
BvM theorem – basics

Anirban Bhattacharya

http://www.stat.tamu.edu/~anirbanb

March 8, 2018

1 Notations

For two sequences an, bn, an ≈ bn means |an/bn − 1| → 0 as n → ∞. We write an = O(bn)
if there is a constant C > 0 such that an ≤ Cbn for all large n; an = o(bn) means an/bn → 0.

2 Distances between probability measures

We recall some important distances between probability measures and their interrelations.
Let P and Q be two probability measures. Let µ be a dominating measure so that P,Q � µ;
denote p and q to be the Radon–Nikodym derivatives dP/dµ and dQ/dµ.

The total variation distance ‖·‖TV between P and Q is

‖P −Q‖TV := sup
A
|P (A)−Q(A)| = 1

2

∫
|p− q|dµ =

∫
p>q

(p− q)dµ.

The squared Hellinger distance H2(P,Q) is

H2(P,Q) :=
1

2

∫
(
√
p−√q)2dµ = 1−A(P,Q),

where A(P,Q) =
∫ √

pq dµ is the Hellinger affinity.

The Kullback–Leibler divergence D(P || Q) =
∫
p log(p/q) dµ. Similarly, D(Q || P ).

If P ≡ N(µ1, σ
2
1) and Q ≡ N(µ2, σ

2
2), then

H2(P,Q) = 1−

√
2σ1σ2
σ21 + σ22

exp

(
− 1

4

(µ1 − µ2)2

σ21 + σ22

)
,

D(P || Q) =
1

2

[{
σ21
σ22
− log

σ21
σ22
− 1

}
+

(µ1 − µ2)2

σ22

]
.

In general, there isn’t a close-form expression for the TVD. However, if σ1 = σ2, then (maybe
up to a factor of 2?)

‖P −Q‖TV = 2Φ

(
|µ1 − µ2|

2σ

)
− 1.

The Hellinger distance and KL divergence are more amenable to deal with product measures:

1. D(⊗n
i=1Pi || ⊗n

i=1Qi) =
∑n

i=1D(Pi, Qi).
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2. H2(⊗n
i=1Pi,⊗n

i=1Qi) = 1 − A(Pn, Qn) = 1 −
∏n

i=1A(Pi, Qi) = 1 −
∏n

i=1{1 − H2(Pi, Qi)} ≤∑n
i=1H

2(Pi, Qi) where the inequality follows from Weirstrass’s inequality.

List of inequalities:

1. 2H2(P,Q) ≤ ‖P −Q‖TV ≤ 2H(P,Q)
√

1 +A(P,Q) ≤ 2
√

2H(P,Q).

2. 4H2(P,Q) ≤ D(P || Q) ≤ 4H2(P,Q)(1 + log ‖fP /fQ‖∞).

3. Pinsker’s inequality: ‖P −Q‖2TV ≤ D(P || Q)/2.

3 Bernstein–von Mises theorem

One has to exercise some care in defining the mode of convergence in Bayesian asymptotics,
as we are not dealing with a random estimator, rather random probability measures. This
requires defining certain metrics on the space of probability measures.

Given two probability measures P and Q on the same probability space, the total variation
distance dTV(P,Q) = 2 supA |P (A) − Q(A)|. In particular, if P and Q have densities fP and
fQ w.r.t. some dominating measure µ (the Lebesgue measure in most cases for us), then
dTV(P,Q) =

∫∞
−∞ |fP (x)− fQ(x)|µ(dx).

NOTE: For the discussion that follows, we take the dimension d = 1, i.e., Θ ⊂ R, although
everything generalizes to d > 1.

Fix θ0 ∈ Θ; we consider a classical framework where we assume that θ0 is the true data gener-
ating parameter. Let P0 denote probabilities under the sampling distribution f(· | θ0). [To be
technically precise, we should write n-fold products of P0 below.] Assume usual regularity con-
ditions on the likelihood function that are used to prove asymptotic normality of the maximum
likelihood estimator (thrice differentiable etc.). Also assume the prior distribution is continuous
and positive at θ0. Let t =

√
n(θ − θ̂) and let π∗n(t | x) denote the posterior distribution of t

given x. Then,

lim
n→∞

∫
R

∣∣∣π∗n(t | x)− φ(t | 0, I(θ̂)−1)
∣∣∣ dt = 0

with P0 probability 1, where φ(t | µ, σ2) denote the N(µ, σ2) density evaluated at t.

Remark: Observe that both π∗n(t | x) and a N(0, I(θ̂)−1) are random probability distributions
(RPM) since they involve the random quantity x which is distributed according to P0. To say
that these two RPMs are close, we first reduce the problem to a scalar random quantity, namely
the total variation distance between the two RPMs:

T (x) =

∫
R

∣∣∣π∗n(t | x)− φ(t | 0, I(θ̂)−1)
∣∣∣ dt.

T (x) is now a scalar random variable (function of x1, . . . , xn) and it makes sense to study its
convergence properties as n→∞, just like you study convergence properties of usual statistics
like the sample mean or sample variance. The BVM theorem states that T (x)→ 0 a.e. [P0].

Remark: Under the additional assumption that π has finite expectation, the following stronger
result holds:

lim
n→∞

∫
R
|t|
∣∣∣π∗n(t | x)− φ(t | 0, I(θ̂)−1)

∣∣∣ dt = 0
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with P0 probability 1. If this holds, then with P0 probability 1,∣∣∣∣∫ tπ∗n(t | x)dt−
∫
tφ(t | 0, I(θ̂)−1)dt

∣∣∣∣→ 0,

which further implies
∫
tπ∗n(t | x)dt → 0. Now, denoting θ∗n = Eθ | x =

∫
θπn(θ | x)dθ, it is

straightforward to see that
√
n(θ∗n − θ̂) =

∫
tπ∗n(t | x)dt. Thus,

√
n(θ∗n − θ̂)→ 0 a.e. [P0], or in

other words, θ∗n ≈ θ̂ + 1/
√
n. Therefore, the posterior mean and the m.l.e are asymptotically

equivalent.

Remark: A slightly different version of the BvM theorem replaces the data dependent quantity
I(θ̂)−1) by I(θ0)

−1. That is,

lim
n→∞

∫
R

∣∣π∗n(t | x)− φ(t | 0, I(θ0)−1)
∣∣ dt = 0

with P0 probability 1.

Remark: A BvM result implies that Bayesian credible sets have asymptotically correct fre-
quentist coverage. This gives frequentist justification to using credible sets as confidence sets
in situations where a confidence set is not readily available otherwise.

3.1 Illustration

As an illustration, consider x1, . . . , xn | θ ∼ N(θ, 1), with θ ∼ N(ξ, λ−1). We have seen
previously that π(θ | x1:n) ≡ N((nx̄+ λξ)/(n+ λ), 1/(n+ λ)). We showed in class that

d2TV

(
N
(
(nx̄+ λξ)/(n+ λ), 1/(n+ λ)

)
, N(0, 1/n)

)
≤
[

log(1 + λ/n)− λ

n+ λ
+

nλ2

(n+ λ)2
(x̄− ξ)2

]
by bounding the squared TV distance by twice the KL divergence. This quantity converges to
zero in probability or in expectation as n→∞.

3


	Notations
	Distances between probability measures
	Bernstein–von Mises theorem
	Illustration


