
DEEP GENERATIVE MODELS: PITFALLS AND FIXES

A Dissertation

by

MOHAMMADREZA ARMANDPOUR

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jianhua Z. Huang
Co-Chair of Committee, Debdeep Pati
Committee Members, Xia (Ben) Hu

Yang Ni
Head of Department, Brani Vidakovic

May 2022

Major Subject: Statistics

Copyright 2022 Mohammadreza Armandpour

ABSTRACT

The promise of deep learning is to discover rich, hierarchical models that represent probability

distributions over the kinds of data encountered in artificial intelligence applications, such as natural

images, audio waveforms containing speech, and symbols in natural language corpora. In recent

years, the most striking successes in deep learning have involved generative models. However,

in their vanilla forms, generative models have a number of shortcomings and failure modes that

can hinder their application: they can be difficult to train on high dimensional data, and they can

fail in tasks such as the generation of realistic artificial data. In this thesis, we first explore the

reasons for these failures in the adversarial-based generative models and propose a novel approach

to alleviate these shortfalls. Then, we discuss how a learned generative model can be employed for

a downstream task such as speech recognition.

ii

DEDICATION

To my mother, father, sister (Anna), and friend (Ali).

iii

ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor Dr. Jianhua Huang. Back in 2016, I

stepped into the statistics realm and was very new to the independent research. I will never forget

the patience he had when I was in difficulties, the firm confidence he gave when I was hesitating

and the moments we cheered together for new discoveries.

I am also grateful to Dr. Debdeep Pati, for introducing me to the deep learning and nonpramteric

Bayes and giving me fundamental problems to work on. He made me to be more confident that I

also can tackle important problems and taught me how can I become an independent researcher.

This work would not be possible without the supervision of Dr. Mingyuan Zhou. I am lucky

to have him as a mentor and friend. I have grown as a statistician, and as a person, thanks to his

guidance and encouragement. I will miss having meeting with a world-class machine learning

expert, but I will miss my friend and mentor even more.

I owe a debt of gratitude to Dr. Xia Hu, for his guidance and encouragement. Dr. Hu is

acclaimed for his contributions to the field of machine learning, but he deserves equal recognition

for his ability to inspire and mentor budding ML scientists, and challenge them to accomplish more

than they thought possible.

My committee member, Dr. Yang Ni, deserves extra thanks for always been extremely generous

with his time, being friendly, and introducing me to several interesting topics in statistics. I would

also like to thank my colleagues, Yabo Niu, Daniel Zilber, Xiaomeng Yan, Hanxuan Ye, Jacob

Helwig, and Weiwei Wang for sharing their time and wisdom, and being friend. There is no room

to name everyone, but I thank you all.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Jianhua Z. Huang as

committee chair, Dr. Debdeep Pati as committee co-chair, and Dr. Yang Ni of the Department of

Statistics and Dr. Xia (Ben) Hu of the Department of Computer Science.

The data analyzed in this thesis are all publicly available as benchmark data sets. The second

chapter is the result of collaboration with Dr. Mingyuan Zhou from The University of the Texas at

Austin and Chunyuan Li from Microsoft research that is published by CVPR 2021 [1]. And the

third chapter is the results of my collaboration with Apple (MIND team) during my internship that

is accepted by ICASSP 2022 [2].

Funding Sources

Graduate study was supported by the Department of Statistics at Texas A&M University.

v

NOMENCLATURE

GAN(s) Generative Adversarial Networks

ASR Automatic Speech Recognition

PGMGAN Partition-Guided Mixture of GAN

IS Inception Score

FID Frechet Inception Distance

NMI Normalized Mutual Information

JSD Jensen–Shannon distance

ELU Exponential Linear Unit

LeakyReLU Leaky Rectified Linear Unit

ReLU Rectified Linear Unit

SGD Stochastic gradient descent

BN Batch Normalization

TTS Text-to-Speech

CE Cross-entropy

AUC Area under the curve

FAR False accept rate

DET Detection error tradeoff

FRR False reject rate

WER Word error rate

DNN Deep neural network

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION. 1

1.1 Why do we need generative models? . 1
1.2 Generative Adversarial Networks . 2
1.3 Outline . 3

2. PARTITION-GUIDED GANS . 5

2.1 Introduction. 5
2.2 Mode connecting problem . 7
2.3 Related work . 12
2.4 Method. 13

2.4.1 Partition GAN . 15
2.4.2 Partition-Guided GAN . 17
2.4.3 Connection to supervised GANs. 22

2.5 Experiments . 24
2.5.1 Toy dataset . 25
2.5.2 Stacked-MNIST, CIFAR-10 and STL-10 . 27
2.5.3 Image generation on unsupervised ImageNet . 28
2.5.4 Parameter sensitivity . 28
2.5.5 Implementation details . 28
2.5.6 Additional Experiments: . 31
2.5.7 Additional Qualitative Results . 32

vii

3. SYNT++: UTILIZING IMPERFECT SYNTHETIC DATA TO IMPROVE SPEECH
RECOGNITION. 35

3.1 Introduction. 35
3.2 Related work . 36
3.3 Method. 38

3.3.1 Controllable Speech Generative Model . 38
3.3.2 Rejection Sampling. 38
3.3.3 Double Batch Normalization Statistics . 40

3.4 Experiments . 40

4. SUMMARY AND CONCLUSIONS . 45

REFERENCES . 46

viii

LIST OF FIGURES

FIGURE Page

2.1 Examples of unsupervised partitioning and their corresponding real/generated sam-
ples on CIFAR-10 dataset. 5

2.2 Diagram of proposed partitioner and guide. We employ spectral normalization for
each convolutional layer to make each layer (as a function) have Lipschitz constant
of less than one. The details of our architecture is provided in the Appendix. 23

2.3 Left/right: the graph of −Ri(x) with/without assumption on the architecture, where
the data points of the ith partition are shown in red. 25

2.4 Left/right: visual comparison of generated samples on the 2D-grid dataset using
PGMGAN, with/without architecture restriction for the space partitioner. The
red/blue points illustrate the real/generated data samples. In the right plot, some
modes are missed and their corresponding generators focus on the wrong area. 26

2.5 Effect of changing the guide’s weight λ in equation 2.13 on PGMGAN performance.
λ = 0 corresponds to the partition+GAN. 29

2.6 Extra examples of unsupervised partitioning and their corresponding real/generated
samples on CIFAR-10 dataset. 32

2.7 Extra examples of unsupervised partitioning and their corresponding real/generated
samples on STL-10 dataset. 33

2.8 Examples of generated samples on unsupervised ImageNet 128×128 dataset. 34

3.1 The joint distributions of speech and corresponding text. The gap between synthetic
and true data distributions can be partitioned into four regions. See text for details. . . 36

3.2 Method overview. (a) To synthesize data, we use a controllable generative model [3]
that takes a text and a reference speech as input and utters the text in the style of
the given speech. (b) During training of the recognition model, we use rejection
sampling and separate BN statistics to address the distribution gap between the real
and the synthetic data. 37

ix

LIST OF TABLES

TABLE Page

2.4 GANs architecture for 32× 32 images. 29

2.5 GANs architecture for 48× 48 images. 30

2.6 GANs architecture for 128× 128 images. “ch” represents the channel width multi-
plier and is set to 96. 30

3.1 ASR results on LibriSpeech 960h dataset. The reported numbers are percentage
WER (lower is better). Synt++ significantly improves training with synthetic data. . . 42

3.2 Effect of using an extended text corpus. 42
3.3 Ablation study on the ASR task with LibriSpeech 960h dataset. 43

3.4 Keyword detection results on Speech Command dataset. The reported numbers are
average false accept rate in percentage (lower is better). 43

x

1. INTRODUCTION

1.1 Why do we need generative models?

One of the core aspirations at Machine learning community is to develop algorithms and

techniques that endow computers with an understanding of our world. It’s easy to forget just how

much you know about the world: you understand that it is made up of 3D environments, objects

that move, collide, interact; people who walk, talk, and think; animals who graze, fly, run, or bark;

monitors that display information encoded in language about the weather, who won a basketball

game, or what happened in 1970.

This tremendous amount of information is out there and to a large extent easily accessible —

either in the physical world of atoms or the digital world of bits. The only tricky part is to develop

models and algorithms that can analyze and understand this treasure trove of data.

Generative models are one of the most promising approaches towards this goal. To train a

generative model we first collect a large amount of data in some domain (e.g., think millions of

images, sentences, or sounds, etc.) and then train a model to generate data like it. The intuition

behind this approach follows a famous quote from Richard Feynman:

"What I cannot create, I do not understand.”

—Richard Feynman

The trick is that the neural networks we use as generative models have a number of parameters

significantly smaller than the amount of data we train them on, so the models are forced to discover

and efficiently internalize the essence of the data in order to generate it. Generative models have

many short-term applications. But in the long run, they hold the potential to automatically learn the

natural features of a dataset, whether categories or dimensions or something else entirely.

In this thesis, we first study the shortcomings of the generative models. And we continue with

1

how efficiently one can employ a generative model in a real world problem more specifically in

the speech recognition task. To begin let’s start with the formal definition of generative adversarial

networks (GANs)[4] which is one of the most studied type of generative models.

1.2 Generative Adversarial Networks

While most deep generative models are trained by maximizing log likelihood or a lower bound

on log likelihood, GANs take a radically different approach that does not require inference or

explicit calculation of the data likelihood. Instead, two models are used to solve a minimax game: a

generator which samples data, and a discriminator which classifies the data as real or generated.

In theory these models are capable of modeling an arbitrarily complex probability distribution.

When using the optimal discriminator for a given class of generators, the original GAN proposed by

Goodfellow et al. minimizes the Jensen-Shannon divergence between the data distribution and the

generator, and extensions generalize this to a wider class of divergences.

The ability to train extremely flexible generating functions, without explicitly computing

likelihoods or performing inference, and while targeting more mode-seeking divergences as made

GANs extremely successful in image generation, and image super resolution. The flexibility of the

GAN framework has also enabled a number of successful extensions of the technique, for instance

for structured prediction [5], training energy based models, and combining the GAN loss with a

mutual information loss.

The GAN learning problem is to find the optimal parameters θ∗G for a generator function

G (z; θG) in a minimax objective,

θ∗G = argmin
θG

max
θD

f (θG, θD) (1.1)

= argmin
θG

f (θG, θ
∗
D (θG)) (1.2)

θ∗D (θG) = argmax
θD

f (θG, θD) , (1.3)

2

where f is commonly chosen to be

f (θG, θD) = Ex∼pdata [log (D (x; θD))] + Ez∼N (0,I) [log (1−D (G (z; θG) ; θD))] . (1.4)

Here x ∈ X is the data variable, z ∈ Z is the latent variable, pdata is the data distribution, the

discriminator D (·; θD) : X → [0, 1] outputs the estimated probability that a sample x comes from

the data distribution, θD and θG are the discriminator and generator parameters, and the generator

function G (·; θG) : Z → X transforms a sample in the latent space into a sample in the data space.

1.3 Outline

Despite the success of Generative Adversarial Networks (GANs), their training suffers from sev-

eral well-known problems, including mode collapse and having difficulties learning a disconnected

set of manifolds. In the next chapter, we break down the challenging task of learning complex

high dimensional distributions supporting diverse data samples to simpler sub-tasks. Our solution

relies on designing a partitioner that breaks the space into smaller regions, each having a simpler

distribution, and training a different generator for each partition. We formulate two desired criteria

for the space partitioner that aids the training of our mixture of generators: 1) it produces connected

partitions and 2) provides a proxy of distance between partitions and data samples along with a

direction to reduce that distance. These criteria are developed to not only avoid producing samples

from places with non-existent data density but also facilitate training by providing direction to the

generators from both the space partitioner and discriminator. We develop theoretical constraints for

a space partitioner to satisfy the above criteria. Guided by our theoretical analysis, we further design

an effective neural architecture for the space partitioner that empirically assures these conditions.

Experimental results on various standard benchmarks show that the proposed unsupervised model

outperforms several recent methods.

Then we continue with how one can employ synthetic data (produced by a generative model) as

a viable alternative to real data for training speech recognition models. However, machine learning

with synthetic data is not trivial due to the gap between the synthetic and the real data distributions.

3

Synthetic datasets may contain artifacts that do not exist in real data such as structured noise, content

errors, or unrealistic speaking styles. Moreover, the synthesis process may introduce a bias due to

uneven sampling of the data manifold. We propose two novel techniques during training to mitigate

the problems due to the distribution gap: (i) a rejection sampling algorithm and (ii) using separate

batch normalization statistics for the real and the synthetic samples. We show that these methods

significantly improve the training of speech recognition models using synthetic data. We evaluate

the proposed approach on keyword detection and Automatic Speech Recognition (ASR) tasks, and

observe up to 18% and 13% relative error reduction, respectively, compared to naively using the

synthetic data.

4

2. PARTITION-GUIDED GANS

2.1 Introduction

Generative adversarial networks (GANs) [4] have gained remarkable success in learning the

underlying distribution of observed samples. However, their training is still unstable and challenging,

especially when the data distribution of interest is multimodal. This is particularly important

due to both empirical and theoretical evidences that suggest real data also conforms to such

distributions [6, 7].

Improving the vanilla GAN, both in term of training stability and generating high fidelity images,

has been the subject of great interest in the machine learning literature [8, 9, 10, 11, 12, 13, 14, 15].

One of the main problems is mode collapse, where the generator fails to capture the full diversity of

the data. Another problem, which hasn’t been fully explored, is the mode connecting problem [16,

17]. As we explain in detail in Section 2.2, this phenomena occurs when the GAN generates samples

from parts of the space where the true data is non-existent; caused by using a continuous generator

to approximate a distribution with disconnected support. Moreover, GANs are also known to be

hard to train due to unreliable gradient provided by the discriminator.

Our solution to alleviate the aforementioned problems is to introduce an unsupervised space

partitioner and train a different generator for each partition. Figure 2.1 illustrates real and generated

Real Generated

(a) Partition 13

Real Generated

(b) Partition 47

Real Generated

(c) Partition 69

Real Generated

(d) Partition 85

Figure 2.1: Examples of unsupervised partitioning and their corresponding real/generated samples
on CIFAR-10 dataset.

5

samples from several inferred partitions.

Having multiple generators, which are focused on different parts/modes of the distribution,

reduces the chances of missing a mode. This also mitigates mode connecting, because, the mixture

of generators is no longer restricted to be a continuous function responsible to generate from a data

distribution with potentially disconnected manifolds. In this context, an effective space partitioner

should place disconnected data manifolds in different partitions. Therefore, assuming semantically

similar images are in the same connected manifold, we use contrastive learning methods to learn

semantic representations of images and partition the space using these embeddings.

We show that the space partitioner can be utilized to define a distance between points in the data

space and partitions. The gradient of this distance can be used to encourage each generator to focus

on its corresponding region by providing a direction to guide it there. In other words, by penalizing

a generator when its samples are far from its partition, the space partitioner can guide the generator

to its designated region. Our partitioner’s guide is particularly useful where the discriminator does

not provide reliable gradient, as it can steer the generator in the right direction.

However, for a reliable guide, the distance function is required to follow certain characteristics,

which are challenging to achieve. For example, to avoid misleading the GANs’s training the

distance should have no local optima outside of the partition. In Section 2.4.2, we formulate

sufficient theoretical conditions for a desirable metric, and attain them by enforcing constraints on

the architecture of the space partitioner. As a by product, this also guarantees connected partitions

in the data space which further mitigates the issue of mode connecting.

We perform comprehensive experiments on stackedMNIST [18, 19, 20], CIFAR-10 [21], and

STL-10 [22]. We show that our method, Partition-Guided Mixture of GAN (PGMGAN), success-

fully recovers all the modes and achieves higher Inception Score (IS) [15] and Frechet Inception

Distance (FID) [23] than a wide range of supervised and unsupervised methods.

Our contributions can be summarized as:

• Providing a theoretical lower bound on the total variational distance of real and estimated

6

density using a single generator.

• Introducing a novel differentiable space partitioner and demonstrating that simply training a

mixture of generators on its partitions, improves mode collapse/connecting.

• Providing a practical way (with theoretical guarantees) to guide each generator to produce

samples from its designated region, further improving mode collapse/connecting. Our experi-

ments show significant improvement in terms of FID and IS confirming the efficacy of our

model.

• Elaborating on the design of our loss and architecture by making connection to supervised

GANs that employ a classifier. We explain how PGMGAN avoids their short comings.

2.2 Mode connecting problem

Suppose the data distribution is supported on a set of disconnected manifolds embedded within a

higher-dimensional space. Since continuous functions preserve the space connectivity [24], one can

never expect to have an exact approximation of this distribution by applying a continuous function

(Gθ) to a random variable with a connected support. Furthermore, if we restrict Gθ to the class of

c-Lipschitz functions, the distance between the true density and approximated will always remain

more than a certain positive value. In fact, the generator would either have to discard some of the

data manifolds or connect the manifolds together. The former can be considered as a form of mode

collapse and we refer to the latter as the mode connecting problem.

The following theorem formally describes the above statement and provides a lower bound for

the total variation distance between the true and estimated densities.

Theorem 1. Suppose pdata is a distribution supported on a set of disjoint manifoldsM1, . . . ,Mk

in Rd, and [π1, . . . , πk] are the probabilities of being from each manifold. Let Gθ be a c-Lipschitz

function, and pmodel be the distribution of Gθ(z), where z ∼ N (0, In), then:

dTV (pdata, pmodel) ≥
∑
|πi − pi|≥ δ

7

where dTV is the total variation distance and:

π∗i := min(πi, 1− πi)

pi := pmodel(Mi)

δ := max
i
{π∗i − Φ(Φ−1(π∗i)− di/c)}

di := inf{||x− y|| | x ∈Mi,y ∈Mj, j 6= i}

di is the distance of manifoldMi from the rest, and Φ is the CDF of the univariate standard normal

distribution. Note δ is strictly larger than zero iff ∃i : di, π
∗
i 6= 0.

Proof. We begin by re-stating the definition of Minkowski sum and proceed by proving the theorem

for the case where the number of manifold is 2. To extend the theorem form k = 2 to the general

case, one only needs to consider manifoldMi asM1, and
⋃
j∈[1:k]\iMj asM2.

Definition 1 (Minkowski sum). The Minkowski sum of two sets U, V ∈ Rd defined as

U + V := {u+ v|u ∈ U, v ∈ V }

and when V is a d dimensional ball with radius r and centered at zero, we use the notation Ur to

refer to their Minkowski sum.

If we let U (1) := G−1θ (M1), U
(2) := G−1θ (M2), then:

∀r1, r2 ∈ R+, if r1 + r2 < d1/c =⇒ U (1)
r1
∩ U (2)

r2
= ∅

that is because if there exists an x ∈ U (1)
r1 ∩ U

(2)
r2 , there would be u1 ∈ U (1),u2 ∈ U (2) such that:

||x− u1||≤ r1, ||x− u2||≤ r2 =⇒ ||u1 − u2||< r1 + r2 < d1/c (2.1)

8

However, due to lipsitz condition of Gθ:

||Gθ(u1)−Gθ(u2)||< c||u1 − u2||< c · d1/c = d1

which contradicts with our assumption that the distance betweenM1,M2 is d1. Therefore there is

no point in the intersection of U (1)
r1 and U (2)

r2 . The disjointness of this two sets provides us:

γn(U (1)
r1

) + γn(U (2)
r2

) ≤ γn(Rn) = 1

where γn(.) of any set is the probability of a random draw of N (0, In) being from that set. We

proceed by using a remark from theorem 1.3 of [25] which restated below:

If U is a Borel set in Rn, then:

p ≤ γn(U) =⇒ Φ(Φ−1(p) + r) ≤ γn(Ur).

Based on above lemma if we let:

p1 := γn(U (1)), p2 := γn(U (2))

then for ∀r1, r2 ∈ R+ such that r1 + r2 < d1/c, we have:

Φ(Φ−1(p1) + r1) + Φ(Φ−1(p2) + r2) ≤ 1 (2.2)

We can now calculate the total variational distance of the marginal distributions of pdata, pmodel on

the set {Gθ(U
(1)), Gθ(U

(2)), Gθ

(
Rn \ (U (1) ∪ U (2))

)
} as:

dTV (p
(marginal)
data , p

(marginal)
model) = |π1 − p1|+|π2 − p2|+|1− (p1 + p2)| (2.3)

9

and since total variational distance takes a smaller value on marginal distributions than the full

distribution, we only need to show that for any i the expression in the equation 2.3 is larger than

g(πi, di, c) to prove the theorem 1 for k = 2. Here g(πi, di, c) = π∗i − Φ(Φ−1(π∗i)− di/c).

Assume p1 ≤ π1, and define ∆1 := π1 − p1 ≥ 0, based on equation 2.2 if r1 = d1/c, r2 = 0,

we have:

Φ(Φ−1(π1 −∆1) + d1/c) + p2 ≤ 1

which based on equation 2.2 implies:

r(∆1) := Φ(Φ−1(π1 −∆1) + d1/c)− (π1 −∆1) ≤ DTV

which DTV refers to total variational distance between the marginal distributions of the data and

model. We also know from the equation 2.2, that ∆1 ≤ DTV , therefore:

max(r(∆1),∆1) ≤ DTV

for a ∆1 ∈ [0, π1]. Therefore

min
δ1∈[0,π1]

{max(r(δ1), δ1)} ≤ DTV

To find the δ1 which minimize the above equation, we need to check endpoints of the interval [0, π1],

points where the curve of two functions r(δ1), δ1 intersects with each other, and points that are the

local minimaum of each of them. It can be shown the function r(δ1) does not have any local minima

when 0 < π1 < 1 because:

r(δ1) = P (z ∈ [Φ−1(π1 − δ1),Φ−1(π1 − δ1) + d1/c]) (2.4)

where z is univarite standard normal random variable. Therefore r(δ1) is the probablity of a univarite

10

normal being in a fixed length interval d1/c, and δ1 only changes the starting point of the interval.

By using this fact, it can be easily shown this function does not have any local optima in the open

interval (0, π1). Also the identity function δ1 also has no local optima inside the interval. The

endpoints values are:

max(r(0), 0) = Φ(Φ−1(π1) + d1/c)− π1

max(r(π1), π1) = max(Φ(Φ−1(0) + d1/c), π1) = π1

The function curves of r and identity also intersects only when:

Φ(Φ−1(π1 − δ∗1) + d1/c) = π1

which only happens when:

π1 − Φ(Φ−1(π1)− d1/c) = δ∗1

where for this point, max(r(δ∗1), δ∗1) = δ∗1 . Therefore based on the above calculations:

min

Φ(Φ−1(π1) + d1/c)− π1︸ ︷︷ ︸
I

, π1,

π1 − Φ(Φ−1(π1)− d1/c)︸ ︷︷ ︸
II

 ≤ DTV

Note, π1 is always smaller than term II, and term I (II) is equal to probability of a univariate

standard normal random variable being inside the interval [Φ−1(π1),Φ
−1(π1) + d1/c] ([Φ−1(π1)−

d1/c,Φ
−1(π1)]). This observation implies that term II is smaller than term I, if and only if π1 ≤ π2.

Based on this fact and symmetry of Φ with respect to zero, it can be easily shown that:

g(π1, d1, c) ≤ DTV (2.5)

which proves the theorem. However, we made an assumption that p1 ≤ π1, this does not harm the

argument because otherwise we would have p2 ≤ π2, and we can restate all the above arguments

for π2 instead of π1. And, since π2 = 1 − π1 and d1 = d2, therefore we can have g(π1, d1, c) =

11

g(π2, d2, c), which proves equation 2.5.

According to Theorem 1, the distance between the estimated density and the data distribution can

not converge to zero when Gθ is a Lipschitz function. It is worth noting that this assumption holds

in practice for most neural architectures as they are a composition of simple Lipschitz functions.

Furthermore, most of the state of the art GAN architectures (e.g., BigGAN [26] or SAGAN [27]) use

spectral normalization in their generator to stabilize their training which promotes Lipschitzness.

2.3 Related work

Apart from their application in computer vision [28, 29, 30, 31, 32, 33, 34, 35], GANs have

also been been employed in natural language processing [36, 37, 38], medicine [39, 40] and several

other fields [41, 42, 43]. Many of recent research have accordingly focused on providing ways to

avoid the problems discussed in Section 2.2 [18, 44].

Mode collapse For instance, Metz et al. [44] unrolls the optimization of the discriminator to

obtain a better estimate of the optimal discriminator at each step, which remedies mode collapse.

However due to high computational complexity, it is not scalable to large datasets. VEEGAN [20]

adds a reconstruction term to bi-directional GANs [45, 46] objective which does not depend on the

discriminator. This term can provide training signal to the generator even when the discriminator

does not. PacGAN [18] changes the discriminator to make decisions based on a pack of samples.

This change mitigates mode collapse by making it easier for the discriminator to detect lack of

diversity and naturally penalizing the generator when mode collapse happens. Lucic et al. [47],

motivated by the better performance of supervised-GANs, propose to use an small set of labels

and a semi-supervised method to infer the labels for the entire data. They further improve the

performance by utilizing a auxiliary rotation loss similar to that of RotNet [48].

Mode connecting Based on Theorem 1, to avoid mode connecting one has to either use a latent

variable z with a disconnected support, or allow Gθ to be a discontinuous function [49, 16, 50, 19,

51].

To obtain a disconnected latent space, DeLiGAN [52] samples z from a mixture of Gaussian,

12

while Odena et al. [53] add a discreet dimension to the latent variable. Other methods dissect the

latent space post training using some variant of rejection sampling, for example Azadi et al. [54]

perform rejection sampling based on the discriminator’s score and Tanielian et al. [17] reject the

samples where the generator’s Jacobian is higher than a certain threshold.

The discontinuous generator method is mostly achieved by learning multiple generators, with

the main motivation being to remedy mode-collapse which also reduces mode connecting. Both

MGAN [49] and DMWGAN [16] employ K different generators while penalizing them from

overlapping with each other. However, these works do not explicitly address the issue when

some of the data modes are not being captured. Also, as show in Liu et al. [19], MGAN is quite

sensitive to the choice of K. By contrast, Self-Conditioned GAN [19] clusters the space using the

discriminator’s final layer and uses the labels as self-supervised conditions. However, in practice

their clustering does not seem to be reliable (e.g., in terms of NMI for labeled datasets) and the

features highly depend on the choice of the discriminator‘s architecture. In addition, there is no

guarantee that the generators will be guided to generate from their assigned clusters. GAN-Tree [50]

uses hierarchical clustering to address continuous multi-modal data, with the number of parameters

increasing linearly with the number of clusters. Thus it is limited to very few cluster numbers (e.g.

5) and can only capture a few modes.

Another recently expanding direction which explores the benefit of using image augmentation

techniques for generative modeling. Some works simply augment the data using various perturba-

tions (e.g. random crop, horizontal flipping) [55]. Others [56, 47, 57] incorporated regularization

on top of the augmentations, for example CRGAN [58] enforces consistency for different image

perturbations. ADA [59] processes each image using non-leaking augmentations and adaptively

tunes the augmentation strength while training. These works are orthogonal to ours and can be

combined with our method.

2.4 Method

This section first describes how GANs are trained on a partitioned space using a mixture of

generators/discriminators and the unified objective function required for this goal. We then explain

13

our differentiable space partitioner and how we guide the generators towards the right region. We

conclude the section by making connections to supervised GANs, which use an auxiliary classi-

fier [60, 53].

Multi-generator/discriminator objective: Given a partitioning of the space, we train a gen-

erator (Gi) and a discriminator (Di) for each region. To avoid over-parameterization and allow

information sharing across different regions, we employ parameter sharing across different Gi

(Di)’s by tying their parameters except the input (last) layer. The mixture of these generators serves

as our main generator G. We use the following objective function to train our GANs:

k∑
i

πi

[
min
Gi

max
Di

V (Di, Gi, Ai)

]
(2.6)

where A1, A2, ..., Ak be a partitioning of the space, πi := pdata(x ∈ Ai) and:

V (D,G,A) =Ex∼pdata(x|x∈A)[logD(x)] +

Ez∼pz(z|G(z)∈A)[log(1−D(G(z)))] (2.7)

We motivate this objective by making connection to the Jensen–Shannon distance (JSD) between

the distribution of our mixture of generators and the data distribution in the following Theorem.

Theorem 2. Let P =
∑k

i πipi , Q =
∑k

i πiqi , and A1, A2, ..., AK be a partitioning of the space,

such that the support of each distribution pi and qi is Ai. Then:

JSD(P ‖ Q) =
∑
i

πiJSD(pi ‖ qi) (2.8)

Proof. Based on the definition of the JSD, we have:

JSD(P ‖ Q) =
1

2
KL(P ‖ P +Q

2
) +

1

2
KL(Q ‖ P +Q

2
)

14

We also have:

KL(P ‖P +Q

2
) =∫

Rd

P (x) log
P (x)

P (x) +Q(x)
dx+ log 2 =∑

i

∫
Ai

P (x) log
P (x)

P (x) +Q(x)
dx+ log 2 =

∑
i

∫
Ai

πipi(x) log
πipi(x)

πipi(x) + πiqi(x)
dx+ log 2 =

∑
i

πi(

∫
Ai

pi(x) log
pi(x)

pi(x) + qi(x)
dx+ log 2) =

∑
i

πiKL(pi ‖
pi + qi

2
).

Therefore:

KL(P ‖ P +Q

2
) =

∑
i

πiKL(pi ‖
pi + qi

2
),

and similarly:

KL(Q ‖ P +Q

2
) =

∑
i

πiKL(qi ‖
pi + qi

2
)

Adding these two terms completes the proof.

2.4.1 Partition GAN

Space Partitioner: Based on theorem 1, an ideal space partitioner should place disjoint data

manifolds in different partitions to avoid mode connecting (and consequently mode collapse). It is

also reasonable to assume that semantically similar data points lay on the same manifold. Hence,

we train our space partitioner using semantic embeddings.

We achieve this goal in two steps: 1) Learning for each data point an unsupervised representation

which is invariant to transformations that do not change the semantic meaning. 2) Training a

partitioner based on these features, where data points with similar features are placed in the same

15

partition.

Learning representations: We follow the self-supervised literature [61, 62, 63] to construct

image representations. These methods generally train the networks via maximizing the agreement

between augmented views (e.g., random crop, color distortion, rotation, etc.) of the same scene,

while minimizing the agreement of views from different scenes. To that end, they optimize the

following contrastive loss:

∑
(i,j)∈P

log
exp(sim(hi,hj)/τ)∑2N

k=1 1k 6=i exp(sim(hi,hk)/τ)
(2.9)

where h is the embedding for image x, (i, j) is a positive pair (i.e., two views of the same

image) and (i, k) refers to negative pairs related to two different images. We refer to this network as

pretext, implying the task being solved is not of real interest, but is solved only for the true purpose

of learning a good data representation.

Learning partitions: To perform the partitioning step, one can directly apply K-means on theses

semantic representations. However, this may result in degenerated clusters where one partition

contains most of the data [64, 65]. Inspired by Van Gansbek et al. [65], to mitigate this challenge,

we first make a k-nearest neighbor graph G = (V , E) based on the representations h of the data

points. We then train an unsupervised model that motivates connected points to reside in the same

cluster and disconnected points to reside in distinct clusters. More specifically, we train a space

partitioner S : Rd → [0, 1]k to maximize:

∑
(i,j)∈E

log
(
S(xi)

T · S(xj)
)
−

α
∑
i∈V

HC(S(xi))) + βHC(
∑
i∈V

S(xi)

N
) (2.10)

Where HC(.) is the entropy function of the categorical distribution based on its probability

vector. The first term in Equation 2.10 motivates the neighbors in G to have similar class probability

vectors, with the log function used to significantly penalize the classifier if it assigns dissimilar

16

probability vector to two neighboring points. The last term is designed to avoid placing all the

data points in the same category by motivating the average cluster probability vector be similar

to uniform. The middle term is intended to promote the probability vector for each data point to

significantly favor one class over the other. This way, we can be more confident about the cluster

id of each data point. Furthermore, if the average probability of classes has homogeneous mean

(because of the last term), we can expect the number of data points in each class to not degenerate.

To train S efficiently, both in term of accuracy and computational complexity, we initialize S

using the already trained network of unsupervised features. More specifically, for:

h = W pretext
2 σ(W pretext

1 φ0(x))

we initialize S as follows:

S init(x) = softmax(W partitioner
0 φ0(x))

where σ is an activation function, and W partitioner
0 is a randomly initialized matrix; we ignore the bias

term here for brevity. We drop the sub index 0, from W partitioner
0 and φ0 to refer to their post-training

versions. Given a fully trained S, each point x is assigned to partition Ai, based on the argmax of

the probability vector of S(x).

2.4.2 Partition-Guided GAN

In this section we describe the design of guide and its properties. As stated previously, we

want to guide each generator Gi to its designated region Ai by penalizing it the farther its current

generated samples are from Ai.

A simple, yet effective proxy of measuring this distance can be attained using the already trained

space partitioner. Let fis denote the partitioner’s last layer logits, expressed as

[f1(x), . . . , fk(x)]T := W partitionerφ(x).

17

and define the desired distance as:

Ri(x) :=
∑
c

(fc(x)− fi(x))+ (2.11)

Property 1. It is easy to show that for any generated sample x, Ri(x) achieves a larger value,

the less likely S believes x to be from partition Ai. This is clear from how we defined Ri, the more

probability mass S(x) assigns any class c 6= i, the larger the value of Ri(x).

Property 2. It is also straight forward see that Ri(x) is always non-negative and obtains its

minimum (zero) only on the Aith partition:

x ∈ Ai ⇐⇒ fi(x) ≥ fc(x); ∀c ∈ [1 : k]

⇐⇒ Ri(x) =
∑
c

(fc(x)− fi(x))+ = 0
(2.12)

Therefore, we guide each generator Gi to produce samples from its region by adding a penaliza-

tion term to its canonical objective function:

min
Gi

n∑
j=1

log(1−Di(Gi(z
(j)))))

+λ
∑
j

Ri(Gi(z
(j)))/n. (2.13)

Intuitionally, Gi needs to move its samples towards partition Ai in order to minimize the newly

added term. Fortunately, given the differentiability of Ri(.) with respect to its inputs and property 1,

Ri can provide the direction for Gi to achieve that goal.

It is also worth noting that Ri should not interfere with the generator/discriminator as long as

Gi’s samples are within Ai. Otherwise, this may lead to the second term favoring parts of Ai over

others and conflicting with the discriminator. Property 2. assures that learning the distribution

of pdata over Ai remains the responsibility of Di. We also use this metric to ensure each trained

generator Gi only draws samples from within its region by only accepting samples with Ri(x) is

18

equal to zero. A critical point left to consider is the possibility of Gi getting fooled to generate

samples from outside Ai, by falling in local optima of Ri(x). In the remaining part of this section,

we will explain how the architecture design of the space partitioner S avoids this issue. In addition,

it will also guarantee the norm of the gradient provided by Ri to always be above a certain threshold.

Avoiding local optima: We can easily obtain a guide Ri with no local optima, if achieving a

good performance for the partitioner was not important. For instance, a simple single-linear-layer

neural network as S would do the trick. The main challenge comes from the fact that we need to

perform well on partitioning which usually requires deep neural networks while Avoiding local

optima. We fulfill this goal by first finding a sufficient condition to have no local optima and then

trying to enforce that condition by modifying the ResNet [66] architecture.

The following theorem states the sufficient condition:

Theorem 3. Let φ(x) : Rd → Rd be a C1 (differentiable with continuous derivative) function,

W partitioner ∈ Rk×d, and Ri as defined in Eq 2.11. If there exists c0 > 0, such that:

∀x,y ∈ Rd, c0||x− y||≤ ||φ(x)− φ(y)||,

then for every i ∈ [1 : k], every local optima of Ri is a global optima, and there exists a positive

constant b0 > 0 such that:

∀x ∈ Rd \ Ai, b0 ≤ ||∇Ri(x)||

where Ai = {x|x ∈ Rd, Ri(x) = 0}. Furthermore Ai is a connected set for all i’s.

Proof. We start by proving that the Jacobian matrix of function φ is invertible for any x ∈ Rd.

Since φ ∈ C1, based on Taylor’s expansion theorem for multi-variable vector-valued function φ, we

can write:

φ(y)− φ(x) = Jφ(x) (y − x) + o (||y − x||)

Were o(·) is the Little-o notation. By taking norm from both sides and using triangle inequality, we

19

have:

||φ(y)− φ(x)||≤ ||Jφ(x) (y − x) ||+||o (||y − x||) ||

Also because:

c0||y − x||≤ ||φ(y)− φ(x)||

=⇒ c0||y − x||≤ ||Jφ(x) (y − x) ||+||o (||y − x||) || (2.14)

thus for any fixed x: ∃ ε > 0 such that ∀y ∈ Rd where ||y − x||≤ ε then:

||o (||y − x||) ||≤ c0
2
||y − x||

which combined with the inequality 2.14, results in:

c0
2
||y − x||≤ ||Jφ(x) (y − x) ||

For y 6= x, let u := (y − x)/||y − x||, then by dividing both sides of the above inequality to

||y − x|| we have:

∀u ∈ Rd, ||u||= 1 =⇒ c0
2
≤ ||Jφ(x)u||

which shows the Jacobian matrix of φ is invertiable for any x and all of its singular values are larger

than c0/2. If there is no x ∈ Rd \ Ai the proof is complete. Otherwise, consider any x ∈ Rd \ Ai,

for this x we have:

0 < Ri(x) =
∑
c

(fc(x)− fi(x))+ =
∑
c

((wc −wi)φ(x))+

where wj is the j’th row of the matrixW partitioner. Let:

I(x) := {c|fc(x) > fi(x), c ∈ [1 : k]}

20

which is an non-empty set, because 0 < Ri(x) and we have

0 < Ri(x) =

 ∑
c∈I(x)

(wc −wi)

φ(x)

=⇒ v :=
∑
c∈I(x)

(wc −wi) 6= 0

Taking the gradient of the new formulation of Ri, we have:

∇Ri(x) =

 ∑
c∈I(x)

(wc −wi)

∇(φ(x)) = vJφ(x)

but since we showed earlier that all of the singular values of the Jacobian matrix is larger than c0/2,

the Jacobian matrix is d× d, and v is not equal to zero, it can be easily shown:

||∇Ri(x)||> ||v||c0
2

:= b0

Now, we also need to show Ai is connected for any i to complete the proof. To that end, we first

show φ is a surjective function, which means its image is Rd. To show the φ is surjective, we prove

its image is both an open and closed set, then since the only sets which are both open and closed

(in Rd) are Rd, ∅, we can conclude the surejective property. The image of φ is an open set due to

Inverse Function Theorem [67] for φ. We are allowed to use Inverse Function Theorem, since φ

satisfies both C1 condition and non zero determinant for all the points in the domain. We will also

show that the image of φ is a closed set by showing it contains all of its limit points. Let y be a

limit point in the image of φ, that is there exists {x1,x2, · · ·} such that φ(xr) → y. Since Rd is

complete and we have c0||xr − xs||≤ ||φ(xr)− φ(xs)||, then {x1,x2, · · ·} is a Cauchy sequence.

Finally since φ is a continues function φ(x∗) = y, completing the proof.

The function φ is also an invertible function because if φ(x) = φ(y) then

c0||x− y||≤ ||φ(x)− φ(y)||= 0

21

which implies x = y. Therefore φ is in fact a continuous bijecitve function, which means it

has a continuous inverse defined on all the space Rd. Furthermore, it can be easily shown Ri

for a datapoint is zero iff its transformation by φ lies in a polytope (where each of its facets is

a hyperplance perpendicular to a wc − wi). Since convex polytope is a connected set, and by

applying φ−1 (it is well defined everywhere because of bijective property of φ) to it, we would have

a connected set. That is because a continuous function does not change the connectivity and φ−1 is

continuous.

Next we describe how to satisfy this constrain in practice.

Motivated by the work of Behrmann et al. [68] who design an invertible network without

significantly sacrificing their classification accuracy, we implement φ by stacking several residual

blocks, φ(x) = BT ◦BT−1 ◦ · · · ◦B1(x), where:

Bt+1(x
(t)) = x(t+1) := x(t) + ψt(x

(t))

and x(t) refers to the out of the tth residual block. Figure 2.2, gives an overview of the proposed

architecture.

We model each ψt as a series of m convolutional layers, each having spectral norm L < 1

intertwined by 1-Lipschitz activation functions (e.g., ELU, ReLU, LeakyReLU). Thus it can be

easily shown for all x(t),y(t) ∈ Rd:

(1− Lm)||x(t) − y(t)||≤ ||Bt(x
(t))−Bt(y

(t))||.

This immediately results in the condition required in Theorem 3 by letting c0 := (1− Lm).

2.4.3 Connection to supervised GANs

In this section, we make a connection between our unsupervised GAN and some important work

in the supervised regime. This will help provide better insight into why the mentioned properties

22

LeakyReLU

Partition
Guide

Softmax

Partition ID

ELU

ELU

Reshape

Figure 2.2: Diagram of proposed partitioner and guide. We employ spectral normalization for each
convolutional layer to make each layer (as a function) have Lipschitz constant of less than one. The
details of our architecture is provided in the Appendix.

of guide are important. Auxiliary Classifier GAN [53] has been one of the well-known supervised

GAN methods which uses the following objective function:

min
G,C

max
D
LAC(G,D,C) =

E
X∼PX

[logD(X)] + E
Z∼PZ ,Y∼PY

[log(1−D(G(Z, Y)))]︸ ︷︷ ︸
a©

− λc E
(X,Y)∼PXY

[logC(X, Y)]︸ ︷︷ ︸
b©

−λc E
Z∼PZ ,Y∼PY

[log(C(G(Z, Y), Y))]︸ ︷︷ ︸
c©

It simultaneously learns an auxiliary classifier C as well as D/G. Other works have also tried

fine-tuning the generator using a pre-trained classifier [60]. The term a is related to the typical

supervised conditional GAN, term b motivates the classifier to better classify the real data. The term

c encourages G to generate images for each class such that the classifier considers them to belong

to that class with a high probability.

23

The authors motivate adding this term as it can provide further gradient to the generator G(·|Y)

to generate samples from the correct region PX(·|Y). However, recent works [69, 70] show this

tends to motivate G to down-sample data points near the decision boundary of the classifier. It

has also been shown to reduce sample diversity and does not behave well when the classes share

overlapping regions [69].

Our space partitioner acts similar to the classifier in these GANs, with the term c sharing some

similarity with our proposed guide. In contrast, our novel design of Ri(·) enjoys the benefits of the

classifier based methods (providing gradient for the generator) but alleviates its problems. Mainly

because 1) It provides gradient to the generator to generate samples from its region. At the same

time, due to having no local optima (only global optima), it does not risk the generator getting stuck

where it is not supposed to. 2) Within regions, our guide does not mislead the generator to favor

some samples over others. 3) Since the space partitioner uses the partition labels as “class” id, it

does not suffer from the overlapping classes problem, and naturally, it does not require supervised

labels. We believe our construction of the modified loss can also be applied to the supervised regime

to avoid putting the data samples far from the boundary. In addition, combining our method with the

supervised one, each label itself can be partitioned into several segments. We leave the investigation

of this modification to future research.

2.5 Experiments

This section provides an empirical analysis of our method on various datasets1. We adopt the

architecture of SN-GAN [71] for our generators and discriminators. We use a Lipschitz constant of

0.9 for our space partitioner that consists of 20 residual blocks, resulting in 60 convolutional layers.

We use Adam optimizer [72] to train the proposed generators, discriminators, and space partitioner,

and use SGD for training the pretext model. Please refer to the Appendix for complete details of

hyper-parameters and architectures used for each component of our model.

Datasets and evaluation metrics We conduct extensive experiments on CIFAR-10 [21] and

1 The code to reproduce experiments is available at https://github.com/alisadeghian/PGMGAN

24

https://github.com/alisadeghian/PGMGAN

Figure 2.3: Left/right: the graph of −Ri(x) with/without assumption on the architecture, where the
data points of the ith partition are shown in red.

STL-10 [22] (48×48), two real image datasets widely used as benchmarks for image generation.

To see how our method fares against large dataset, we also applied our method on ILSVRC2012

dataset (ImageNet) [73] which we compressed to 128×128 pixel.To evaluate and compare our

results, we use Inception Score (IS) [15] and Frechet Inception Distance (FID) [23]. It has been

shown that IS may have many shortcomings, especially on non-ImageNet datasets. FID can detect

mode collapse to some extent for larger datasets [74, 75, 76]. However, since FID is not still a

perfect metric, we also evaluate our models using reverse-KL which reflects both mode dropping

and spurious modes[76]. All FIDs and Inception Scores (IS) are reported using 50k samples. No

truncation trick is used to sample from the generator.

We also conduct experiments on three synthetic datasets: Stacked-MNIST [18, 19, 20] that has

up to 1000 modes, produced by stacking three randomly sampled MNIST [77] digits into the three

channels of an RGB image, and the 2D-grid dataset described in Section 2.5.1 as well as 2D-ring

dataset. The empirical result of the two later datasets are presented in the Appendix.

2.5.1 Toy dataset

This section aims to illustrate the importance of having a proper guide with no local optima. We

also provide intuition about how our method helps GAN training. To that end, we use the canonical

2D-grid dataset, a mixture of 25 bivariate Gaussian with identical variance, and means covering the

25

Figure 2.4: Left/right: visual comparison of generated samples on the 2D-grid dataset using
PGMGAN, with/without architecture restriction for the space partitioner. The red/blue points
illustrate the real/generated data samples. In the right plot, some modes are missed and their
corresponding generators focus on the wrong area.

vertices of a square lattice.

For this toy example the data points are low dimensional, thus we skip the feature learning

step and directly train the space partitioner S. We train our space partitioner using two different

architectures: one that sets its neural network architecture to a multi-layer fully connected network

with ReLU activations; while, the other follows the properties of architecture construction in

Section 2.4.2. Once the two networks are trained, both successfully learn to put each Gaussian

component in a different cluster, i.e., both get perfect clustering accuracy. Nonetheless, the guide

functions obtained from each architecture behave significantly different.

Figure 2.3 provides the graph of −Ri(x) for the two space partitioners, where i is the partition

ID for the red Gaussian data samples in the corner. The right plot shows that −Ri(x) can have

undesired local optima when the conditions of Section 2.4.2 are not enforced. Therefore, a universal

reliable gradient is not provided to move the data samples toward the partition of interest. On the

other hand, when the guide’s architecture follows these conditions (left plot), taking the direction of

∇−Ri(x) guarantees reaching to partition i.

Figure 2.4 shows the effect of both these guides in the training of our mixture of generators using

Equation 2.13. As shown, when Ri has local optima, the generator of that region may get stuck in

those local optima and miss the desired mode. As shown in Liu et al. [19], and in the Appendix,

26

GANs trained with no guide also fail to generate all the modes in this dataset. Furthermore, in

contrast to standard GANs, we don’t generate samples from the space between different modes

due to our partitioning and mixture of generators, mitigating the mode connecting problem. Our

quantitative results on the (2D-ring, 2D-grid) toy dataset [18] are: Recovered Modes: (8 , 25), high

quality samples: (99.8 , 99.8), reverse KL: (0.0006, 0.0034).

2.5.2 Stacked-MNIST, CIFAR-10 and STL-10

In this section, we conduct extensive experiments to evaluate the proposed Partition-Guided

Mixture of Generators (PGMGAN) model. We also quantify the performance gains for the different

parts of our method through an ablation study. We randomly generated the partition labels in one

baseline to isolate the effect of proper partitioning from the architecture choice of Gi/Di’s. We also

ablate the benefits of the guide function by making a baseline where λ = 0. For all experiments, we

use k = 200 unless specified otherwise.

Tables 2.4.3 and ?? presents our results on Stacked MNIST, CIFAR-10 and STL-10 respectively.

From these tables, it is evident how training multiple generators using the space partitioner allows

us to significantly outperform the other benchmark algorithms in terms of all metrics. Comparing

Random Partition ID to Partition+GAN clearly shows the importance of having an effective

partitioning in terms of performance and mode covering. Furthermore, the substantial gap between

PGMGAN and Partition+GAN empirically demonstrates the value of utilizing the guide term.

We first perform overall comparisons against other recent GANs. As shown in Table ??,

PGMGAN achieves state-of-the-art FID and IS on the STL-10 dataset. Furthermore, PGMGAN

outperforms several other baseline models, even over supervised class-conditional GANs, on both

CIFAR-10 and Stacked-MNIST, as shown in Table 2.4.3. The significant improvements of FID and

IS reflect the large gains in diversity and image quality on these datasets.

Following Liu et al. [19], we calculate the reverse KL metric using pre-trained classifiers to

classify and count the occurrences of each mode for both Stacked-MNIST and CIFAR-10. These

experiments and comparisons demonstrate that our proposed guide model effectively improves the

27

performance of GANs in terms of mode collapse.

2.5.3 Image generation on unsupervised ImageNet

To show that our method remains effective on a large high dimensional dataset, we also trained

our model on unsupervised ILRSVRC2012 (ImageNet) dataset which contains roughly 1.2 million

images with 1000 distinct categories and we down-sample the images to 128 resolution for the

experiment. We adopt the architecture of BigGAN[26] for our generators and discriminators, and

use k = 1000. Please see the Appendix for the details of experimental settings.

Our results are presented in Table ??. To the best of our knowledge, we achieve a new state of

the art (SOTA) in unsupervised generation on ImagNet.

2.5.4 Parameter sensitivity

Additionally, we study the sensitivity of our overall PGMGAN method to the choice of guide’s

weight λ (Eq. 2.13), and number of clusters k. Figure 2.5 shows the results with varying λ, demon-

strating that our method is relatively robust to the choice of this hyper-parameter. Next, we change

k for a fixed λ = 6.0 and report the results in Table ??. we observe that our method performs well

for a wide range of k.

2.5.5 Implementation details

We use two RTX 2080 Ti GPUs for experiments on STL-10, eight GPUs for ImageNet and a

single GPU for all other experiments.

Space partitioner. For all experiments we use the same architecture for our space partitioner S.

We use pre-activation Residual-Nets with 20 convolutional bottleneck blocks with 3 convolution

layers each and kernel sizes of 3× 3, 1× 1, 3× 3 respectively and the ELU [86] nonlinearity. The

network has 4 down-sampling stages, every 4 blocks where a dimension squeezing operation is used

to decrease the spatial resolution. We use 160 channels for all the blocks. We do not use any initial

padding due to our theoretical requirements. The negative slope of LeakyReLU is set as 0.2. In fact

we can use a soft version of LeakyReLU if it is critical to guarantee the C1 constraint of φ. We train

28

Figure 2.5: Effect of changing the guide’s weight λ in equation 2.13 on PGMGAN performance.
λ = 0 corresponds to the partition+GAN.

0 2 4 6 8 10 12 14 16

8.5

9.0

9.5

10.0

10.5

11.0

FI
D

 /
IS

FID
IS
no guide, FID
no guide, IS

our pretext network for 500 epochs with momentum SGD and a weight decay of 3e-5, learning rate

of 0.4 with cosine scheduling, momentum of 0.9, and batch size of 400 for CIFAR-10 and 200 for

STL-10. The final space partitioner is trained for 100 epochs using Adam [72] with a learning rate

of 1e-4 and batch size of 128. The weights in equation 2.10 are set to α = 5 and β = 1e-3.

Table 2.4: GANs architecture for 32× 32 images.

z ∈ R128 ∼ N (0, I)
Embed(PartitionID) ∈ R128

dense, 4× 4× 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3× 3 Conv, 3 Tanh

(a) Generator

RGB image x ∈ R32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU, Global sum pooling

Embed(PartitionID)·h + (linear→ 1)

(b) Discriminator

29

Table 2.5: GANs architecture for 48× 48 images.

z ∈ R128 ∼ N (0, I)
Embed(PartitionID) ∈ R128

dense, 3× 3× 1024

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3× 3 Conv, 3 Tanh

(a) Generator

RGB image x ∈ R48×48×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 1024

ReLU, Global sum pooling

Embed(PartitionID)·h + (linear→ 1)

(b) Discriminator

Table 2.6: GANs architecture for 128× 128 images. “ch” represents the channel width multiplier
and is set to 96.

z ∈ R120 ∼ N (0, I)
Embed(PartitionID) ∈ R128

Linear (20 + 128)→ 4× 4× 16ch

ResBlock up 16ch→ 16ch

ResBlock up 16ch→ 8ch

ResBlock up 8ch→ 4ch

ResBlock up 4ch→ 2ch

Non-Local Block (64× 64)

ResBlock up 2ch→ ch

BN, ReLU, 3× 3 Conv ch→ 3

Tanh

(a) Generator

RGB image x ∈ R128×128×3

ResBlock down ch→ 2ch

Non-Local Block (64× 64)

ResBlock down 2ch→ 4ch

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 16ch

ResBlock down 16ch→ 16ch

ResBlock 16ch→ 16ch

ReLU, Global sum pooling

Embed(PartitionID)·h + (linear→ 1)

(b) Discriminator

Generative model. Following SN-GANs [71] for image generation at resolution 32 or 48, we

use the architectures described in Tables 2.4 and 2.5. Generators/discriminators are different from

30

each other in first-layer/last-layer by having different partition ID embeddings, (which in fact acts as

the condition). We use Adam optimizer with a batch size of 100. For the coefficient of guide λ we

utilized linear annealing during training, decreasing form 6.0 to 0.0001. Both G’s and D networks

are initialized with a normalN (0, 0.02I). For all GAN’s experiments, we use Adam optimizer [72]

with β1 = 0, β2 = 0.999 and a constant learning rate 2 for both G and D. The number of D steps

per G step training is 4.

For ImageNet experiment, we adopt the full version of BigGAN model architecture [26]

described in Table 2.6. In this experiment, we apply the shared class embedding for each CBN

layer in G model, and feed noise z to multiple layers of G by concatenating with partition ID

embedding vector. We add Self-Attention layer with the resolution of 64. Moreover, we employ

orthogonal initialization for network parameters [15]. We use batch size of 256 and set the number

of accumulations to 8.

Evaluation. It has been shown that [87, 76] when the sample size is not large enough, both FID

and IS are biased, therefor we use N=50,000 samples for computing both IS and FID metrics. We

also use the official TensorFlow scripts for computing FID.

Computationally complexity. PGMGAN requires additional computation for training the

partitioner, and at GANs’ training time for computing the guide. On the other hand, due to the

higher quality gradients provided by the guide, requires fewer epoch for the GANs to converge, e.g.,

over all, compared to conditional model on CIFAR, it takes ∼1.6× in seconds.

2.5.6 Additional Experiments:

Additionally, since SelfCondGAN [19] uses certain features from the discriminator, it is not

trivial to adopt to other architectures. Thus, we trained PGMGAN with the same G/D architecture

on CIFAR10 yielding an FID of 10.65.

Partitioning method

One way to assess the quality of the space partitioner is by measuring its performance in

placing semantically similar images in the same partition. To that end, we use the well-accepted

clustering metric Normalized Mutual Information (NMI). NMI is a normalization of the Mutual

31

Information (MI) between the true and inferred labels. This metric is invariant to permutation of the

class/partition labels and is always between 0 and 1, with a higher value suggesting a higher quality

of partitioning. Table 2.5.6 compares the clustering performance of our method to the-stat-of-the-art

partition-based GAN method Liu et. [19], which clearly shows superiority of our method.

2.5.7 Additional Qualitative Results

Additional qualitative results We present more samples of our method showing both the

partitioner and generative model’s performance. Figure 2.6, Figure 2.7 and Figure 2.8 visualize the

sample diversity and quality of our method on CIFAR-10, STL-10 and ImageNet.

Real Generated

(a) Partition 3

Real Generated

(b) Partition 28

Real Generated

(c) Partition 37

Real Generated

(d) Partition 42

Real Generated

(e) Partition 50

Real Generated

(f) Partition 54

Real Generated

(g) Partition 82

Real Generated

(h) Partition 86

Real Generated

(i) Partition 94

Figure 2.6: Extra examples of unsupervised partitioning and their corresponding real/generated
samples on CIFAR-10 dataset.

32

Real Generated

(a) Partition 47

Real Generated

(b) Partition 49

Real Generated

(c) Partition 75

Real Generated

(d) Partition 91

Real Generated

(e) Partition 100

Real Generated

(f) Partition 113

Real Generated

(g) Partition 177

Real Generated

(h) Partition 189

Figure 2.7: Extra examples of unsupervised partitioning and their corresponding real/generated
samples on STL-10 dataset.

33

(a) Partition 034 (b) Partition 159

(c) Partition 455 (d) Partition 642

Figure 2.8: Examples of generated samples on unsupervised ImageNet 128×128 dataset.

34

3. SYNT++: UTILIZING IMPERFECT SYNTHETIC DATA TO IMPROVE SPEECH

RECOGNITION

3.1 Introduction

Collecting and annotating datasets for training speech recognition models is hard and expensive.

An alternative approach is to generate a synthetic dataset using speech synthesis models [88, 89, 90,

91, 92, 93, 3]. However, training recognition models with synthetic data is not trivial. Figure 3.1

shows an illustration of the joint distribution of speech signals and corresponding text labels –

black is the true data distribution and green is the synthetic data distribution. In general, we

do not have access to the true data distribution, but have finite sample approximation through a

collected real dataset. Although the quality of synthetic speech (synthesized via a controllable

generative model) has improved significantly, there is still a gap between the synthetic and the true

data distributions. We can characterize this gap into 4 different regions as shown in Figure 3.1:

(i) artifacts (e.g. structured noise, speech/content mismatch, unrealistic styles in synthetic data)

where the synthesized samples are outside the support of true distribution, (ii) over-sampled region

where the synthetic distribution has more mass and (iii) under-sampled region where the synthetic

distribution has less mass compared to the true distribution, and (iv) missing samples where the

synthetic distribution has zero mass inside the support of the true distribution (e.g. missing speaking

styles, accents).

In this paper, we present Synt++, an improved algorithm to utilize synthetic data for training

speech recognition models. Synt++ combines two novel techniques. The first technique is a rejection

sampling algorithm [94, 95, 96] that modifies the sampling process of the synthesis model (the

generative model) to make the synthesized data distribution closer to the true data distribution.

Specifically, we train a discriminator function to classify samples as real or synthetic. We then

use the probability of real measure predicted by this discriminator to stochastically accept/reject

synthesized samples. The rejection sampling addresses the first three problems discussed above by

35

missing
samples

artifacts

synthetic data
distribution

true data
distribution

rejection
sampling

over-
sampling

under-
sampling

missing
samples

artifacts

synthetic
data

distribution
true data

distribution

over-
sampled

under-
sampled

Figure 3.1: The joint distributions of speech and corresponding text. The gap between synthetic and
true data distributions can be partitioned into four regions. See text for details.

rejecting artifacts, and under/over sampling data points in over/under-sampled regions, respectively.

Note that the rejection sampling cannot correct for the missing samples since the synthesis model

does not have support and, hence, cannot synthesize the samples in this region.

The second technique accounts for the remaining gap during training by using separate Batch

Normalization (BN) statistics for real and synthetic data. BN is a commonly used technique to

normalize the features during training to address covariate shift and improve convergence. However,

the BN statistics estimated using a combination of synthetic and real data becomes biased due to the

distribution gap (e.g., in Figure 3.1, the mean of the combined real/synthetic distribution is shifted

left and the variance is larger than the true distribution). To prevent this problem, we estimate real

and synthetic data BN statistics separately, and utilize only the real BN statistics during inference.

Moreover, this process helps to bridge the domain gap since synthetic and real data are normalized

separately to have similar statistics.

3.2 Related work

State-of-the-art neural Text-to-Speech (TTS) architectures, such as Tacotron 2 [97] and Fast-

Speech 2 [98], are capable of generating speech indistinguishable from human speech. Controllable

speech synthesis extends the TTS models beyond modeling the voice of a single or a few speakers

to the entire style space of speech [93, 92, 3, 99]. Using controllable synthesis models, we can

expand the acoustic variations of synthetic speech or use a bigger text corpus to add data for unseen

content.

36

synthetic
sample

Speech
Synthesis

Model

reference
style

(speech)

content
(text)

(a)

Rejection
Sampling

real
data

shared
model

synthetic
data

Speech
Recognition

synt BN
stats

loss function

(b)

Speech
Recognition

real BN
stats

loss function

Figure 3.2: Method overview. (a) To synthesize data, we use a controllable generative model [3]
that takes a text and a reference speech as input and utters the text in the style of the given speech.
(b) During training of the recognition model, we use rejection sampling and separate BN statistics
to address the distribution gap between the real and the synthetic data.

Previous works have used TTS models to improve the training of speech recognition models.

One group of work relies on the TTS models and self/semi-supervised learning techniques to exploit

unpaired speech and text data in the ASR training process [100, 101, 102, 103, 104]. Another

group leverages TTS models to create more training data when the amount of real data is limited

[105, 106, 107, 108, 109]. Some other works have focused on specific tasks, such as out-of-

vocabulary word recognition [110], and keyword detection [111, 112]. These methods, however, do

not address the imperfections of the speech generated by the synthesis models.

The idea of utilizing synthetic data to improve a recognition model has also been explored in the

computer vision domain. In [113], the authors proposed to refine synthetic images via adversarial

training to bridge the distribution gap. In [114], the authors showed that a generative model could be

trained to augment images of unseen classes. In [115], authors use adversarial examples to improve

image recognition.

37

3.3 Method

3.3.1 Controllable Speech Generative Model

Controllable speech generative models can generate speech in a given style, where the content

is specified by an input text. As shown in Figure 3.1, for effective learning with synthetic data, we

need a generative model that has as small gap as possible with the true distribution. Therefore, the

generative model should be able to synthesize any text in a wide range of speaking styles in various

environmental conditions such as background noise, microphone response, etc. without introducing

artifacts to the signal. To this end, we utilize a recently introduced auto regressive controllable

generative model called Style Equalization [3] that enables learning a controllable generative model

in the wild (thousands of speakers recorded in various conditions) without requiring style labels. As

shown in Figure 3.2(a), the model takes a text and a reference style speech as input and utters the text

in the style of the given reference. In this model, the style is broadly defined, not only the speaker’s

voice characteristics but also all aspects of the reference speech sample, including background

noise, echo, microphone response, etc., which are necessary to have a smaller distribution gap

(particularly missing samples). This model also allows sampling styles from a prior distribution

that is important for sampling new styles not contained in the dataset. We refer readers to [3] for a

detailed description of this model.

3.3.2 Rejection Sampling

Letx be a speech signal and y be the corresponding token label, and pd(x, y), pg(x, y) denote the

joint true and synthetic data distributions, respectively. We use the synthesizer as proposal distribu-

tion and use rejection sampling to make it closer to the true distribution. Following standard rejection

sampling [94], a synthetic data (x, y) is accepted with probability pd(x,y)
Mpg(x,y)

, where scalar M > 0 is

selected such that Mpg(x, y) > pd(x, y), ∀(x, y) in domain of pd, i.e., M = maxx,y
pd(x,y)
pg(x,y)

. Azadi

et. al. [95] proposed a rejection sampling method to match the distribution of the images from a

generative adversarial network to the true distribution; however, their algorithm does not consider

the joint distribution of (x, y) that is needed to train downstream recognizers.

To approximate the ratio pd(x,y)
pg(x,y)

, we train a discriminator, D(x, y), that takes a speech signal

38

and the corresponding text and produces probability of (x, y) coming from true distribution, i.e.,

D(x, y) ∈ [0, 1]. When D is trained to its optimal value D∗, it satisfies ([116, 95, 96])

D∗(x, y) =
pd(x, y)

pd(x, y) + pg(x, y)
, (3.1)

which can be re-arranged to yield

r(x, y) :=
pd(x, y)

pg(x, y)
=

D∗(x, y)

1−D∗(x, y)
. (3.2)

To train D, we minimize

LD = E(x,y)∼pd(log(D(x, y))) + E(x,y)∼pg(1− log(D(x, y))),

which is equivalent to training a two class classification model, where the positive class (label

1) corresponds to the real samples and the negative class (label 0) corresponds to the synthetic

samples. Note that, we model the joint speech and label distribution, therefore D should also utilize

whether the speech signal matches the token labels. To this end, we use a pre-trained ASR model,

A to predict the token labels, ŷ, of the speech signal, i.e., ŷ = A(x). Then, we characterize the

discrepancy between ŷ and y by a 5-dimensional feature vector Φ(x, y), whose elements include

the cross-entropy (CE) loss, connectionist temporal classification loss, word error rate (WER), and

number of tokens in y and ŷ. Finally, we train a two-layer DNN, Dθ, that takes Φ(x, y) as input

and produces the probability of the sample being real

D(x, y) := Dθ(Φ(x, y)), (3.3)

where θ denotes the parameters of the DNN.

Practically, we need to compute M and address the fact that the rejection sampling can be

slow to select a fixed number of samples. First, we estimate an initial value of M by computing

the maximum value of pd/pg (using D∗ and Eq. 3.2) over a few (approximately 200) generated

39

samples. Following [95], to compute the acceptance probability for each generated sample, (x, y),

we first compute the discriminator scoreD∗(x, y) and then setM ← max(M, pd(x, y)/pg(x, y)) =

max(M, D∗(x,y)
1−D∗(x,y)

)). We stop the sampling process after accepting N synthetic samples. Note that,

the proposed rejection sampling technique applies only to the domain where the generative model

has support and ignores the missing samples region shown in Figure 3.1.

3.3.3 Double Batch Normalization Statistics

A BN layer [117] computes the mean and the standard deviation of the intermediate features

and normalizes these features by subtracting the mean and dividing by the standard deviation within

a batch. During training, the model uses means and variances computed over the samples in a

mini-batch. A running average of the BN statistics, which we call running statistics, is computed to

be used during inference.

Naively using BN will update the running statistics with samples from both the real and the

synthetic distributions and, due to the distribution gap, the estimates will be biased (i.e. the estimated

BN statistics will not match the true data distribution). Instead, we form the mini-batches consisting

of only the real samples or only the synthetic samples, and compute two sets of running statistics –

one from the real mini-batches and the other from the synthetic mini-batches. Since the test data

(during inference) consists of only real samples, we discard the synthetic statistics and use only

the real statistics. Note that, we share the affine parameters of the BN between synthetic and real

batches.

The proposed technique is similar to Xie et al. [115] that used auxiliary BN layers in an

adversarial learning framework where images augmented with adversarial perturbations were used

to improve model accuracy. In contrast, we use separate BN statistics to improve model training

with synthetic data.

3.4 Experiments

For ASR experiments, we use the LibriSpeech dataset [118], which contains 1, 000 hours of

speech from public domain audiobooks. Following the standard protocol, we evaluate our method

40

on the full training set (LibriSpeech 960h) and a subset containing clean speech with only US

English accents (LibriSpeech 100h). To generate synthetic datasets, we use Style Equalization [3]

that is trained with LibriTTS dataset [119]. LibriTTS is a subset of LibriSpeech dataset and contains

555 hours of speech data. To study the effect of model size on synthetic data training, we train two

ASR models – a large model with 116 million parameters (Large 116M) and a smaller model with

22 million parameters (Regular 22M)

ASR model: We use the implementation from ESPNet [120]) for an end-to-end ASR model.

The ASR model is composed of a conformer-based encoder [121] and a transformer-based decoder

[89]. Setting the encoder dimension to 144 and 512, we construct the regular (22M) and the

large (116M) models. We apply SpecAugment [122] to all speech samples to further enhance the

acoustic diversity. The model checkpoint of each epoch is saved, and the final model is produced

by averaging the 10 checkpoints with the best validation accuracy. All ASR models are evaluated

without a language model.

Baselines: For synthetic-only training, we compare naively using synthetic data with the

proposed rejection sampling (Section 3.3.2). Note that when the training data consists of only

synthetic samples, we do not have any real data to compute the running BN statistics. Hence, we do

not use the double BN when training only with synthetic data. For joint (real,synt) training, our

baseline is naively adding the synthetic data to training. We compare this baseline with the proposed

method (real, synt++) where we use the rejection sampling algorithm described in Section 3.3.2 and

also use separate BN statistics for the real and the synthetic samples (Section 3.3.3).

Synthetic data with the same text corpus as the real data: First, we study the effectiveness

of the synthetic data when the synthetic samples are used to increase the acoustic variation in the

training data. To this end, we use the same training corpus as the real data in LibriSpeech 960h.

Specifically, for each sentence yi in the training dataset, we take a random real training sample, xj ,

as the style reference, and generate synthetic sample x′i. For both Synt and Synt++ (using rejection

sampling), we obtain a synthetic dataset containing 960 hours of speech.

The WERs of the recognition models are reported in Table 3.1 on the two official test sets

41

Real Synt Synt++ Real, Synt Real, Synt++

Regular (22M)
test-clean 3.7± 0.14 7.3± 0.17 7.0± 0.05 3.4± 0.05 3.2± 0.08
test-other 9.5± 0.12 21.0± 0.12 20.0± 0.17 9.3± 0.21 8.5± 0.05

Large (116M)
test-clean 2.9± 0.05 6.3± 0.05 5.4± 0.12 3.0± 0.05 2.6± 0.05
test-other 6.9± 0.08 18.2± 0.17 17.2± 0.17 7.4± 0.17 6.5± 0.05

Table 3.1: ASR results on LibriSpeech 960h dataset. The reported numbers are percentage WER
(lower is better). Synt++ significantly improves training with synthetic data.

LibriSpeech 100h LibriSpeech 960h

Real Real, Synt Real, Synt++ Real Real, Synt Real, Synt++

test-clean 7.7± 0.08 4.3± 0.08 4.0± 0.08 2.9± 0.05 2.7± 0.08 2.4± 0.05
test-other 20.9± 0.64 13.2± 0.21 13.2± 0.08 6.9± 0.08 7.0± 0.25 6.3± 0.05

Table 3.2: Effect of using an extended text corpus.

(test-clean and test-other). Synt++ gives significant improvement over naively adding synthetic data

to the training (Synt).

Synthetic data with extended corpus: We study the effect of synthesizing speech from an

extended text corpus in Table 3.2. In addition to LibriSpeech 960h, we also report the results when

we have a smaller real dataset (LibriSpeech 100h). For LibriSpeech 100h, we use the text corpus

of LibriSpeech 960h and synthesize 960 hours of synthetic data. For LibriSpeech 960h dataset,

we double its text corpus by adding the text from the language model corpus of LibriSpeech and

synthesize 960 hours of synthetic data. In both cases, extended corpus significantly improves the

performance. Particularly, for the smaller dataset, we observe 48% relative reduction in WER (7.7%

to 4.0%), compared to real-only training.

Ablation study: To isolate the effect of the rejection sampling and the double BN, we conduct

an ablation study in Table 3.3 on LibriSpeech 960h dataset. As seen in this table, both the rejection

sampling and the double BN statistics are important to effectively utilize the synthetic samples.

We also evaluate the proposed approach on keyword detection task using the Speech Command

42

Regular (22M) Large (116M)

test-clean test-other test-clean test-other

Real, Synt 3.4± 0.05 9.3± 0.21 3.0± 0.05 7.4± 0.17
+ rejection 3.4± 0.05 9.0± 0.12 2.8± 0.02 7.0± 0.05
+ dbl BN 3.3± 0.02 8.5± 0.02 2.7± 0.05 6.7± 0.02

+ rej. + dbl BN 3.2± 0.08 8.5± 0.05 2.6± 0.05 6.5± 0.05

Table 3.3: Ablation study on the ASR task with LibriSpeech 960h dataset.

keywords Real Synt Synt++ Real, Synt Real, Synt++

‘down’ 9.6± 0.8 11.2± 0.1 8.9± 0.9 5.6± 0.2 5.0± 0.2
‘no’ 13.5± 0.8 14.5± 0.7 11.0± 0.2 7.8± 0.4 6.4± 0.4

‘stop’ 3.5± 0.3 11.2± 0.6 9.6± 0.4 2.1± 0.3 1.5± 0.1

Table 3.4: Keyword detection results on Speech Command dataset. The reported numbers are
average false accept rate in percentage (lower is better).

dataset [123]. This dataset consists of 35 keywords from multiple speakers, and samples from

various background noises. For each keyword, we split the train and test subset based on the

speaker identities, i.e. training and test samples did not have common speakers. We chose 3

keywords (‘down’, ‘no’, ‘stop’) to study the improvements with synthetic data. Each of these

keywords contains approximately 2500 training samples and 800 test samples. We set up the

keyword detection task as a 2-class classification problem, where the positive class is one of the

keywords and the negative class contains all the other 34 keywords and the background noise. Each

sample consists of approximately 1 second of audio, which is converted to a mel-spectrogram before

giving it as input to a ResNet model with approximately 6k parameters. The model is trained with

cross-entropy loss.

Sampling synthetic data: For each keyword, we generated 10k samples by randomly selecting

the reference styles from the real dataset. For the positive class, we generated an additional 100k

samples. For both synthetic and real training, we added approximately 5k samples from background

noise to the negative class. Since the detection model predicts the keyword probability (unlike a

token sequence in the ASR task), we use only the CE loss in Equation 3.3 to compute D∗.

43

Metric: Since keyword detection is a 2-class problem, we can compute false reject rate (FRR)

and false accept rate (FAR) at different thresholds. The detection error tradeoff (DET) curve is

commonly used for keyword detection tasks [124]. Since lower FRR is preferred for keyword

detection, we report average FAR for FRR values over the range of 05%, which is equivalent to the

area under the curve (AUC) of the DET curve over the FRR range of 05%.

Results: We report the average FAR for keywords in Table 3.4 and observe significant improve-

ments of the proposed approach, compared to naively using the synthetic data.

44

4. SUMMARY AND CONCLUSIONS

In the first part of the thesis, we introduce a differentiable space partitioner to alleviate the GAN

training problems, including mode connecting and mode collapse. The intuition behind how this

works is twofold. The first reason is that an efficient partitioning makes the distribution on each

region simpler, making its approximation easier. Thus, we can have a better approximation as a

whole, which can alleviate both mode collapse and connecting problems. The second intuition

is that the space partitioner can provide extra gradient, assisting the discriminator in training the

mixture of generators. This is especially helpful when the discriminator’s gradient is unreliable.

However, it is crucial to have theoretical guarantees that this extra gradient does not deteriorate the

GAN training convergence in any way. We identify a sufficient theoretical condition for the space

partitioner (in the functional space), and we realize that condition empirically by an architecture

design for the space partitioner. Our experiments on natural images show the proposed method

improves existing ones in terms of both FID and IS. For future work, we would like to investigate

using the space partitioner for the supervised regime, where each data label has its own partitioning.

Designing a more flexible architecture for the space partitioner such that its guide function does not

have local optima is another direction we hope to explore.

And in the second part, we presented Synt++, a new algorithm to train speech recognition

models using synthetic data. We applied Synt++ to ASR and keyword detection tasks and obtained

significant improvements over training with real-only and real+synthetic datasets.

And for the future work, we would like to investigate, generative models in Knowledge

graphs[125, 125], time series[126, 127], network data[128, 129] and its combination with decision

trees[130].

45

REFERENCES

[1] M. Armandpour, A. Sadeghian, C. Li, and M. Zhou, “Partition-guided gans,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5099–5109,

2021.

[2] T.-Y. Hu, M. Armandpour, A. Shrivastava, J.-H. R. Chang, H. Koppula, and O. Tuzel,

“Synt++: Utilizing imperfect synthetic data to improve speech recognition,” ICASSP, 2022.

[3] J.-H. R. Chang, A. Shrivastava, H. Koppula, X. Zhang, and O. Tuzel, “Style equaliza-

tion: Unsupervised learning of controllable generative sequence models,” arXiv preprint

arXiv:2110.02891, 2021.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing

Systems, 2014.

[5] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative adversarial

text to image synthesis,” in International Conference on Machine Learning, pp. 1060–1069,

2016.

[6] H. Narayanan and S. Mitter, “Sample complexity of testing the manifold hypothesis,” in

Advances in neural information processing systems, pp. 1786–1794, 2010.

[7] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[8] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in

International Conference on Machine Learning, 2017.

[9] E. L. Denton, S. Chintala, R. Fergus, et al., “Deep generative image models using a laplacian

pyramid of adversarial networks,” in Advances in neural information processing systems,

pp. 1486–1494, 2015.

46

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training

of wasserstein gans,” in Advances in Neural Information Processing Systems, 2017.

[11] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares generative

adversarial networks,” in Proceedings of the IEEE international conference on computer

vision, pp. 2794–2802, 2017.

[12] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for gans do actually

converge?,” in International Conference on Machine Learning, pp. 3478–3487, 2018.

[13] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[14] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[15] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved

techniques for training gans,” in Advances in Neural Information Processing Systems, 2016.

[16] M. Khayatkhoei, M. Singh, and A. Elgammal, “Disconnected manifold learning for generative

adversarial networks,” arXiv preprint arXiv:1806.00880, 2018.

[17] U. Tanielian, T. Issenhuth, E. Dohmatob, and J. Mary, “Learning disconnected manifolds: a

no gans land,” 2020.

[18] Z. Lin, A. Khetan, G. Fanti, and S. Oh, “Pacgan: The power of two samples in generative

adversarial networks,” in Advances in neural information processing systems, pp. 1498–1507,

2018.

[19] S. Liu, T. Wang, D. Bau, J.-Y. Zhu, and A. Torralba, “Diverse image generation via self-

conditioned gans,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 14286–14295, 2020.

47

[20] A. Srivastava, L. Valkoz, C. Russell, M. U. Gutmann, and C. Sutton, “Veegan: Reducing

mode collapse in gans using implicit variational learning,” in Advances in Neural Information

Processing Systems, pp. 3308–3318, 2017.

[21] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”

2009.

[22] A. Coates, A. Ng, and H. Lee, “An Analysis of Single Layer Networks in Unsupervised

Feature Learning,” in AISTATS, 2011. https://cs.stanford.edu/~acoates/

papers/coatesleeng_aistats_2011.pdf.

[23] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by

a two time-scale update rule converge to a local nash equilibrium,” in Advances in Neural

Information Processing Systems, pp. 6626–6637, 2017.

[24] J. L. Kelley, General topology. Courier Dover Publications, 2017.

[25] M. Ledoux, “Isoperimetry and gaussian analysis,” in Lectures on probability theory and

statistics, pp. 165–294, Springer, 1996.

[26] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural

image synthesis,” in International Conference on Learning Representations, 2019.

[27] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial

networks,” in International Conference on Machine Learning, pp. 7354–7363, PMLR, 2019.

[28] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell,

“Cycada: Cycle-consistent adversarial domain adaptation,” in International conference on

machine learning, pp. 1989–1998, PMLR, 2018.

[29] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised image-to-image

translation,” in Proceedings of the European Conference on Computer Vision (ECCV),

pp. 172–189, 2018.

48

https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

[30] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional

adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1125–1134, 2017.

[31] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved

quality, stability, and variation,” ICLR, 2018.

[32] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adver-

sarial networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 4401–4410, 2019.

[33] X. Wang and A. Gupta, “Generative image modeling using style and structure adversarial

networks,” in European conference on computer vision, pp. 318–335, Springer, 2016.

[34] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, “Stackgan: Text to

photo-realistic image synthesis with stacked generative adversarial networks,” in Proceedings

of the IEEE international conference on computer vision, pp. 5907–5915, 2017.

[35] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using

cycle-consistent adversarial networks,” in ICCV, 2017.

[36] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky, “Adversarial learning for neural

dialogue generation,” arXiv preprint arXiv:1701.06547, 2017.

[37] K. Lin, D. Li, X. He, Z. Zhang, and M.-T. Sun, “Adversarial ranking for language generation,”

in Advances in Neural Information Processing Systems, 2017.

[38] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets with

policy gradient,” in Thirty-first AAAI conference on artificial intelligence, 2017.

[39] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised

anomaly detection with generative adversarial networks to guide marker discovery,” in Inter-

national conference on information processing in medical imaging, pp. 146–157, Springer,

2017.

49

[40] N. Killoran, L. J. Lee, A. Delong, D. Duvenaud, and B. J. Frey, “Generating and designing

dna with deep generative models,” 2017.

[41] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation for reinforcement

learning agents,” in ICML, 2018.

[42] M. Marouf, P. Machart, V. Bansal, C. Kilian, D. S. Magruder, C. F. Krebs, and S. Bonn,

“Realistic in silico generation and augmentation of single-cell rna-seq data using generative

adversarial networks,” Nature communications, vol. 11, no. 1, pp. 1–12, 2020.

[43] S. Pascual, A. Bonafonte, and J. Serrà, “Segan: Speech enhancement generative adversarial

network,” Proc. Interspeech 2017, pp. 3642–3646, 2017.

[44] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial networks,”

International Conference on Learning Representations, 2017.

[45] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville,

“Adversarially learned inference,” in International Conference on Learning Representations,

2017.

[46] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” in International

Conference on Learning Representations, 2017.

[47] M. Lucic, M. Tschannen, M. Ritter, X. Zhai, O. Bachem, and S. Gelly, “High-fidelity image

generation with fewer labels,” International conference on machine learning, 2019.

[48] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting

image rotations,” International Conference on Learning Representations, 2018.

[49] Q. Hoang, T. D. Nguyen, T. Le, and D. Phung, “Mgan: Training generative adversarial nets

with multiple generators,” in International Conference on Learning Representations, 2018.

[50] J. N. Kundu, M. Gor, D. Agrawal, and R. V. Babu, “Gan-tree: An incrementally learned

hierarchical generative framework for multi-modal data distributions,” in Proceedings of the

IEEE International Conference on Computer Vision, pp. 8191–8200, 2019.

50

[51] A. Sage, E. Agustsson, R. Timofte, and L. Van Gool, “Logo synthesis and manipulation

with clustered generative adversarial networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5879–5888, 2018.

[52] S. Gurumurthy, R. K. Sarvadevabhatla, and R. V. Babu, “Deligan: Generative adversarial

networks for diverse and limited data.,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.

[53] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier

gans,” in International conference on machine learning, pp. 2642–2651, 2017.

[54] S. Azadi, C. Olsson, T. Darrell, I. Goodfellow, and A. Odena, “Discriminator rejection

sampling,” International Conference on Learning Representations, 2019.

[55] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and improving

the image quality of stylegan,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 8110–8119, 2020.

[56] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby, “Self-supervised gans via auxiliary

rotation loss,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 12154–12163, 2019.

[57] Z. Zhao, Z. Zhang, T. Chen, S. Singh, and H. Zhang, “Image augmentations for gan training,”

arXiv preprint arXiv:2006.02595, 2020.

[58] H. Zhang, Z. Zhang, A. Odena, and H. Lee, “Consistency regularization for generative

adversarial networks,” International Conference on Learning Representations, 2020.

[59] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, “Training generative

adversarial networks with limited data,” Advances in Neural Information Processing Systems,

2020.

[60] T. Miyato and M. Koyama, “cgans with projection discriminator,” International Conference

on Learning Representations, 2018.

51

[61] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive

learning of visual representations,” 2020.

[62] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton, “Big self-supervised models

are strong semi-supervised learners,” arXiv preprint arXiv:2006.10029, 2020.

[63] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual

representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 9729–9738, 2020.

[64] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised

learning of visual features,” in Proceedings of the European Conference on Computer Vision

(ECCV), pp. 132–149, 2018.

[65] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and L. Van Gool, “Scan:

Learning to classify images without labels,” in European Conference on Computer Vision

(ECCV), 2020.

[66] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,

2016.

[67] W. Rudin et al., Principles of mathematical analysis, vol. 3. McGraw-hill New York, 1964.

[68] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H. Jacobsen, “Invertible

residual networks,” in International Conference on Machine Learning, pp. 573–582, 2019.

[69] M. Gong, Y. Xu, C. Li, K. Zhang, and K. Batmanghelich, “Twin auxilary classifiers gan,” in

Advances in neural information processing systems, pp. 1330–1339, 2019.

[70] R. Shu, H. Bui, and S. Ermon, “Ac-gan learns a biased distribution,” in NIPS Workshop on

Bayesian Deep Learning, 2017.

[71] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative

adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

52

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[73] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” Interna-

tional journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[74] A. Borji, “Pros and cons of gan evaluation measures,” Computer Vision and Image Under-

standing, vol. 179, pp. 41–65, 2019.

[75] M. S. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and S. Gelly, “Assessing generative

models via precision and recall,” in Advances in Neural Information Processing Systems,

pp. 5228–5237, 2018.

[76] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are gans created equal? a

large-scale study,” in Advances in neural information processing systems, pp. 700–709, 2018.

[77] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT Labs [Online].

Available: http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[78] Y. Tian, Q. Wang, Z. Huang, W. Li, D. Dai, M. Yang, J. Wang, and O. Fink, “Off-policy

reinforcement learning for efficient and effective gan architecture search,” ECCV, 2020.

[79] T. Nguyen, T. Le, H. Vu, and D. Phung, “Dual discriminator generative adversarial nets,” in

Advances in Neural Information Processing Systems, pp. 2670–2680, 2017.

[80] D. Warde-Farley and Y. Bengio, “Improving generative adversarial networks with denoising

feature matching,” 2016.

[81] H. He, H. Wang, G.-H. Lee, and Y. Tian, “Probgan: Towards probabilistic gan with theoretical

guarantees,” 2019.

[82] N.-T. Tran, T.-A. Bui, and N.-M. Cheung, “Dist-gan: An improved gan using distance

constraints,” in Proceedings of the European Conference on Computer Vision (ECCV),

pp. 370–385, 2018.

53

[83] W. Wang, Y. Sun, and S. Halgamuge, “Improving MMD-GAN training with repulsive loss

function,” in International Conference on Learning Representations, 2019.

[84] H. Wang and J. Huan, “Agan: Towards automated design of generative adversarial networks,”

arXiv preprint arXiv:1906.11080, 2019.

[85] X. Gong, S. Chang, Y. Jiang, and Z. Wang, “Autogan: Neural architecture search for

generative adversarial networks,” in Proceedings of the IEEE International Conference on

Computer Vision, pp. 3224–3234, 2019.

[86] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by

exponential linear units (elus),” in 4th International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[87] M. J. Chong and D. Forsyth, “Effectively unbiased fid and inception score and where to

find them,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 6070–6079, 2020.

[88] S. Vasquez and M. Lewis, “Melnet: A generative model for audio in the frequency domain,”

arXiv preprint arXiv:1906.01083, 2019.

[89] N. Li, S. Liu, Y. Liu, S. Zhao, and P. Shi, “Neural speech synthesis with transformer network,”

in AAAI, 2019.

[90] S. Ma, D. Mcduff, and Y. Song, “A generative adversarial network for style modeling in a

text-to-speech system,” in ICLR, 2019.

[91] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen, R. Pang, I. L. Moreno,

Y. Wu, et al., “Transfer learning from speaker verification to multispeaker text-to-speech

synthesis,” in Proc. NIPS, 2018.

[92] T.-Y. Hu, A. Shrivastava, O. Tuzel, and C. Dhir, “Unsupervised style and content separation

by minimizing mutual information for speech synthesis,” in Proc. ICASSP, 2020.

54

[93] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg, J. Shor, Y. Xiao, Y. Jia, F. Ren,

and R. A. Saurous, “Style tokens: Unsupervised style modeling, control and transfer in

end-to-end speech synthesis,” in Proc. ICML, 2018.

[94] C. M. Bishop, Pattern recognition and machine learning, 5th Edition. Information science

and statistics, Springer, 2007.

[95] S. Azadi, C. Olsson, T. Darrell, I. Goodfellow, and A. Odena, “Discriminator rejection

sampling,” in Proc. ICLR, 2019.

[96] A. Grover, R. Gummadi, M. Lazaro-Gredilla, D. Schuurmans, and S. Ermon, “Variational

rejection sampling,” in Proc. AISTATS, 2018.

[97] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang,

R. Skerrv-Ryan, et al., “Natural tts synthesis by conditioning wavenet on mel spectrogram

predictions,” in Proc. ICASSP, 2018.

[98] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Fastspeech 2: Fast and

high-quality end-to-end text to speech,” in Proc. ICLR, 2021.

[99] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S. Narang, J. Raiman, and J. Miller,

“Deep voice 3: Scaling text-to-speech with convolutional sequence learning,” in Proc. ICLR,

2018.

[100] A. Tjandra, S. Sakti, and S. Nakamura, “End-to-end feedback loss in speech chain framework

via straight-through estimator,” in Proc. ICASSP, 2019.

[101] M. K. Baskar, S. Watanabe, R. Astudillo, T. Hori, L. Burget, and J. Černockỳ, “Semi-

supervised sequence-to-sequence asr using unpaired speech and text,” arXiv preprint

arXiv:1905.01152, 2019.

[102] T. Hori, R. Astudillo, T. Hayashi, Y. Zhang, S. Watanabe, and J. Le Roux, “Cycle-consistency

training for end-to-end speech recognition,” in Proc. ICASSP, 2019.

55

[103] T. Hayashi, S. Watanabe, Y. Zhang, T. Toda, T. Hori, R. Astudillo, and K. Takeda, “Back-

translation-style data augmentation for end-to-end asr,” in IEEE Spoken Language Technology

Workshop (SLT), 2018.

[104] M. K. Baskar, L. Burget, S. Watanabe, R. F. Astudillo, et al., “Eat: Enhanced asr-tts for

self-supervised speech recognition,” in Proc. ICASSP, 2021.

[105] N. Rossenbach, A. Zeyer, R. Schlüter, and H. Ney, “Generating synthetic audio data for

attention-based speech recognition systems,” in Proc. ICASSP, 2020.

[106] C. Du and K. Yu, “Speaker augmentation for low resource speech recognition,” in Proc.

ICASSP, 2020.

[107] A. Rosenberg, Y. Zhang, B. Ramabhadran, Y. Jia, P. Moreno, Y. Wu, and Z. Wu, “Speech

recognition with augmented synthesized speech,” in ASRU, 2019.

[108] M. Mimura, S. Ueno, H. Inaguma, S. Sakai, and T. Kawahara, “Leveraging sequence-to-

sequence speech synthesis for enhancing acoustic-to-word speech recognition,” in IEEE

Spoken Language Technology Workshop (SLT), 2018.

[109] Z. Chen, A. Rosenberg, Y. Zhang, G. Wang, B. Ramabhadran, and P. J. Moreno, “Improving

speech recognition using gan-based speech synthesis and contrastive unspoken text selection.,”

in Proc. Interspeech, 2020.

[110] X. Zheng, Y. Liu, D. Gunceler, and D. Willett, “Using synthetic audio to improve the

recognition of out-of-vocabulary words in end-to-end asr systems,” in Proc. ICASSP, 2021.

[111] A. Werchniak, R. B. Chicote, Y. Mishchenko, J. Droppo, J. Condal, P. Liu, and A. Shah,

“Exploring the application of synthetic audio in training keyword spotters,” in Proc. ICASSP,

2021.

[112] J. Lin, K. Kilgour, D. Roblek, and M. Sharifi, “Training keyword spotters with limited and

synthesized speech data,” in Proc. ICASSP, 2020.

56

[113] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from

simulated and unsupervised images through adversarial training,” in Proc. CVPR, 2017.

[114] A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative adversarial net-

works,” arXiv preprint arXiv:1711.04340, 2017.

[115] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le, “Adversarial examples improve

image recognition,” in Proc. CVPR, 2020.

[116] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Proc. NIPS, 2014.

[117] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in Proc. ICML, 2015.

[118] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr corpus based on

public domain audio books,” in Proc. ICASSP, 2015.

[119] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu, “Libritts: A

corpus derived from librispeech for text-to-speech,” arXiv preprint arXiv:1904.02882, 2019.

[120] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N. Enrique Yalta Soplin,

J. Heymann, M. Wiesner, N. Chen, A. Renduchintala, and T. Ochiai, “ESPnet: End-to-end

speech processing toolkit,” in Proc. Interspeech, 2018.

[121] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang,

Y. Wu, et al., “Conformer: Convolution-augmented transformer for speech recognition,”

arXiv preprint arXiv:2005.08100, 2020.

[122] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le, “Specaug-

ment: A simple data augmentation method for automatic speech recognition,” Proc. Inter-

speech, 2019.

[123] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition,”

ArXiv e-prints, 2018.

57

[124] A. Shrivastava, A. Kundu, C. Dhir, D. Naik, and O. Tuzel, “Optimize what matters: Training

dnn-hmm keyword spotting model using end metric,” in Proc. ICASSP, 2021.

[125] A. Sadeghian, M. Armandpour, P. Ding, and D. Z. Wang, “Drum: End-to-end differentiable

rule mining on knowledge graphs,” Advances in Neural Information Processing Systems,

vol. 32, 2019.

[126] M. Armandpour, B. Kidd, Y. Du, and J. Z. Huang, “Deep personalized glucose level forecast-

ing using attention-based recurrent neural networks,” in 2021 International Joint Conference

on Neural Networks (IJCNN), pp. 1–8, IEEE, 2021.

[127] J. Li and M. Armandpour, “Deep spatio-temporal wind power forecasting,” ICASSP, 2022.

[128] M. Armandpour, P. Ding, J. Huang, and X. Hu, “Robust negative sampling for network

embedding,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,

pp. 3191–3198, 2019.

[129] A. Hasanzadeh, M. Armandpour, E. Hajiramezanali, M. Zhou, N. Duffield, and K. Narayanan,

“Bayesian graph contrastive learning,” arXiv preprint arXiv:2112.07823, 2021.

[130] M. Armandpour, A. Sadeghian, and M. Zhou, “Convex polytope trees and its application to

vae,” Advances in Neural Information Processing Systems, vol. 34, 2021.

58

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Why do we need generative models?
	Generative Adversarial Networks
	Outline

	Partition-Guided GANs
	Introduction
	Mode connecting problem
	Related work
	Method
	Partition GAN
	Partition-Guided GAN
	Connection to supervised GANs

	Experiments
	Toy dataset
	Stacked-MNIST, CIFAR-10 and STL-10
	Image generation on unsupervised ImageNet
	Parameter sensitivity
	Implementation details
	Additional Experiments:
	Additional Qualitative Results

	Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition
	Introduction
	Related work
	Method
	Controllable Speech Generative Model
	Rejection Sampling
	Double Batch Normalization Statistics

	Experiments

	SUMMARY AND CONCLUSIONS
	REFERENCES

