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1 Motivation

Denote the observations by x with sampling density (pdf/pmf) f(x | θ) with θ ∈ Θ ⊂ Rd. Let
π(·) be a prior on θ. The posterior

π(θ | x) =
f(x | θ)π(θ)

m(x)
, m(x) =

∫
f(x | θ)π(θ)dθ.

In the i.i.d. case, f(x | θ) =
∏n
i=1 f(xi | θ).

In non-conjugate settings, we need a general set of tools to “compute” the posterior density.
Here, by “computing” the posterior density, we mean that we should be able to calculate any
posterior functional, such as the posterior mean, variance, median, quantiles of θ or of ψ(θ),
where ψ is a known function. Even in conjugate settings, we have seen examples where the
posterior distribution of certain ψ(θ)s may be hard to obtain analytically, and we had to resort
to Monte Carlo techniques. In general, our aim is to be able to (approximately) sample from the
posterior distribution, so that the distribution of any posterior functional can be approximated.
For example, if θ1, . . . , θT are (approximately) independent samples from the posterior, then
ψ(θ1), . . . , ψ(θT ) are samples from the posterior distribution of ψ(θ) | x, and we can use these
samples to approximate the posterior mean/median/quantiles etc of ψ(θ).

The main bottleneck in sampling from the posterior is that the normalizing constant m(x)
is generally “intractable”. This may be due to the fact that the integral is not analytically
available, or the integral is highly expensive to compute, or a combination of both. For example,
if f(x | θ) ∝ [1 + (x− θ)2]−1, a Cauchy distribution with location θ, and θ ∼ N(0, 1), then the
integral is clearly not a standard one. As a second example, consider x | θ ∼ 0.5N(µ1, 1) +
0.5N(µ2, 1), with µ1, µ2 ∼ N(0, 1) independently. Then,

f(x | θ) = 2−n
n∑
j=0

∑
S:|S|=j

[ ∫ ∏
i∈S

φ(xi − µ1)φ(µ1)dµ1

][ ∫ ∏
l∈Sc

φ(xl − µ2)φ(µ2)dµ2

]
,

where φ is the standard normal cdf and S denotes a subset of {1, . . . , n} with |S| its size. Clearly,
each of the inner integrals can be calculated analytically, but we have an outer sum over 2n

terms.

2 The Bootstrap filter

The Bootstrap filter is operationally very similar to self-normalized importance sampling we
studied earlier. The additional observation here is that we can not only approximate integrals
under the posterior, but also obtain a discrete approximation to the posterior, which is useful
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for example in obtaining credible intervals.

Algorithm (Bootstrap filter):

(i) Sample θ1, . . . , θT ∼ π independently.

(ii) Set

wt =
f(xobs | θt)∑T
j=1 f(xobs | θj)

.

(iii) Attach probability wt to θt. In other words, Π̂T :=
∑T

t=1wtδθt is our (random) discrete
approximation to the posterior distribution. Here and elsewhere, δu denotes a point mass at u.

It is straightforward to show that for any Borel set B, Π̂T (B)→ Π(B | xobs) as T →∞. To see
this,

Π̂T (B) =
T−1

∑T
t=1 f(xobs | θt)1(θt ∈ B)

T−1
∑T

t=1 f(xobs | θt)
→
∫
B f(xobs | θ)π(θ)dθ∫
f(xobs | θ)π(θ)dθ

,

almost surely by SLLN. Clearly, the last expression is the posterior probability of the set B.
Along similar lines, (and maybe with a few additional assumptions), we can show that for any
“nice” function g : Θ→ R,

T∑
j=1

wjg(θj)→
∫
g(θ)π(θ | xobs)

almost surely as T → ∞, provided the right hand side exists and is finite. This in particular
means we can approximate any posterior moments from the discrete approximation. Same is
true of posterior quantiles, which allows us to construct credible intervals for the unknown
parameters.

A useful modification of the Bootstrap filter can be achieved by sampling from an importance
density q in the first step instead of the prior π. The weights then need to be appropriately
adjusted to keep the target distribution the same. This importance density may be derived
from a gaussian approximation to the posterior or a kernel density estimator fitted to a previous
discrete approximation to the posterior.

Algorithm (Bootstrap filter with IS): Let q be a positive density on Θ.

(i) Sample θ1, . . . , θT ∼ q independently.

(ii) Set

ωt =
f(xobs | θt)π(θt)/q(θt)∑T
j=1 f(xobs | θj)π(θj)/q(θj)

.

(iii) Attach probability ωt to θt, i.e., Π̂IS
T :=

∑T
t=1 ωtδθt is the discrete approximation to the

posterior distribution.

Verify that all the properties of Π̂T remain intact for Π̂IS
T . Indeed, with a “good” importance

density q, Π̂IS
T may be efficient by orders of magnitude. For choosing q, one thing to be careful

about is that q is not too light tailed. If q has lighter tails than the posterior, then one may
potentially underestimate uncertainty. A default choice is to use heavy tailed distributions like
the t. The mean and covariance may be set to be the mle and a constant (> 1) multiple of the
inverse Fisher information respectively in regular models.

The Bootstrap filter is ideal for low-dimensional problems; however, with increasing dimensions,
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one needs more and more particles (i.e., larger T ) to reliably estimate posterior quantities. One
way to think about this is that there is a lot more “empty space” as dimension increases, so
it is more likely that a random prior draw has very little posterior density. In such cases, one
encounters something called “particle degeneracy”, i.e., most of the particles have very small
weight and all the weight concentrates on a very small number of particles. (If you are interested
in a more mathematical description of this, there is a recent paper by Sourav Chatterjee and
Persi Diaconis at Stanford on importance sampling in multivariate problems). That said, there
is a class of high-dimensional problems where the Bootstrap filter can be integrated seamlessly,
namely, state-space models.

2.1 A simple sequential Monte Carlo (SMC) algorithm

We shall now see an application of the Bootstrap filter to state-space models, a class of
dynamic hidden-variable models. The following presentation is adapted from a seminal paper:
Novel approach to nonlinear/non-Gaussian Bayesian state estimation, by Gordon, Salmond,
Smith (1993) (henceforth GSS).

We begin with a general state-space model that consists of two parts: an observation equation
of the form

xt ∼ ft(· | θt, φ), t = 1, . . . , T, (1)

and a state equation represented by a Markov process given by

θt ∼ qt(· | θt−1, ψ). (2)

Denoting xt = (x1, . . . , xt)
′, we focus on the posterior distribution π(θt | xt) of the unknown

state θt given the observations up to time t. For simplicity of exposition, we assume that the
starting distribution θ0 ∼ q0 and the parameters (φ, ψ) are known, although this assumption is
not necessary for general SMC algorithms.

Example. Consider a Gaussian random walk model in which xt | θt ∼ N(θt, V ) and θt | θt−1 ∼
N(θt−1,W ) for t = 0, 1, . . . , T = 100. In this case, the posterior p(θt | xt) is Gaussian and
analytic expressions for the posterior mean and variance are available via the standard Kalman
filter, which enables us to evaluate the algorithm we develop next.

General expressions for the posterior distributions π(θt | xt) can be obtained recursively from
Bayes theorem and the Markovian properties of the state space according to the following
algorithm:

Algorithm : Bayesian filtering

Initialization: Set π(θ0 | x0) := q0(θ0).

Prediction: Using the Markovian property,

π(θt | xt−1) =

∫
qt(θt | θt−1)π(θt−1 | xt−1)dθt−1. (3)

[Since π(θt, θt−1 | xt−1) = qt(θt | θt−1)π(θt−1 | xt−1) by the Markovian property]

Update: Using Bayes rule and again exploiting the Markovian property,

π(θt | xt) =
ft(xt | θt)π(θt | xt−1)

mt
, (4)

where mt =
∫
ft(xt | θt)π(θt | xt−1)dθt.
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For the Gaussian random walk model, the “Prediction” and “Update” steps can be carried out
analytically.

In general, for non-conjugate models, the Bootstrap filter algorithm can be seamlessly adapted
within the above recursive structure to make a transition from π(θt−1 | xt−1) to π(θt | xt)
whenever it is possible to conveniently sample from the state equation qt(· | θt−1) and to

evaluate ft(· | θt). Specifically, suppose we are provided J independent samples {θ(j)t−1}Jj=1 from
from π(θt−1 | xt−1). We run the following algorithm to approximate π(θt | xt).

Bootstrap Filtering in state-space models:

1. For j = 1, . . . , J , draw θ
(j)
t from qt(· | θ(j)t−1, ψ). [for example, in the Gaussian example

above, we draw θ
(j)
t ∼ N(θ

(j)
t−1,W )]

2. Calculate weights

w
(j)
t =

ft(xt | θ(j)t )∑J
j′=1 ft(xt | θ

(j′)
t )

The algorithm outputs {θ(j)t , w
(j)
t }Jj=1, which provide a weighted approximation to the posterior.

We can resample J times independently from this discrete distribution to obtain the indepen-
dent samples needed to move from step t to t+1. Thus, it is straightforward to write a recursive
algorithm to sample from πs(θs | xs) for any s ≥ 1. We initialize the algorithm with J prior
samples from q0 and recursively cycle through 3 steps: (i) sample, (ii) calculate weights, and
(iii) resample.

In the normal example, I implemented the Bootstrap filtering algorithm. Figure 1 shows his-
tograms of posterior samples obtained from the BF algorithm states θt with the true posterior
density overlaid for time points 25, 50, 75 and 100. (the true posterior can be exactly calculated
recursively in the Gaussian random walk model as mentioned before; see HW problem!)

We next apply the Bootstrap filter to a non-linear state-space model previously considered
in GSS.

θt = 0.5θt−1 + 25θt−1/(1 + θ2t−1) + 8 cos{1.2(t− 1)}+ wt, wt ∼ N(0,W ), (5)

xt = θ2t /20 + vt, vt ∼ N(0, V ), (6)

with W = 10, V = 1 and initial state θ0 = 0.1. The state evolution is highly non-linear and the
unknown states θt enter the likelihood of the observed yt through a quadratic transformation,
rendering the posterior distributions of some of the states to be bimodal. As in [? ], we
first plot a 50 point realization from the state equation in Figure 2. Gordon et al., (1993)
implemented their bootstrap filter algorithm initialized with J = 500 prior draws from the
prior p(x0) ≡ N(0, 2) and proceeding to resample 500 points from the discrete approximation to
the posterior p(θt | xt) at each t. Their procedure comprehensively beat the ensemble Kalman
filter (EKF) in recovering the posterior means for θj and provided significantly tighter 95%
credible intervals. An implementation of the bootstrap filter algorithm is shown in Figure 3; I
used the same legends and axis limits as in Figure 3 of Gordon et al., (1993) for ease of visual
comparison.
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Figure 1: State estimation in random walk model. Histograms of posterior samples from Boot-
strap filter for states θt for t = 25, 50, 75, 100 with the true posterior density overlaid.

Figure 2: 50 point realization from (5) with initial state θ0 = 0.1.
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Figure 3: Bootstrap filter estimate of posterior mean and 95% credible regions for θt.
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