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1 General setup

Let x = (x1, . . . , xn) denote the data. Assume a parametric family {f(x | θ) : θ ∈ Θ}. We shall
typically deal with situations where Θ ⊂ Rd. A Bayesian specification is completed by assigning
a prior distribution π(·) on Θ. To begin with, we shall assume π is a probability distribution
on Θ with

∫
Θ π(θ)dθ = 1. We shall relax this later when we talk about improper priors.

Key quantities:

(a) φ(x, θ) = f(x | θ)π(θ).

(b) m(x) =
∫
f(x | θ)π(θ)dθ (normalizing constant/evidence).

(c) π(θ | x) = f(x|θ)π(θ)
m(x) (posterior distribution of θ given data x). Let B ⊂ Θ be a subset of the

parameter space. Then, upon observing the data x, our belief that the unknown parameter is
in the set B is

π(B | x) =

∫
B f(x | θ)π(θ)dθ∫
f(x | θ)π(θ)dθ

.

If B1 and B2 are two subsets of the parameter space, the relative odds that the unknown
parameter is in B1 versus it is in B2 is∫

B1
f(x | θ)π(θ)dθ∫

B2
f(x | θ)π(θ)dθ

.

(d) If y ∼ g(· | θ, x), then g(y | x) =
∫
g(y | θ, x)π(θ | x)dθ.

If the data are i.i.d., then f(x | θ) =
∏n
i=1 f(xi | θ) and m(x) =

∫ ∏n
i=1 f(xi | θ)π(θ)dθ. If xn+1

is a future observation, then the predictive distribution

g(xn+1 | x1:n) =

∫
f(xn+1 | θ)π(θ | x1:n)dθ.

Thus, we average the likelihood of the future observation with the posterior distribution given
the observed data as weight. This automatically takes into account the uncertainty in θ while
making a prediction.

A nice feature of the posterior distribution is that it returns the same answer irrespective of
whether the data is available in batch or sequentially. If the data arrives sequentially, we can
continue updating our belief using the observed data up to any time point, and use the updated
belief as the prior for the next time point. Once we have observed all the data, we get back the
same posterior.

Initialize: Set t = 0 and π0 = π.
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Iterate: For t = 1 : n, πt(θ | x1:t) ∝
[∏t

i=1 f(xi | θ)
]
πt−1(θ).

Show that πn is the usual posterior given x = x1:n.

Example: bent coin. A bent coin is tossed n times. a Hs and b = n− a Ts are observed. We
wish to estimate the bias of the coin and predict the probability that the next toss will result
in an H. This is a prototype for many statistical problems where only two types of outcomes
are possible. For example: (1) a wellness survey randomly selects 200 TAMU students and asks
whether they are generally happy with the quality of education received. 182 respond YES.
What proportion of TAMU students are generally happy with the quality of education? (2) a
new look of an email app is about to be unveiled. 1000 users are randomly selected and notified
to participate in a survey to comment on the new look. 35 of them take the survey. what is the
effectiveness of the survey mechanism?

We can formulate the problem as: x1, . . . , xn | p are independent Bernoulli(θ). Let us assign
a U(0, 1) prior to θ, which is a special case of a Beta(α, β) prior with α = β = 1. The prior
choice is a subjective assumption; we shall shortly see examples of other priors.

Likelihood: f(x | θ) = θa(1− θ)b, where a =
∑n

i=1 xi and b = n− a.

Marginal likelihood:

m(x) =
1

B(α, β)

∫ 1

0
θa+α−1(1− θ)b+β−1dθ

=
B(a+ α, b+ β)

B(α, β)
.

Posterior distribution: π(θ | x1:n) ∝ θa+α−1(1− θ)b+β−1
1(0,1)(θ) ∼ Beta(a+ α, b+ β). The

prior and posterior are in the same distribution family (Beta): we say that the Beta family is
a conjugate prior for the Binomial likelihood.

Predictive distribution:

P (xn+1 = 1 | x1, . . . , xn)

=

∫
P (xn+1 = 1 | θ)π(θ | x1:n)dθ

=

∫
θπ(θ | x1:n)dθ

=
a+ α

n+ α+ β
.

With α = β = 1, the predictive probability is (a+ 1)/(n+ 2), which is known as Laplace’s rule.

Point and interval estimation: The posterior distribution summarizes the entire information
regarding the unknown parameter upon observing the data. This distribution can now be
summarized in various ways. For example, if only a point estimate is required, we can use some
measure of central tendency of the posterior, e.g., the mean or the mode1. In the bent coin
example, the posterior mean

θ̂ = E(θ | x) =
a+ α

n+ α+ β
=

n

n+ α+ β

a

n︸︷︷︸
m.l.e.

+
α+ β

n+ α+ β

α

α+ β︸ ︷︷ ︸
prior mean

1When the posterior mode is used as a point estimate, the resulting estimate is often called a MAP (maximum
a posteriori) estimate
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is a convex combination of the m.l.e. (sample mean) and the prior mean (we shall see this
repeatedly in many examples). The MAP estimate is

θ̂MAP =
a+ α− 1

n+ α+ β − 1
.

Observe that as n gets larger, both the posterior mean and the MAP estimate get closer and
closer to the maximum likelihood estimate irrespective of the values of α, β (as long as they
are fixed). This is again a more general phenomenon: in regular models, the m.l.e. and the
posterior center merge asymptotically.

The Bayesian approach also provides an automatic characterization of uncertainty. No asymp-
totic arguments are required unlike the classical counterpart.

Definition. A 100× (1− α)% credible set for θ is any set C ⊂ Θ such that π(C | x) ≥ (1− α).
Typically, when θ is a one-dimensional parameter, C is taken to be an interval of the form
[l(x), u(x)]. The shortest such interval is called the HPD (highest posterior density) credible
region. If the posterior is unimodal, the HPD typically corresponds to the 100 × α/2% and
100× (1− α/2)% quantiles.

Recall that the interpretation of a frequentist confidence set (say, 95%) is that under repeated
replications of the experiment, the interval in question contains the true parameter value 95%
of the times. A Bayesian credible set on the other hand makes a statement conditioned on
the observed data; imaginary datasets that we haven’t observed do not enter the picture. The
statistician believes that given the particular dataset we have observed, the unknown parameter
is 95% likely to be in the credible interval. For example, consider yourself to be an astronaut
traveling to Mars on a five year flight. Compare the following two statements: (A) “in an
imaginary population of spaceships like yours, the average life is greater than 10 years 95%
of times”, and (B) 11There is 95% probability that this spaceship will last at least 10 years”.
Which statement you will be more comforted with?

Albeit coming from philosophically different standpoints, Bayesian credible intervals often have
the correct frequentist coverage (we shall make this concrete later on). This is very useful from
a frequentist sense because we can obtain a uncertainty characterization without resorting to
asymptotic arguments, whose assumptions may not hold in finite samples.

A comment on the marginal likelihood. Later, when we talk about model selection.

As we have seen above, the beta family is conjugate to the Bernoulli (equivalently Binomial)
likelihood. Many other members of the exponential family have such conjugate priors. Consider
two examples below:

Poisson example. Suppose x1, . . . , xn | λ ∼ Poisson(λ). Consider a gamma prior on λ:
λ ∼ Gamma(α, β) with density

βα

Γ(α)
e−βλλα−1

1(0,∞)(λ).

Verify that

1. The posterior distribution λ | x1:n ∼ Γ(T + α, n+ β), where T =
∑n

i=1 xi.

2. The posterior mean E(λ | x) = (T + α)/(n+ β) = (T/n)× n/(n+ β) + (α/β)× β/(n+ β).
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3. The marginal likelihood

m(x) =
[ n∏
i=1

xi!
]−1 βα

Γ(α)
× Γ(T + α)

(n+ β)(T+α)
.

4. Find the predictive distribution.

Normal example (known variance). Suppose x1, . . . , xn | µ ∼ N(µ, 1). Assume a normal
prior µ ∼ N(ξ, τ−1). Verify that

1. The posterior distribution

µ | x1:n ∼ N
(
nx̄+ ξλ

n+ λ
,

1

n+ λ

)
.

There is a simple way to remember this posterior in normal models with normal priors. The
posterior precision (inverse variance) equals the data precision plus the prior precision. The
posterior mean is a convex combination of the prior mean and the data mean, with the weights
proportional to the respective precisions:

E(µ | x1:n) =
n

n+ λ
x̄+

λ

n+ λ
ξ.

2. The marginal likelihood

logm(x) = −n
2

log(2π)− S

2
− 1

2

nλ

n+ λ
(x̄− ξ)2 − 1

2
log(n+ λ) +

1

2
log(λ).

3. The predictive distribution:

f(xn+1 | x1:n) ∼ N(µ̂, 1 + σ̂2),

where µ̂ and σ̂2 are the posterior mean and variance respectively from the previous display.

Transformations. Consider x1, . . . , xn | θ ∼ Bernoulli(θ) and suppose the parameter of in-
terest is η = logit(θ). This is trivial in a Bayesian setting as we can obtain the posterior
distribution of η | x1:n from the posterior of θ | x1:n by a simple change of variable. We can now
obtain point and interval estimates from the posterior distribution of η | x1:n.

In general, if the parameter of interest is η = g(θ), we can use Monte Carlo (MC) to make ap-
proximate inference about η. Suppose we are given independent samples {θt}Tt=1 from π(θ | x1:n)
(this may not be a trivial task unless the prior is conjugate - we shall see how to address this
later on). Then, {ηt = g(θt)}Tt=1 are independent samples from π(η | x1:n). The sample mean

θ̄ = T−1
∑T

t=1 θt provides an approximation to the posterior mean
∫
ηπ(η | x1:n)dη by the

strong law of large numbers. Similarly, the sample quantiles of the {ηt}s can be used to con-
struct credible intervals for η.

Dirichlet-multinomial example.

The two-parameter normal family. A random variable Z ∼ tν (t distribution with ν > 0
degrees of freedom) has density

f(z) =
Γ(ν + 1/2)√
νπ Γ(ν/2)

1

(1 + t2/ν)(ν+1)/2
, z ∈ R.
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For d1 ∈ R and d2 > 0, we say that Z ∼ tν(d1, d
2
2) if (Z − d1)/d2 ∼ tν . We shall call d1 the

center and d2 the scale.
Suppose x1, . . . , xn | µ, σ2 ∼ N(µ, τ−1), and the goal is to perform inference on the unknown

mean µ and variance σ2 = τ−1. We have separately seen so far: (i) if σ2 is known, then
a normal prior on µ is conjugate, (ii) if µ is known, then a gamma prior on the precision τ
(VFY) is conjugate (this is equivalent to an inverse-gamma prior on σ2). When both µ and
τ are unknown, a natural idea is to use independent normal and gamma priors on µ and τ
respectively. However, this prior is not conjugate.

A conjugate prior for (µ, τ) is defined hierarchically as: µ | τ ∼ (ξ, λ−1τ−1) and τ ∼
gamma(a, b). This is called a normal-gamma (NG) prior, denoted NG(ξ, λ, a, b), with prior
hyperparameters ξ, λ > 0, > 0, b > 0. The joint prior distribution

π(µ, τ) ∝ τ1/2e−λτ(µ−ξ)2/2τa−1e−bτ , µ ∈ R, τ > 0.

Note. For random variables (U, V ), the joint distribution is uniquely specified by the conditional
distribution of U | V and the marginal distribution of V . (or vice versa). This extends to any
number of random variables, where the joint distribution is determined by a cascading sequence
of conditional distributions. Expressing a prior distribution for two or more parameters in this
fashion is often called a hierarchical prior specification. Note that at any stage, we only have
to specify a univariate distribution.

Apart from conjugacy, the conditional prior specification of µ | τ leads to an easy interpretation
of λ−1 as a signal-to-noise ratio: it quantifies how variable a priori the mean is relative to the
variance.

The marginal prior of µ can be calculated by integrating over τ . We have

π(µ)

=

∫
π(µ, τ)dτ

=
ba

Γ(a)

λ1/2

√
2π

∫ ∞
0

τa+1/2−1e−[λ(µ−ξ)2/2+b]τdτ

=
λ1/2

√
2π

ba

Γ(a)

Γ(a+ 1/2)

[b+ λ(µ− ξ)2/2](a+1/2)

=
Γ(a+ 1/2)

Γ(a)

1√
(2a)π

1√
{b/(aλ)}

[
1 +

(µ− ξ)2

(2a)× {b/(aλ)}

]−(2a+1)/2

.

Hence, the marginal prior for µ is a t distribution with center ξ, scale
√
b/(aλ) and degrees of

freedom 2a. The uncertainty in the precision renders the marginal prior for µ to have heavier
tails than the conditional prior.

The joint likelihood

L(µ, τ) ∝ τn/2 exp

(
− τ

2

n∑
i=1

(xi − µ)2

)
.

Letting S =
∑n

i=1(xi − x̄)2, we can write

L(µ, τ) ∝ τn/2e−τS/2 e−nτ(µ−x̄)2/2.

Based on what we have done for the normal mean model in the previous week, it is straightfor-
ward to see that

π(µ | τ, x1:n) ∼ N(µn, τ
−1
n ),
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where

τn = (λ+ n)τ, µn =
λ

n+ λ
ξ +

n

n+ λ
x̄ =

nx̄+ λξ

n+ λ
.

Moreover, the joint posterior

π(µ, τ | x1:n) ∝ L(µ, τ)π(µ, τ)

∝ τn/2+a−1e−τ(S/2+b)τ1/2 exp

{
− τ

2

[
n(x̄− µ)2 + λ(µ− ξ)2

]}
.

Now,

n(x̄− µ)2 + λ(µ− ξ)2

= nx̄2 + λξ2 +
[
µ2(n+ λ)− 2µ(λξ + nx̄)

]
= nx̄2 + λξ2 + (n+ λ)

[
µ− nx̄+ λξ

n+ λ

]2

− (nx̄+ λξ)2

(n+ λ

= (n+ λ)(µ− µn)2 +
nλ

n+ λ
(x̄− ξ)2.

Let Zn = [nλ/(n+ λ)](x̄− ξ)2. Substituting in the previous display,

π(µ, τ | x1:n)

∝ τn/2+a−1e−τ(S/2+Zn/2+b)τ1/2 exp

{
− (n+ λ)τ(µ− µn)2

2

]
.

Comparing with the NG density, it is evident that µ, τ | x1:n ∼ NG(µn, n + λ, n/2 + a, S/2 +
Zn/2 + b). This proves that the NG prior is conjugate for the two parameter normal family.

To summarize:

1. The joint posterior µ, τ | x1:n ∼ NG(µn, n+ λ, n/2 + a, S/2 + Zn/2 + b).

2. The marginal posterior τ | x1:n ∼ gamma(n/2 + a, S/2 + Zn/2 + b).

3. The conditional posterior µ | τ, x1:n ∼ N(µn, τ
−1
n ).

4. The marginal posterior µ | x1:n is a t distribution with center µn, scale√
(S/2 + Zn/2 + b)

(n/2 + a)(n+ λ)

and degrees of freedom 2(n/2 + a).

We have seen previously that if we are able to draw independent samples from the posterior
distribution, then we can use Monte Carlo to obtain point and interval estimates for various
functionals of the parameters. For example, we may be interested in doing inference on the
coefficient of variation cv = σ/µ = τ−1/2/µ. One option is to explicitly calculate the posterior
distribution of cv from the joint posterior of (µ, τ) via change of variable (check if this is
tractable). Alternatively, we can:

a. For t = 1, . . . , T , independently draw (µ(t), τ (t)) from π(µ, τ | x1:n).

b. Calculate c
(t)
v = (τ (t))−1/2/µ(t) for t = 1, . . . , T .

c. Report sample quantiles of {c(t)
v }Tt=1 as an approximate credible interval for cv.

How would you achieve step (a)? This is trivially achieved by first drawing a sample τ (t) from
a gamma(n/2 + a, S/2 + Zn/2 + b) distribution (the marginal posterior of τ | x1:n), and then

6



given τ (t), drawing µ(t) | τ (t) ∼ N(µn, τ
−1
n ) (the conditional posterior of µ | τ, x1:n).

[In general, if (U, V ) have joint density fU,V with conditional fU |V and marginal fV , then we
can obtain a joint sample by first sampling v ∼ fV , and then u | v ∼ fU |V (· | V = v). ]

A joint credible region for (µ, τ) can also be obtained from the MC samples. Please look up
Figure 5.4. of Hoff for a plot of the joint posterior & read the accompanying example.

Normal-linear regression. Consider the homoskedastic normal linear regression model Y |
β, σ2 ∼ N (Xβ, σ2In) for a n × d matrix of predictors X and β ∈ Rp a vector of regression
coefficients. Elementwise, yi ∼ N(xT

i β, σ
2), where xT

i = (xi1, . . . , xid)
T is the ith row of X,

which contains the values of the d predictors for the ith observation. The goal is to estimate β
from the data. We assume n > d and that X has full column rank.

Let us initially assume σ2 is known. We define two different conjugate priors for β:
(i) g-prior: β | σ2 ∼ N (0, g σ2(XTX)−1).
(ii) Ridge-prior: β | σ2 ∼ N(0, λ−1 σ2Id).

Both priors lead to conjugate posteriors. g and λ are the respective hyperparameters for both
prior. Note that for the g-prior, the prior covariance can be non-diagonal.

For the g-prior,

β | σ2, y ∼ N
(

g

1 + g
(XTX)−1XTy︸ ︷︷ ︸

β̂OLS

,
g

1 + g
σ2 (XTX)−1

)
,

while for the ridge prior,

β | σ2, y ∼ N
(

(XTX + λIn)−1XTy︸ ︷︷ ︸
β̂R

, σ2 (XTX + λIn)−1

)
.

Observe that the posterior mean with the ridge prior is the classical ridge estimator β̂R. Clas-
sically, the ridge estimator is defined as the solution to the convex optimization problem2

β̂R = argmin
β

[
‖y −Xβ‖2 + λ‖β‖2

]
,

where λ is a tuning parameter. The Bayesian perspective lets us interpret λ as a precision
parameter and learn it from the data (more later), and also provides uncertainty characterization
for the ridge estimator. The posterior mean for the g-prior shrinks the OLS estimator towards
the origin, and the amount of shrinkage is dictated by g. More on choice of g later.

The unknown σ2 case. Taking cue from the analysis of the two-parameter normal model,
it is not difficult to see that a multivariate version of the NG (since we are in the variance
parameterization now) prior will continue to be conjugate. Specifically, if you want to use a
g-prior for β, then the hierarchical prior is specified as

β | σ2 ∼ N (0, g σ2 (XTX)−1), σ2 ∼ IG(a/2, b/2).

2Although, in the Bayesian literature, the usage of such an estimator dates back earlier (early 1960s, at least)
than the ridge estimator was coined from an optimization perspective.
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The marginal prior for β can be exactly calculated as

π(β) =

∫
π(β | σ2)π(σ2)dσ2 ∝

[
1 +

βTXTXβ

gb

]−(a+d)/2

.

This can be recognized to be a multivariate t distribution.

Aside. A multivariate t distribution tν,d(µ,Σ) has pdf proportional to[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−(ν+d)/2

.

For ν > 2, the mean and covariance are given by µ and {ν/(ν − 2)}Σ.

This implies the marginal prior for β is ta,d(0, (gb/a) (XTX)−1).

The joint posterior

π(β, σ2 | y) ∝ f(y | β, σ2)π(β | σ2)π(σ2)

∝ (σ2)−n/2 e−
‖y−Xβ‖2

2σ2 (σ2)−d/2e
−β

TXTXβ

2gσ2 (σ2)−(a/2+1)e−
b

2σ2 .

One way to proceed now is to do a bunch of algebra, simplify the expressions, and match with
the prior to see if we can identify the parameters as before. I outline a slightly different approach
here which is very handy in various problems.

Decompose π(β, σ2 | y) = π(β | σ2, y)π(σ2 | y). We already know, from our previous
analysis, that,

β | σ2, y ∼ N
(

g

1 + g
β̂OLS ,

g

1 + g
σ2 (XTX)−1

)
Hence, it remains to figure out the marginal posterior π(σ2 | y). Clearly,

π(σ2 | y) ∝ f(y | σ2)π(σ2), f(y | σ2) =

∫
f(y | β, σ2)π(β | σ2)dβ.

Usually, you have to compute the integral over β to obtain the marginal density of y | σ2.
However, in this specific case, using normal distribution theory, we get (VFY!)

y | σ2 ∼ N
(

0, σ2{In + gPX}
)
,

where PX = X(XTX)−1XT is the projection matrix of X. Now, things have gotten much
simpler. Using the fact (VFY!)

(In + gPX)−1 = In −
g

1 + g
PX ,

we get

σ2 | y ∼ IG

(
a+ n

2
,
b+ yT

(
In − g

1+gPX
)
y

2

)
.

The marginal posterior of β | y is a multivariate t distribution; identify its parameters.
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