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1 Positive definite matrices: review of some basic facts

For x ∈ Rd, let ‖x‖ =
√∑d

j=1 x
2
j denote its Euclidean norm. Also, for x, y ∈ Rd, let

〈x, y〉 := xTy denote the inner product between x and y. Recall the Cauchy–Schwartz inequality
〈x, y〉 ≤ ‖x‖ ‖y‖.

A d × d matrix Ω is called positive definite (p.d.) if Ω is symmetric and xTΩx > 0 for all
x 6= 0 ∈ Rd. Ω is called positive semi-definite (p.s.d.) or non-negative definite (n.n.d.) if Ω is
symmetric and xTΩx ≥ 0 for all x 6= 0 ∈ Rd.
Note: some definitions of p.d. and p.s.d. matrices do not require symmetry as I do above.

Eigen-decomposition: For any p.s.d. matrix Ω, there exist orthogonal vectors v1, . . . , vd ∈ Rd
satisfying ‖vj‖ = 1 and

〈
vj , vj′

〉
= 0 for all j 6= j′, and non-negative numbers λ1 ≥ . . . λd ≥ 0,

such that

Ω =

d∑
j=1

λjvjv
T
j .

The above decomposition is the eigen-decomposition of Ω; the vectors vjs are the eigenvectors
and λjs the corresponding eigenvalues, with Ωvj = λjvj for all j. Any Ω as above is clearly

p.s.d., as xTΩx =
∑d

j=1 λj 〈vj , x〉
2. Hence, we have a characterization of p.s.d. matrices.

Letting V denote the d × d matrix whose columns are vj , and Λ the diagonal matrix with
diagonal entries λ1, . . . , λd, we can write the identity in the display more concisely as Ω = V DV T.
The matrix V is an orthogonal matrix, satisfying V V T = V TV = Id. Using the identities
tr(AB) = tr(BA), and det(AB) = det(BA), it is also clear from the above decomposition that

tr(Ω) =
∑d

j=1 λj , and det(Ω) =
∏d
j=1 λj .

Cholesky decomposition: If Ω is p.d., then there exists a unique lower triangular matrix L
with positive diagonal entries such that Ω = LLT. The Cholesky decomposition is typically less
expensive to compute than the eigendecomposition. We shall see applications later on.

2 Review of some continuous distributions

Any course on Bayesian statistics cannot even begin without a good dose of distribution
theory since all uncertainty statements in Bayesian statistics is quantified through probability
distributions. I am going to lay down conventions/notations used throughout the course, and
also some warmup exercises. Some of these will be posted in homework0, however, you are
encouraged to work through the details whenever I leave something for you to verify (VFY!).
Familiarity with these basic distributional manipulations will be assumed and heavily used.

Exponential distribution. Say X ∼ Expo(λ) (Exponential distribution with rate parameter
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λ) if X has pdf
f(x) = λe−λx, x ∈ (0,∞).

The mean of the distribution is 1/λ and variance 1/λ2.

Gamma distribution. Say X ∼ Gamma(α, β) (Gamma distribution with shape parameter α
and rate parameter β) if X has pdf

f(x) =
βα

Γ(α)
e−βx xα−1, x ∈ (0,∞).

The mean is α/β and variance α/β2. Caveat: Lots of places (books, softwares, etc.) use the
shape-scale formulation, with the scale being the inverse-rate β−1. Stick to one convention to
avoid confusion.

Chi-square distribution. The χ2 distribution with ν degrees of freedom (ν > 0) is the
Gamma density with shape ν/2 and rate 1/2.

Inverse-Gamma distribution. Say X ∼ Inv-Gamma(α, β) (Inverse Gamma distribution
with shape parameter α and rate parameter β) if X has pdf

f(x) =
βα

Γ(α)
e−β/x x−(α+1), x ∈ (0,∞).

The mean is β/(α− 1) for α > 1.

Beta distribution. X ∼ Beta(a, b) has pdf

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, x ∈ (0, 1).

Gaussian/Normal distribution. We shall use N(µ, σ2) to denote the normal distribution
with mean µ and variance σ2. We shall often encounter normal distributions in the following
form in this course: we obtain a distribution which we know only up to some constant of
proportionality,

f(x) ∝ e−
1
2

(qx2−2bx), x ∈ R,

where q > 0 and b ∈ R are parameters of the distribution. The quadratic form (with leading
constant positive) inside the negative exponent tells us this is a normal distribution. Moreover,
some algebra tells us the mean is q−1b and variance is q−1 (VFY!) What is the normalizing
constant (i.e., constant of proportionality)?

We shall often use φ and Φ to denote the pdf and cdf of the standard normal distribution,
i.e., µ = 0 and σ = 1.

Truncated Gaussian distribution. The truncated Gaussian distribution with parameters
µ, σ, restricted to the interval (u, v), has density,

f(x) ∝ e−
(x−µ)2

2σ2 1(u,v)(x),

where 1A denotes the indicator function of set A. Can you find the normalizing constant of this
distribution, in terms of Φ? (Start with the standard case).

In general, if f is a pdf on R, we shall call the pdf

g(x) =
f(x)1(u,v)(x)∫ v

u f(z)dz
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to be f truncated to (u, v).

Student’s t distribution A random variable X ∼ tν (t distribution with ν > 0 degrees of
freedom) has density

f(x) =
Γ(ν + 1/2)√
νπ Γ(ν/2)

1

(1 + x2/ν)(ν+1)/2
, x ∈ R.

When ν = 1, this is the standard Cauchy density. The mean exists for ν > 1 and equals zero.
The variance exists for ν > 2 and is ν/(ν − 2).

For µ ∈ R and σ > 0, we say that Z ∼ tν(µ, σ2) if (Z − µ)/σ ∼ tν . We shall call µ the center
and σ the scale. The general t family is a location-scale family.

The following result is an important one. The t distribution can be expressed as a variance
mixture of a Gaussian. Specifically, suppose X | τ ∼ N(µ, τ−1 σ2), and τ ∼ Gamma(ν/2, ν/2).
Then, X ∼ tν(µ, σ2) (VFY!).

This is an example of a hierarchical formulation. This is a much more general idea, where a
distribution is specified hierarchically, by first defining a distribution given some parameters,
and then assigning those parameters additional distributions. For example, we first define
X | τ ∼ f(· | τ), where f is a density which depends on parameter τ in some way, and then
assign τ ∼ p. (Note: Although in the previous example τ was a scalar, in general, it could be a
vector as well) Then, the marginal density of X is

fX(x) =

∫
f(x | τ) p(τ)dτ.

We shall see that hierarchical modeling plays an extremely important role in Bayesian statistics.

We have seen that for ν > 2, the variance of tν(µ, σ2) is {ν/(ν − 2)}σ2 > σ2. Without actually
calculating the variance, can you argue that the variance of t will be larger (if it exists)?

2.1 Multivariate distributions

We shall mainly encounter two multivariate distributions in this course, the multivariate
Gaussian/normal (MVN) and the Dirichlet distribution.

MVN distribution. The d-variate normal distribution Nd(µ,Σ) has pdf

f(x) = (2π)−d/2|Σ|−1/2 e−
1
2

(x−µ)′Σ−1(x−µ), x ∈ Rd,

with mean µ ∈ Rd, and d×d positive definite (p.d.) covariance matrix Σ. The following results
are useful:

Theorem.

(i) If X has a d-variate normal distribution, then any k < d marginal of X is also normal.

(ii) Let X ∼ Nd(µ,Σ). Let A be k × d (k ≤ d) full rank and b be k × 1. Then AX + b ∼
Nk(Aµ+ b, AΣAT).

(iii) Let us partition

X =
( X(1)

X(2)

)
, µ =

( µ(1)

µ(2)

)
, Σ =

( Σ11 Σ12

Σ21 Σ22

)
,
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where X(1) is d1×1 and X(2) is d2×1 with d1 +d2 = d. Similarly for µ and Σ. Note Σ21 = ΣT
12.

The conditional distribution of X(1) | X(2) is

N
(
µ(1) + Σ12Σ−1

22 (X(2) − µ(2)),Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21

)
.

As in the univariate case, we shall often encounter the MVN distribution in the form,

f(x) ∝ e−
1
2

(x′Qx−2b′x), x ∈ Rd,

where Q is a p.d. matrix. The quadratic form in the negative exponent tells us the joint
distribution is Gaussian, with mean Q−1b and covariance matrix Q−1 (VFY!). Q is called the
inverse covariance or precision matrix, and is a key object for multivariate modeling, especially
graphical models.

Dirichlet distribution X = (X1, . . . , Xd) ∼ Dirichlet(α1, . . . , αd, αd+1) has pdf

f(x1, . . . , xd) =
Γ(
∑d+1

j=1 αj)∏d+1
j=1 Γ(αj)

xα1−1
1 . . . xαd−1

d (1−x1− . . .−xd)αd+1−1, xi ∈ (0, 1)∀ i,
d∑
i=1

xi ≤ 1.

The Dirichlet distribution is a multivariate generalization of the Beta distribution. The following
characterization is super useful: if Ti ∼ Γ(αi, 1) independently for i = 1, . . . , d + 1, and T =∑d+1

i=1 Ti, then
(T1/T, . . . , Td/T ) ∼ Dirichlet(α1, . . . , αd, αd+1).

Thus, if we normalize independent Gammas with the same rate parameter, we get a Dirichlet
distribution. If you have not seen this before, good to do this calculation using the multivariate
change of variable theorem. This property is useful in proving various stuff about the Dirichlet
distribution, for example, that lower-dimensional marginals of a Dirichlet are also Dirichlet
(with what parameters?).
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