
STAT 632 Spring 2018

Homework 4
This is the final homework and will be due on the final day of class. I shall keep adding some

more problems in this on the later topics.

Problem 1: Suppose (u, v, w) have a trivariate mean zero normal distribution with var(u) =
var(v) = w = 1 and cov(u, v) = 0.99, cov(u,w) = 0.1 and cov(v, w) = 0. The purpose of this
problem is to study the effect of blocking in Gibbs samplers. Compare two sampling schemes:
(a) sample iteratively from [u | v, w], [v | u,w], [w | u, v] and (b) [v | w], [u | v, w], [w | u, v].
Justify why (b) is a valid Gibbs sampler. Summarize your findings. You should report effective
sample sizes in addition to showing trace plots.

Problem 2: Consider the logistic regression model

pr(yi = 1 | β) = F (x′iβ), i = 1, . . . , n,

with yi ∈ {0, 1} the binary response and xi ∈ Rd the covariates for observation i, and F (t) =
et/(1 + et) the cumulative distribution function of a logistic distribution. The logistic density
has heavier tails than Gaussian. O’Brien and Dunson (2004) observed that the logistic density
can be accurately approximated by a tν(0, σ

2) density, with ν = 7.3 and σ2 = π2(ν − 2)/(3ν).

(i) Overlay the logistic density with a tν(0, σ
2) density with the above choices of ν and σ2. How

do you think they obtained the expression for (ν, σ2)? [Hint: for a given ν, what would be a
natural way to obtain a candidate for σ2?]

(ii) Motivated by the above, suppose we want to use the cdf of the tν(0, σ
2) density (let’s call

it F ∗) as a surrogate for the logistic cdf, and fit the model

pr(yi = 1 | β) = F ∗(x′iβ), i = 1, . . . , n,

with a N(0, ξ−1Id) prior on β. Describe the steps of an appropriate data-augmentation Gibbs
sampler to sample from the posterior distribution of β.

Problem 3: Consider the linear regression model with t-error and a ridge prior on β,

yi | β, σ2, ξ ∼ tν(x
′
iβ, σ

2), i = 1, . . . , n,

β | ξ ∼ N(0, ξ−1σ2Id),

σ2 ∼ IG(a/2, b/2)

ξ ∼ πξ,

where πξ is as in the pdf file on ridge regression posted in ecampus.
(i) Describe the steps of an MCMC algorithm to sample from the joint posterior of (β, σ2, ξ) | y.
(ii) Run this Gibbs sampler on data that is simulated as in the second example in the ridge
regression file (n = 100, d = 7 and the first, third, fourth columns of X correlated), with the
last step replaced by y = mustar + sigstar*rt(n,df=4). You may assume the degrees of
freedom to be known when you fit the model.

Run the MCMC for 20,000 iterations after discarding 5000 iterations as burn-iin. Provide
trace plots and density plots as in the example file, and also report effective sample sizes for
seven coordinates of β, σ2, and ξ. Your code should not include any inner loop inside
the MCMC loop; in other words, all operations should be vectorized/matricized.


