
Supplementary Material of Robust Negative Sampling for
Network Embedding

Mohammadreza Armandpour,1 Patrick Ding,1 Jianhua Huang,1 Xia Hu2

1Department of Statistics, Texas A&M University
2Department of Computer Science and Engineering, Texas A&M University

{armand, patrickding, jianhua}@stat.tamu.edu, hu@cse.tamu.edu

This article includes detailed proofs and some experimental results of the “Robust Negative Sampling for
Network Embedding”. The main paper has been accepted in AAAI 2019.

1 Proofs

1.1 Proof of Theorem 1:
Based on the definition of the vertex-level objective and equation related to the objective at edge-level for
NS, the NS vertex level objective is:∑

vi∈N(u)

logPNS(vi|u; f, f ′)

=
∑

vi∈N(u)

[log(σ(f ′(vi)
T · f(u))) +

k∑
j=1

Erj∼P (r) log(σ(−f ′(rj)
T · f(u)))]

=
∑

vi∈N(u)

[log(σ(Z(vi,u))) +

k∑
j=1

Erj∼P (r) log(σ(−Z(rj ,u)))]

=
∑

vi∈N(u)

[log(σ(Z(vi,u))) + kErj∼P (r) log(σ(−Z(rj ,u)))]

=
∑

vi∈N(u)

[log(σ(Z(vi,u))) + k
∑
rj∈V

P (r = rj) log(σ(−Z(rj ,u)))]

=
∑

vi∈N(u)

[log(σ(Z(vi,u))) + k
∑
rj∈V

d
3
4
rj

C
log(σ(−Z(rj ,u)))],

(1)

where C is the term that is defined in the theorem. Notice that σ(x) = 1
1+e−x = ex

1+ex , therefore we can write
log(σ(Z)) = − log(1 + eZ) + Z, and log(σ(−Z)) = − log(1 + eZ), using these two simplifications in equation
5 leads to following formula for the vertex level objective:

∑
vi∈N(u)

[− log(1 + eZ(vi,u)) + Z(vi,u) + k
∑
rj∈V

−
d

3
4
rj

C
log(1 + eZ(rj,u))]

=
∑

vi∈N(u)

− log(1 + eZ(vi,u)) +
∑

vi∈N(u)

Z(vi,u) + kdu
∑
rj∈V

−
d

3
4
rj

C
log(1 + eZ(rj,u))

= −
∑
rj∈V

(
d

3
4
rjkdu
C

+ 1rj∈N(u)

)
log(1 + eZ(rj,u)) +

∑
vi∈N(u)

Z(vi,u)

(2)

1

which is exactly equal to what we needed to prove for the vertex level objective of NS. And for the SGA
objective: ∑

vi∈N(u)

logPSGA(vi|u; f, f ′) =
∑

vi∈N(u)

log(
exp(f ′(vi)

T · f(u))∑
r∈V exp(f ′(r)

T · f(u))
)

=
∑

vi∈N(u)

[Z(vi,u) − log(
∑
r∈V

eZ(r,u))]

= −du log(
∑
r∈V

eZ(r,u)) +
∑

vi∈N(u)

Z(vi,u).

(3)

which is exactly the formula that we wanted to prove. For type I case the proof is similar, only f ′ is replaced
with f .

1.2 Proof of Theorem 2:
Part 1: Showing the theorem for the SGA objective If we define the distribution Qu as following:

Qu(v) =

{
1
du
, if v ∈ N(u)

0, otherwise,

and the distribution Pu as

Pu(v) =
eZ(v,u)∑
r∈V e

Z(r,u)

Then the Kullback-Leibler divergence from Pu to Qu is:

DKL(Qu||Pu) = −
∑
v∈V

Qu(v) log(
Pu(v)

Qu(v)
)

= −
∑

v∈N(u)

1

du
log(

Pu(v)
1
du

)

= − log(du)− 1

du

∑
v∈N(u)

log(Pu(v)).

(4)

Therefore based on the above equation, minimizing the Kullback-Leibler distance between the two distributions
is equivalent to maximizing the vertex level objective for the SGA objective. Hence to check whether the
presented solution in Theorem 2 is the optimal solution for the objective we need to check whether it minimizes
the distance between Pu, and Qu. Notice, if Z(r,u) → −∞, then eZ(r,u) → 0, therefore if for non-neighbors of
u, like r, Z(r,u) → −∞, then Pu converges to distribution Mu, where:

Mu(v) =

e
Z(v,u)∑

r∈N(u) e
Z(r,u)

, if v ∈ N(u)

0, otherwise,

and if Z(v,u) for all v ∈ N(u) are equal and they go to +∞ (to be further dominant to the non-neighbor
terms), then the of distribution Mu will be identical to that of Qu, which means the distance between Pu
and Qu is zero. Therefore that set of values for Z minimize the KL distance and equivalently maximize the
objective, completing the proof of part 1.

Part 2: Showing the theorem for the NS objective To derive the formula for optimal Z(v,u), in here
we take the derivative of whole objective respect to the Z’s and by making assumption of zero derivative, we
find the optimal value. Based on the assumption that is made in the theorem, ∂g(Z(v,u))

∂Z(r,u)
= 0 for any function

g if r 6= v. Therefore the derivative of whole objective of NS O(NS), respect to Z(v,u), based on the theorem 1
is:

2

∂O(NS)

∂Z(r,u)
=

∂

[
−(ar+1) log(1+e

Z(r,u))+Z(r,u)

]
∂Z(r,u)

, if r ∈ N(u)

∂

[
−ar log(1+e

Z(r,u))

]
∂Z(r,u)

, otherwise,

where ar = d
3
4
r kdu
C . Hence, the derivative for r ∈ N(u) is equal to:

−(ar + 1)
eZ(r,u)

1 + eZ(r,u)
+ 1 = −(ar + 1)

1

1 + e−Z(r,u)
+ 1

which should be equal to zero, therefore:

1− (ar + 1)
1

1 + e−Z(r,u)
= 0 ⇐⇒ 1 = (ar + 1)

1

1 + e−Z(r,u)

⇐⇒ 1

1 + ar
=

1

1 + e−Z(r,u)

⇐⇒ ar = e−Z(r,u)

⇐⇒ − log(ar) = Z(r,u),

which is equal to the optimal value for Z(r,u) as mentioned in the theorem for r ∈ N(u). For r /∈ N(u), the
derivative is:

−ar
eZ(r,u)

1 + eZ(r,u)
=

−ar
1 + e−Z(r,u)

.

Notice if Z(r,u) → −∞ then the derivative goes to zero which was what we needed to prove.

1.3 Proof of Theorem 3:
It easily can be seen that the derivative of F (x, y) with respect to the first argument is:

∇1F (x, y) =
yex

T ·y

M + exT ·y
,

therefore x− η∇1F (x, y) = x− by, where b is a positive scalar, equal to ηex
T ·y

M+exT ·y
. Now decompose y into

two parts, y1 and y2 where y1 + y2 = y and y1 is the projected version of y on the vector x therefore y2 is
perpendicular to x and y1 = ax where a can be positive or negative.

If α is the angle between x and y (range from [−π, π]), since xT · y = ||x||||y||cos(α), we have xT · y > 0,
if and only if |α| < π

2 . Moreover, we know y = y1 + y2 and xT · y2 = 0, therefore, a > 0 if and only if |α| < π
2

Now we are calculating the norm of x− η∇1F (x, y) and compare that with the norm of x:

||x− η∇1F (x, y)||22 = (x− η∇1F (x, y))T · (x− η∇1F (x, y))

= (x− b(ax+ y2))T · (x− b(ax+ y2))

= ((1− ab)x− by2)T · ((1− ab)x− by2)

= (1− ab)2||x||22 + b2||y2||22,

therefore, based on the last equation if a ≤ 0, the norm of x − η∇1F (x, y) is not less than the norm of x,
because (1− ab)2 ≥ 1 since b is positive.

However if a > 0, there is a b0, where for any b such that 0 < b < b0 <
1
a , the norm of x− η∇1F (x, y) is

less than the norm of x because:

(1− ab)2||x||22 + b2||y2||22 < ||x||22 ⇐⇒ b2||y2||22 < ||x||22(1− (1− ab)2)

⇐⇒ b2||y2||22 < ||x||22(a2b2 + 2ab)

⇐⇒ b

a2b+ 2a
<
||x||22
||y||22

,

3

since b
a2b+2a is an increasing function with respect to b for b ≥ 0 and it is zero for b = 0, therefore there is

a b0 such that for any b < b0 the last inequality is satisfied. This fact proves the theorem because having
b = ηm where m is a scalar and positive a is equivalent to having |α| < π

2 , and we can let x = f ′v and y = fu.

1.4 Proof of Theorem 4:
To find the optimal value for the Z(v,u), we need to first write the whole objective of R-NS, then take the
derivative respect to each Z(v,u) and set it equal to zero to find the optimal Z(v,u).

Similar to the calculation for deriving the vertex level objective of NS for proving Theorem 1, the vertex
level objective of R-NS, excluding the penalty part, can be expressed as:

∑
vi∈N(u)

[log(σ(Z(vi,u))) + k
∑

rj /∈N(u)

d
3
4
rj

C ′u
log(σ(−Z(rj ,u)))] =

∑
vi∈N(u)

log(σ(Z(vi,u))) + kdu
∑

rj /∈N(u)

d
3
4
rj

C ′u
log(σ(−Z(rj ,u))), (5)

where C ′u =
∑
vj /∈N(u) d

3
4
vj . Therefore:

∂O(R−NS)

∂Z(r,u)
=

∂ log(σ(Z(r,u)))

∂Z(r,u)
, if r ∈ N(u)

∂br log(σ(−Z(r,u)))

∂Z(r,u)
, otherwise,

where br = kdu
d

3
4
rj

C′u
. But we know ∂ log(σ(Z(r,u)))

∂Z(r,u)
= 1

1+e
Z(r,u)

, hence if Z(r,u) → +∞, the derivative
goes to zero for the neighbors which is exactly what we needed to prove. Since, for the non-neighbors
∂br log(σ(−Z(r,u)))

∂Z(r,u)
= br

−1

1+e
−Z(r,u)

therefore if Z(r,u) → −∞,for the non-neighbors, the derivative goes to zero.

2 Choice of λ
Here we derive a formula for the optimal λ based on the fact that derivative of the objective of R-NS respect
to any embedding vector like fi is zero at the optimal solution. We make some intuitive assumptions to
estimate terms to provide a formula for the optimal λ.

In the R-NS type I objective the term fu, the embedding vector of node u, appears in the objective in the
following way:∑

v∈N(u)

log(σ(fTv · fu)) +
∑

v∈N(u)

log(σ(fTu · fv))

+
∑

v′ /∈N(u)∪{u}

log(σ(−fTv′ · fu))kduCv′ +
∑

v′ /∈N(u)∪{u}

log(σ(−fTu · fv′))kdv′Cu

− λdu||fu||22 −
λ

k + 1
du||fu||22 −

λ

k + 1
kMu2(E − du)||fu||22, (6)

where E is the total number of pairs of node and its neighbor and du is number of neighbors of u and:

Cv′ =
d

3
4

v′∑
r/∈N(u)∪{u} d

3
4
r

Cu =
d

3
4
u∑

r/∈N(v′)∪{v′} d
3
4
r

.

In fact Cv′ is the probability that u choses v′ as its negative neighbor, and Cu is the probability that v′
choses u as a negative sample. The Mu term is the weighted average of the probability that non-neighbors of
u choose u as their negative neighbors, and can be formulated as:

Mu =
∑

w/∈N(u)∪{u}

d
3
4
u∑

r/∈N(w)∪{w} d
3
4
r

dw∑
k/∈N(u)∪{u} dk

.

4

Now we are ready to explain form of equation (6) term by term. A term like fu appears in the objective
because u has been considered as a center sample1, positive sample, or negative sample. The right terms in
all three lines (6) are related to the case where u is chosen as a center sample, while the left term in the first
line and middle term in the last line are related to the case where u has been chosen as positive sample, and
the rest of the terms are for the case where u is considered as a negative sample. In the derivation of the (6)
we assume that the graph of the neighborhood is undirected for simplicity.

Here we provide an approximation to the above terms to make calculation of the optimal λ possible.
We estimate each of the summation of the log(σ(...)) terms by taking a typical value for those terms–for
example the median–and multiplying by the number of terms within the summation. We differentiate this
approximation to (6) with respect to fu and get:

du
fv1

1 + ef
T
v1
·fu

+ du
fv2

1 + ef
T
u ·fv2

+ (n− du − 1)
−fv3

1 + e−f
T
v3
·fu
kdu

1

n− du − 1
+ (n− du − 1)

−fv4

1 + e−f
T
u ·fv4

kd
1

n− d− 1

− λ2dufu −
λ

k + 1
du2fu −

λ

k + 1
k

1

n− d− 1
2(
nd

2
− du)2fu. (7)

To be clear about how we did the estimation we kept the order of terms in (7) the same as in (6). d is the
average node degree. v1 and v2 refer to a typical neighbor of u, while v3 and v4 refer to non-neighbors of u.
The probability terms Cu, Cv′ , and weighted averaged probability Mu are estimated by their mean.

Notice the derivative (7) should be approximately equal to the zero vector in the embedding space at the
learned embeddings point because the exact derivative is equal to zero. Therefore if we multiply (7) by the
fTu vector, the result should be approximately equal to zero. Now, we provide an estimation for a typical
value for the inner product of a vector and its neighbor, as l2cos(αn) = fTu · fvneighbor , where l is the typical
norm of the embedding vector and αn is the typical angle between a node and its neighbor. We estimate
cos(αn) by:

ln(1 + d
2w̄)

ln(1 + n)
,

where w̄ is the mean of the non-zero weights of the edges in the graph. In fact d
w̄ is representative of the

number of other nodes that a typical node is connected to in the network. Since in the full graph or a graph
close to that for example each node is connected to approximately cn other nodes, where c is a constant, we
expect the embedding vectors to be almost in the same direction for the connected nodes. Therefore the
cos(αn) should be approximately one, and the estimation also follows this rule. However, for the case that
each node is only connected to a few others, we expect the embedding vectors to not be concentrated on a
direction. Therefore the median angular distance between a node and its neighbors should be close to π/2,
which results in a small value for cos(αn). Again the presented formula satisfies this condition. It also has
the desirable property that larger d leads to larger cos(αn) and smaller angular distance.

We estimate the inner product of a node and its non-neighbor by l2cos(βn) = fTu fvnonneighbor where
βn = π/2 + αn. We did this estimation because if the typical absolute value of the angular distance for a
node and its neighbor is αn then the neighbor’s embedding should have angular distance approximately
in the range [−2αn, 2αn] from the node of interest. Therefore the absolute value of angular distance of
non-neighbors from the nodes of interest should approximately be in the interval [2αn, π], therefore a typical
angular distance is π+2α

2 which is equal to βn, as introduced above.
Based on the above approximation and multiplying (7) by fTu we have:

2d
l2cos(αn)

1 + el2cos(αn)
+ 2kd

−l2cos(βn)

1 + e−l2cos(βn)
− λ2dl2 − λ

k + 1
d2l2 − λkd

k + 1

n− 2

n− d− 1
2l2 = 0. (8)

Based on this equation we have the following formula for the optimal λ:

λopt :=

cos(αn)

1+el2cos(αn)
+ k −cos(βn)

1+e−l2cos(βn)

(k+2
k+1 + k

k+1
n−2
n−d−1)

. (9)

1when we sample the edge containing that node and we are looking for negative sample for that node

5

By plugging in the formula that we had for βn, we can write

λopt :=

m
1+el2m

+ k
√

1−m2

1+el2
√

1−m2

(k+2
k+1 + k

k+1
n−2
n−d−1)

. (10)

where m =
ln(1+ d

2w̄)

ln(1+n) , d = 2E
n and l is related to the dimension of the embedding space; higher dimension

requires larger norm to prevent learning tiny components. Based on several experiments with real world
networks we suggest l = log2(dim)

6 + 2.
For the type II objective case, a similar argument leads to the following approximation for the optimal λ:

λtypeIIopt :=

m
1+el2m

+ k
√

1−m2

1+el2
√

1−m2

2,
(11)

where m is as before but here we consider the l for the type II is log2(dim)
6 + 1.9.

3 Scalability
The R-NS objective has a different negative sampling distribution for different nodes, so we need a method
to draw negative samples from the desired distribution without changing the time complexity. We suggest
two methods for adaptive sampling, depending on whether the network is densely connected or not. We
use the term non-dense network when O(EN) << O(n2), where EN is the total number of pairs of nodes
and their neighbors. By dense network we refer to the case where O(EN) is O(n2). Notice that non-dense
or dense connectivity is based on how we defined the neighborhoods in the graph–the connectedness of the
neighborhood can be different from that of the graph itself.

Non-dense network In this setup we make a one dimensional table for each node u, where each entry
has a vertex ID, and the number of times a vertex ID v appears in the table of the node u is proportional
to d

3
4
v for neighbors of u and zero otherwise. Therefore, by randomly choosing one entry of the table for u,

we will have a vertex ID which follows the Pu distribution. To make the tables we first make a "generative
table". The generative table has a predetermined large size like L and contains each vertex ID in the graph
approximately proportional to the corresponding node’s degree to the power 3/4. The table for node u is
made by elimination of the vertex IDs related to its neighbors from the generative table as we go through the
pairs of neighbors.

In this proposal we only need a pre-processing step to use R-NS instead of NS. Therefore the time
complexity is O(n) + O(EN) which is less than the order of the rest of the algorithm, hence the time
complexity does not change by substituting NS with R-NS.

Dense network In this regime we draw negative samples from an approximation to Pu, P ′u, which can also
take negative samples from neighbors of u. Intuitively speaking the NS distribution P takes negative samples
from all of the nodes in the graph while Pu is restricted to the set of non-neighbors. P ′u is a compromise
between these two, which still allows taking samples from the neighbor nodes but is designed to focus more on
the non-neighbors by giving them higher probability. This leads to a lower probability of selecting neighbors
for the negative sample and consequently prevents the Popular Neighbor Problem.

To understand the algorithm suppose that a node u has w neighbors. If we draw samples from P but
reject neighbors of u and only accept non- neighbors of u, this is essentially equivalent to taking samples
from Pu. However to check whether the sample is a neighbor of u or not we need to search within the list of
neighbors which leads to multiplying the time complexity by log(w). This is a problem in dense networks
where w is large. To circumvent this problem, we draw negative samples from a randomly chosen subset of
size l from the neighborhood of u and consider all other nodes as non-neighbors of u. After we have drawn
a certain number of negative samples we choose a another random l sized neighborhood subset of u. This
characterizes P ′, an estimate of Pu.

6

4 Other Methods’ Use of Type I and II Objectives
DeepWalk, Node2Vec and Struc2vec all use the type II objective because their implementations use word2vec,
which is designed with a type II objective. LINE uses both type II and Type I objectives through the
second order and first order proximity objectives introduced in [2]. First order proximity is expressed a little
differently than the type I SGA objective, but because LINE never used that objective directly and instead
estimated it with NS, it essentially used a type I objective.

5 Karate Network
The karate network [3] consists of 34 nodes and 78 edges, where each node represents a member in the club
and each edge represents a friendship between two members.

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18 19

20 21

22

23

24

25
26

27

28

29 30

31

32

3334

Figure 1: Zachary’s karate club.

We consider this network because it’s a small, real network
which permits direct visualizations of embeddings. Furthermore
the network has two perceivable communities which enables us
to judge the quality of embeddings. It also has the characteris-
tics of large-scale-free networks since it contains a large number
of low degree nodes and a few high degree nodes.

In Figure 2 we see the result of NS with the number of
negative samples k = 5, the default setting of LINE, and k = 20,
the suggested value for small networks in [1]. For the Type I
objective we see that NS provides unsatisfactory embeddings
for the karate network. In the k = 5 case the embeddings of
the two groups are not separable and concentrated around 0,
while in the k = 20 case all the embeddings are shrunk too far
toward the origin and nodes within the same community are
indistinguishable.

In the Type II objective setting, for NS with both k = 5
and k = 20, the context and embedding vectors of the nodes are not aligned. In fact there is a large angular
distance between the embedding of a node and the context vector of its neighbors, which is counter to the
goals of embedding. Moreover the norms of the embedding vectors of NS have a large range and nodes with
high degree are concentrated near zero. This is problematic for important tasks like classification based on
the embeddings because this behavior causes high degree nodes to be indistinguishable and the large range of
norms further increases the difficulty of classification. Also, based on the SGA model, if a node’s embedding
has large norm, it should have a larger inner product with vectors with which it is close in terms of angular
distance. This leads to higher probability of having edges to other nodes. Therefore we expect nodes with
high degree to have large norms, contrary to the NS estimate of the SGA model.

The above disadvantages are the manifestations of the popular neighbor problem.
R-NS solves these problems for both Type I and Type II objectives. In Figure 2 we see that the norms are

in a reasonable range and high degree nodes have large norms compared to other nodes. Also the direction of
the embedding vectors is better determined because there is a reasonable separation between nodes related to
different clusters. The angular distance between context vectors and embedding vectors under the Type II
objective is much smaller. The context vectors of neighbors are more aligned.

Figure 2 also shows the result for the case where we only require negative samples to be from non-neighbors
of a node and the node itself, which is equivalent to setting the R-NS λ = 0. Compared to NS, this sampling
approach leads to context and embedding vectors that are more aligned and avoids overshrinking embeddings
of high degree nodes. However it does not provide a clear separation of clusters in embedding space, which is
a sign of poor estimation of angular distance. Also the range of vector norms is too large. This example
demonstrates the importance of the penalty term λ.

7

1

10

34

1

10

34

1

1034

1

10

34

1
10

34

RNS03 RNS05

K20 K5 nopenalty

−2 −1 0 1 −1 0 1

−0.0004 0.0000 0.0004 0.0008 0.0012 −1.0 −0.5 0.0 0.5 −15 −10 −5 0 5

−10

0

10

20

−1.0

−0.5

0.0

0.5

−1

0

1

−5e−04

0e+00

5e−04

1e−03

−1

0

1

2

Karate Type I Objective

1

10

34

1

10 34

1

10

34

1

10

34

1

10

34

1

10

34

1

10

34

1

10

34

1

10

34

1

10

34

RNS03 RNS05

K20 K5 nopenalty

−2 −1 0 1 2 −1 0 1 2

−5 0 5 −10 −5 0 5 −10 0 10

−10

−5

0

5

10

−5

0

5

10

−1

0

1

−5

0

5

−2

−1

0

1

2

Vector Type

Context

Embedding

Karate Type II Objective

Figure 2: Zachary’s karate network embedding negative sampling algorithm comparison.

6 LINE can emulate others
The way LINE defines neighborhoods (the set of immediate neighbors of the the nodes in the network)
allows it to emulate other embedding algorithms like Struc2vec, Node2vec, DeepWalk. This can be shown
in the following way. For any given network G = {V,E} and embedding algorithm A with definition of a
neighborhood of u, N(u), we can create a new graph G′ = {V,EA} such that EA consists of directed edges
like (u, ni), where ni ∈ N(u). If ni appears r times in N(u) we weight the directed edge from u to ni by
r. Notice G and G′ differ only in their edges; E is the original set of edges while EA is the set of weighted
directed edges constructed by the embedding algorithm A. Since LINE only considers immediate neighbors
of u as N(u), we can emulate algorithms like node2vec, DeepWalk, struc2vec, or others by passing their
corresponding G′ to LINE.

7 Parameter Settings
We set parameters according to the default settings of LINE. The number of negative samples K is 5 for all
methods we considered, the mini-batch size for is 1 for all the methods, we use the learning rate starting
value ρ0 = 0.025 and ρt = ρ0(1− t/T), where T is the total number of mini-batches or edge samples. The
number of edge samples for all the methods and networks is 800 million, which took in almost all cases less
than 30 minutes to run on a single machine with an Intel Core i7 processor. We set the dimension of the
embeddings to 100 instead of 128 as in previous methods. This change in dimension does not have a major
effect on results.

8 Experiment Details
The following tables 1,2 show the results for multi-lable node classification task with standard deviation
inside the parentheses. The ROC curve of the baseline methods for 6 different labels in wikipedia data-set
are shown in the figure ??, which shows superiority of R-NS in most cases.

8

Type I Objective Type II Objective

8 19 24

2 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

8 19 24

2 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Method NN−NS NS RNS RNS No Penalty

Figure 3: ROC curve for 6 different node labels of the wikipedia data-set, the base-line algorithms are shown
in different colors.

Table 1: Algorithm comparison for 50% data labeled, Type I objective. The standard deviation of the
numbers presented inside the parentheses

Score (Std. Error) Micro-F1 Macro-F1

Algorithm Blog Catalog Flickr Wikipedia Blog Catalog Flickr Wikipedia

NS 36 (0.11) 54 (0.50) 47 (0.23) 25 (0.20) 43 (0.48) 15 (0.44)
NN-NS 32 (0.39) 58 (0.48) 46 (0.14) 22 (0.27) 46 (0.52) 14 (0.20)
R-NS (λ = 0) 34 (0.34) 55 (0.48) 42 (0.42) 23 (0.20) 43 (0.50) 11 (0.14)
R-NS 38 (0.26) 60 (0.26) 48 (0.45) 27 (0.28) 49 (0.25) 15 (0.21)

R-NS λ 0.046 / 0.059 0.043 / 0.056 0.053 / 0.067 0.046 / 0.059 0.043 / 0.056 0.053 / 0.067

Table 2: Algorithm comparison for 50% data labeled, Type II objective.

Score (Std. Error) Micro-F1 Macro-F1

Algorithm Blog Catalog Flickr Wikipedia Blog Catalog Flickr Wikipedia

NS 12 (0.30) 46 (0.29) 47 (0.38) 7 (0.13) 35 (0.36) 15 (0.21)
NN-NS 15 (0.49) 41 (0.48) 45 (0.33) 9 (0.28) 31 (0.27) 11 (0.14)
R-NS (λ = 0) 15 (0.26) 40 (0.56) 44 (0.74) 9 (0.16) 28 (0.47) 11 (0.28)
R-NS 25 (0.24) 57 (0.75) 54 (0.28) 17 (0.08) 47 (0.72) 20 (0.28)

R-NS λ 0.046 / 0.059 0.043 / 0.056 0.053 / 0.067 0.046 / 0.059 0.043 / 0.056 0.053 / 0.067

References
[1] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient estimation of word representations in vector space. CoRR,

abs/1301.3781, 2013.

[2] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In Proceedings
of the 24th International Conference on World Wide Web, WWW ’15, 2015.

[3] W. Zachary. An information flow model for conflict and fission in small groups. J. of Anthropological Research, 33:452–473,
1977.

9

	Proofs
	Proof of Theorem 1:
	Proof of Theorem 2:
	Proof of Theorem 3:
	Proof of Theorem 4:

	Choice of
	Scalability
	Other Methods' Use of Type I and II Objectives
	Karate Network
	LINE can emulate others
	Parameter Settings
	Experiment Details

