
Chapter 9

Generalised Linear Models

To motivate the GLM approach let us briefly overview linear models.

9.1 An overview of linear models

Let us consider the two competing linear nested models

Restricted model: Yi = �0 +
q
X

j=1

�jxi,j + "i,

Full model: Yi = �0 +
q
X

j=1

�jxi,j +
p
X

j=q+1

�jxi,j + "i, (9.1)

where {"i} are iid random variables with mean zero and variance �2. Let us suppose

that we observe {(Yi, xi,j)}ni=1, where {Yi} are normal. The classical method for testing

H0 : Model 0 against HA : Model 1 is to use the F-test (ANOVA). That is, let �̂2
R be the

residual sum of squares under the null and �̂2
F be the residual sum of squares under the

alternative. Then the F-statistic is

F =

�

S2
R � S2

F

�

/(p� q)

�̂2
F

,

where

S2
F =

n
X

i=1

(Yi �
p
X

j=1

�̂F
j xi,j)

2 S2
R =

n
X

i=1

(Yi �
q
X

j=1

�̂R
j xi,j)

2

�2
F =

1

n� p

n
X

i=1

(Yi �
p
X

j=1

�̂F
j xi,j)

2.
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and under the null F ⇠ Fp�q,n�p. Moreover, if the sample size is large (p� q)F
D! �2

p�q.

We recall that the residuals of the full model are ri = Yi� �̂0�
Pq

j=1 �̂jxi,j�
Pp

j=q+1 �̂jxi,j

and the residual sum of squares S2
F is used to measure how well the linear model fits the

data (see STAT612 notes).

The F-test and ANOVA are designed specifically for linear models. In this chapter

the aim is to generalise

• Model specification.

• Estimation

• Testing.

• Residuals.

to a larger class of models.

To generalise we will be in using a log-likelihood framework. To see how this fits in

with the linear regression, let us now see how ANOVA and the log-likelihood ratio test

are related. Suppose that �2 is known, then the log-likelihood ratio test for the above

hypothesis is

1

�2

�

S2
R � S2

F

�

⇠ �2
p�q,

where we note that since {"i} is Gaussian, this is the exact distribution and not an

asymptotic result. In the case that �2 is unknown and has to be replaced by its estimator

�̂2
F , then we can either use the approximation

1

�̂2
F

�

S2
R � S2

F

� D! �2
p�q, n ! 1,

or the exact distribution
�

S2
R � S2

F

�

/(p� q)

�̂2
F

⇠ Fp�q,n�p,

which returns us to the F-statistic.

On the other hand, if the variance �2 is unknown we return to the log-likelihood ratio

statistic. In this case, the log-likelihood ratio statistic is

log
S2
R

S2
F

= log

✓

1 +
(S2

F � S2
R)

�̂2
F

◆

D! �2
p�q,
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recalling that 1
b�
Pn

i=1(Yi � b�xi) = n. We recall that by using the expansion log(1 + x) =

x+O(x2) we obtain

log
S2
R

S2
F

= log

✓

1 +
(S2

R � S2
F )

S2
F

◆

=
S2
R � S2

F

S2
F

+ op(1).

Now we know the above is approximately �2
p�q. But it is straightforward to see that by

dividing by (p� q) and multiplying by (n� p) we have

(n� p)

(p� q)
log

S2
R

S2
F

=
(n� p)

(p� q)
log

✓

1 +
(S2

R � S2
F )

S2
F

◆

=
(S2

R � S2
F )/(p� q)

�̂2
F

+ op(1) = F + op(1).

Hence we have transformed the log-likelihood ratio test into the F -test, which we discussed

at the start of this section. The ANOVA and log-likelihood methods are asymptotically

equivalent.

In the case that {"i} are non-Gaussian, but the model is linear with iid random

variables, the above results also hold. However, in the case that the regressors have a

nonlinear influence on the response and/or the response is not normal we need to take an

alternative approach. Through out this section we will encounter such models. We will

start by focussing on the following two problems:

(i) How to model the relationship between the response and the regressors when the

reponse is non-Gaussian, and the model is nonlinear.

(ii) Generalise ANOVA for nonlinear models.

9.2 Motivation

Let us suppose {Yi} are independent random variables where it is believed that the re-

gressors xi (xi is a p-dimensional vector) has an influence on {Yi}. Let us suppose that

Yi is a binary random variable taking either zero or one and E(Yi) = P (Yi = 1) = ⇡i.

How to model the relationship between Yi and xi? A simple approach, is to use a

linear model, ie. let E(Yi) = �0xi, But a major problem with this approach is that E(Yi),
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is a probability, and for many values of �, �0xi will lie outside the unit interval - hence

a linear model is not meaningful. However, we can make a nonlinear transformation

which transforms the a linear combination of the regressors to the unit interval. Such a

meaningful transformation forms an important component in statistical modelling. For

example let

E(Yi) = ⇡i =
exp(�0xi)

1 + exp(�0xi)
= µ(�0xi),

this transformation lies between zero and one. Hence we could just use nonlinear regres-

sion to estimate the parameters. That is rewrite the model as

Yi = µ(�0xi) + "i
|{z}

Y
i

�µ(�0x
i

)

and use the estimator b�i, where

b�n = argmin
�

n
X

i=1

✓

Yi � µ(�0xi)

◆2

, (9.2)

as an estimator of �. This method consistently estimates the parameter �, but there are

drawbacks. We observe that Yi are not iid random variables and

Yi = µ(�0xi) + �i✏i

where {✏i = Y
i

�µ(�0x
i

)p
Y
i

} are iid random variables and �i =
p
varYi. Hence Yi has a hetero-

geneous variance. However, the estimator in (9.2) gives each observation the same weight,

without taking into account the variability between observations (which will result in a

large variance in the estimator). To account for this one can use the weighted leasts

squares estimator

b�n = argmin
�

n
X

i=1

(Yi � µ(�0xi))
2

µ(�0xi)(1� µ(�0xi))
, (9.3)

but there is no guarantee that such an estimator is even consistent (the only way to be

sure is to investigate the corresponding estimating equation).

An alternative approach is to use directly use estimating equations (refer to Section

8.2). The the simplest one solves

n
X

i=1

(Yi � µ(�0xi)) = 0,
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where µ(�0xi). However, this solution does not lead to an estimator with the smallest

“variance”. Instead we can use the ”optimal estimation equation” given in Section 8.3

(see equation 8.12). Using (8.12) the optimal estimating equation is

n
X

i=1

µ0
i(✓)

Vi(✓)
(Yi � µi(✓))

=
n
X

i=1

(Yi � µ(�0xi))

µ(�0xi)[1� µ(�0xi)]

@µ(�0xi)

@�
=

n
X

i=1

(Yi � µ(�0xi))

µ(�0xi)[1� µ(�0xi)]
µ0(�0xi)xi = 0,

where we use the notation µ0(✓) = dµ(✓)
d✓

(recall var[Yi] = µ(�0xi)(1� µ(�0xi))). We show

below (using the GLM machinery) that this corresponds to the score function of the

log-likelihood function.

The GLM approach is a general framework for a wide class of distributions. We recall

that in Section 1.6 we considered maximum likelihood estimation for iid random variables

which come from the natural exponential family. Distributions in this family include

the normal, binary, binomial and Poisson, amongst others. We recall that the natural

exponential family has the form

f(y; ✓) = exp

✓

y✓ � (✓) + c(y)

◆

,

where (✓) = b(⌘�1(✓)). To be a little more general we will suppose that the distribution

can be written as

f(y; ✓) = exp

✓

y✓ � (✓)

�
+ c(y,�)

◆

, (9.4)

where � is a nuisance parameter (called the disperson parameter, it plays the role of the

variance in linear models) and ✓ is the parameter of interest. We recall that examples of

exponential models include

(i) The exponential distribution is already in natural exponential form with ✓ = � and

� = 1. The log density is

log f(y; ✓) = ��y + log �.

(ii) For the binomial distribution we let ✓ = log( ⇡
1�⇡

) and � = 1, since log( ⇡
1�⇡

) is

invertible this gives

log f(y; ✓) = log f(y; log
⇡

1� ⇡
) =

�

y✓ � n log
� exp(✓)

1 + exp(✓)

�

+ log

✓

n

y

◆

�

.
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(iii) For the normal distribution we have that

log f(y;µ, �2) =

✓

� (y � µ)2

2�2
� 1

2
log �2 � 1

2
log(2⇡)

◆

=
�y2 + 2µy � µ2

2�2
� 1

2
log �2 � 1

2
log(2⇡).

Suppose µ = µ(�0xi), whereas the variance �2 is constant for all i, then �2 is the

scale parameter and we can rewrite the above as

log f(y;µ, �2) =

µ
|{z}

✓

y � µ2/2
|{z}

(✓)

�2
�
✓

� y2

2�2
� 1

2
log �2 � 1

2
log(2⇡)

◆

| {z }

=c(y,�)

.

(iv) The Poisson log distribution can be written as

log f(y;µ) = y log µ� µ+ log y!,

Hence ✓ = log µ, (✓) = � exp(✓) and c(y) = log y!.

(v) Other members in this family include, Gamma, Beta, Multinomial and inverse Gaus-

sian to name but a few.

Remark 9.2.1 (Properties of the exponential family (see Chapter 1 for details)) (i)

Using Lemma 1.6.3 (see Section 1.6) we have E(Y ) = 0(✓) and var(Y ) = 00(✓)�.

(ii) If the distribution has a “full rank parameter space” (number of parameters is equal

to the number of su�cient statistics) and ✓(⌘) (where ⌘ is the parameter of interest)

is a di↵eomorphism then the second derivative of the log-likelihood is non-negative.

To see why we recall for a one-dimensional exponential family distribution of the

form

f(y; ✓) = exp

✓

y✓ � (✓) + c(y)

◆

,

the second derivative of the log-likelihood is

@2 log f(y; ✓)

@✓2
= �00(✓) = �var[Y ].
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If we reparameterize the likelihood in terms of ⌘, such that ✓(⌘) then

@2 log f(y; ✓(⌘))

@⌘2
= y✓00(⌘)� 0(✓)✓00(⌘)� 00(✓)[✓0(⌘)]2.

Since ✓(⌘) is a di↵eomorphism between the space spanned by ⌘ to the space spanned

by ✓, log f(y; ✓(⌘)) will be a deformed version of log f(y; ✓) but it will retain prop-

erties such concavity of the likelihood with respect to ⌘.

GLM is a method which generalises the methods in linear models to the exponential

family (recall that the normal model is a subclass of the exponential family). In the GLM

setting it is usually assumed that the response variables {Yi} are independent random

variables (but not identically distributed) with log density

log f(yi; ✓i) =

✓

yi✓i � (✓i)

�
+ c(yi,�)

◆

, (9.5)

where the parameter ✓i depends on the regressors. The regressors influence the response

through a linear predictor ⌘i = �0xi and a link function, which connects �0xi to the mean

E(Yi) = µ(✓i) = 0(✓i).

Remark 9.2.2 (Modelling the mean) The main “philosophy/insight” of GLM is con-

necting the mean µ(✓i) of the random variable (or su�cient statistic) to a linear trans-

form of the regressor �0xi. The “link” function g is a monotonic (bijection) such that

µ(✓i) = g�1(�0xi), and usually needs to be selected. The main features of the link function

depends on the distribution. For example

(i) If Yi are positive then the link function g�1 should be positive (since the mean is

positive).

(i) If Yi take binary values the link function g�1 should lie between zero and one (it

should be probability).

Let g : R ! R be a bijection such that g(µ(✓i)) = ⌘i = �0xi. If we ignore the scale

parameter, then by using Lemma 1.6.3 (which relates the mean and variance of su�cient

statistics to (✓i)) we have

d(✓i)

d✓i
= g�1(⌘i) = µ(✓i) = E(Yi)

✓i = µ�1(g�1(⌘i)) = ✓(⌘i)

var(Yi) =
d2(✓i)

d✓2i
=

dµ(✓i)

d✓i
. (9.6)
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Based on the above and (9.5) the log likelihood function of {Yi} is

Ln(�) =
n
X

i=1

✓

Yi✓(⌘i)� (✓(⌘i))

�
+ c(Yi,�)

◆

.

Remark 9.2.3 (Concavity of the likelihood with regressors) We mentioned in Re-

mark 9.2.1 that natural exponential family has full rank and ✓(⌘) is a reparameterisation

in terms of ⌘, then @2logf(y;⌘)
@⌘2

is non-positive definite, thus log f(y; ✓) is a concave function.

We now show that the likelihood in the presence of regressors in also concave.

We recall that

Ln(�) =
n
X

i=1

✓

Yi✓(⌘i)� (✓(⌘i)) + c(Yi)

◆

.

where ⌘i = �0xi. Di↵erentiating twice with respect to � gives

r2
�Ln(�) = X0

n
X

i=1

@2 log f(Yi; ✓(⌘i))

@⌘2i
X,

where X is the design matrix corresponding to the regressors. We mentioned above that
@2 log f(Y

i

;⌘
i

)

@⌘2
i

is non-positive definite for all i which in turn implies that its sum is non-

positive definite. Thus Ln(�) is concave in terms of �, hence it is simple to maximise.

Example: Suppose the link function is in canonical form i.e. ✓(⌘i) = �0xi (see the

following example), the log-likelihood is

Ln(�) =
n
X

i=1

✓

Yi�
0xi � (�0xi) + c(Yi)

◆

.

which has second derivative

r2
�Ln(�) = �X0

n
X

i=1

00(�0xi)X

which is clearly non-positive definite.

The choice of link function is rather subjective. One of the most popular is the

canonical link which we define below.

Definition 9.2.1 (The canonical link function) Every distribution within the expo-

nential family has a canonical link function, this is where ⌘i = ✓i. This immediately

implies that µi = 0(⌘i) and g(0(✓i)) = g(0(⌘i)) = ⌘i (hence g is inverse function of 0).
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The canonical link is often used because it make the calculations simple (it also saves one

from ”choosing a link function”). We observe with the canonical link the log-likelihood

of {Yi} is

Ln(�) =
n
X

i=1

✓

Yi�0xi � (�0xi)

�
+ c(Yi,�)

◆

.

Example 9.2.1 (The log-likelihood and canonical link function)

(i) The canonical link for the exponential f(yi;�i) = �i exp(��iyi) is ✓i = ��i = �0xi, and

� = ��0xi. The log-likelihood is

n
X

i=1

✓

Yi�
0xi � log(�0xi)

◆

.

(ii) The canonical link for the binomial is ✓i = �0xi = log( ⇡
i

1�⇡
i

), hence ⇡i =
exp(�0x

i

)
1+exp(�0x

i

)
.

The log-likelihood is

n
X

i=1

✓

Yi�
0xi + ni log

� exp(�0xi)

1 + exp(�0xi)

�

+ log

✓

ni

Yi

◆◆

.

(iii) The canonical link for the normal is ✓i = �0xi = µi. The log-likelihood is

✓

� (Yi � �0xi)2

2�2
+

1

2
log �2 +

1

2
log(2⇡)

◆

,

which is the usual least squared criterion. If the canonical link were not used, we would

be in the nonlinear least squares setting, with log-likelihood

✓

� (Yi � g�1(�0xi))2

2�2
+

1

2
log �2 +

1

2
log(2⇡)

◆

,

(iv) The canonical link for the Poisson is ✓i = �0xi = log �i, hence �i = exp(�0xi). The

log-likelihood is

n
X

i=1

✓

Yi�
0xi � exp(�0xi) + log Yi!

◆

.

However, as mentioned above, the canonical link is simply used for its mathematical

simplicity. There exists other links, which can often be more suitable.

251



Remark 9.2.4 (Link functions for the Binomial) We recall that the link function is

defined as a monotonic function g, where ⌘i = �0xi = g(µi). The choice of link function

is up to the practitioner. For the binomial distribution it is common to let g�1 = a well

known distribution function. The motivation for this is that for the Binomial distribution

µi = ni⇡i (where ⇡i is the probability of a ‘success’). Clearly 0  ⇡i  1, hence using g�1

= distribution function (or survival function) makes sense. Examples include

(i) The Logistic link, this is the canonical link function, where �0xi = g(µi) = log( ⇡
i

1�⇡
i

) =

log( µ
i

n
i

�µ
i

).

(i) The Probit link, where ⇡i = �(�0xi), � is the standard normal distribution function

and the link function is �0xi = g(µi) = ��1(µi/ni).

(ii) The extreme value link, where the distribution function is F (x) = 1�exp(�exp(x)).

Hence in this case the link function is �0xi = g(µi) = log(� log(1� µi/ni)).

Remark 9.2.5 GLM is the motivation behind single index models where E[Yi|Xi] =

µ(
Pp

j=1 �jxij), where both the parameters {�j} and the link function µ(·) is unknown.

9.3 Estimating the parameters in a GLM

9.3.1 The score function for GLM

The score function for generalised linear models has a very interesting form, which we

will now derive.

From now on, we will suppose that �i ⌘ � for all t, and that � is known. Much of the

theory remains true without this restriction, but this makes the derivations a bit cleaner,

and is enough for all the models we will encounter.

With this substitution, recall that the log-likelihood is

Ln(�,�) =
n
X

i=1

⇢

Yi✓i � (✓i)

�
+ c(Yi,�)

�

=
n
X

i=1

`i(�,�),

where

`i(�,�) =

⇢

Yi✓i � (✓i)

�
+ c(Yi,�)

�
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and ✓i = ✓(⌘i).

For the MLE of �, we need to solve the likelihood equations

@Ln

@�j

=
n
X

i=1

@`i
@�j

= 0 for j = 1, . . . , p.

Observe that

@`i
@�j

=
@`i
@✓i

@✓i
@�j

=
(Yi � 0(✓i))

�
✓0(⌘i)xij.

Thus the score equation is

@Ln

@�j

=
n
X

i=1

[Yi � 0(✓i)]

�
✓0(⌘i)xij = 0 for j = 1, . . . , p. (9.7)

Remark 9.3.1 (Connection to optimal estimating equations) Recall from (8.12)

the optimal estimating equation is

Gn(�) =
n
X

i=1

1

Vi(�)
(Yi � µi(�))

@

@�j

µi(�), (9.8)

we now show this is equivalent to (9.7). Using classical results on the exponential family

(see chapter 1) we have

E[Yi] = 0(✓) = µi(�)

var[Yi] = 00(✓) = Vi(�).

We observe that

@

@�j

µi(�) =
@µ(✓i)

@✓i
| {z }

=V
i

(�)

@✓i
@�j

= Vi(�)✓
0(⌘i)xij,

substituting this into (9.8) gives

@Ln

@�j

=
n
X

i=1

[Yi � 0(✓i)]

�
✓0(⌘i)xij = 0

which we see corresponds to the score of the likelihood.

To obtain an interesting expression for the above, recall that

var(Yi) = �µ0(✓i) and ⌘i = g(µi),
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and let µ0(✓i) = V (µi). Since V (µi) =
dµ

i

d✓
i

, inverting the derivative we have d✓
i

dµ
i

= 1/V (µi).

Furthermore, since d⌘
i

dµ
i

= g0(µi), inverting the derivative we have dµ
i

d⌘
i

= 1/g0(µi). By the

chain rule for di↵erentiation and using the above we have

@`i
@�j

=
d`i
d⌘i

@⌘i
@�j

=
d`i
d⌘i

@⌘i
@✓i

@✓i
@�j

(9.9)

=
d`i
d✓i

d✓i
dµi

dµi

d⌘i

@⌘i
@�j

=
d`i
d✓i

✓

dµi

d✓i

◆�1✓ d⌘i
dµi

◆�1 @⌘i
@�j

=
(Yi � 0(✓i))

�
(00(✓i))

�1(g0(µi))
�1xij

=
(Yi � µi)xij

�V (µi)g0(µi)

Thus the likelihood equations we have to solve for the MLE of � are
n
X

i=1

(Yi � µi)xij

�V (µi)g0(µi)
=

n
X

i=1

(Yi � g�1(�0xi))xij

�V (g�1(�0xi))g0(µi)
= 0, 1  j  p, (9.10)

(since µi = g�1(�0xi)).

(9.10) has a very similar structure to the Normal equations arising in ordinary least

squares.

Example 9.3.1 (i) Normal {Yi} with mean µi = �0xi.

Here, we have g(µi) = µi = �0xi so g0(µi) =
dg(µ

i

)
dµ

i

⌘ 1; also V (µi) ⌘ 1, � = �2, so

the equations become

1

�2

n
X

i=1

(Yi � �0xi)xij = 0.

Ignoring the factor �2, the LHS is the jth element of the vector XT (Y � X�0), so

the equations reduce to the Normal equations of least squares:

XT (Y �X�0) = 0 or equivalently XTX�0 = XTY.

(ii) Poisson {Yi} with log-link function, hence mean µi = exp(�0xi) (hence g(µi) =

log µi). This time, g0(µi) = 1/µi, var(Yi) = V (µi) = µi and � = 1. Substituting

µi = exp(�0xi), into (9.10) gives
n
X

i=1

(Yi � e�
0x

i)xij = 0.
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9.3.2 The GLM score function and weighted least squares

The GLM score has a very interesting relationship with weighted least squares. First

recall that the GLM takes the form

n
X

i=1

(Yi � µi)xij

�V (µi)g0(µi)
=

n
X

i=1

(Yi � g�1(�0xi))xij

�Vig0(µi)
= 0, 1  j  p. (9.11)

Next let us construct the weighted least squares criterion. Since E(Yi) = µi and var(Yi) =

�Vi, the weighted least squares criterion corresponding to {Yi} is

Si(�) =
n
X

i=1

(Yi � µ(✓i))2

�Vi

=
n
X

i=1

(Yi � g�1(�0xi))2

�Vi

.

The weighted least squares criterion Si is independent of the underlying distribution and

has been constructed using the first two moments of the random variable. Returning to

the weighted least squares estimator, we observe that this is the solution of

@Si

@�j

=
n
X

i=1

@si(�)

@µi

@µi

@�j

+
n
X

i=1

@si(�)

@Vi

@Vi

@�j

= 0 1  j  p,

where si(�) = (Y
i

�µ(✓
i

))2

�V
i

. Now let us compare @S
i

@�
j

with the estimating equations corre-

sponding to the GLM (those in (9.11)). We observe that (9.11) and the first part of the

RHS of the above are the same, that is

n
X

i=1

@si(�)

@µi

@µi

@�j

=
n
X

i=1

(Yi � µi)xij

�V (µi)g0(µi)
= 0.

In other words, the GLM estimating equations corresponding to the exponential family

and the weighted least squares estimating equations are closely related (as are the corre-

sponding estimators). However, it is simpler to solve
Pn

i=1
@s

i

(�)
@µ

i

@µ
i

�
j

= 0 than @S
i

@�
j

= 0.

As an aside, note that since at the true � the derivatives are

E

✓ n
X

i=1

@si(�)

@µi

@µi

@�j

◆

= 0 and E

✓

@Si

@�j

◆

= 0,

then this implies that the other quantity in the partial sum, E
�

@S
i

@�
j

�

is also zero, i.e.

E

✓ n
X

i=1

@si(�)

@Vi

@Vi

@�j

◆

= 0.
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9.3.3 Numerical schemes

The Newton-Raphson scheme

It is clear from the examples above that usually there does not exist a simple solution

for the likelihood estimator of �. However, we can use the Newton-Raphson scheme to

estimate � (and thanks to the concavity of the likelihood it is guaranteed to converge to

the maximum). We will derive an interesting expression for the iterative scheme. Other

than the expression being useful for implementation, it also highlights the estimators

connection to weighted least squares.

We recall that the Newton Raphson scheme is

(�(m+1))0 = (�(m))0 � (H(m))�1u(m)

where the p⇥ 1 gradient vector u(m) is

u(m) =

✓

@Ln

@�1

, . . . ,
@Ln

@�p

◆0

c�=�(m)

and the p⇥ p Hessian matrix H(m) is given by

H(m)
jk =

@2Ln(�)

@�j@�k

c�=�(m) ,

for j, k = 1, 2, . . . , p, both u(m) and H(m) being evaluated at the current estimate �(m).

By using (9.9), the score function at the mth iteration is

u(m)
j =

@Ln(�)

@�j

c�=�(m) =
n
X

i=1

@`i
@�j

c�=�(m)

=
n
X

i=1

d`i
d⌘i

@⌘i
@�j

c�=�(m) =
n
X

i=1

d`i
d⌘i

c�=�(m)xij.
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The Hessian at the ith iteration is

H(m)
jk =

@2Li(�)

@�j@�k

c�=�(m) =
n
X

i=1

@2`i
@�j@�k

c�=�(m)

=
n
X

i=1

@

@�k

✓

@`i
@�j

◆

c�=�(m)

=
n
X

i=1

@

@�k

✓

@`i
@⌘i

xij

◆

c�=�(m)

=
n
X

i=1

@

@⌘i

✓

@`i
@⌘i

xij

◆

xik

=
n
X

i=1

@2`i
@⌘2i

c�=�(m)xijxik (9.12)

Let s(m) be an n⇥ 1 vector with

s(m)
i =

@`i
@⌘i

c�=�(m)

and define the n⇥ n diagonal matrix fW (m) with entries

fWii = �d2`i
d⌘2i

.

Then we have u(m) = XT s(m) and H = �XT
fW (m)X and the Newton-Raphson iteration

can succinctly be written as

(�(m+1))0 = (�(m))0 � (H(m))�1u(m)

= (�(m))0 + (XT
fW (m)X)�1XT s(m).

Fisher scoring for GLMs

Typically, partly for reasons of tradition, we use a modification of this in fitting statistical

models. The matrix fW is replaced by W , another diagonal n⇥ n matrix with

W (m)
ii = E(fW (m)

ii

�

��(m)) = E

✓

�d2`i
d⌘2i

�

��(m)

◆

.

Using the results in Section 1.6 we have

W (m)
ii = E

✓

�d2`i
d⌘2i

|�(m)

◆

= var

✓

d`i
d⌘i

�

��(m)

◆
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so that W = var(s(m)|�(m)), and the matrix is non-negative-definite.

Using the Fisher score function the iteration becomes

(�(i+1))0 = (�(m))0 + (XTW (m)X)�1XT s(m).

Iteratively reweighted least squares

The iteration

(�(i+1))0 = (�(m))0 + (XTW (m)X)�1XT s(m) (9.13)

is similar to the solution for least squares estimates in linear models

� = (XTX)�1XTY

or more particularly the related weighted least squares estimates:

� = (XTWX)�1XTWY

In fact, (9.13) can be re-arranged to have exactly this form. Algebraic manipulation gives

(�(m))0 = (XTW (m)X)�1XTW (m)X(�(m))0

(XTW (m)X)�1XT s(m) = (XTW (m)X)�1XTW (m)(W (m))�1s(m).

Therefore substituting the above into (9.13) gives

(�(m+1))0 = (XTW (m)X)�1XTW (m)X(�(m))0 + (XTW (m)X)�1XTW (m)(W (m))�1s(m)

= (XTW (m)X)�1XTW (m)
�

X(�(m))0 + (W (m))�1s(m)
�

:= (XTW (m)X)�1XTW (m)Z(m).

One reason that the above equation is of interest is that it has the ‘form’ of weighted least

squares. More precisely, it has the form of a weighted least squares regression of Z(m) on

X with the diagonal weight matrix W (m). That is let z(m)
i denote the ith element of the

vector Z(m), then �(m+1) minimises the following weighted least squares criterion

n
X

i=1

W (m)
i

�

z(m)
i � �0xi

�2
.

Of course, in reality W (m)
i and z(m)

i are functions of �(m), hence the above is often called

iteratively reweighted least squares.
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9.3.4 Estimating of the dispersion parameter �

Recall that in the linear model case, the variance �2 did not a↵ect the estimation of �.

In the general GLM case, continuing to assume that �i = �, we have

si =
d`i
d⌘i

=
d`i
d✓i

d✓i
dµi

dµi

d⌘i
=

Yi � µi

�V (µi)g0(µi)

and

Wii = var(si) =
var(Yi)

{�V (µi)g0(µi)}2
=

�V (µi)

{�V (µi)g0(µi)}2

=
1

�V (µi)(g0(µi))2

so that 1/� appears as a scale factor in W and s, but otherwise does not appear in the

estimating equations or iteration for b�. Hence � does not play a role in the estimation of

�.

As in the Normal/linear case, (a) we are less interested in �, and (b) we see that �

can be separately estimated from �.

Recall that var(Yi) = �V (µi), thus

E((Yi � µi)2)

V (µi)
= �

We can use this to suggest a simple estimator for �:

b� =
1

n� p

n
X

i=1

(Yi � bµi)2

V (bµi)
=

1

n� p

T
X

i=1

(Yi � bµi)2

µ0(b✓i)

where bµi = g�1(b�0xi) and b✓i = µ�1g�1(b�0xi). Recall that the above resembles estimators

of the residual variance. Indeed, it can be argued that the distribution of the above is

close to �2
n�p.

Remark 9.3.2 We mention that a slight generalisation of the above is when the disper-

sion parameter satisfies �i = ai�, where ai is known. In this case, an estimator of the �

is

b� =
1

n� p

n
X

i=1

(Yi � bµi)2

aiV (bµi)
=

1

n� p

n
X

i=1

(Yi � bµi)2

aiµ0(b✓i)

259



9.3.5 Deviance, scaled deviance and residual deviance

Scaled deviance

Instead of minimising the sum of squares (which is done for linear models) we have been

maximising a log-likelihood Li(�). Furthermore, we recall

S(�̂) =
n
X

i=1

r2i =
n
X

i=1

�

Yi � �̂0 �
q
X

j=1

�̂jxi,j �
p
X

j=q+1

�̂jxi,j

�2

is a numerical summary of how well the linear model fitted, S(b�) = 0 means a perfect fit.

A perfect fit corresponds to the Gaussian log-likelihood �n
2
log �2 (the likelihood cannot

be larger than this).

In this section we will define the equivalent of residuals and square residuals for GLM.

What is the best we can do in fitting a GLM? Recall

`i =
Yi✓i � (✓i)

�
+ c(Yi,�)

so

d`i
d✓i

= 0 () Yi � 0(✓i) = 0

A model that achieves this equality for all i is called saturated (the same terminology is

used for linear models). In other words, will need one free parameter for each observation.

Denote the corresponding ✓i by e✓i, i.e. the solution of 0(e✓i) = Yi.

Consider the di↵erences

2{`i(e✓i)� `i(✓i)} =
2

�
{Yi(e✓i � ✓t)� (e✓i) + (✓i)} � 0

and 2
n
X

i=1

n

`i(e✓i)� `i(✓i)
o

=
2

�
{Yi(e✓i � ✓t)� (e✓i) + (✓i)}.

Maximising the likelihood is the same as minimising the above quantity, which is always

non-negative, and is 0 only if there is a perfect fit for all the ith observations. This

is analogous to linear models, where maximising the normal likelihood is the same as

minimising least squares criterion (which is zero when the fit is best). Thus Ln(e✓) =
Pn

i=1 `i(✓̃i) provides a baseline value for the log-likelihood in much the same way that

�n
2
log �2 provides a baseline in least squares (Gaussian set-up).
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Example 9.3.2 (The normal linear model) (✓i) = 1
2
✓2i , 0(✓i) = ✓i = µi, ✓̃i = Yt

and � = �2 so

2{`i(e✓n)� `i(✓i)} =
2

�2
{Yi(Yi � µi)�

1

2
Y 2
i +

1

2
µ2
i } = (Yi � µi)

2/�2.

Hence for Gaussian observations 2{`i(e✓i) � `i(✓i)} corresponds to the classical residual

squared. ⇤

In general, let

Di = 2{Yi(e✓i � ✓̂i)� (e✓i) + (✓̂i)}

We call D =
Pn

i=1 Di the deviance of the model. If � is present, let

D

�
= 2{Ln(e✓)� Ln(b✓)}.

��1D is the scaled deviance. Thus the residual deviance plays the same role for GLM’s

as does the residual sum of squares for linear models.

Interpreting Di

We will now show that

Di = 2{Yi(✓̃i � ✓̂i)� (✓̃i) + (✓̂i)} ⇡ (Yi � bµi)2

V (bµi)
.

To show the above we require expression for Yi(✓̃i� ✓̂i) and (✓̃i)�(✓̂i). We use Taylor’s

theorem to expand  and 0 about ✓̂i to obtain

(✓̃i) ⇡ (✓̂i) + (✓̃i � ✓̂i)
0(✓̂i) +

1

2
(✓̃i � ✓̂i)

200(✓̂i) (9.14)

and

0(✓̃i) ⇡ 0(✓̂i) + (✓̃i � ✓̂i)
00(✓̂i) (9.15)

But 0(✓̃i) = Yi, 0(✓̂i) = bµi and 00(✓̂i) = V (bµi), so (9.14) becomes

(✓̃i) ⇡ (✓̂i) + (✓̃i � ✓̂i)bµi +
1

2
(✓̃i � ✓̂i)

2V (bµi)

) (✓̃i)� (✓̂i) ⇡ (✓̃i � ✓̂i)bµi +
1

2
(✓̃i � ✓̂i)

2V (bµi), (9.16)
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and (9.15) becomes

Yi ⇡ bµi + (✓̃i � ✓̂i)V (bµi)

) Yi � bµi ⇡ (✓̃i � ✓̂i)V (bµi) (9.17)

Now substituting (9.16) and (9.17) into Di gives

Di = 2{Yi(✓̃i � ✓̂i)� (✓̃i) + (✓̂i)}

⇡ 2{Yi(✓̃i � ✓̂i)� (✓̃i � ✓̂i)bµi �
1

2
(✓̃i � ✓̂i)

2V (bµi)}

⇡ (✓̃i � ✓̂i)
2V (bµi) ⇡

(Yi � bµi)2

V (bµi)
.

Recalling that var(Yi) = �V (µi) and E(Yi) = µi, ��1Di behaves like a standardised

squared residual. The signed square root of this approximation is called the Pearson

residual. In other words

sign(Yi � bµi)⇥

s

(Yi � bµi)2

V (bµi)
(9.18)

is called a Pearson residual. The distribution theory for this is very approximate, but a

rule of thumb is that if the model fits, the scaled deviance ��1D (or in practice b��1D)

⇡ �2
n�p.

Deviance residuals

The analogy with the normal example can be taken further. The square roots of the

individual terms in the residual sum of squares are the residuals, Yi � �0xi.

We use the square roots of the individual terms in the deviances residual in the same

way. However, the classical residuals can be both negative and positive, and the deviances

residuals should behave in a similar way. But what sign should be used? The most obvious

solution is to use

ri =

(

�
p
Di if Yi � bµi < 0

p
Di if Yi � bµi � 0

Thus we call the quantities {ri} the deviance residuals. Observe that the deviance resid-

uals and Pearson residuals (defined in (9.18)) are the same up to the standardisation
p

V (bµi).
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Diagnostic plots

We recall that for linear models we would often plot the residuals against the regressors

to check to see whether a linear model is appropriate or not. One can make similar

diagnostics plots which have exactly the same form as linear models, except that deviance

residuals are used instead of ordinary residuals, and linear predictor values instead of fitted

values.

9.4 Limiting distributions and standard errors of es-

timators

In the majority of examples we have considered in the previous sections (see, for example,

Section 2.2) we observed iid {Yi} with distribution f(·; ✓). We showed that
p
n
⇣

b✓n � ✓
⌘

⇡ N
�

0, I(✓)�1
�

,

where I(✓) =
R

�@2 log f(x;✓)
@✓2

f(x; ✓)dx (I(✓) is Fisher’s information). However this result

was based on the observations being iid. In the more general setting where {Yi} are

independent but not identically distributed it can be shown that
⇣

b� � �
⌘

⇡ Np(0, (I(�))
�1)

where now I(�) is a p⇥ p matrix (of the entire sample), where (using equation (9.12)) we

have

(I(�))jk = E

✓

�@2Ln(�)

@�j@�k

◆

= E

 

�
n
X

i=1

d2`i
d⌘2i

xijxik

!

= (XTWX)jk.

Thus for large samples we have
⇣

b� � �
⌘

⇡ Np(0, (X
TWX)�1),

where W is evaluated at the MLE b�.

Analysis of deviance

How can we test hypotheses about models, and in particular decide which explanatory

variables to include? The two close related methods we will consider below are the log-

likelihood ratio test and an analogue of the analysis of variance (ANOVA), called the

analysis of deviance.

263



Let us concentrate on the simplest case, of testing a full vs. a reduced model. Partition

the model matrix X and the parameter vector � as

X =
h

X1 X2

i

� =

 

�1

�2

!

,

where X1 is n⇥ q and �1 is q ⇥ 1 (this is analogous to equation (9.1) for linear models).

The full model is ⌘ = X�0 = X1�1 +X2�2 and the reduced model is ⌘ = X1�0
1. We wish

to test H0 : �2 = 0, i.e. that the reduced model is adequate for the data.

Define the rescaled deviances for the full and reduced models

DR

�
= 2{Ln(✓̃)� sup

�2=0,�1

Ln(✓)}

and

DF

�
= 2{Ln(✓̃)� sup

�1,�2

Ln(�)}

where we recall that Ln(✓̃) =
PT

i=1 `t(✓̃i) is likelihood of the saturated model defined in

Section 9.3.5. Taking di↵erences we have

DR �DF

�
= 2

�

sup
�1,�2

Ln(�)� sup
�2=0,�1

Ln(✓)
 

which is the likelihood ratio statistic.

The results in Theorem 3.1.1, equation (3.7) (the log likelihood ratio test for composite

hypothesis) also hold for observations which are not identically distributed. Hence using

a generalised version of Theorem 3.1.1 we have

DR �DF

�
= 2

�

sup
�1,�2

Ln(�)� sup
�2=0,�1

Ln(✓)
 D! �2

p�q.

So we can conduct a test of the adequacy of the reduced model D
R

�D
F

�
by referring to a

�2
p�q, and rejecting H0 if the statistic is too large (p-value too small). If � is not present

in the model, then we are good to go.

If � is present (and unknown), we estimate � with

b� =
1

n� p

n
X

i=1

(Yi � bµi)2

V (bµt)
=

1

n� p

n
X

i=1

(Yi � bµi)2

µ0(b✓n)

(see Section 9.3.4). Now we consider D
R

�D
F

b�
, we can then continue to use the �2

p�q

distribution, but since we are estimating � we can use the statistic

DR �DF

p� q
÷ DF

n� p
against F(p�q),(n�p),

as in the normal case (compare with Section 9.1).

264



9.5 Examples

Example 9.5.1 Question Suppose that {Yi} are independent random variables with the

canonical exponential family, whose logarithm satisfies

log f(y; ✓i) =
y✓i � (✓i)

�
+ c(y;�),

where � is the dispersion parameter. Let E(Yi) = µi. Let ⌘i = �0xi = ✓i (hence the

canonical link is used), where xi are regressors which influence Yi. [14]

(a) (m) Obtain the log-likelihood of {(Yi, xi)}ni=1.

(ii) Denote the log-likelihood of {(Yi, xi)}ni=1 as Ln(�). Show that

@Ln

@�j

=
n
X

i=1

(Yi � µi)xi,j

�
and

@2Ln

@�k@�j

= �
n
X

i=1

00(✓i)xi,jxi,k

�
.

(b) Let Yi have Gamma distribution, where the log density has the form

log f(Yi;µi) =
�Yi/µi � log µi

⌫�1
+

⇢

� 1

⌫�1
log ⌫�1 + log�(⌫�1)

�

+

⇢

⌫�1 � 1

�

log Yi

E(Yi) = µi, var(Yi) = µ2
i /⌫ and ⌫i = �0xi = g(µi).

(m) What is the canonical link function for the Gamma distribution and write down

the corresponding likelihood of {(Yi, xi)}ni=1.

(ii) Suppose that ⌘i = �0xi = �0 + �1xi,1. Denote the likelihood as Ln(�0, �1).

What are the first and second derivatives of Ln(�0, �1)?

(iii) Evaluate the Fisher information matrix at �0 and �1 = 0.

(iv) Using your answers in (ii,iii) and the mle of �0 with �1 = 0, derive the score

test for testing H0 : �1 = 0 against HA : �1 6= 0.

Solution

(a) (m) The general log-likelihood for {(Yi, xi)} with the canonical link function is

Ln(�,�) =
n
X

i=1

✓

Yi(�0xi � (�0xi))

�
+ c(Yi,�)

◆

.
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(ii) In the di↵erentiation use that 0(✓i) = 0(�0xi) = µi.

(b) (m) For the gamma distribution the canonical link is ✓i = ⌘i = �1/µi = �1/beta0xi.

Thus the log-likelihood is

Ln(�) =
n
X

i=1

1

⌫

✓

Yi(�
0xi)� log(�1/�0xi)

◆

+ c(⌫1, Yi),

where c(·) can be evaluated.

(ii) Use part (ii) above to give

@Ln(�)

@�j

= ⌫�1

n
X

i=1

✓

Yi + 1/(�0xi)

◆

xi,j

@Ln(�)

@�i@�j

= �⌫�1

n
X

i=1

1

(�0xi)

◆

xi,ixi,j

(iii) Take the expectation of the above at a general �0 and �1 = 0.

(iv) Using the above information, use the Wald test, Score test or log-likelihood

ratio test.

Example 9.5.2 Question: It is a belief amongst farmers that the age of a hen has a

negative influence on the number of eggs she lays and the quality the eggs. To investigate

this, m hens were randomly sampled. On a given day, the total number of eggs and the

number of bad eggs that each of the hens lays is recorded. Let Ni denote the total number

of eggs hen i lays, Yi denote the number of bad eggs the hen lays and xi denote the age of

hen i.

It is known that the number of eggs a hen lays follows a Poisson distribution and the

quality (whether it is good or bad) of a given egg is an independent event (independent of

the other eggs).

Let Ni be a Poisson random variable with mean �i, where we model �i = exp(↵0+�1xi)

and ⇡i denote the probability that hen i lays a bad egg, where we model ⇡i with

⇡i =
exp(�0 + �1xi)

1 + exp(�0 + �1xi)
.

Suppose that (↵0, �0, �1) are unknown parameters.

(a) Obtain the likelihood of {(Ni, Yi)}mi=1.
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(b) Obtain the estimating function (score) of the likelihood and the Information matrix.

(c) Obtain an iterative algorithm for estimating the unknown parameters.

(d) For a given ↵0, �0, �1, evaluate the average number of bad eggs a 4 year old hen will

lay in one day.

(e) Describe in detail a method for testing H0 : �1 = 0 against HA : �1 6= 0.

Solution

(a) Since the canonical links are being used the log-likelihood function is

Lm(↵0, �0, �1) = Lm(Y |N) + Lm(N)

=
m
X

i=1

✓

Yi�xi �Ni log(1 + exp(�xi)) +Ni↵xi � ↵xi + log

✓

Ni

Yi

◆

+ logNi!

◆

/
m
X

i=1

✓

Yi�xi �Ni log(1 + exp(�xi)) +Ni↵xi � ↵xi

◆

.

where ↵ = (↵0, �1)0, � = (�0, �1)0 and xi = (1, xi).

(b) We know that if the canonical link is used the score is

rL =
m
X

i=1

��1
�

Yi � 0(�0xi)
�

=
m
X

i=1

�

Yi � µi

�

and the second derivative is

r2L = �
m
X

i=1

��100(�0xi) = �
m
X

i=1

var(Yi).

Using the above we have for this question the score is

@Lm

@↵0

=
m
X

i=1

�

Ni � �i

�

@Lm

@�0

=
m
X

i=1

�

Yi �Ni⇡i

�

@Lm

@�1
=

m
X

i=1

✓

�

Ni � �i

�

+
�

Yi �Ni⇡i

�

◆

xi.
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The second derivative is

@2Lm

@↵2
0

= �
m
X

i=1

�i
@2Lm

@↵0@�1
= �

m
X

i=1

�ixi

@2Lm

@�2
0

= �
m
X

i=1

Ni⇡i(1� ⇡i)
@2Lm

@�0@�1
= �

m
X

i=1

Ni⇡i(1� ⇡i)xi

@2Lm

@�12
= �

m
X

i=1

✓

�i +Ni⇡i(1� ⇡i)

◆

x2
i .

Observing that E(Ni) = �i the information matrix is

I(✓) =

0

B

B

B

@

Pm
i=1 �i 0

Pm
i=1 �i⇡i(1� ⇡i)xi

0
Pm

i=1 �i⇡i(1� ⇡i)
Pm

i=1 �i⇡i(1� ⇡i)xi

Pm
i=1 �i⇡i(1� ⇡i)xi

Pm
i=1 �i⇡i(1� ⇡i)xi

Pm
i=1

✓

�i + �i⇡i(1� ⇡i)

◆

x2
i

1

C

C

C

A

.

(c) We can estimate ✓0 = (↵0, �0, �1) using Newton-Raphson with Fisher scoring, that

is

✓i = ✓i + I(✓i)
�1Si�1

where

Si�1 =

0

B

B

B

@

Pm
i=1

�

Ni � �i

�

Pm
i=1

�

Yi �Ni⇡i

�

Pm
i=1

✓

�

Ni � �i

�

+
�

Yi �Ni⇡i

�

◆

xi.

1

C

C

C

A

.

(d) We note that given the regressor xi = 4, the average number of bad eggs will be

E(Yi) = E(E(Yi|Ni)) = E(Ni⇡i) = �i⇡i

=
exp(↵0 + �1xi) exp(�0 + �1xi)

1 + exp(�0 + �1xi)
.

(e) Give either the log likelihood ratio test, score test or Wald test.
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