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1 Background: The total variation distance and coupling

Let P and Q be two probability measures on a common probability space (X ,B) (here
B denotes the Borel σ-field on X ; we shall typically concern ourselves with situations where
X ⊂ Rd). Let p and q be their respective densities with respect to a dominating measure µ, i.e.,
p = dP/dµ and q = dQ/dµ. Recall the total variation distance between P and Q, dTV(P,Q), is
defined as

dTV(P,Q) = sup
B∈B
|P (B)−Q(B)|.

The following representation of the TVD is often handy.

Theorem. Let P and Q be probability measures on (X ,B) with densities p and q respectively.
Then,

dTV(P,Q) =

∫
p>q

(p− q)dµ =

∫
q>p

(q − p)dµ =
1

2

∫
|p− q|dµ. (1)

Remark. From the above theorem, it is easy to see that the total variation distance satisfies the
triangle inequality, i.e., dTV(P,R) ≤ dTV(P,Q)+dTV(Q,R). This, along with non-negativity and
symmetry implies that the total variation distance is a pseudo-metric on the space of probability
measures.

From (1), we can also write

dTV(P,Q) =
1

2

[ ∫
p>q

(p− q)dµ+

∫
q>p

(q − p)dµ
]

=
1

2

∫ [
(p ∨ q)− (p ∧ q)

]
dµ. (2)

Since (p ∨ q) + (p ∧ q) = p+ q, we also have

dTV(P,Q) = 1−
∫

(p ∧ q)dµ.

∫
(p ∧ q)dµ can be thought of as the total variation affinity, similar to the Hellinger affinity.

Another useful representation of the TVD is

dTV(P,Q) = sup
f∈F

∫
f(p− q)dµ,

where F = {f : X → [0, 1]}. Note that the supremum is attained at f∗ = 1(p > q).

Coupling. A coupling of P and Q is a pair of random variables (X,Y ) such that X ∼ P and
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Y ∼ Q. Equivalently, a coupling can be thought of as a joint distribution on X × X whose
marginals are P an Q respectively. A simplest example of a coupling is X ∼ P, Y ∼ Q and
X ⊥ Y . Let us denote C ≡ C(P,Q) to be the collection of all possible couplings of P and Q.

The following result connects couplings with the TVD.

Theorem. We have,

dTV(P,Q) = inf
(X,Y )∈C

P(X 6= Y ). (3)

Fix any A ∈ B. We have, for any (X,Y ) ∈ C,

P (A)−Q(A) = P (X ∈ A)− P (Y ∈ A)

= P (X ∈ A, Y /∈ A) + P (X ∈ A, Y ∈ A)− P (X /∈ A, Y ∈ A)− P (X ∈ A, Y ∈ A)

≤ P (X ∈ A, Y /∈ A)

≤ P (X 6= Y ).

This immediately tells us dTV(X,Y ) ≤ inf(X,Y )∈C P(X 6= Y ). It can be shown that the infimum
is actually attained by producing a coupling such that dTV(P,Q) = P (X 6= Y ).

2 Markov chain Monte Carlo basics

At the beginning of the semester, we studied the Monte Carlo method for approximating an
integral

I =

∫
X
g(x)γ(x)dx

where γ is a probability density function, and g is some integrable function. Provided with
independent samples X1, . . . , XN ∼ γ, one can form the Monte Carlo estimate

ÎN = N−1
N∑
i=1

g(Xi).

We saw that ÎN is unbiased for I and ÎN → I almost surely as N →∞ by the SLLN. Moreover,
if G has finite second moment σ2g , then, by the central limit theorem,

√
N(ÎN − I)→ N(0, σ2g) as n→∞.

This can be used to provide error bounds for a Monte Carlo procedure as follows. Let

σ̂2g =
1

N − 1

N∑
i=1

[
g(Xi)− ÎN

]2
.

Then, ÎN ± tα/2,N−1 σ̂g/
√
N is an approximate 100× (1− α)% confidence interval for I.

In many situations, direct simulation from γ is not directly possible/computationally pro-
hibitive. The idea behind Markov chain Monte Carlo (MCMC) is to simulate a Markov chain
whose “long-run behavior” mimics that of the target distribution γ. Intuitively, this means that
irrespective of where the starting point of the chain is, when run long enough, draws from the
chain are approximately distributed as γ. A precise characterization is made below in terms
of invariance or stationarity; the chain needs to be constructed in a manner such that γ is its
invariant/stationary distribution. To make things concrete, let us recall some basic facts.
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3 Markov chain basics

A sequence of random variables X0, X1, X2, . . . taking values in some state-space X is called
a Markov chain if for any t ≥ 1, the conditional distribution Xt | Xt−1, . . . , X0 depends only on
the previous time point, i.e., Xt | Xt−1, . . . , X0 ≡ Xt | Xt−1.

Discrete state-space. Assume X0 = 0 and for any t ≥ 1, Xt = Xt−1 + εt, where the εts are
independent of the Xts and P (εt = ±1) = 1/2. The state-space X = Z; the integers. This is an
example of a discrete random walk.

Continuous state-space Assume X0 ∼ N(0, 1) and Xt = ρXt−1 + εt, with εt ∼ N(0, 1).
This is an autoregressive model of lag one. The state-space X = R. We shall also make the
assumption |ρ| < 1 later on.

A feature of both examples above is that P [Xt ∈ A | Xt−1 = x] does not depend on t, i.e.,
it is the same for all t, for any measurable A ⊂ X . (find these for the examples above!) We
shall only concern ourselves with Markov chains which satisfy this property, which is commonly
referred to as time homogeneity.

Definition. The transition kernel of a time-homogeneous Markov chain is defined as

P (x;A) := P [X1 ∈ A | X0 = x], x ∈ X , A ⊂ X .

Since the Markov chain is time-homogeneous, P (x;A) = P [Xt ∈ A | Xt−1 = x] for any t. We
shall assume there is a appropriate dominating measure µ on X w.r.t. which P (x, ·) has a
(conditional) density p(· | x), i.e.,

P (x;A) =

∫
A
p(x′ | x)µ(dx′).

[If you are not familiar with measure theoretic notation, you can always assume the state-space
to be discrete and replace integrals by sums.] The Markovian property allows simple convolution
formulae for k-step ahead transitions. For example,

P (2)(x;A) := P [Xt+2 ∈ A | Xt = x] =

∫
X
P (y;A)p(y | x)µ(dy) =

∫
A

[ ∫
X
p(x′ | y)p(y | x)µ(dy)

]
︸ ︷︷ ︸

p(2)(x′|x)

µ(dx′).

In general, for any r ≥ 2, we can recursively define the r-step transition kernel as

P (r)(x;A) =

∫
X
P (r−1)(y;A)p(y | x)µ(dy) =

∫
A
p(r)(x′ | x)µ(dx),

where, by convention, we set P (1) = P . p(r)(· | ·) is called the r-step transition density [write
down a recursive expression for p(r)]

Finite state-spaces: Let us try to understand the above quantities when X is finite. In
that case, the transition kernel is completely determined by the |X | × |X | transition matrix
P = (p(x′ | x))x,x′ , where p(x′ | x) = P [X1 = x′ | X0 = x] as defined above. Note that each
row of P (has non-negative entries and ) sum to one. Such matrices are called row-stochastic
matrices.

The transition matrix plays and important role since the r-step transition kernels can be ex-
pressed as powers of the transition matrix. For example,

P [X2 = x′ | X0 = x] =
∑
y

p(x′ | y)p(y | x) = P2(x, x′),
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where P2 is the square of the transition matrix P. Clearly, P2 is also a stochastic matrix with
each row summing to one. In general, for any r,

P [Xr = x′ | X0 = x] = Pr(x, x′).

3.1 Stationarity

The aspect of Markov chains we are most interested in is stationarity/invariance. A density
γ (w.r.t. µ) is stationary w.r.t. the transition kernel P (x, ·) if

γ(x′) =

∫
p(x′ | x)γ(x)µ(dx), ∀x′ ∈ X .

γ is called the invariant/stationary distribution. Note that the above equation implies∫
A
γ(x′)µ(dx′) =

∫
P (x;A)γ(x)µ(dx).

Suppose we draw X0 ∼ γ. Then, from the definition of stationarity, the marginal density of X1

is also γ! The same is true for X2, X3, . . .. In other words, if we initialize the chain by a draw
from the stationary distribution, then the marginal distribution of every successive draw is also
the stationary distribution.

Example (finite state-space) For finite state-spaces, the invariance/stationary condition
reduces to a linear system of equations:

γ(x′) =
∑
x∈X

p(x′ | x)γ(x), ∀x′

If we set γ̃ to be the row vector (γ(x) : x ∈ X ), then the above set of equations can be concisely
represented as the linear system γ̃ = γ̃ P.

Example. Consider the AR(1) example above. Let’s try to guess what the stationary distribu-
tion is. First, since we know that convolutions of normals produce normal distributions, we re-
strict our search to normal distributions N(m, b2). Stationarity implies that if Xt−1 ∼ N(m, b2)
and Xt | Xt−1 ∼ N(ρXt−1, 1), then marginally Xt ∼ N(m, b2). Equating means and variances,
we get m = 0 and b2 = (1− ρ2)−1. Note that for b2 to be positive, we need |ρ| < 1.

Example. Finding the stationary distribution may not always be that trivial. For example,
consider the Cauchy AR(1) model Xt = ρXt−1 + εt, where εt ∼ Ca(0, v), a Cauchy distribution
with scale

√
v. The transition density is p(x′ | x) ∝ {1 + (x′ − ρx)2/v}−1, and the invariant

equation is

γ(x′) =

∫ ∞
−∞

p(x′ | x)γ(x)dx.

How would you solve this? [Hint: characteristic function!]

Why do we care about stationarity? Roughly speaking, stationary Markov chains, when run
long enough, forget where they started from and the r-step transition densities increasingly
start behaving the stationary distribution. Mathematically, for any x, p(r)(x′ | x) gets increas-
ingly closer to π(x′) as r increases. [Stronger uniform bounds can be improved under suitable
conditions]

Example. Let us return to the AR(1) example again. Verify that for any r ≥ 1, Xr | X0 =
x ∼ N(ρrx, (1 − ρ2r)/(1 − ρ2)). If |ρ| < 1, then ρrx → 0 and (1 − ρ2r)/(1 − ρ2) → 1/(1 − ρ2)
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as r →∞. Hence, the distribution of Xr | X0 = x approaches N(0, (1− ρ2)−1) as r →∞. We
noted previously that N(0, (1 − ρ2)−1) is indeed the stationary distribution. In fact, we can
show ∥∥∥p(r)(· | x)− γ

∥∥∥
TV

≤ C(x)ρr,

where C(x) is some constant depending on x.

This phenomenon of convergence to stationarity is fairly general.

Convergence theorem (finite state-spaces) Suppose p(x′ | x) > 0 for all x, x′ ∈ X (this
condition means that the chain can move from any point to any other point in one step with pos-
itive probability. This condition can be replaced by weaker conditions, though in most MCMC
applications the above condition itself is satisfied) and let γ be the stationary distribution (since
the state-space is finite, γ is a p.m.f. on X ). Then, there exists a constant α ∈ (0, 1) and C > 0
such that

max
x∈X

∥∥∥p(r)(· | x)− γ
∥∥∥

TV

≤ Cαr.

where, recall the total variation distance∥∥∥p(r)(· | x)− γ
∥∥∥

TV

=
∑
x′∈X

∣∣∣p(r)(x′ | x)− γ(x′)
∣∣∣ .

This theorem gives a firm mathematical language to the intuition developed above. Irrespective
of where we start, the r-step transition probabilities increasingly behave like the stationary
distribution. Observe that the quantity on the right Cαr converges to zero geometrically fast
as r →∞. Accordingly, results as above are referred to as geometric ergodicity. Let us now see
a statement & proof of the convergence result in a more general framework.

Theorem. Suppose there exists a probability measure Q on X and a constant ε > 0 such
that the following minorization condition holds,

P (x,A) ≥ εQ(A) for all x ∈ X .

Then,
sup
x∈X
‖P r(x, ·)− γ‖TV ≤ (1− ε)r.

Note that the condition is always satisfied for finite state-spaces when p(x′ | x) > 0 for all x, x′.

Remark. When such a uniform bound on the TV distance holds, the chain is called uniformly
ergodic. For general state spaces, this is less common. However, geometric ergodicity can be
shown under additional conditions, extending the proof below.

Proof. Let us see a really nice proof based on coupling arguments. Given the minorization
condition, write

P (x,A) = εQ(A) + (1− ε)R(x,A), x ∈ X ,

where R(x,A) = (1− ε)−1
[
P (x,A)− εQ(A)

]
. Clearly, R(x,A) ≥ 0 for all x and A. In fact, it

can be easily verified that R(x, ·) is a transition kernel in itself. The important upshot is that
we can write P (x, ·) as a mixture of Q(·) and R(x, ·), where Q does not depend on x.

We now construct two Markov chains {Xj} and {Yj} which eventually couple with probability
one as follows.

1. While Xj 6= Yj ,

• Draw δj ∼ Bernoulli(ε).

• If δj = 0, draw Xj+1 ∼ R(Xj , ·) and Yj+1 ∼ R(Yj , ·) independently.
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• Otherwise, if δj = 1, draw x ∼ Q(·) and set Xj+1 = Yj+1 = x.

2. Once Xj = x = Yj , draw Xj+1 = Yj+1 ∼ P (x, ·).

Observe that both chains Xj and Yj are Markov chains with transition kernel P (·, ·). Let T
denote the coupling time, i.e., the time j when δj = 1:

T = max{j : δj = 0}+ 1.

Here is the key idea. We start the X chain at x and the Y chain with a draw from γ. Then,
P r(x,A) = P (Xr ∈ A) and γ(A) = P (Yr ∈ A). We have, using the coupling bound,

‖P r(x, ·)− γ‖TV ≤ P (Xr 6= Yr) = P (T > r) = (1− ε)r.

The convergence to stationarity is useful to us as it implies an analogue of the SLLN for
dependent chains.

Ergodic Theorem: Perhaps most interesting to our purpose is the following ergodic theorem
which states that ergodic averages of ergodic stationary Markov chains converge almost surely
to their limiting expectations under the stationary distribution, that is

1

T

T∑
t=1

h(Xt)→
∫
h(x)π(x)µ(dx), a.s.

for any h such that
∫
|h(x)|π(x)µ(dx) <∞.

Reversibility. A simple and extremely useful sufficient (but not necessary) condition for a
density γ to be the stationary distribution is the following reversibility condition: for any
x, x′ ∈ X ,

p(x′ | x)γ(x) = p(x | x′)γ(x′).

Note that under reversibility,
∫
p(x′ | x)γ(x)µ(dx) =

∫
p(x | x′)γ(x′)µ(dx) = γ(x′), which

implies that γ satisfies the invariance condition and hence is the stationary distribution.

4 The MH algorithm

The theory of Markov chains has been traditionally concerned with finding conditions under
which a given Markov chain converges to its stationary distribution (which may or may not
be known) and if so, at what rate. The MCMC literature turns the question on its head. It
starts with a given distribution γ and tries to find an ergodic Markov chain whose stationary
distribution is γ.

The transition kernel of the MH algorithm is

p(x′ | x) = α(x, x′)q(x′ | x) + r(x)δx(x′),

where

α(x, x′) = min

{
1,
γ(x′)q(x | x′)
γ(x)q(x′ | x)

}
is the usual MH ratio, and r(x) = 1−

∫
α(x, x′)q(x′ | x)µ(dx) is the probability of staying at x.

It is easy to verify that the detailed balance condition p(x′ | x)γ(x) = p(x | x′)γ(x′) is satisfied.
Hence, γ(·) is the stationary distribution of the MH chain!

The MH algorithm is very general in its scope of application. On the other hand, the choice
of the proposal distribution typically impacts practical performance. A default choice is an
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isotropic Gaussian random walk centered at the previous value and with a common variance
σ2MH . If σMH is too small, the chain accepts too frequently, and there is a lot of autocorrelation.
On the other hand, if σMH is too big, acceptances may get very rare. A default rule of thumb
is to tune the proposal variance so that the acceptance rate is between 20 - 30 %.

If some information is available regarding the covariance matrix of the parameters to be sampled,
one can use a non-isotropic random walk, with the covariance matrix a constant multiple of the
(approximate) covariance matrix of parameters.

There are advanced versions of the MH algorithm, for example, hybrid or Hamiltonian Monte
Carlo, that used gradient information of γ. Another way of exploiting additional structure in
MH is the Gibbs sampler.

5 The Gibbs sampler

Gibbs sampling refers to a class of Markov chain Monte Carlo algorithms where one samples
iteratively from the full conditional distributions to create a Markov chain whose stationary
distribution is the posterior distribution.

Why full conditionals? Suppose (U, V ) have a joint density γ(u, v). Then, under mild conditions,

γV (v)

∫
γ(u | v)

γ(v | u)
du = 1,

which implies we can recover the marginal distributions γV (v) (and similarly, γU (u)) from the
full conditionals. Since we already know the conditionals, combined with the marginals, they
determine the joint density.

For example, for |ρ| < 1, if u | v ∼ N(ρv, (1 − ρ2)) and v | u ∼ N(ρv, (1 − ρ2)), then you can
verify with a bit of tedious calculation that u ∼ N(0, 1) and v ∼ N(0, 1).

Note: the existence of the joint density is important. Simply specifying the full conditionals
does not mean that they arise from a valid joint distribution. For example, if u | v and v | u
are both exponentials, with E(u | v) = v−1 and E(v | u) = u−1, then the integral diverges, i.e.,
there is no joint distribution on R2 whose full conditionals are the above distributions.

5.1 Why does the Gibbs sampler work? Normal example

Suppose (u, v) have a bivariate normal distribution with u ∼ N(0, 1), v ∼ N(0, 1) and
corr(u, v) = ρ. Let r = 1−ρ2. From standard bivariate normal theory, we know u | v ∼ N(ρv, r)
and v | u ∼ N(ρu, r).

A Gibbs sampler proceeds as:

• Initialize u = u(0).

• For t = 1, . . . , T , repeat:

– Sample v(t) ∼ N(ρu(t−1), r) by letting v(t) = ρu(t−1) + ε(t), where ε(t) ∼ N(0, r) is
independent of everything else.

– Sample u(t) ∼ N(ρv(t), r) by letting u(t) = ρv(t) + η(t), where η(t) ∼ N(0, r) is
independent of everything else.

If u(0) ∼ N(0, 1), then it follows from a simple calculation that v(1) ∼ N(0, 1), u(1) ∼ N(0, 1)
and in fact u(1) and v(1) have a bivariate normal distribution with correlation ρ. In fact, this is
true for every u(t) and v(t). This has to be the case since N(0, 1) is the stationary distribution

7



of the chain u(t).

In general, u(t) | u(t−1) ∼ N(ρ2u(t−1), r(1 + ρ2)). Similar for v(t). Thus, {u(t)} is an AR(1)
process. Verify that its stationary distribution is N(0, 1). [stationary variance = r(1− ρ2)/(1−
ρ4) = 1]

5.2 Why does the Gibbs sampler work in general

In general, suppose (u, v) have a joint distribution γ. The Gibbs sampler proceeds as

• Initialize u = u(0).

• For t = 1, . . . , T , repeat:

– Sample v(t) ∼ γ(· | u(t−1)).
– Sample u(t) ∼ γ(· | v(t)).

This is clearly a Markov process with transition density q
(
(u′, v′) | (u, v)

)
= γ(v′ | u)γ(u′ | v′).

A couple lines of calculation show us that

γ(u′, v′) =

∫
q
(
(u′, v′) | (u, v)

)
γ(u, v)dudv,

that is, γ is indeed the stationary distribution of the Gibbs chain.

5.3 Some basic Gibbs samplers

Binomial with unknown sample size: Suppose y | N, p ∼ Binomial(N, p), where N and
p are both unknown. Consider independent priors on N and p, with N ∼ Poisson(λ), and
p ∼ U(0, 1). The full conditionals are:

• p | N, y ∼ Beta(y + 1, N − y + 1).

• To sample N | p, y, set N = y + t, with t ∼ Poisson(λ(1− p)). [Verify.]

Linear regression with ridge prior: Suppose y | β, σ2 ∼ N(Xβ, σ2In), where X is a n× d
matrix of covariates and β ∈ Rd is a vector of covariates. Consider the following prior specifica-
tion on β, σ2, with β | σ2 ∼ N(0, λ−1σ2Id) and σ2 ∼ IG(α/2, γ/2). λ, α, β are hyperparameters
which we fix. The full conditionals are:

• β | σ2, y ∼ Nd((X
TX+λId)

−1XTy, σ2(XTX+λId)
−1). [Note: this is of the N(Q−1b,Q−1)

form.]

• σ2 | β, y ∼ IG((n+ d+ α)/2, {(y −Xβ)T(y −Xβ) + λβTβ + γ}/2).
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