑
i=1

θ̂(−i).

The jackknife estimator of θ is the average of pseudo-observations,

θ̂J =
1
n

n

∑
i=1

X∗i =
1
n

n

∑
i=1

[
nθ̂ − (n− 1)θ̂(−i)

]

= nθ̂ − n− 1
n

n

∑
i=1

θ̂(−i) = nθ̂ − (n− 1)θ̂(·).

Bias b of an estimator θ̂ is estimated as

b̂ = Eθ̂− θ =
n− 1

n

n

∑
i=1

(θ̂(−i)− θ̂)

= (n− 1)(θ̂(·)− θ̂).

How does the jackknife estimator reduce the bias? Suppose that θ̂ is
biased, that is, Eθ̂ = θ +C/n, where n is the sample size and C is a constant.
Then the expectation of a pseudo-observation is

EX∗i = E(nθ̂− (n− 1)θ̂(−i)) = n

(
θ +

C

n

)
− (n− 1)

(
θ +

C

n− 1

)
= θ.

Therefore, if the bias is of order C/n, then Eθ̂J =
1
n ∑

n
i=1 EX∗i = 1

n nθ = θ,
meaning the jackknife estimator θ̂J is unbiased.

The jackknife estimator of variance and jackknife confidence intervals
were proposed by John Tukey in the late 1950s. Tukey also coined the term
“jackknife” for the methodology. Quoting Tukey (1959) (also Brillinger,
1964),

... The procedure described here shares two characteristics with a Boy Scout Jack-
knife:

(1) wide applicability to many kinds of problems,

(2) inferiority to special tools for those problems for which special tools have been
designed and built.
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Let sX∗ be an estimator of sample standard deviation for the pseudo-
observations,

sX∗ =

√
1

n− 1

n

∑
i=1

(
X∗i − θ̂J

)2
.

Since θ̂J is an average of pseudo-observations 1
n ∑

n
i=1 X∗i , the estimator sθ̂ J

is the usual estimator for sample standard deviation of the mean, sX∗√
n

.

Tukey postulated that the standard deviation of an estimator θ̂ can be
well approximated by the standard deviation of its jackknife version,

sθ̂ ≈ sθ̂ J
=

sX∗√
n
=

√√√√∑
n
i=1
(
X∗i − θ̂J

)2

n(n− 1)
.

In terms of θ̂(−i),

sθ̂ J
=

√
n− 1

n

n

∑
i=1

(
θ̂(−i)− θ̂(·)

)2
, where θ̂(·) =

1
n

n

∑
i=1

θ̂(−i).

This leads to jackknife (1− α)100% CI for θ as

[θ̂J − tn−1,1−α/2 · sθ̂ J
, θ̂J + tn−1,1−α/2 · sθ̂ J

].

Here, tn−1,1−α/2 is (1− α/2)-quantile of a t-distribution with n − 1
degrees of freedom.

Example 18.9. Spores of Amanita Phalloides Revisited. Measurements in
microns of 28 spores of Amanita phalloides have been discussed in Exercises
2.4 and 7.27. In Exercise 7.27, a (1− α)100% CI for population coefficient
of variation (σ/µ) was found under assumption that data are coming from
normal distribution. We will use jackknife to estimate the bias of sample
CV, s/X, and find the 95% jackknife CI for σ/µ.

9.2 8.8 9.1 10.1 8.5 8.4 9.3
8.7 9.7 9.9 8.4 8.6 8.0 9.5
8.8 8.1 8.3 9.0 8.2 8.6 9.0
8.7 9.1 9.2 7.9 8.6 9.0 9.1

%amanitajkn3.m, needs minusith.m

amanita =[...

9.2 8.8 9.1 10.1 8.5 8.4 9.3 8.7 9.7 9.9 8.4 8.6 8.0 9.5 ...
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8.8 8.1 8.3 9.0 8.2 8.6 9.0 8.7 9.1 9.2 7.9 8.6 9.0 9.1];

%function handle for calculating CV statistics

coevar = @(x) std(x)/mean(x);

%

n=length(amanita);

pseudo=[]; %collect pseudo-observations

coevarsj=[]; %collect estimators from jackknife samples

for i = 1:n

jknsa = minusith(amanita, i); %i-th jackknife sample

pseudoobs = n * coevar(amanita) - (n-1)*coevar(jknsa);

pseudo =[pseudo pseudoobs];

coevarsj=[coevarsj coevar(jknsa)];

end

%jackknife bias

bias=(n-1)*(mean(coevarsj)-coevar(amanita) %-5.7487e-04

%two equivalent jackknife estimators of CV

pseudomean = mean(pseudo) %0.0628

jackknifeset=coevar(amanita)-bias %0.0628

pseudostd = std(pseudo)/sqrt(n) %0.0081

%Jackknife CI

[pseudomean - tinv(0.975, n-1)*pseudostd,...

pseudomean + tinv(0.975, n-1)*pseudostd]

% 0.0461 0.0795

%Compare to Miller 1991 CI for CV

theta=coevar(amanita) %0.0622

[theta - norminv(0.975)*theta*sqrt(1/(n-1)*(1/2 + theta^2)),...

theta + norminv(0.975)*theta*sqrt(1/(n-1)*(1/2 + theta^2))]

%0.0456 0.0789

Note that CV = s/X is a biased estimator of σ/µ and that bias E(CV)−
σ/µ is estimated as -5.7487e-04; thus CV underestimates its population
counterpart. A jackknife estimator of σ/µ for this data set is 0.0628 as com-
pared to the directly calculated CV, which is 0.0622. A 95% jackknife CI for
σ/µ is [0.0461,0.0795], which is very close to Miller’s CI [0.0456,0.0789]; see
page 325.
�

18.7.2 Bootstrap

Bootstrap is arguably the most popular resampling methodology, made
systematic by Brad Efron, Professor at Stanford University. Before Efron’s
seminal paper (Efron, 1979a), which gave the theoretical foundations for
bootstrap methodology, there were several important precursors, including,
the work on jackknife by Quenouille and Tukey.

Among notable bootstrap evangelists was unconventional economist Ju-
lian Simon who in 1976 prophesied “that most everyday statistics eventu-
ally would be done the resampling way.” His crusade for teaching statistics
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based on resampling at all levels was discounted by the statistical commu-
nity until the work by Efron gave him legitimacy. An interesting account of
bootstrap history is given in Hall (2003).

18.7.2.1 Bootstrap Sampling

To conduct bootstrap inference, one forms surrogate samples, called boot-
strap samples or bootstrap resamples, by sampling with replacement from the
original sample. The bootstrap samples are of the same size as the origi-
nal sample. If the original sample is X1, X2, . . . , Xn, then the bth bootstrap
sample is denoted as X∗b1 , X∗b2 , . . . , X∗bn . Since the sampling is with replace-
ment, some observations from the original sample may not be selected for
a particular bootstrap sample, while some may be selected more than once.

Original sample X1, X2, . . . , Xn

Bootstrap samples X∗11 , X∗12 , . . . , X∗1n

X∗21 , X∗22 , . . . , X∗2n
. . .
X∗B1 , X∗B2 , . . . , X∗Bn

Here the number of bootstrap samples B is typically large. For example,

Original sample {1, 4, 7, 2, 8}
Bootstrap samples {8, 8, 1, 4, 2}, {1, 2, 4, 8, 7}, {2, 2, 1, 8, 4},

{1, 8, 4, 1, 2}, {7, 4, 8, 4, 1}, {8, 1, 2, 2, 8},
{2, 7, 1, 4, 8}, {1, 1, 4, 1, 2}, {4, 7, 7, 2, 7}, etc.

Next, we provide a simple MATLAB code for bootstrap sampling. The
function bootsample.m takes a sample of size n as input, where each obser-
vation is p-dimensional and generates a bootstrap sample. The input (and
the output) are n× p matrices, n, p≥ 1. MATLAB comes with an advanced
function bootstr for more complex resampling approaches.

function vecout = bootsample(vecin)

% Bootstraping from the array "vecin" by random selecting the rows

% Usage

% vecout = bootsample(vecin)

% Input

% vecin - nxp data matrix

% n - sample size

% p - dimension of a single observation

% Output

% vecout - a single bootstrap sample, size n x p

% Example

% > bootsample([1 2; 2 3; 3 4; 4 5])

% ans =



18.7 Resampling Methods 913

% 4 5

% 3 4

% 4 5

% 3 4

%

[n, p] = size(vecin);

selected_indices = floor(1+n.*(rand(1,n)));

vecout = vecin(selected_indices,:);

Assume that θ is the parameter of interest and that θ̂ is a statistic appro-
priate to make inference about θ. Recall that a statistic is a function of the
sample, θ̂ = θ̂(X1, X2, . . . , Xn). For only a few statistics θ̂, we can estimate
their variability from the same sample. An example is the sample mean,
θ̂ = X for which the standard deviation is sX̄ = s/

√
n. This result does not

require normality and holds for any distribution of observations, under
mild restrictions. However, for more complex estimators it is impossible to
calculate their standard errors from a single sample, unless we know the
distribution of observations. We will see later that even when the variability
of an estimator can be found from the single sample, we may be interested
in the sampling distribution of the estimator, which can be estimated by
bootstrap.

If the sample X1, X2, . . . , Xn produces statistic θ̂ for estimating population
parameter θ, then each of B bootstrap samples X∗b1 , X∗b2 , . . . , X∗bn , b = 1, . . . , B,
produces the counterpart statistic θ̂∗b . When B is large, the ensemble of θ̂∗b s
approximates the sampling distribution of θ̂.

Original sample X1, X2, . . . Xn −→ θ̂

Bootstrap samples X∗11 , X∗12 , . . . , X∗1n −→ θ̂∗1
X∗21 , X∗22 , . . . , X∗2n −→ θ̂∗2
. . .
X∗B1 , X∗B2 , . . . , X∗Bn −→ θ̂∗B

For example, if the sampling distribution of θ̂ is F(x) = P(θ̂ ≤ x), then
the bootstrap estimate of F is an empirical CDF,

F∗(x) =
1
B

B

∑
b=1

1(θ̂∗b ≤ x),

as on page 27. Here the function 1(A) is an indictor of A, equal to 1 if A is
true, and to 0 if A is false.

One of the main uses of bootstrap is to estimate the standard error of
the proposed statistic θ̂ based on a single sample and without any distribu-
tional assumptions about the underlying population. More generally, one
obtains a bootstrap approximation of distribution for θ̂. With this approxi-
mation in hand, one can find not only the variability of sample estimators,
but assess their bias, find confidence intervals, assess the hypotheses, etc.
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Given B bootstrap replicates θ∗b , the standard deviation of θ̂ is estimated
as

sθ̂ =

√√√√ 1
B− 1

B

∑
b=1

(θ̂∗b − θ∗)2,

where θ∗ is the sample mean of θ̂∗b s,

θ∗ =
1
B

B

∑
b=1

θ̂∗b .

The motivation for the rather curious name bootstrap is now apparent. To
pull oneself up by one’s bootstraps means to succeed without outside help.
See also the original bootstrapper’s account in the quote at the beginning
of this section. In our context, this self-sufficiency refers to a single sam-
ple succeeding to produce an estimator of sampling distribution for any
statistic calculated from that sample.

Another common use of bootstrap techniques is to assess the bias of an
estimator. Recall (page 288) that an estimator θ̂ is unbiased for θ if Eθ̂ = θ,
when the expectation is taken with respect to the sampling distribution of
θ̂. Also, the bias of an estimator was defined as b(θ̂) = E(θ̂)− θ.

Since the bias depends on unobservable θ, it needs to be estimated. A
bootstrap estimator of bias is defined as

b̂(θ̂,θ) = θ∗ − θ̂.

The goal of bias estimation is to produce a bias-corrected estimator of θ,

θ̂bc = θ̂ − b̂(θ̂,θ) = 2θ̂− θ∗.

There are several approaches to calculating confidence intervals for θ
by using bootstrap replicates. The simplest uses sample quantiles of θ̂∗.
Let θ∗(α/2) and θ∗(1− α/2) respectively denote α/2 and 1− α/2 sample
quantiles for {θ̂∗1 , θ̂∗2 , . . . , θ̂∗B}. Then a (1− α)× 100-level bootstrap confidence
interval for θ is

[θ∗(α/2), θ∗(1− α/2)]

This is the most popular approach to bootstrap confidence intervals, be-
cause of its simplicity and natural appeal. A drawback of this method is
that it requires at least an approximate symmetry of the sampling distribu-
tion of θ̂ around θ.

On the positive side, the quantile bootstrap confidence intervals are
transformation invariant and they always lead to valid intervals. The lat-
ter property means that an interval will not go outside of the parameter
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domain (e.g., CI for the population proportion containing negative values).
The transformation invariance property means that a confidence interval
for parameter θ will be equal to the confidence interval calculated for g(θ)
after applying g−1 on the interval endpoints, as long as the function g is
monotone.

A centered bootstrap quantile method defines a (1− α)100% CI as

[2θ̂− θ∗(1− α/2), 2θ̂− θ∗(α/2)]

As θ̂∗ − θ̂ is bootstrap approximation to θ̂ − θ, then

1− α = P
(
ǫL ≤ θ̂− θ ≤ ǫU

)
≈ P

(
ǫL ≤ θ̂∗ − θ̂ ≤ ǫU

)
.

From the first probability θ̂ − ǫU ≤ θ ≤ θ̂ − ǫL and from the second, ǫL ≈
θ∗(α/2) − θ̂ and ǫU ≈ θ∗(1− α/2) − θ̂, leading to the centered bootstrap
quantile interval.

The two quantile intervals differ when sampling distribution of θ̂ is
skewed, and it is up to user to choose which tail should be more empha-
sized.

Bootstrap t-type confidence intervals derive their name from the fact
that a t-like statistic (θ̂ − θ)/SE(θ̂) is bootstrapped. For example, if θ
is the population mean µ, then statistic t = (X − µ)/(s/

√
n) is approxi-

mated by t∗ = (X
∗ − X)/(s∗/

√
n), where X

∗
and s∗ are bootstrap sample

counterparts of X and s. The CI for the mean is then [X + t∗(α/2)s/
√

n,
X + t∗(1− α/2)s/

√
n], where t∗(α) is αth quantile of {t∗1 , t∗2 , . . . , t∗B}.

Unlike the sample mean, most statistics do not have a formula for stan-
dard error and both SE(θ̂) and SE(θ̂∗b ) need to be estimated by bootstrap as
well. Then one can apply the jackknife or, alternatively, a bootstrap-within-
bootstrap, that is, bootstrap of a bootstrapped sample to estimate SE(θ̂∗b )
needed for t∗b . In general form, a bootstrap t-type (1− α)100% CI has the
form

[
θ̂ + t∗(α/2)ŜE, θ̂ + t∗(1− α/2)ŜE

]
.

A nice feature of the bootstrap, particularly helpful if studentized bootstrap
confidence intervals are used, is that it accounts for the skewness of the
sampling distribution of the statistic. For some other approaches (ABC and
BCA CIs), see Efron and Tibshirani (1993).

Example 18.10. Anacapa Data Revisited. In Example 17.14, concentrations
of polychlorinated biphenyl (PCB) in yolk lipids of pelican eggs were
checked for normality using Jarque–Bera test. The test statistic JB was ap-
proximated by chi-square distribution with 2 degrees of freedom and slow
convergence of that approximation was discussed.
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Here we revisit the problem and find bootstrap distribution of the JB
statistic.

%anacapabci.m

jabe = @(sample) length(sample)/6 * (skewness(sample)^2 + ...

(kurtosis(sample)-3)^2/4 );

anacapa=[452 184 %<60 observations deleted> 237 206 87];

thetahat = jabe(anacapa) %9.5588

B=20000;

thetabs=[];

for i = 1:B

anacapab = bootsample(anacapa(:));

thetabs=[thetabs jabe(anacapab)];

end

%Quantile bootstrap CI

[quantile(thetabs,0.025) quantile( thetabs,0.975)] %0.1685 42.7039

% Centered bootstrap CI

[max(0,2*thetahat - quantile(thetabs,0.975) ) ...

2*thetahat - quantile( thetabs,0.025)] %0 18.9491

%Bootstrap-within-bootstrap t-type CI

B1=500; B2=1000;

tbi=[]; jabes=[];

for i=1:B1

anacapab = bootsample(anacapa(:));

samplej=[];

for j=1:B2

anacapabb = bootsample(anacapab(:));

samplej=[samplej jabe(anacapabb)];

end

jbbar=mean(samplej); jbstd=std(samplej);

tbi = [tbi (jabe(anacapab) - jbbar)/jbstd];

jabes=[jabes jabe(anacapab)];

end

[ mean(jabes) + quantile(tbi, 0.025)*std(jabes) ...

mean(jabes) + quantile(tbi, 0.975)*std(jabes) ] %1.4188 11.9744

Compare results of this example with results of Example 17.14 in Chapter
17.�

Example 18.11. Polio 1954 Vaccine Trial. In Chapter 1 we discussed the
1954 clinical trial of the Salk vaccine for preventing paralytic poliomyelitis.
The results were summarized in the following table:

Inoculated with Inoculated with
vaccine placebo

Total number of children inoculated 200,745 201,229
Number of cases of paralytic polio 33 115

The observed risk ratio is

RR =
33/200745
115/201229

= 0.2876,
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meaning that the chance of disease in the vaccine group is about 29% of
the chance of disease in the placebo group. In other words, a child in the
placebo group is 3.5 times more likely to develop disease compared to a
child from vaccine group. Was it possible that an ineffective vaccine pro-
duced such a result by chance? We provide an answer by a bootstrap anal-
ysis.

Assume that the presence of disease was coded by 1 and the absence by
0. Then the vaccine and control groups would correspond to samples of 33
ones and 200745− 33 zeros, and 115 ones and 201229− 115 zeros, respec-
tively. The bootstrap sampling is conducted by the following commands:

vaccine = [ones(1, 33), zeros(1, 200745-33)]’;

placebo = [ones(1, 115) zeros(1,201229-115)]’;

rrs=[];

B=50000

for i = 1:B

pvac = sum(bootsample(vaccine))/200745;

pplac = sum(bootsample(placebo))/201229;

rr=pvac/pplac;

rrs =[rrs rr];

end

From each group independent bootstrap samples are taken, and the
bootstrapped risk ratio found and recorded. Figure 18.2 depicts a bootstrap
distribution of the risk ratio for B = 50,000 bootstrap samples. The red bar
indicates the position of observed risk ratio, while the green bars delimit
the 95% bootstrap confidence interval calculated as [0.1865,0.4134]. This
interval is well separated from 1, thus based on data from this clinical trial,
the vaccine significantly lowered the risk of polio. The detailed calculations
are provided in m-file poliovaccine.m.
Note that by treating diseased in the two groups as independent binomials,
the normal approximation of the log-risk ratio gives a similar result, as in
Example 10.17.
�

In the following example we will use WinBUGS to produce bootstrap
resamples. However, this is not a Bayesian bootstrap. A concept of Bayesian
bootstrap was proposed by Rubin (1981); see Exercise 18.26.

Example 18.12. Rubidium-to-Potassium Ratio. In Exercise 9.19, measure-
ments of a naturally occurring rubidium-to-potassium ratio (in hundreds
of mEq of Ru to mEq of K) in 17 hospitalized patients were provided. A
(1− α)100% CI for the population CV was to be found under the assump-
tion of normality of population.

We will find this interval without any distributional assumptions using
the bootstrap implemented via WinBUGS. The posterior distribution for
CV would be identical to the bootstrap distribution, thus the 95% bootstrap
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Fig. 18.2 Bootstrap distribution of risk ratio for the Polio Vaccine data. The red bar is the
observed risk ratio, while the green bars delimit 95% bootstrap confidence interval for
the risk ratio, [0.1865,0.4134].

confidence interval will be the 95% credible set in this approach. Note that
WinBUGS does not use an explicit loop for bootstrap. The resampling is
done automatically with each iteration of MCMC.

#Rubidium to Potassium Ratio

model{

for (i in 1:N){

p[i] <- 1/N } #discrete uniform on 1,2,...,N

for( i in 1:N ){

pick[i] ~ dcat( p[ ] )

yb[i] <- y[pick[i]] }

cv <- sd(yb[])/mean(yb[])

}

DATA

list(N=17, y=c(0.028, 0.032, 0.031, 0.041, 0.028,

0.039, 0.042, 0.036, 0.037, 0.029, 0.048, 0.037,

0.037, 0.044, 0.039, 0.029, 0.038))

INITS

Just "gen inits"

Here is the summary of the WinBUGS output. As is evident from Fig-
ure 18.3, the posterior for CV is fairly symmetric. The posterior mean was
found to be 0.1572 and the median 0.1575. The 95% credible set for cv is
[0.1125,0.1996].

mean sd MC error val2.5pc median val97.5pc start sample

cv 0.1572 0.02232 7.112E-5 0.1125 0.1576 0.1996 1001 100000

See Exercise 18.21 for a traditional solution to this example and compare
the confidence interval obtained there to the credible set produced by Win-
BUGS.
�
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Fig. 18.3 Posterior density of CV equivalent to a bootstrap density.

18.7.3 Bootstrap Versions of Some Popular Tests

We will next discuss the bootstrap versions of three popular tests: testing
for single mean, comparing two means, and one-way ANOVA. We also
point out that there are various strategies for conducting a bootstrap sam-
pling. Although, in principle, we follow the original sampling scheme when
resampling the data, there is a range of valid resampling strategies in use.
For example, in bootstrapping one-way ANOVA, one usually resamples
each group separately (as described on page 923). An alternative option,
among several, is to find group-residuals yij− yi, group them together, and
then resample from that common group. Additional examples can be found
in the excellent text by Kennett and Zacks (2004).

18.7.3.1 Testing the Mean

Let X1, . . . , Xn be a sample from a population with finite mean µ. We are
interested in testing H0 : µ = µ0. From the sample we find the studentized
statistic

t =
X− µ0

s/
√

n
.

We next generate B bootstrap resamples and find

t∗b =
X
∗
b − X

s∗b /
√

n
, b = 1, . . . , B



920 18 Distribution-Free Methods

where X
∗
b and s∗b are the mean and standard deviation of the bth bootstrap

sample. The sampling distribution for t∗b approximates that of t. Let t∗(α)
be the αth sample quantile {t∗1 , . . . , t∗B}.

Then testing H0 against one- and two-sided alternatives is summarized
in the following table:

Alternative α-level rejection region p∗-value (ASL)
µ < µ0 t < t∗(α) 1

B ∑
B
b=1 1(t∗b < t)

µ 6= µ0 t < t∗(α/2) or t > t∗(1− α/2) 1
B ∑

B
b=1 1(|t∗b |> |t|)

µ > µ0 t > t∗(1− α) 1
B ∑

B
b=1 1(t∗b > t)

Here the counterpart of p-value is called the achieved significance level
(ASL) and denoted by p∗. It represents the proportion of bootstrap statistics
t∗b more extreme (in the sense of H1) than t.

Example 18.13. microRNA Regulation of Aortic Valve Disease Progres-
sion. Aortic valve (AV) disease is known to occur preferentially on one side
of the valve. The opposite sides of the valve are known to experience dif-
ferent hemodynamic conditions (i.e., oscillatory vs. laminar shear), which
may influence the expression levels of mechano-sensitive miRNAs in AV
endothelial cells. The study by Holliday et al. (2011) quantified and com-
pared expression levels of miRNA-199a-3p expression in cells from both
sides of the valve, exposed to either oscillatory or laminar shear. The null
hypothesis for this experiment is that the cells exposed to oscillatory shear
will show no difference in expression of miR-199a-3p from the cells exposed
to laminar shear. The difference of the normalized expression levels in
oscillatory-sheared samples and normalized expression levels in laminar-
sheared samples d1,d2, . . . ,d9 are given as

0.2442 0.0695 0.5447
0.8057 –0.4116 –0.5382

–0.1435 0.1743 0.1865

(a) Does an oscillatory shear induce a change in miR-199a-3p expres-
sion? Evidence in support of a change in the expression would require
rejecting H0 : δ = 0, where δ = µ1 − µ2 is the population parameter. Report
the ASL in testing of H0 against the one-sided alternative, H1 : δ > 0.

d=[ 0.2442 0.0695 0.5447 0.8057 ...

-0.4116 -0.5382 -0.1435 0.1743 0.1865];

dbar = mean(d) %0.1035

sd = std(d) %0.4270

t = dbar/(std(d)/sqrt(9)) %0.7272

p=1-tcdf(t, 8) %0.2439

%bootstrap
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B=20000;

tbs =[];

for b=1:B

db = randsample(d, length(d), true);

tb = (mean(db) - dbar)/(std(db)/sqrt(9));

tbs=[tbs tb];

end

sum(tbs > t)/B %0.2421

Since the ASL was p∗ = 0.2421, the null hypothesis was not rejected.
�

18.7.3.2 Comparing Two Means

Let X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 be samples from populations
with finite means µ1 and µ2. We are interested in testing the hypothesis
H0 : µ1 = µ2 against one of the three possible alternatives. From the sam-
ples we compute the studentized statistic

t =
X1 − X2√

s2
1/n1 + s2

2/n2

.

If the samples were normal, this statistic would have a t-distribution. With-
out normality assumption, we will use bootstrap to approximate distribu-
tion of t under H0; in fact we will need the quantiles of this distribution.

Since we have two independent samples, we can resample each group
separately. From B bootstrap pairs of samples, we find

t∗b =
X
∗
1,b − X

∗
2,b − (X1 − X2)√

(s∗1,b)
2/n1 + (s∗2,b)

2/n2

, b = 1, . . . , B.

Here, X
∗
1,b, X

∗
2,b, (s∗1,b)

2, and (s∗2,b)
2 are analogues of X1, X2, s2

1, and s2
2, cal-

culated from the bth bootstrap resampled pair. Let, as before, t∗(α) denote
the αth sample quantile of {t∗1 , . . . , t∗B}.

Then testing H0 against one- or two-sided alternatives is summarized
in the table, which is similar to the table in bootstrap testing for the single
mean (µ replaced by µ1 − µ2 and µ0 by 0).

Alternative α-level rejection region p∗-value
µ1 < µ2 t < t∗(α) 1

B ∑
B
b=1 1(t∗b < t)

µ1 6= µ2 t < t∗(α/2) or t > t∗(1− α/2) 1
B ∑

B
b=1 1(|t∗b |> |t|)

µ1 > µ2 t > t∗(1− α) 1
B ∑

B
b=1 1(t∗b > t)
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Note that one can propose a bootstrap CI for µ1 − µ2 as

 X1 − X2 + t∗(α/2)

√
s2

1
n1

+
s2

2
n2

, X1 − X2 + t∗(1− α/2)

√
s2

1
n1

+
s2

2
n2


 .

Example 18.14. Microdamage in Bones Revisited. In Example 10.5, we
compared scores quantifying microdamage in bones for n1 = 13 donors
classified as young (≤45 years old) and n2 = 17 classified as old (>45 years
old). We rejected H0 in Bayesian testing, since the posterior probability of
the alternative H1 was found to be 0.9899. Here we repeat this two samples
test using bootstrap methodology.

%Microdamage in bones revisited

x1=[0.790 0.944 0.958 1.011 0.714 0.256 0.406 ...

0.135 0.316 1.264 1.410 1.160 0.179];

x2 =[1.137 0.601 1.029 1.264 1.183 1.856 1.899 ...

0.486 0.813 1.327 1.325 2.012 1.026 1.130 0.605 0.870 0.820];

n1=length(x1); n2 = length(x2);

mx1 =mean(x1); mx2 = mean(x2);

s1=std(x1); s2 = std(x2);

count=0;

t = (mx1-mx2)/(sqrt(s1^2/n1 + s2^2/n2));

ndf = (s1^2/n1 + s2^2/n2 )^2 /( (s1^2/n1)^2/(n1-1) + ...

(s2^2/n2)^2 /(n2-1) )

% Welch-Satterthwaite df = 26.4234

pval=tcdf(t, ndf) %0.0096

% bootstrap

tstars =[];

B=100000;

for b = 1:B

x1star = bootsample(x1’);

x2star = bootsample(x2’);

mxs1 = mean(x1star); mxs2 = mean(x2star);

ss1 = std(x1star); ss2 = std(x2star);

tstar = (mxs1 - mxs2 - (mx1 - mx2))/sqrt(ss1^2/n1 + ss2^2/n2);

tstars = [tstars tstar];

count = count + (tstar < t); %for p*-value

end

count/B %p*-value 0.0083

quantile(tstars, 0.05) %-1.6578

%compare to tinv(0.05, 26.4234) = -1.7046

reject = t < quantile(tstars, 0.05) %0 no; 1 yes; here = 1

Figure 18.4 summarizes the output.
�
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Fig. 18.4 (a) Bootstrap distribution of t∗ statistic and superimposed t-distribution with
Welch-Satterthwite df = 26.4234. The red bar is at the position t = −2.4946. (b) An en-
largement of the left tail and comparison of bootstrap, t, and standard normal distribu-
tions.

18.7.3.3 Bootstrap ANOVA

Let k samples of size n1,n2, . . . ,nk result in sample means X1, . . . , Xk, and
sample variances s2

1, . . . , s2
k . Let the total sample size be N = n1 + n2 + · · ·+

nk, and let X = ∑i niXi/N denote the grand mean.
We form the statistic

F =
1

k−1 ∑
k
i=1 ni(Xi − X)2

1
N−k ∑

k
i=1(ni − 1)s2

i

.

This is a standard statistic for one way ANOVA, which under usual
ANOVA assumptions (independence and normality of populations, con-
stant variance) has an F-distribution with k− 1, N − k degrees of freedom
(see hint in Exercise 11.6).

Let X
∗
1,b, . . . , X

∗
k,b, (s∗1,b)

2, . . . , (s∗k,b)
2, and X

∗
b , b = 1, . . . , B be the bootstrap

replicates of X1, . . . , Xk, s2
1, . . . , s2

k , and X, respectively. To obtain repli-
cates, each of k original samples is bootstrapped separately. In general, for
bootstrapping any statistical computation, we follow the original sampling
scheme when resampling the data. Thus, each resample is a collection of k
bootstrapped samples, for which we calculate

F∗b =

1
k−1

[
∑

k
i=1 ni(X

∗
i,b − Xi)

2 − N(X− X
∗
b)

2
]

1
N−k ∑

k
i=1(ni − 1)(s∗i,b)

2
, b = 1,2, . . . , B. (18.8)

As before, we utilize sample quantiles of {F∗1 , F∗2 , . . . , F∗B} to make an
inference. The ANOVA hypothesis H0 : µ1 = µ2 = · · · = µk is rejected at the
level α when F > F∗(1− α). This is because the F∗ values are consistent with



924 18 Distribution-Free Methods

H0 since, by nature of resampling, the bootstrap samples are well mixed.
The achieved significance level is p∗ = ∑

B
b=1 1(F∗b > F)/B.

Example 18.15. Coagulation Times Bootstrapped. In Example 11.1, we ana-
lyzed the coagulation times data by one-way ANOVA. Twenty-four animals
were randomly allocated to 4 different diets, and blood coagulation times
were measured for each animal. We found that population mean times
were significantly different; the H0 was decisively rejected with a p-value
of 4.6585× 10−5. In this example, we repeat ANOVA analysis by bootstrap.
MATLAB script coagulationboot.m performs bootstrap ANOVA. Figure
18.5 shows bootstrap distribution of statistic F∗ from (18.8) as a normalized
histogram and F4−1,24−4 density superimposed. The F density assumes nor-
mality of data and equal variances, while the bootstrap distribution of F∗

is slightly different.
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3, 20
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Fig. 18.5 Sampling distribution of bootstrap F∗ statistic (histogram) with a F4−1,24−4
density superimposed (in red) as a reference. The position of statistic F is marked by the
green line.

Out of B = 500,000 bootstrap replicates, F∗ exceeded F 248 times, lead-
ing to an ASL of 4.96e− 04.

%coagulationboot.m

times = [62, 60, 63, 59, ...

63, 67, 71, 64, 65, 66, ...

68, 66, 71, 67, 68, 68, ...

56, 62, 60, 61, 63, 64, 63, 59];

diets = [1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4];

ni =[4 6 6 8]; N=24; k=4;

barxi = [mean(times(diets==1)) mean(times(diets==2)) ...

mean(times(diets==3)) mean(times(diets==4)) ]; %61 66 68 61
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s2i = [var(times(diets==1)) var(times(diets==2)) ...

var(times(diets==3)) var(times(diets==4)) ]; %3.3333 8. 2.8 6.8571

barx = sum(ni.*barxi)/N; %64

Fnum= 1/(k-1) * sum( ni .* (barxi - barx).^2 ); %76

Fdenom = 1/(N-k) * sum( (ni - 1) .* s2i ); %5.6

F=Fnum/Fdenom; %13.5714

%

B=500000;

Fstar=[];

for i= 1:B

select = [randsample(1:4, 4, ’true’) randsample(5:10, 6, ’true’) ...

randsample(11:16, 6, ’true’) randsample(17:24, 8, ’true’)];

timesstar = times(select);

barxistar = [mean(timesstar(diets==1)) mean(timesstar(diets==2)) ...

mean(timesstar(diets==3)) mean(timesstar(diets==4)) ];

s2istar = [var(timesstar(diets==1)) var(timesstar(diets==2)) ...

var(timesstar(diets==3)) var(timesstar(diets==4)) ];

barxstar = sum(ni.*barxistar)/N;

Fnumstar= 1/(k-1) *(sum(ni.*(barxistar-barxi).^2) - N*(barxstar-barx)^2);

Fdenomstar = 1/(N-k) * sum( (ni - 1) .* s2istar );

Fstar=[Fstar Fnumstar/Fdenomstar];

end

%achieved significance level p*
asl = 1- sum(F > Fstar)/B %4.9600e-04

�

18.7.3.4 Bootstrapping Regression

There are two main approaches for bootstrapping regression data: random
and fixed design.

Random Design Bootstrap. Random design bootstrapping is conceptually
simple. From n observed (k + 1)-tuples (yi, x1i, x2i, . . . , xki), i = 1, . . . ,n, boot-
strap samples are formed by selecting n (k + 1)-tuples with replacement.

Thus, we form B data sets

(yi∗ , x1i∗ , x2i∗ , . . . , xki∗)b, b = 1, . . . , B,

where n indices i∗ are sampled with replacement from {1, . . . ,n}.
For each regression

yb = Xbβb + ǫb, b = 1, . . . , B,

we calculate relevant regression estimators in a standard manner, as in
Chapter 14, which leads to their bootstrap distributions.

The term random design reflects the fact that design matrix Xb is not pre-
served in bootstrapping, but its rows are selected from the original design
matrix X.
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Fixed Design Bootstrap. In some situations it is desirable to preserve the
design matrix. This may be in the case when sampling is informatively
designed, when the index of covariates could be important, when the range
of covariates is to be preserved, or in some other situations.

An alternative approach to bootstrap in this case is a fixed design or
residual resampling. The design matrix remains fixed as the original and
only bootstrap resamples of the response variable are taken. First, using the
original sample, the fitted values ŷ are found, ŷ = X(X ′X)−1X ′y. Then, a
bootstrap sample of responses is defined as

yb = ŷ + eb,

where eb is a bootstrap sample of the residuals, e = y− ŷ.

Example 18.16. Fat Data Bootstrapped. In Section 14.6, we discussed mul-
tiple regression involving fat data, fat.dat. The Brozek Index was re-
gressed on 14 variables, and the detailed diagnostic analysis was imple-
mented in fatregdiag.m. For this regression problem we employ both
random and fixed design bootstrap approaches to assess distributions of
some statistics.

As an illustration, we look at the bootstrap distribution of R2. Figure 18.6
provides the random design bootstrap distribution for R2 in panel (a), and
for fixed design bootstrap distribution in panel (b). The bootstrap means,
medians, and variances are 0.7627, 0.7635, and 0.0006013, for random de-
sign, and 0.7632, 0.7636, and 0.000381, for fixed design, respectively. For
both designs we took B = 50,000 resamples. In Section 14.6, R2 was found
to be 0.7490, which is represented by the red bar in Figure 18.6.
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Fig. 18.6 Bootstrap distributions of R2 for (a) random design, and (b) fixed design for
fat data. The red bar in both panels is R2 = 0.7490, found in the least squares regression.

Details can be found in fatregbootr.m and fatregbootf.m.
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�

18.7.4 Randomization and Permutation Tests

Suppose that in a statistical experiment the sample or samples are taken
and a statistic S is constructed for testing a particular null hypothesis. The
values of S extreme from the viewpoint of H0 are critical for this hypothesis.
The decision whether the observed value for S is extreme is made by look-
ing at the distribution of S when H0 is true. Sometimes such distribution is
unknown or too complex to find.

Randomization methods that permute the original data can be used to
approximate the null distribution of S. Given the sample, one forms per-
mutations that are consistent with the experimental design and H0, and for
each permutation calculates the value of S. Such values of S are then used
to estimate its empirical density. Finally, in usual way, one would find the
ASL-like summary, often called a permutation p-value.

Permutations consistent with the null hypothesis depend on the prob-
lem. For example, in a two-sample problem we want to compare the means
of two populations. The null hypothesis is µ1 = µ2. The permutations con-
sistent with H0 would be all permutations of a combined (concatenated)
sample X11, . . . , X1n1 , X21 . . . , X2n2 . Then, as the first permutation sample
one takes first n1 observations, and the second permutation sample is the
rest.

As another example, suppose that a repeated measures design has ob-
servations that are triplets corresponding to three treatments, i.e., (X11,
X12, X13), . . . , (Xn1, Xn2, Xn3), and that H0 states that the three treatment
means coincide, µ1 = µ2 = µ3. Then permutations consistent with this ex-
perimental design are random permutations among the triplets (Xi1, Xi2, Xi3),
i = 1, . . . ,n and a possible permutation might be

(X13, X11, X12)

(X21, X23, X22)

(X32, X33, X31)

. . .

(Xn2, Xn1, Xn3).

Thus, depending on the design and H0, consistent permutations can be
quite different.

Example 18.17. Monitoring Production Process. Suppose that we are mon-
itoring a production process for 11 hours and every hour record the tem-
perature in ◦F, as a vector X1, X2, . . . , X11. Significant upward or downward
trends could be critical for the process. We are interested in testing H0 : Xi’s
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are independent and identically distributed (no trend) versus H1 : there is
an overall increasing trend.

If the measurements are listed below:

176 175 164 175 168 160 179 181 207 189 205

Let i = 1,2, . . . ,11 be the hours. The statistic that is sensitive to trends is
f = ∑

n
i=1 iXi. This cross-product (flux) exceeds n(n+1)

2 X if the overall trend
is increasing. Asymptotic normality can be applied and test devised, see,
for example, Ross (2010, p. 690). We will not pursue that direction. Instead,
we randomly permute X1, . . . , X11 and obtain a permutation X∗1 , . . . , X∗11. For
this permutation the flux statistic f ∗ = ∑

11
i=1 iX∗i is calculated.

If this is repeated a large number of times, say for B = 100,000 permu-
tations, the realizations for f ∗ will well approximate the sampling distribu-
tion of f , under H0. The p∗ value is calculated as in the bootstrap resam-
pling tests, p∗ = 1

B ∑
B
b=1 1( f ∗b ≥ f ). MATLAB code permute1.m calculates

p∗-value as 0.008. The core of this code is the loop:

X = [176 175 164 175 168 160 179 181 207 189 205];

n = length(X);

i = 1:n;

f = i * X’ %12227

fps = [];

count = 0;

B = 100000;

for b = 1:B

Xp = X(randperm(n));

fp = i * Xp’; %permutation flux

count = count + (fp >= f); %count fluxes >= f

fps = [fps fp]; %save all fluxes

end

pstar = count/B %0.0080

Thus, the hypothesis of no trend is rejected by this permutation test; the
permutation p∗-value is 0.008. Figure 18.7 shows the original data in panel
(a), and the permutation distribution for flux, with average flux (the green
bar) and observed flux (the red bar) in panel (b).
�

Remark. One of the reasons for relatively scarce use of resampling method-
ology is the large number of different approaches with many versions for
the same task. We indicated that there are many kinds of bootstrap confi-
dence intervals. Also the choice of statistic to replicate is quite liberal. For
example, in testing the equality of two means, one can use t-like statistic,
as in Example 1.3, or simply unstandardized difference X1 − X2.

How big should B be? Some researchers advise B in order of thousands
irrespective of the size of original sample. Recommendations tied to the
original sample size can be found in the literature, for example, B = 40n
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Fig. 18.7 (a) Process temperatures; (b) Permutation distribution for flux with average
flux (green) and observed flux (red). The p∗ value is 0.008.

or B = n2. Such recommendations may not be feasible for large n (e.g.,
Example 10.17).

18.8 Exercises

18.1. Friday the 13th. The following data set is part of the larger study from
Scanlon et al. (1993) titled “Is Friday the 13th bad for your health?” The
data analysis in this paper addresses the issues of how superstitions
regarding Friday the 13th affect human behavior. The authors reported
and analyzed data on traffic accidents for Friday the 6th and Friday the
13th between October 1989 and November 1992. The data consist of the
number of patients accepted in SWTRHA (South West Thames Regional
Health Authority, London) hospital on the dates of Friday the 6th and
Friday the 13th.

Number of accidents
Year, month Friday 6th Friday 13th Sign
1989, October 9 13 −
1990, July 6 12 −
1991, September 11 14 −
1991, December 11 10 +
1992, March 3 4 −
1992, November 5 12 −

Use the sign test at the level α = 10% to test the hypothesis that the “Fri-
day the 13th effect” is present. The m-file signtst.m could be applied.
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18.2. Reaction Times. In Exercise 10.26 the paired t-test was used to assess
the differences between reaction times to red and green lights. Repeat
this analysis using both the sign test and WSiRT.

18.3. Simulation. To compare the t-test with the Wilcoxon signed-rank test,
set up the following simulation in MATLAB:
(1) Generate n = 20 observations from N (0,1) as your first sample X.
(2) Form Y = X + randn(size(x)) + 0.5 as your second sample paired with
the first.
(3) For the test of H0 : µ1 = µ2 versus H1 : µ1 < µ2, perform the t-test at
α = 0.05.
(4) Run the Wilcoxon signed-rank test.
(5) Repeat this simulation 1,000 times and compare the powers of the
tests by counting the number of times H0 was rejected.

18.4. Grippers. Measurements of the left- and right-hand gripping strengths
of 10 left-handed writers are recorded:

Person 1 2 3 4 5 6 7 8 9 10
Left hand (X) 140 90 125 130 95 121 85 97 131 110
Right hand (Y) 138 87 110 132 96 120 86 90 129 100

(a) Does the data provide strong evidence that people who write with
their left hand have a greater gripping strength in their left hand than
they do in their right hand? Use the Wilcoxon signed-rank test and α =
0.05.
(b) Would you change your opinion on the significance if you used the
paired t-test?

18.5. Iodide and Serum Concentration of Thyroxine. The effect of iodide ad-
ministration on serum concentration of thyroxine (T4) was investigated
in Vagenakis et al. (1974). Twelve normal volunteers (9 male and 3 fe-
male) were given 190 mg iodide for 10 days. The measurement X is an
average of T4 in the last 3 days of administration, while Y is the mean
value in three successive days after the administration stopped.

Subject 1 2 3 4 5 6 7 8 9 10 11 12
Iodide (X) 7.9 9.1 9.2 8.1 4.2 7.2 5.4 4.9 6.6 4.7 5.2 7.3
Control (Y) 10.2 10.2 11.5 8.0 6.6 7.4 7.7 7.2 8.2 6.2 6.0 8.7

Assume that the difference D = X − Y has a symmetric distribution.
Compare the p-values of WSiRT and the paired t-test in testing the hy-
pothesis that the mean of control measurements exceed that of the iodide
measurements.

18.6. Weightlifters. Blood lactate levels were determined in a group of ama-
teur weightlifters following a competition of 10 repetitions of 5 different
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upper-body lifts, each at 70% of each lifter’s single maximum ability. A
sample of 17 randomly selected individuals was tested: 10 males and 7
females. The following table gives the blood lactate levels in female and
male weightlifters, in units of mg/100 ml of blood:

Gender N Blood lactate
Female 7 7.9 8.2 8.7 12.3 12.5 16.7 20.2
Male 10 5.2 5.4 6.7 6.9 8.2 8.7 14.2 14.2 17.4 20.3

Test H0 that blood lactate levels were not different between the two gen-
ders at the level α = 0.05. Assume that the data, although consisting
of measurements of continuous variables, are not distributed normally
or variances are possibly heteroscedastic (nonequal variances). In other
words, the traditional t-test may not be appropriate.

18.7. Cartilage Thickness in Two Osteoarthritis Models. Osteoarthritis (OA),
characterized by gradual degradation of the cartilage extracellular ma-
trix, articular cartilage degradation, and subchondral bone remodeling,
is the most common degenerative joint disease in humans. One of the
most common ways for researchers to study the progression of OA in a
controlled manner is to use small animal models. In a study conducted
in the laboratory of Robert Guldberg at the Georgia Institute of Tech-
nology, a group of 14 rats was randomly divided into two subgroups,
and each subgroup was subjected to an induced form of OA. One of the
subgroups (n1 = 7) was subjected to a chemically induced form of OA
via an intra-articular injection of monosodium iodoacetate (MIA), while
the other subgroup (n2 = 7) was subjected to a surgically induced form
of OA by transecting the medial meniscus (MMT). In this study, all rats
had OA induced by either MIA or MMT on the left knee, with the right
knee serving as a contralateral control.
The objectives of this study were to quantify changes in cartilage thick-
ness of a selected area of the medial tibial plateau, compare thickness
values between the treatments and the controls, and determine if OA
induced by MIA produced different results from OA induced by MMT.
Cartilage thickness values were measured 3 weeks after the treatments
using an ex vivo micro-CT scanner; the data are provided in the table
below:

Rat MIA Treated Control Rat MMT Treated Control
1 0.1334 0.2194 8 0.2569 0.2726
2 0.1214 0.1929 9 0.2101 0.2234
3 0.1276 0.1833 10 0.1852 0.2216
4 0.1152 0.1879 11 0.1798 0.1905
5 0.1047 0.2529 12 0.1049 0.1444
6 0.1312 0.2527 13 0.2649 0.2841
7 0.1222 0.2595 14 0.2383 0.2731
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(a) Using the Wilcoxon signed-rank test, test the hypothesis that the dif-
ference between MIA-treated rats and its control thickness is significant.
(b) Find the difference in thickness (treatment–control) for MIA and
MMT, and test the hypothesis that they are the same. Apply a nonpara-
metric version of a two-sample t-test on the differences.
Conduct both tests at a 5% significance level.

18.8. A Claim. Professor Scott claims that 50% of his students in a big class
get a final score of 90 or higher.
A suspicious student asks 17 randomly selected students from Professor
Scott’s class, and they report the following scores:

80 81 87 94 79 78 89 90 92 88 81 79 82 79 77 89 90

Test the hypothesis that Professor Scott’s claim does not conform to the
evidence, that is, that the 50th percentile (0.5-quantile, median) is differ-
ent than 90. Use α = 0.05.

18.9. Claustrophobia. Sixty subjects seeking treatment for claustrophobia are
independently sorted into two groups, the first of size n = 40 and the
second of size m = 20. The members of the first group each individually
receive treatment A over a period of 15 weeks, while those of the second
group receive treatment B. The investigators’ directional hypothesis is
that treatment A will prove to be more effective. At the end of the exper-
imental treatment period, the subjects are individually placed in a series
of claustrophobia test situations, knowing that their reactions to these
situations are being recorded on videotape. Subsequently three clini-
cal experts, uninvolved in the experimental treatment and not knowing
which subject received which treatment, independently view the video-
tapes and rate each subject according to the degree of claustrophobic ten-
dency shown in the test situations. Each subject is rated by the experts
on a scale of 0 (no claustrophobia) to 10 (an extreme claustrophobia).
The following tables show the average ratings for each subject in each of
the two groups:

A
4.6 4.7 4.9 5.1 7.0 4.9
5.1 5.2 5.5 4.8 5.7 5.0
5.8 6.1 6.5 7.0 6.4 5.2
4.6 4.7 4.9 6.4 5.9 4.7
5.8 5.2 5.4 6.1 7.7 6.2
5.8 5.1 6.5 2.2 6.9 5.0
6.5 7.2 8.2 6.7

B
5.2 5.3 5.4 7.7 8.1 4.9
5.6 6.2 6.3 7.0 7.0 7.8
6.8 7.7 8.0 6.6 5.5 8.2
8.1 5.0

The investigators expected treatment A to prove more effective, and sure
enough it is group A that appears to show the lower mean level of claus-
trophobic tendency in the test situations.
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Using Wilcoxon’s sum rank test, test the hypothesis H0 that treatments A
and B are of the same effectiveness, versus the alternative that treat-
ment A is more effective.

18.10. Nonparametric Stats with Raynaud’s Phenomenon. (a) Refer to Ray-
naud’s phenomenon data from Exercise 11.20. Using Wilcoxon’s signed-
rank test, compare the responses (number of attacks) for drug/placebo
effect. Ignore the Period variable. Compare this result with the result from
a paired t-test.
(b) Compare the drug/placebo effect using Bayesian inference. Write a
WinBUGS program that will read the drug/placebo info, take the differ-
ence between the measurements, d, and model it as normal, with nonin-
formative priors on the mean mu and precision prec. Check if the credible
set for mu contains 0 and draw the appropriate conclusion.

18.11. Cry-babies. Nurses at Northbay Healthcare participate in an Evidence
Based Practice (EBP) program. The purpose of EBP is to research and
implement improvements in nursing care, and then to gauge the suc-
cess of these changes using statistical methods. In one study, they intro-
duced changes in the way newborn babies are handled. The goal is to
reduce pain experienced by the infants resulting from their vitamin K
shot. Lawrence et al. (1993) provide data on 79 babies (infants) in a con-
trol group and 79 babies in the intervention group. The control group in-
fants were handled using conventional methods. The intervention group
infants were held by their mothers prior to, and during the administer-
ing of the shot, known as “kangaroo care.” Kangaroo care seeks to pro-
vide restored closeness of the newborn with mother or father by placing
the infant in direct skin-to-skin contact with one of them. This ensures
physiological and psychological warmth and bonding.
File cry.mat contains two sequences cry.control and cry.kc of durations
of crying after shot of K vitamin.
(a) Test the equality of means for the two groups using standard t-test,
without any assumption on population variances. Report the p-value for
the two-sided alternative.
(b) Using the Wilcoxon sum-rank Test procedure, repeat the test from
(a). Compare the p-values and discuss?

18.12. Cotinine and Nicotine Oxide. Garrod et al. (1974) measured the nico-
tine metabolites, cotinine, and nicotine-1’-N-oxide in 24-hour urine col-
lections from normal healthy male smokers and smokers affected with
cancer of the urinary bladder. The data, also discussed by Daniel (1978),
show the ratio of cotinine to nicotine-1’-N-oxide in the two groups of
subjects.
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Ratio
Cancer 5.0 8.3 6.7 3.0 2.5 12.5 2.4 5.5 5.2 21.3 5.1 1.6
patients 2.1 4.6 3.2 2.2 7.0 3.3 6.7 11.1 3.4 5.9 27.4
Control 2.3 1.9 3.6 2.5 0.75 2.5 2.1 1.1 2.3 2.2 3.5 1.8
subjects 2.3 1.4 2.1 2.0 2.3 2.4 3.6 2.6 1.5

(a) Using qqplot on cancer patients’ data, argue that the normality con-
dition for the ratio in this population may be violated.
(b) Using Wilcoxon’s signed-rank procedure, test the hypothesis that the
ratio in population of cancer patients is equal to 4 versus the two-sided
alternative. Assume α = 0.05.
(c) Using Wilcoxon’s sum-rank procedure, test the hypothesis that the
ratios in the two populations (cancer and control) are the same versus
the alternative that the ratio in cancer population is significantly greater.
Take α = 0.05.

18.13. Coagulation Times. In Example 11.1 a standard one-way ANOVA gave
p-value of 4.6585e-05. Repeat the test of equality of means using the
Kruskal–Wallis procedure. If the test turns out significant, compare the
means using the Kruskal–Wallis pairwise comparisons.

18.14. Cryopreservation Preserving Circularity. Cryopreservation is critical
for bringing tissue engineered constructs from the benchtop to the clinic.
In order to see if morphology of cells encapsulated in hydrogels was
maintained after cryopreservation with respect to non-preserved con-
trols, cell circularity per bead was measured in non-cryopreserved beads
and in beads after cryopreservation treatment using either of 2 meth-
ods, A and B. The treatment A contains BSA (bovine serum albumin) in
the cryopreservation medium while treatment B does not, in an effort
to reduce use of animal-derived products for future clinical use. Fifteen
beads were measured per experiment for each treatment.
Data set cryopreservation.mat|xls (Courtesy of Sambanis Lab, Georgia
Tech) contains three columns: (1) circularity; (2) media, where 0 is con-
trol, 1 is treatment A, and 2 is treatment B; and (3) experiment number.
(a) Ignoring the experiment number (that is, assuming that experimen-
tal conditions were identical), compare the treatments A and B and the
control. Use Kruskal–Wallis test. You can use kruskalwallistest.m or
MATLAB’s built in kruskalwallis.m.
(b) Using multiple comparisons for Kruskal–Wallis ( kwpairwise.m) dis-
cuss the circularity differences among the treatments.

18.15. Honeybee Concentration Change. In Exercise 11.11 we found that the
ANOVA condition of equality of variances was violated and conducted
Welch’s test. A counterpart test that does not require normality and/or
equality of variances is Kruskal–Wallis test. Show that kruskalwallistest.m

indicates a significant difference between the batches (p-value 0.0486),
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while the one-way ANOVA is not significant (p-value 0.3854). Discuss
this finding.

18.16. Blocking by Rats. In Example 11.7 the factor Procedure was found sig-
nificant with a p-value of 8.7127e-04. Is this factor significant according
to Friedman’s test?

18.17. Devices. In an evaluation of a device performance, six engineers (A,
B, C, D, E, and F) evaluated three devices (a, b, and c) in a random-
ized order. Their grades concern only the performance of the device and
supposedly are not influenced by the brand name or similar exogenous
information. Here are their rankings on a scale of 1 to 10:

Device
a b c

A 7 8 9
B 6 10 7

Evaluator C 6 8 8
D 7 9 8
E 7 10 9
F 8 8 9

The null hypothesis is that the rankings for the three devices have the
same distribution, and therefore the same means. The alternative is that
the distributions are different, which is often interpreted as “locations or
means are different.”
(a) Test the null hypothesis using Friedman’s test.
(b) If null hypothesis in (a) was rejected, find which means are different
at the α = 0.05 significance level.

18.18. Differences in Differences. Repeat Part (b) of Exercise 11.23 using
Friedman’s test and, if significant, do pairwise comparisons.

18.19. Jackknifing MLE of Variance. The MLE estimator for normal variance
is σ̂2 = 1

n ∑
n
i=1(Xi − X)2. Show that the jackknife estimator of σ2 is s2.

18.20. Beak-clapping. Oppenheim (1968), also Hollander and Wolfe (1999),
provide data (given in a data structure beak.mat) on 25 chick em-
bryos tested 12–40 h prior to hatching for light responsivity as measured
by changes in the rate of occurrence of an overt behavioral response
(beak-clapping). The rates of beak-clapping in the dark (beak.dark) and
during the 1 min of light stimulation (beak.light) are provided as the
two fields in the data structure file beak. Using bootstrap, test the hy-
pothesis that the mean number of beak claps is significantly lower in the
dark compared to that in the light.

18.21. Rubidium to Potassium Ratio Revisited. In Example 18.12 WinBUGS
was used to produce bootstrap sample that was subsequently repeated
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using MCMC. Conduct the traditional bootstrap with B = 100,000 boot-
strap resamples and compare the obtained 95% bootstrap confidence in-
terval with the 95% credible set [0.1125,0.1996] from Example 18.12.

18.22. High Ferritin Levels in Patients with Liver Disease. Neghina et al.
(2009) examined ferritin levels in patients with some form of liver dis-
ease. The authors looked at the links between mutant HFE genotypes
(C282Y, H63D, and S65C) and iron overloads in patients with liver dis-
eases.
Previous results suggested that the normal ferritin levels for males range
from 12 to 300 µg/L. The ferritin levels (in µg/L) for the 15 male liver
disease patients from the study are provided below:

1000 7837 920 620 280
229 530 1320 123 112
269 380 408 74 388

(a) Using the bootstrap test for the mean, find whether men with liver
disease have a significantly higher level of ferritin than the normal popu-
lation, which has a mean ferritin level of 150 µg/L. Report the p∗-value.
(b) Repeat the preceding test after removing the extreme outlier (ferritin
level of 7837 µg/L). Report the p∗-value. How does this affect the out-
come of the test?
(c) Does a 90% bootstrap confidence interval for the mean contain 150?

18.23. Sizes of Tumors in BC Patients. Sharma et al. (2005) report sizes (in
mm) of tumors found in 23 breast cancer patients.

sizes = [11 20 20 22 15 7 26 4 15 25 14 9 ...

15 14 8 35 23 11 50 24 23 10 3];

(a) Follow steps (i)–(iii) to test the hypothesis that the population vari-
ance is σ2

0 = 80 (in mm2) versus the alternative that it is larger than 80.

(i) Find sample variance s2 for the original sample.

(ii) For B = 10,000 bootstrap resamples, find sample variances s∗21 , s∗22 , . . . , s∗2B .

(iii) Find the achieved significance level p∗ as

1
B

B

∑
b=1

1
(

s∗2b

s2 >
s2

σ2
0

)
.

(b) A (1− α)100% CI for the population variance can be calculated by
either of the two formulas

[s∗2(α/2), s∗2(1− α/2)] or
[

s4

s∗2(1− α/2)
,

s4

s∗2(α/2)

]
,

where s∗2(α) is the αth quantile of {s∗21 , s∗22 , . . . , s∗2B }. For the dataset sizes
find the 95% confidence intervals. Which interval is larger?
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18.24. Mandibles of Golden Jackals. Higham et al. (1980) provide data on
mandible length of the golden jackal (Canis aureus) from the British Mu-
seum of Natural History, London. The data consist of 10 measurements
of mandible length on both male and female specimens and were col-
lected as part of a study comparing prehistoric and modern canidae.

Male 120 107 110 116 114 111 113 117 114 112
Female 110 111 107 108 110 105 107 106 111 111

(a) Using the bootstrap two-sample test, assess the hypothesis that there
is no significant difference between the mean lengths of mandible for
male and female jackals.
(b) Modify the test when it is assumed that population variances are the
same; that is, use the pooled standard deviation for studentized statistic.

18.25. Ozone-Treated Rats. Doksum and Sievers (1976) report data on a study
designed to assess the effects of ozone on weight gain in rats. The ex-
perimental group consisted of 22 seventy-day-old rats kept in an ozone
environment for 7 days. The control group consisted of 23 rats of the
same age, and were kept in an ozone-free environment. Weight gain is
measured in grams.

control =[41.0, 38.4, 24.4, 25.9, 21.9, 18.3, 13.1, 27.3,

28.5,-16.9, 26.0, 17.4, 21.8, 15.4, 27.4, 19.2,

22.4, 17.7, 26.0, 29.4, 21.4, 26.6, 22.7];

ozone = [10.1, 6.1, 20.4, 7.3, 14.3, 15.5, -9.9, 6.8,

28.2, 17.9, -9.0,-12.9, 14.0, 6.6, 12.1, 15.7,

39.9,-15.9, 54.6,-14.7, 44.1, -9.0];

Find the bootstrap 95% CI for the difference between the population
means.

18.26. Bayesian Bootstrap. A version of the bootstrap with Bayesian interpre-
tation was proposed by Rubin (1981). In the standard bootstrap, each
observation Xi from the sample X1, . . . , Xn has a probability of 1/n to be
selected.
In Bayesian bootstrapping, at each replication a discrete probability dis-
tribution w = {w1, . . . ,wn} on {1,2, . . . ,n} is generated and used to cal-
culate bootstrap statistics (but not to generate bootstrap resample, see
Exercise 18.27).
Operationally the distribution w is created by generating n− 1 uniform
random variables on [0,1] and ordering them. By this operation the in-
terval [0,1] is split in n intervals. The length of ith interval is taken as wi.
Now, any averaging in the process of calculating bootstrap estimates is
weighted, with weights w.
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Using Bayesian bootstrap, estimate the variability of CV from Example
18.12.
Hint. Calculate X and s as ∑i wiXi and

√
n

n−1 ∑i wi(Xi − X)2 .

18.27. Bayesian Bootstrap – Correct and Incorrect. In standard bootstrapping,
observations are sampled with replacement. This implies that relative
frequencies of observations in the resample follow (rescaled) multino-
mial distribution. In Bayesian bootstrap the multinomial distribution is
replaced by the Dirichlet distribution.
Is there a difference between using weights taken from the Dirichlet dis-
tribution as (1) the probabilities when re-sampling from the original sam-
ple, as in

B=500

sample=[ 5 1 14 14 19 8 11 17 ...

1 2 11 14 1 8 2 9 14 ...

12 19 17];

n=length(sample);

resamples=[];

%

for b=1:B

wi = diff([0 sort(rand(1,n-1)) 1]);

resample = randsample(sample,n,true,wi);

%resampling with replacement according to the weights in wi

resamples =[resamples; resample];

end

or, as (2) the weights of the observations in the original sample when cal-
culating a bootstrapped statistic? Resampling with random probabilities
w, as in the code above, is an incorrect way to do Bayesian bootstrap,
while using w as the weights of elements in the original sample in cal-
culating the statistic, as in Exercise 18.26, is correct.
Demonstrate using the sample from the code above that the variance of
bootstrap distribution of the sample mean is substantially inflated when
applying incorrect rather than the correct method.

18.28. Honeybee Concentration Change Revisited. In Exercise 11.11 the
ANOVA condition of equality of variances was violated and we con-
ducted Welch’s test. In Exercise 12.15 we conducted the Kruskal–Wallis
test. The Kruskal–Wallis test indicated significant difference between the
batches (p-value of 0.0486) while Welch’s test was not significant (p-value
0.3854). What are ASL’s for bootstrap and permutation tests?

18.29. Devices Revisited. In Exercise 18.17 six engineers (A, B, C, D, E, and F)
evaluated three devices (a, b, and c) in a randomized order.
The null hypothesis is that the rankings for the three devices have the
same means. Conduct the test using the permutation method. Permute
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the grades for a, b, and c for each evaluator independently and for each
permutation find Friedman’s statistics. Report the ASL.

18.30. Law Schools Data. Efron (1979b) provides data from 15 law schools in
the United States concerning average scores on undergraduate GPA and
the Law School Admission Test (LSAT).

School LSAT GPA School LSAT GPA School LSAT GPA
1 576 3.39 2 635 3.30 3 558 2.81
4 579 3.03 5 666 3.44 6 580 3.07
7 555 3.00 8 661 3.43 9 651 3.36

10 605 3.13 11 653 3.12 12 575 2.74
13 545 2.76 14 572 2.88 15 594 2.96

Estimate the intercept and slope in the regression of GPA on LSAT using
(a) random design bootstrap,
(b) fixed design bootstrap.
(c) Find the 95% bootstrap CIs for the two parameters under both de-
signs.

MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch18.NP/

amanitajkn.m, amanitajkn2.m, amanitajkn3.m, anacapa.m, anacapabci.m,

bootsample.m, cbfcmro2.m, claustrophobia.m, coagulationboot.m,

cryopreservation.m, ebola.m, fatregbootf.m, fatregbootr.m, fisherwsirt.m,

flies.m, friedmanpairwise.m, friedmantest.m, grubbs.m, histn.m,

kruskalwallistest.m, kwpairwise.m, kwvsanova.m, miammt.m, microRNA.m,

microdamageboot.m, moonboot.m, muscariabci.m, NPdemo.m, npexamples.m,

permute1.m, poliovaccine.m, quadeexample.m, quadetest.m, ranks.m,

rubidium2.m, signtst.m, twins.m, walshnp.m, wsirt.m, wsirtcdf.m,

wsirtexa.m, wsirtexact1.m, wsurt.m, wsurtcdf.m, wsurtexact.m

amanita28.dat, anacapa.dat|mat, beak.mat|xlsx, cbfcmro2.xls, cry.mat,

cryopreservation.mat|xls

http://statbook.gatech.edu/Ch18.NP/
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Chapter 19

Bayesian Inference Using Gibbs Sampling –
BUGS Project

Beware: MCMC sampling can be dangerous!

– Disclaimer in WinBUGS User Manual

WHAT IS COVERED IN THIS CHAPTER

•Where to find WinBUGS, How to Install, Resources
• Step-by-step Example
• Built-in Functions and Common Distributions in BUGS
• MATBUGS: A MATLAB Interface to BUGS

19.1 Introduction

BUGS is a freely available software for constructing and evaluating
Bayesian statistical models using simulation approaches based on the
Markov chain Monte Carlo methodology.

BUGS and WinBUGS are distributed freely and are the result of many
years of development by a team of statisticians and programmers at the
Medical Research Council Biostatistics Unit in Cambridge, UK (BUGS and
WinBUGS), and by a team at the University of Helsinki, Finland (Open-
BUGS); see the project pages http://www.mrc-bsu.cam.ac.uk/software/bugs/
and http://www.openbugs.net.
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Models are represented by a flexible language, and there is also a graph-
ical feature, doodlebugs, that allows users to specify their models as di-
rected graphs. For complex models doodlebugs can be very useful (Lunn
et al., 2000). As of May 2017, the latest versions are WinBUGS 1.4.3 and
OpenBUGS 3.2.3. A comprehensive overview of WinBUGS programming
and applications can be found in Congdon (2005, 2006, 2010, 2014), Lunn
et al. (2013), and Ntzoufras (2009).

19.2 Step-by-Step Session

We start this brief tutorial on WinBUGS with a simple regression example.
Consider the model

yi|µi,τ ∼ N (µi,τ), i = 1, . . . ,n,

µi = α + β(xi − x),

α ∼ N (0,10−4),

β ∼ N (0,10−4),

τ ∼ Ga(0.001,0.001).

The normal distribution is parameterized by a precision parameter τ that
is the reciprocal of the variance, τ = 1/σ2. Natural priors for precision pa-
rameters are gamma, and small values of the precision reflect the flatness
(noninformativeness) of the priors. Assume that (x,y) pairs (1,1), (2,3),
(3,3), (4,3), and (5,5) are observed.

Estimators in classical, least-squares regression of y on x − x are given
in the following MATLAB output:

y = [1 3 3 3 5]’; %response

xx = [1 2 3 4 5]’;

X = [ones(size(xx)) xx-mean(xx)];

[b.b,b.int,res.res,res.int,stats] = regress(y,X);

b.b’

% 3.0000 0.8000

stats

% 0.8000 12.0000 0.0405 0.5333

Thus, the estimators are α̂ = y = 3, β̂= 0.8, and τ̂ = 1/σ̂2 = 1/0.5333= 1.875.
What about Bayesian estimators? We will find the estimators by MCMC

simulation, as empirical means of the simulated posterior distributions. As-
sume that the initial parameter values are α0 = 0.1, β0 = 0.6, and τ = 1. Start
WinBUGS and input the following code in [File > New]:

# A simple regression

model{
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(a) (b)

Fig. 19.1 (a) Opening WinBUGS front end with a simple regression task. The simple
regression program is opened or typed in. (b) The front end after selecting Specification
from the Model menu.

for (i in 1:N) {

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta * (x[i] - x.bar)

}

x.bar <- mean(x[])

alpha ~ dnorm(0, 0.0001)

beta ~ dnorm(0, 0.0001)

tau ~ dgamma(0.001, 0.001)

sigma <- 1.0/sqrt(tau)

}

#-----------------------------

DATA

list(N=5, x=c(1,2,3,4,5), Y=c(1,3,3,3,5))

#-----------------------------

INITS

list(alpha = 0.1, beta = 0.6, tau = 1)

Next, make sure that the cursor is somewhere within the scope of
“model,” that is, somewhere between the first open and the last closed
curly bracket. Go to the Model menu and open Specification. The Specifi-
cation Tool window will pop out (Fig. 19.1b). Next, press check model in
the Specification Tool window. If the model is correct, the response on the
lower left border of the window should be: model is syntactically correct
(Fig. 19.2a). Next, data are read in. Highlight the “list” statement in the data
part of your code (Fig. 19.2b). In the Specification Tool window, select load
data. If the data are in the correct format, you should receive a response
in the lower left corner of the WinBUGS window: data loaded (Fig. 19.3a).
You will need to compile your model in order to activate the inits buttons.

Select compile in the Specification Tool window. The response should
be: model compiled (Fig. 19.3b), and the load inits and gen inits but-
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(a) (b)

Fig. 19.2 (a) After selecting check model, if the syntax is correct, the response is model
is syntactically correct. (b) Highlighting the list in the data prior to reading data in.

(a) (b)

Fig. 19.3 WinBUGS’ responses to (a) load data and (b) compile in the model specification
tool.

tons become active. Finally, highlight the “list” statement in the initials
part of your code, and in the Specification Tool window, select load inits
(Fig. 19.4a). The response should be: model is initialized (Fig. 19.4b), and
this completes the reading in of the model. If the response is initial values
loaded but this or another chain contains uninitialized variables, click
on the gen inits button. The response should be: initial values generated,
model initialized.

Now you are ready to burn in some simulations and at the same time
check if the program works. Recall that burning in the Markov chain model
is necessary for the chain to “forget” the initialized parameter values. In
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(a) (b)

Fig. 19.4 (a) Highlighting the list to initialize the model. (b) WinBUGS confirms that
the model (in fact a Markov chain) is initialized.

the Model menu, choose Update... and open Update Tool to check if your
model updates (Fig. 19.5a).

From the Inference menu, open Samples.... A window titled Sample
Monitor Tool will pop out (Fig. 19.5b). In the node subwindow, input the
names of the variables you want to monitor. In this case, the variables are
alpha, beta, and tau. If you correctly input the variable name, the set button
becomes active and you should set the variable. Do this for all three vari-
ables of interest. In fact, sigma as a transformation of tau is available to be
set as well.

(a) (b)

Fig. 19.5 WinBUGS’ response to (a) Update... tool from the Model menu and (b) Sam-
ples... from the Inference menu.
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Now choose alpha from the subwindow in Sample Monitor Tool. All
of the buttons (clear, set, trace, history, density, stats, coda, quantiles, bgr
diag, auto cor) are now active. Return to Update Tool and select the desired
number of simulations, say 100,000, in the updates subwindow. Press the
update button (Fig. 19.6a).

Return to Sample Monitor Tool and check trace for the part of the MC
trace for α, history for the complete trace, density for a density estimator of
α, etc. For example, pressing the stats button will produce something like
the following table:

mean sd MC error val2.5pc median val97.5pc start sample

alpha 2.996 0.5583 0.001742 1.941 2.998 4.041 1001 100000

The mean 2.996 is the Bayes estimator, as the mean from the sample from
the posterior for α. There are two precision outputs, sd and MC error. The for-
mer is an estimator of the standard deviation of the posterior and can be
improved by increasing the sample size but not the number of simulations.
The latter is the simulation error and can be improved by additional sim-
ulations. The 95% credible set (1.941, 4.041) is determined by val2.5pc and
val97.5pc, which are the 0.025 and 0.975 (empirical) quantiles from the pos-
terior. The empirical median of the posterior is given by median. The outputs
start and sample show the starting index for the simulations (after burn-in)
and the available number of simulations.

(a) (b)

Fig. 19.6 (a) Select the simulation size and update. (b) After the simulation is done, check
the stats node.

For all parameters a comparative table (Fig. 19.6b) is as follows:
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mean sd MC error val2.5pc median val97.5pc start sample

alpha 2.996 0.5583 0.001742 1.941 2.998 4.041 1001 100000
beta 0.7987 0.3884 0.001205 0.06345 0.7999 1.537 1001 100000
sigma 1.014 0.7215 0.004372 0.4134 0.8266 2.765 1001 100000
tau 1.865 1.533 0.006969 0.1308 1.463 5.852 1001 100000

We recall the least squares estimators from the beginning of this session:
α̂ = 3, β̂ = 0.8, and τ̂ = 1.875, and note that their Bayesian counterparts are
very close.

Densities (smoothed histograms) and traces for all parameters are given
in Fig. 19.7.

(a) (b)

Fig. 19.7 Checking (a) density and (b) trace in the Sample Monitor Tool.

If you want to save the trace for α in a file and process it in MATLAB,
select coda, and the data window will open with an information window
as well. Keep the data window active and select Save As from the File
menu. Save the αs in alphas.txt, where it will be ready to be imported
into MATLAB. Later in this chapter we will discuss the direct interface
between WinBUGS and MATLAB called MATBUGS.

19.3 Built-in Functions and Common Distributions in
WinBUGS

This section contains two tables: one with the list of built-in functions and
another with the list of available distributions.

A first-time WinBUGS user may be disappointed by the selection of
built-in functions – the set is minimal but sufficient. The full list of distri-
butions in WinBUGS can be found in Manuals>OpenBUGS User Manual.



950 19 Bayesian Inference Using Gibbs Sampling – BUGS Project

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) (b)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

(c) (d)

Fig. 19.8 Traces of the four parameters from a simple example: (a) α, (b) β, (c) τ, and (d)
σ from WinBUGS. Data are plotted in MATLAB after being exported from WinBUGS.

WinBUGS also allows for the inclusion of distributions for which functions
are not built in. Table 19.2 provides a list of important discrete and contin-
uous distributions, with their syntax and parametrizations. WinBUGS has
the capability to define custom distributions, both as a likelihood and as a
prior, via the so-called zero-tricks (p. 353).

19.4 MATBUGS: A MATLAB Interface to WinBUGS

There is strong motivation to interface WinBUGS with MATLAB. Cutting
and pasting results from WinBUGS is cumbersome if the simulation size is
in millions or if the number of simulated parameters is large. Also, the data
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Table 19.1 Built-in functions in WinBUGS
WinBUGS code Function
abs(y) |y|
cloglog(y) ln(− ln(1− y))
cos(y) cos(y)
equals(y, z) 1 if y = z; 0 otherwise
exp(y) exp(y)
inprod(y, z) ∑i yizi

inverse(y) y−1 for symmetric positive–definite matrix y
log(y) ln(y)
logfact(y) ln(y!)
loggam(y) ln(Γ(y))
logit(y) ln(y/(1− y))
max(y, z) y if y > z; y otherwise
mean(y) n−1 ∑i yi, n = dim(y)
min(y, z) y if y < z; z otherwise
phi(y) standard normal CDF Φ(y)
pow(y, z) yz

sin(y) sin(y)
sqrt(y)

√
y

rank(v, s) number of components of v less than or equal to vs

ranked(v, s) sth smallest component of v
round(y) nearest integer to y
sd(v) standard deviation of components of y (n− 1 in denom.)
step(y) 1 if y≥ 0; 0 otherwise
sum(y) ∑i yi

trunc(y) greatest integer less than or equal to y

manipulation and graphical capabilities in WinBUGS are quite rudimentary
compared to MATLAB.

MATBUGS is a MATLAB program that communicates with WinBUGS.
The program matbugs.m was written by Kevin Murphy and his team and
can be found at: http://code.google.com/p/matbugs.

We now demonstrate how to solve Jeremy’s IQ problem in MATLAB by
calling WinBUGS. First we need to create a simple text file, say, jeremy.txt:

model{

for(i in 1 : N)

{

scores[i] ~ dnorm(theta, tau)

}

theta ~ dnorm(mu, xi)

and then run the MATLAB file:

dataStruct = struct( ...

’N’, 5, ...

’tau’,1/80,...

’xi’,1/120,...

’mu’,110,...

’scores’,[97 110 117 102 98]);

http://code.google.com/p/matbugs
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Table 19.2 Some important built-in distributions with WinBUGS names and their parameterizations.

Distribution WinBUGS code Density
Bernoulli x ∼ dbern(p) px(1− p)1−x, x = 0,1; 0≤ p ≤ 1
Binomial x ∼ dbin(p, n) (n

x)px(1− p)n−x, x = 0, . . . , n; 0≤ p ≤ 1
Categorical x ∼ dcat(p[]) p[x], x = 1,2, . . . ,dim(p)

Negative Binomial x ∼ dnegbin(p, r)
(x+r−1)!
x!(r−1)! pr(1− p)x, x = 0,1, . . . ; 0≤ p ≤ 1

Poisson x ∼ dpois(lambda) λx

x! exp{−λ}, x = 0,1,2, . . . ; λ > 0
Beta x ∼ dbeta(a,b) 1

B(a,b)xa−1(1− x)b−1, 0≤ x ≤ 1, a, b >−1

Chi-square x ∼ dchisqr(k)
xk/1−1 exp{−x/2}

2k/2Γ(k/2)
, x ≥ 0, k > 0

Double exponential x ∼ ddexp(mu, tau) τ
2 exp{−τ|x− µ|}, x ∈ R, τ > 0, µ ∈ R

Exponential x ∼ dexp(lambda) λ exp{−λx}, x ≥ 0, λ ≥ 0
Flat x ∼ dflat() constant; not a proper density
Gamma x ∼ dgamma(a, b) baxa−1

Γ(a)
exp(−bx), x, a, b > 0

Normal x ∼ dnorm(mu, tau)
√

τ/(2π)exp{− τ
2 (x− µ)2}, x, µ ∈ R, τ > 0

Pareto x ∼ dpar)alpha,c) αcαx−(α+1), x > c

t x ∼ dt(mu, tau, k)
Γ((k+1)/2)

Γ(k/2)

√
τ

kπ [1 +
τ
k (x− µ)2]−(k+1)/2, x ∈ R, k ≥ 2

Uniform x ∼ dunif(a, b) 1
b−a , a ≤ x ≤ b

Weibull x ∼ dweib(v, lambda) vλxv−1 exp{−λxv}, x, v, λ > 0,
Multinomial x[] ∼ dmulti(p[], N)

(∑i xi)!
∏i xi! ∏i p

xi
i , ∑i xi = N, 0 < pi < 1, ∑i pi = 1

Dirichlet p[] ∼ ddirch(alpha[])
Γ(∑i αi)
∏i Γ(αi)

∏i p
αi−1
i , 0 < pi < 1, ∑i pi = 1

Multivariate normal x[] ∼ dmnorm(mu[], T[,]) (2π)−d/2|T|1/2 exp{−1/2(x− µ)′T(x− µ)}, x ∈ Rd

Multivariate t x[] ∼ dmt(mu[], T[,], k)
Γ((k+d)/2)

Γ(k/2)
|T|1/2

kd/2πd/2

[
1 + 1

k (x− µ)′T(x− µ)
]−(k+d)/2

, x ∈R
d, k ≥ 2

Wishart x[,] ∼ dwish(R[,], k) |R|k/2|x|(k−p−1)/2exp{−1/2Tr(Rx)}, x p.d.; k > p− 1
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initStruct = struct( ...

’theta’, 100 );

cd(’C:\MyBugs\matbugs\’)

[samples, stats] = matbugs(dataStruct, ...

fullfile(pwd, ’jeremy.txt’), ...

’init’, initStruct, ...

’nChains’, 1, ...

’view’, 0, ...

’nburnin’, 2000, ...

’nsamples’, 50000, ...

’thin’, 1, ...

’monitorParams’, {’theta’}, ...

’Bugdir’, ’C:/Program Files/BUGS’);

baymean = mean(samples.theta)

frmean=mean(dataStruct.scores)

figure(1)

[p, x] = ksdensity(samples.theta);

plot(x, p);

85 90 95 100 105 110 115 120 125
0
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0.06

0.08
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Fig. 19.9 Posterior for Jeremy’s data set. Data are plotted in MATLAB after being ex-
ported from WinBUGS by MATBUGS.
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19.5 Exercises

19.1. A Coin and a Die. The following WinBUGS code simulates flips of
a coin. The outcome H is coded by 1 and T by 0. Mimic this code to
simulate rolls of a fair die.

#coin

model{

flip ~ dcat(p.coin[])

coin <- flip - 1

}

DATA

list(p.coin=c(0.5, 0.5))

#just generate initials

19.2. De Mere Paradox in WinBUGS. In Exercise 3.6 (b) we examined de
Mere’s paradox: In playing a game with three fair dice, the sum 11 was
advantageous to the sum 12.
(a) Using WinBUGS/OpenBUGS demonstrate that, in playing a game
with 300 fair dice, the sum 1111 is advantageous to the sum 1112.
(b) Which of the two sums from (a) is more advantageous if the 300 dice
are loaded, with probabilities 0.15, 0.15, 0.16, 0.2, 0.17, and 0.17, for sides
1, . . . , 6, respectively.
Hint:

part of the code...

for (i in 1:300) {

dice[i] ~ dcat(p.dice[]);

}

is1111 <- equals(sum(dice[]),1111)

is1112 <- equals(sum(dice[]),1112)

19.3. Simulating the Probability of an Interval. Consider an exponen-

tially distributed random variable X, X ∼ E
(

1
10

)
, with density f (x) =

1
10 exp{−x/10}, x > 0. Compute P(10 < X < 16) using (a) exact integra-
tion, (b) MATLAB’s expcdf, and (c) WinBUGS.

19.4. WinBUGS as a Calculator. WinBUGS can approximate definite inte-
grals, solve nonlinear equations, and even find values of definite inte-
grals over random intervals. The following WinBUGS program finds an
approximation to

∫ π
0 sin(x)dx, solves the equation y5− 2y = 0, and finds

the integral
∫ R

0 z3(1− z4)dz, where R is a beta Be(2,2) random variable.
Verify the following code and find the solution:

model{

F(x) <- sin(x)

int <- integral(F(x), 0, pi, 1.0E-6)

pi<- 3.141592659
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y0 <- solution(F(y), 1,2, 1.0E-6)

F(y) <- pow(y,5) - 2*y

zero <- pow(y0, 5)-2*y0

randint <- integral(F(z), 0, randbound, 1.0E-6)

F(z) <- pow(z,3)*(1-pow(z,4))

randbound ~ dbeta(2,2)

}

NO DATA

INITS

list(x=1, y=0, z=NA, randbound=0.5)

After model checking, one should go directly to compiling (no data to
load in) and initializing the model. There is NO need to update the
model, to go to the Inference tool, to set the variables for monitoring or to
sample. One simply goes to the Info menu and checks Node Info. In the
Node Info tool one specifies int for the approximation of an integral,
y0 for the solution of an equation, zero for checking that y0 satisfies
the equation (approximately), and randint for the value of a random
interval.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch19.WinBUGS/

simple.m

DeMere.odc, jeremy.odc, picktrick.odc, Regression1.odc, Regression2.odc,

simulationd.odc

alpha.txt, beta.txt, sigma.txt, tau.txt
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censored, 804
interval, 52
nominal, 52
ordinal, 52
ratio, 52

data mining, 45
De Morgan’s laws, 80
delta method, 267
density

conditional, 194
joint, 194
marginal, 194

deviance, 761, 775
DFBETAS, 713
DFFITS, 714
diagnostic odds ratio (DOR), 138
discrepant resolution, 144
distribution

t, 260
Bernoulli, 172, 755
beta, 206
beta-binomial, 342
binomial, 172, 297
Cauchy, 261
chi, 259
chi-square, 256, 293
conditional, 169, 194
Dirichlet, 212
discrete uniform, 170, 894
double exponential, 207, 320
empirical, 860
Erlang’s, 205
EV, 771, 834
exponential, 200
F, 263
gamma, 204
Gaussian, 203, 239
geometric, 182, 318
Gumbel type I, 771, 834
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hypergeometric, 176, 818
inverse beta, 826
inverse gamma, 205
Irwing-Hall, 199
Kolmogorov, 863
Laplace, 207
leptokurtic, 20
log-Burr, 835
logistic, 209, 755
lognormal, 265
Lorentz, 261
marginal, 168, 194, 337
Maxwell, 259, 285, 354, 835
multinomial, 187, 478
negative binomial, 185

generalized, 185
noncentral χ2, 264, 595
noncentral F, 264, 542, 546, 722
noncentral t, 264, 397, 398, 437,

450
normal, 203, 239

bivariate, 243
Pólya, 185
Pareto, 212, 352, 362
platykurtic, 20
Poisson, 179
posterior, 337
prior, 337
prior predictive, 337
probability, 162
Rayleigh, 215, 259, 319, 806
sampling, 288, 293
uniform, 198, 287
Weibull, 210, 319
Wishart, 259, 666

diversity index
Shannon’s, 23
Simpson’s, 59

effect size, 382
effective sample size (ESS), 349,

440
eigenvalues, 40
eigenvectors, 40
empirical cdf, 27

entropy, 190
equivalence tests, 481
error-in-variables regression, 725
errors in testing, 381
estimator

consistent, 289
Graybill-Deal, 364
interval, 297
Kaplan–Meier, 812
MLE, 282
moment-matching, 281
product-limit, 812
robust, 294
Schiller-Eberhardt, 364
unbiased, 288
Wilson’s, 343

event, 77
complement, 78
impossible, 77
sure, 77

events
exclusive, 77
hypotheses, 98
independence, 93
intersection, 77
union, 78

excess, 20

F-measure, 146
failure rate, 200
false discovery rate (FDR), 416
familywise error rate (FWER), 414
FDA guidelines, 335
Fisher’s exact test, 602
Fisher’s iris data, 30, 41
five-number summary, 19
Friedman’s test, 904

pairwise comparisons, 907
functional ANOVA, 547

gamma function, 204
Garth test, 623
gauge R&R, 553

number of distinct categories (NDC),
556
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percent of R&R variability (PRR),
556

repeatibility, 554
reproducibility, 554

geometric mean, 12
Gini’s mean difference, 295
grand mean, 507
Greenwood formula, 813

Haenszel–Mantel test, 614, 817
harmonic mean, 13
hat matrix, 706
hazard function, 805
histogram, 26

Sturges’ rule, 26
homogeneity index

Shannon’s, 23
Simpson’s, 59

homogeneity measure, 23
hyperparameter, 337

i.i.d. random variables, 165
inclusion-exclusion rule, 78
incomplete beta function, 206
index

F, 147
Quetelet, 238
Youden, 146

inter-quartile range (IQR), 18
interaction plots, 527
iterated expectation rule, 196

jackknife, 908
pseudo-observation, 908

Jarque–Bera test, 872, 916

Kaplan–Meier estimator, 811, 814
Kolmogorov’s test, 862
Kolmogorov–Smirnov test, 860
Kruskal–Wallis test, 900, 901

pairwise comparisons, 902
kurtosis, 20

leptokurtic, 20
platykurtic, 20

kurtosis of random variable, 164,
190

Laud–Ibrahim predictive criterion,
720

law of large numbers (LLN), 292
leptokurtic, 20
likelihood, 336

ratio
negative, 136
positive, 136

ratio negative (LRN), 138
ratio positive (LRP), 138

Likert scale, 52
Lilliefors’ test, 862, 874
Lin–Mudholkar’s test, 885
log-linear models, 781
logistic regression, 754

Cox-Snell R2, 764
deviance, 761
deviance residuals, 762
Effron’s pseudo-R2, 764
half-normal plots, 762
Hosmer–Lemeshow statistic, 763
McFadden’s pseudo-R2, 764
Nagelkerke’s pseudo-R2, 764
Pearson’s χ2, 762
Wald’s test, 760

logit, 348
logrank test, 817

MAD, 17
Mahalanobis transformation, 37
Mann-Whitney Test, 897
Mantel–Haenszel test, 605
Marascuillo procedure, 559
margin of error, 310
Markov chain, 218
Markov chain Monte Carlo (MCMC),

350
MATBUGS, 950
maximum likelihood estimation (MLE),

282
McNemar’s test, 476, 610
mean

arithmetic, 12
geometric, 12
harmonic, 13



INDEX 961

posterior, 343
prior, 343
sample, 12
trimmed, 14
winsorized, 15

mean residual life (mrl), 807
mean square error (MSE), 288
median, 14

life, 807
memoryless property, 182, 201, 228,

807
Miettinen’s test, 615
mixtures, 217
mode, 14
moment of random variable, 164,

190
central, 164, 190, 293

moment-generating function, 165
Moran’s test, 871
multicollinearity, 704, 716

condition indexes, 717
condition number, 717
variance inflation factor (VIF),

717
multicollinearity index (MCI), 717
multinomial distribution, 478
multiple regression, 704

ANOVA table, 707
Cook’s distance, 714
DFBETAS, 713
DFFITS, 714
forward/backward variable se-

lection, 719
inference for parameters, 709
influence analysis, 713
Mallows’ Cp, 720
polynomial, 723
PRESS residuals, 712
residual analysis, 711
sample size, 722
variable selection, 719

multiplication rule, 89

n-choose-k (n
k), 88

negative

false, 135
true, 135

Nelson–Aalen estimator, 813
nested design, 538
normal equations, 705
null hypothesis (H0), 379

odds, 85, 471
odds ratio, 471

paired tables, 614
OpenBUGS, 944
order statistic, 14
orthogonal contrasts, 515

paired t-test, 445
paired tables, 610

Miettinen’s test, 615
RBG estimator, 615

pairwise comparisons, 515
Friedman’s test, 907
Kruskal–Wallis test, 902
Scheffee’s procedure, 517
Sidak’s procedure, 518
Tukey’s procedure, 516

parameter, 6
Pareto graph, 43
partial correlation, 652
PDF, 163, 189
Pearson’s χ2-test, 851
perils of aggregation, 608, 635
permutation tests, 927
permutations, 90
pie charts, 29
platykurtic, 20
plot

Andrews, 46
parallel coordinates, 46
star, 47

PMF, 163
Poisson process, 855
Poisson regression, 774

Anscombe residuals, 776
deviance, 775
deviance residuals, 775
Friedman-Tukey residuals, 776
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pseudo-R2, 776
Poissonness plots, 850
population, 2, 6
positive

false, 135
true, 135

posterior distribution, 337
power

retrospective, 462
two normal variances, 461
two sample t-test, 436

power of the test, 382
P–P plots, 849
prediction intervals, 311
predictive value

negative, 136
positive, 136

prevalence, 136
prior, 336

conjugate, 341, 343–345, 349
elicitation, 347, 348
enthusiastic, 350
Jeffreys’, 348
noninformative, 348
normal-inverse gamma (NIG),

345, 711
sample size, 343
skeptic, 350
vague, 350
Zellner’s on proportion, 348, 412

probability
conditional, 92
distribution function (PDF), 163,

189
mass function (PMF), 163
total, 98

probit regression, 771
product-limit estimator, 812
pseudo-observation, 908
p-value, 383

Q–Q plots, 28, 257, 846, 848

R&R study, 553
random variable, 161

continuous, 189

moments, 190
discrete, 163

expectation, 163
variance, 164

quantiles, 188
transformation, 215

random variables
correlation, 170
covariance, 170
i.i.d., 165
independent, 165, 168, 169, 194
jointly distributed, 194

range, 18
ranks, 25, 894
Rayleigh distribution, 806
RBG variance formula, 610, 615
receiver operating characteristic curve,

144
regression, 682

ANOVA table, 687
calibration, 699
error-in-variables, 725
multiple, 704
orthogonal, 726
testing a new response, 694
testing equality of slopes, 701
testing intercept β0, 691
testing mean response, 693
testing slope β1, 690
testing variance σ2, 693

relative risk, 469
paired tables, 613

repeatability, 554
repeated measures design, 533

sphericity tests, 537
reproducibility, 554
resampling, 908
residuals

Anscombe, 768, 776
deviance, 762, 768, 775
externally studentized, 712
Friedman-Tukey, 776
Pearson, 762
PRESS, 712
studentized, 712
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risk difference
paired tables, 613

risk differences, 468
risk ratio, 469

paired tables, 613
ROC curve, 144
Rosenblatt’s test, 869
rule

Bayes, 100
total probability, 98

sample, 2, 6
central moments, 20
composite, 14, 22, 57
correlation, 32
covariance, 32, 296
covariance matrix, 36
grouped, 22
mean, 12
moments, 19
multivariate, 35
percentile, 18
quantile, 18
simple, 22
standard deviation, 15
variance, 15

sample size
ANOVA, 541, 545
by confidence interval, 310
contingency tables, 595
McNemar’s test, 618
paired t-test, 450
regression, 722
repeated measures design, 546
two normal means, 437
two normal variances, 461
two proportions, 466
Welch’s ANOVA, 545

sample standard deviation
pooled, 431

sample variance
pooled, 431

scatterplot, 46
scores, 40
semi-partial correlation, 652

sensitivity, 136
sensitivity/specificity of combined

tests, 141
sigma rules, 242
sign test, 890
significance level, 382
Simpson’s paradox, 636, 799
skewness, 20
skewness of random variable, 164,

190
Smirnov’s test, 862
specificity, 136
standard error (s.e.), 289
statistic

t, 393, 431
z, 391
Pearson’s χ2, 590

statistical hypothesis, 378
statistical model, 6
Stuart–Maxwell test, 621
STZ constraint, 507, 518, 782
survival function, 804

T-square test, 399
tables

association, 593
contingency, 591
Fisher’s exact test, 602
paired, 610
three way (r× c× p), 598
two way (r× c), 590

test
Anderson-Darling, 868
Bhapkar’s, 626
Bowker’s, 627
Cochran’s Q, 629
Cramér–von Mises’, 866
difference-in-differences (DiD),

451, 495
Fisher’s exact, 602
for marginal homogeneity, 626
for symmetry in paired tables,

627
Garths’s, 623
Hotelling’s T-square, 399
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Jarque–Bera, 872, 916
Kolmogorov’s, 861
Kolmogorov–Smirnov, 860
Liddell’s, 620
Lilliefors’, 874
Lin–Mudholkar, 885
logrank, 817
Mantel–Haenszel, 605
McNemar’s, 476, 610
Moran’s, 871
Pearson’s χ2, 851
permutation, 927
Rosenblat’s, 869
Smirnov’s, 862
Stuart–Maxwell, 621
Watson’s, 866
Welch–Satterthwaite, 432, 521

testing hypotheses
equivalence tests, 481
several Poisson means, 560
several proportions, 559
several variances

Bartlet’s test, 512
Cochran’s test, 511
Levene’s test, 511

two normal variances, 432, 460
two Poisson rates, 478
two proportions, 465
two sample t-test, 430

equall variances, 431
no assumption on variances,

432
testing hypothesis

Bayes’ factor, 386
Bayesian approach, 384
Fisherian approach, 383
Neyman-Pearsonian approach,

381
normal variance, 404
one proportion, 406
power, 382
t-test, 393
z-test, 391

theorem
Bayes’, 335, 337

de Moivre, 251
time series, 49
tolerance intervals, 311, 313, 329
TOST, 482
total probability, 98–100
total variance rule, 196
transformation

Box–Cox, 269
Fisher’s z, 656
variance-stabilizing, 268

treatment effect, 507
trimmed mean, 14
t-test

one sample, 393
paired, 445
two samples, 430

equall variances, 431
no assumption on variances,

432
type I error, 381
type II error, 381

variance inflation factor (VIF), 717
variations, 90
Venn diagrams, 86

Watson’s test, 866
Welch–Satterthwaite formula, 432
Westlake’s CI, 483
Wilcoxon’s signed-rank test (WSiRT),

894
Wilcoxon’s sum-rank test (WSuRT),

897
Wilcoxon–Mann–Whitney test (WMW),

897
WinBUGS, 944
winsorized mean, 15

Yates’ corrections in χ2-test, 853
Yates’ correction, 591
Youden index, 146

zero-tricks in WinBUGS, 353
z-score, 19
z-test, 391
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