
Chapter 5

Misspecification, the Kullbach

Leibler Criterion and model selection

5.1 Assessing model fit

The Kullbach Leibler criterion is a method for measuring the ”distance” between two

densities. Rather than define it here it will come naturally from the discussion below on

model misspecification.

5.1.1 Model misspecification

Until now we have assumed that the model we are fitting to the data is the correct model

and our objective is to estimate the parameter ✓. In reality the model we are fitting will

not be the correct model (which is usually unknown). In this situation a natural question

to ask is what are we estimating?

Let us suppose that {Xi} are iid random variables which have the density g(x). How-

ever, we fit the incorrect family of densities {f(x; ✓); ✓ 2 ⇥} to the data using the MLE

and estimate ✓. The misspecified log likelihood is

Ln(✓) =
n
X

i=1

log f(Xi; ✓).

To understand what the MLE is actually estimating we use tthe LLN (law of large num-

143



bers) to obtain the limit of Ln(✓)

1

n
Ln(✓) =

1

n

n
X

i=1

log f(Xi; ✓)
a.s.! Eg

�

log f(Xi; ✓)
�

=

Z

log f(x; ✓)g(x)dx. (5.1)

Therefore it is clear that b✓n = argmaxLn(✓) is an estimator of

✓g = argmax

✓

Z

log f(x; ✓)g(x)dx

◆

.

Hence b✓n is an estimator of the parameter which best fits the model in the specified family

of models. Of course, one would like to know what the limit distribution of (b✓n � ✓g) is

(it will not be the same as the correctly specified case). Under the regularity conditions

given in Theorem 5.1.1 and Assumption 2.6.1 (adapted to the misspecified case; these

need to be checked) we can use the same proof as that given in Theorem 2.6.1 to show

that b✓n
P! ✓g (thus we have “consistency” of the misspecified MLE). We will assume in

this section that this result is holds.

To obtain the limit distribution we again use the Taylor expansion of Ln(✓) and the

approximation

1p
n

@Ln(✓)

@✓
c✓

g

⇡ 1p
n

@Ln(✓)

@✓
cb✓

n

+ I(✓g)
p
n(b✓n � ✓g), (5.2)

where I(✓g) = E(�@2 log f(X;✓)
@✓2

c✓
g

).

Theorem 5.1.1 Suppose that {Xi} are iid random variables with density g. However,

we fit the incorrect family of densities {f(x; ✓); ✓ 2 ⇥} to the data using the MLE and

estimate ✓, using b✓g = argmaxLn(✓) where

Ln(✓) =
n
X

i=1

log f(Xi; ✓).

We assume

@
R

R log f(x; ✓)g(x)dx

@✓
c✓=✓

g

=

Z

R

log f(x; ✓)

@✓
c✓=✓

g

g(x)dx = 0 (5.3)

and the usual regularity conditions are satisfied (exchanging derivative and integral is

allowed and the third order derivative exists). Then we have

1p
n

@Ln(✓)

@✓
c✓

g

D! N (0, J(✓g)), (5.4)
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p
n(b✓n � ✓g)

D! N
�

0, I(✓g)
�1J(✓g)I(✓g)

�1
�

. (5.5)

and

2
⇣

Ln(b✓n)� Ln(✓g)
⌘

D!
p
X

j=1

�jZ
2
j (5.6)

where

I(✓g) = E

✓

� @2 log f(X; ✓)

@✓2
c✓

g

◆

= �
Z

@2 log f(x; ✓)

@✓2
g(x)dx

J(✓g) = var

✓

@ log f(X; ✓)

@✓
c✓=✓

g

◆

= E

✓

@ log f(X; ✓)

@✓
c✓=✓

g

◆2

=

Z

✓

@ log f(x; ✓)

@✓

◆2

g(x)dx

and {�j} are the eigenvalues of the matrix I(✓g)�1/2J(✓g)I(✓g)�1/2.

PROOF. First the basics. Under assumption (5.3) @f(X
i

;✓)
@✓

c✓
g

are zero mean iid random

variables. Therefore by using the CLT we have

1p
n

@Ln(✓)

@✓
c✓

g

D! N (0, J(✓g)). (5.7)

If (5.3) is satisfied, then for large enough n we have @L
n

(✓)
@✓

cb✓
n

= 0, using the same ideas

as those in Section 2.6.3 we have

1p
n

@Ln(✓)

@✓
c✓

g

⇡ I(✓g)
p
n(b✓n � ✓g)

)
p
n(b✓n � ✓g) ⇡ I(✓g)

�1 1p
n

@Ln(✓)

@✓
c✓

g

| {z }

term that determines normality

. (5.8)

Hence asymptotic normality of
p
n(b✓n�✓g) follows from asymptotic normality of 1p

n
@L

n

(✓)
@✓

c✓
g

.

Substituting (5.7) into (5.8) we have

p
n(b✓n � ✓g)

D! N
�

0, I(✓g)
�1J(✓g)I(✓g)

�1
�

. (5.9)

This gives (5.8).

To prove (5.6) we make the usual Taylor expansion

2
⇣

Ln(b✓n)� Ln(✓g)
⌘

⇡ n
⇣

b✓n � ✓g
⌘0
I(✓g)

⇣

b✓n � ✓g
⌘

(5.10)

Now we recall that since

p
n(b✓n � ✓g)

D! N
�

0, I(✓g)
�1J(✓g)I(✓g)

�1
�

, (5.11)
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then asymptotically the distribution of
p
n(b✓n�✓g) is

p
n(b✓n�✓g)

D
= I(✓g)�1/2J(✓g)1/2I(✓g)�1/2Z

where Z is a p-dimension standard normal random variable. Thus we have

2
⇣

Ln(b✓n)� Ln(✓g)
⌘

D
= nZ 0I(✓g)

�1/2J(✓g)
1/2I(✓g)

�1/2I(✓g)I(✓g)
�1/2J(✓g)

1/2I(✓g)
�1/2Z

= Z 0I(✓g)
�1/2J(✓g)I(✓g)

�1/2Z

Let P⇤P denote the spectral decomposition of the matrix I(✓g)�1/2J(✓g)I(✓g)�1/2. We

observe that PZ ⇠ N (0, Ip), thus we have

2
⇣

Ln(b✓n)� Ln(✓g)
⌘

=
p
X

j=1

�jZ
2
j

where �j are the eigenvalues of ⇤ and I(✓g)�1/2J(✓g)I(✓g)�1/2 and {Zj} are iid Gaussian

random variables. Thus we have shown (5.6). ⇤

An important feature is that in the misspecified case I(✓g) 6= J(✓g). Hence whereas

in the correctly specified case we have
p
n(b✓n � ✓0)

D! N
�

0, I(✓0)�1
�

in the misspecified

case it is
p
n(b✓n � ✓g)

D! N
�

0, I(✓g)�1J(✓g)I(✓g)�1
�

.

Recall that in the case the distributions are correctly specified we can estimate the

information criterion with either the observed Fisher information

bIn(b✓n) =
�1

n

n
X

i=1

@2 log f(Xi; ✓)

@✓2
c✓=b✓

n

or

bJn(b✓n) =
1

n

n
X

i=1

✓

@ log f(Xi; ✓)

@✓
c✓=b✓

n

◆2

.

In the misspecified case we need to use both bIn(b✓n) and bJn(b✓n), which are are estimators

of I(✓g) and J(✓g) respectively. Hence using this and Theorem 5.1.1 we can construct CIs

for ✓g. To use the log-likelihood ratio statistic, the eigenvalues in the distribution need to

calculated using bIn(b✓n)�1/2
bJn(b✓n)bIn(b✓n)�1/2. The log-likelihood ratio statistic is no longer

pivotal.

Example 5.1.1 (Misspecifying the mean) Let us suppose that {Xi}i are indepeden-

dent random variables which satisfy the model Xi = g( i
n
) + "i, where {"i} are iid random
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variables which follow a t-distribution with 6-degrees of freedom (the variance of "i is

finite). Thus, as n gets large we observe a corrupted version of g(·) on a finer grid.

The function g(·) is unknown, instead a line is fitted to the data. It is believed that

the noise is Gaussian, and the slope ban maximises

Ln(a) = � 1

2�2

n
X

i=1

✓

Xi � a · i
n

◆2

,

where �2 = var("t) (note the role of �2 is meaningless in the minimisation).

Question: (i) What is ban estimating? (ii) What is the limiting distribution of ban?

Solution:

(i) Rewriting Ln(a) we observe that

1

n
Ln(a) =

�1

2�2n

n
X

i=1

✓

g(
i

n
) + "i � a · i

n

◆2

=
�1

2�2n

n
X

i=1

✓

g(
i

n
)� a · i

n

◆2

+
�1

2�2n

n
X

i=1

"2i +
2

2�2n

n
X

i=1

✓

g(
i

n
)� a · i

n

◆

"i

P! �1

2�2n

Z 1

0

(g(u)� au)2 � 1

2
.

Thus we observe ban is an estimator of the line which best fits the curve g(·) according
to the `2-distance

ag = argmin

Z 1

0

�

g(u)� au
�2
du.

If you draw a picture, this seems logical.

(ii) Now we derive the distribution of
p
n(ban�ag). We assume (and it can be shown) that

all the regularity conditions are satisfied. Thus we proceed to derive the derivatives

of the “likelihoods”

1

n

@Ln(a)

@a
ca

g

=
1

n�2

n
X

i=1

�

Xi � ag ·
i

n

� i

n

1

n

@2Ln(a)

@a2
ca

g

= � 1

n�2

n
X

i=1

� i

n

�2
.

Note that 1
n
@L

n

(a)
@a

ca
g

are not iid random variables with mean zero. However, “glob-

ally” the mean will the close to zero, and @L
n

(a)
@a

ca
g

is the sum of independent Xi

thus asymptotic normality holds i.e

1p
n

@Ln(a)

@a
ca

g

=
1p
n�2

n
X

i=1

✓

Xi � ag ·
i

n

◆

i

n
D! N (0, J(ag)).
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Evaluating the variance of the first derivative and expectation of the negative second

derivative (and using the definition of the Reimann integral)

J(ag) =
1

n
var

✓

@Ln(a)

@a
ca

g

◆

=
1

n�4

n
X

i=1

var(Xi)

✓

i

n

◆2

! 1

�2

Z 1

0

u2du =
1

3�2

I(ag) =
1

n
E

✓

�@2Ln(a)

@a2
ca

g

◆

=
1

n�2

n
X

i=1

✓

i

n

◆2

! 1

�2

Z 1

0

u2du =
1

3�2
.

We observe that in this case despite the mean and the distribution being misspecified

we have that I(ag) ⇡ J(ag). Altogether, this gives the limiting distribution

p
n
�

ban � ag
� D! N (0, 3�2).

We observe that had we fitted a Double Laplacian to the data (which has the distribution

fi(x) = 1
2b
exp(� |x�µ

i

|
b

)), the limit of the estimator would be di↵erent, and the limiting

distribution would also be di↵erent.

5.2 The Kullbach-Leibler information criterion

The discussion above, in particular (5.1), motivates the definition of the Kullbach-Liebler

criterion. We recall that the parameter which best fits the model using the maximum

likelihood is an estimator of

✓g = argmax

✓

Z

log f(x; ✓)g(x)dx

◆

.

✓g can be viewed as the parameter which best fits the distribution out of all distributions

in the misspecified parametric family. Of course the word ‘best’ is not particularly precise.

It is best according to the criterion
R

log f(x; ✓)g(x)dx. To determine how well this fits

the distribution we compare it to the limit likelihood using the correct distribution, which

is
Z

log g(x)g(x)dx (limit of of likelihood of correct distribution).

In other words, the closer the di↵erence

Z

log f(x; ✓g)g(x)dx�
Z

log g(x)g(x)dx =

Z

log
f(x; ✓g)

g(x)
g(x)dx

148



is to zero, the better the parameter ✓g fits the distribution g, using this criterion. Using

Jenson’s inequality we have

Z

log
f(x; ✓)

g(x)
g(x)dx = Eg

✓

log
f(Xi; ✓)

g(Xi)

◆

 log Eg

✓

f(Xi; ✓)

g(Xi)

◆

log

Z

f(x)dx  0.(5.12)

where equality arises only if f(x; ✓) = g(x).

Therefore an alternative, but equivalent interpretation of ✓g, is the parameter which

minimises the ‘distance’ between g and f✓ which is defined as

D(g, f✓) =

Z

log f(x; ✓g)g(x)dx�
Z

log g(x)g(x)dx =

Z

log
f(x; ✓g)

g(x)
g(x)dx,

i.e. ✓g = argmax✓2⇥ D(g, f✓). D(g, f✓) is called the Kullbach-Leibler criterion. It can be

considered as a measure of fit between the two distributions, the closer these two quantities

are to zero the better the fit. We note that D(g, f✓) is technically not a distance since

D(g, f✓) 6= D(f✓, g) (though it can be symmetrified). The Kullbach-Leibler criterion arises

in many di↵erent contexts. We will use it in the section on model selection.

Often when comparing the model fit of di↵erent families of distributions our aim is to

compare max✓2⇥ D(g, f✓) with max!2⌦ D(g, h!) where {f✓; ✓ 2 ⌦} and {h!;! 2 ⌦}. In

practice these distances cannot be obtained since the density g is unknown. Instead we

estimate the maximum likelihood for both densities (but we need to keep all the constants,

which are usually ignored in estimation) and compare these; i.e. compare max✓2⇥ Lf (✓)

with max!2⌦ Lh(!). However, a direct comparison of log-likelihoods is problematic since

the log-likelihood is a biased estimator of the K-L criterion. The bias can lead to overfitting

of the model and a correction needs to be made (this we pursue in the next section).

We observe that ✓g = argmax✓2⇥ D(g, f✓), hence f(x; ✓g) is the best fitting distribution

using the K-L criterion. This does not mean it is the best fitting distribution according

to another criterion. Indeed if we used a di↵erent distance measure, we are likely to

obtain a di↵erent best fitting distribution. There are many di↵erent information criterions.

The motivation for the K-L criterion comes from the likelihood. However, in the model

misspecification set-up there are alternative methods, to likelihood methods, to finding

the best fitting distribution (alternative methods may be more robust - for example the

Renyi information criterion).
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5.2.1 Examples

Example 5.2.1 An example of misspecification is when we fit the exponential distribu-

tion {f(x; ✓) = ✓�1 exp(�x/✓); ✓ > 0} to the observations which come from the Weibull

distribution. Suppose the data follows the Weibull distribution

g(x) =

✓

↵

�

◆✓

x

�

◆↵�1

exp (�(x/�)↵) ; ↵,� > 0, x > 0.

but we fit the exponential with the likelihood

1

n
Ln(✓) =

�1

n

n
X

i=1

✓

log ✓ +
Xi

✓

◆

a.s.! � log ✓ � E
�Xi

✓

�

= �
Z

�

log ✓ +
x

✓

�

g(x)dx.

Let b✓n = argmaxLn(✓) = X̄. Then we can see that b✓n is an estimator of

✓g = argmax{�
�

log ✓ + E(Xi/✓)
�

} = ��(1 + ↵�1) = E(Xi) (5.13)

Therefore by using Theorem 5.1.1 (or just the regular central limit theorem for iid random

variables) we have

p
n
�

b✓n � ��(1 + ↵�1)
� P! N

�

0, I(✓g)
�1J(✓g)I(✓g)

�1

| {z }

=var(X
i

)

�

where

I(✓g) = E

✓

�
�

✓�2 � 2X✓�3
�

◆

c✓=E(X) = [E(X)]�2

J(✓g) = E

✓

�

� ✓�1 +X✓�2
�2
◆

c✓=E(X) =
E(X2)

[E(X)]4
� 1

[E(X)]2
=

1

E[X2]

✓

E[X2]

E[X]2
� 1

◆

.

Thus it is straightforward to see that I(✓g)�1J(✓g)I(✓g)�1 = var[X]. We note that for the

Weibull distribution E(X) = ��(1 + ↵�1) and E(X2) = �2�(1 + 2↵�1).

To check how well the best fitting exponential fits the Weibull distribution for di↵erent

values of � and ↵ we use the K-L information criterion;

D(g, f✓
g

) =

Z

log

✓

✓�1
g exp(�✓�1

g x)
↵
�
(x
�
)↵�1 exp(�(x

�
)↵

◆

↵

�
(
x

�
)↵�1 exp(�(

x

�
)↵)dx

=

Z

log

✓

��(1 + ↵�1)�1 exp(���(1 + ↵�1)�1x)
↵
�
(x
�
)↵�1 exp(�(x

�
)↵

◆

↵

�
(
x

�
)↵�1 exp(�(

x

�
)↵)dx. (5.14)

We note that by using (5.14), we see that D(g, f✓
g

) should be close to zero when ↵ = 1

(since then the Weibull is a close an exponential), and we conjecture that this di↵erence

should grow the further ↵ is from one.
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Example 5.2.2 Suppose {Xi}ni=1 are independent, identically distributed normal random

variables with distribution N (µ, �2), where µ > 0. Suppose that µ and �2 are unknown.

A non-central t-distribution with 11 degrees of freedom

f(x; a) = C(11)

✓

1 +
(x� a)2

11

◆�(11+1)/2

,

where C(⌫) is a finite constant which only depends on the degrees of freedom, is mistakenly

fitted to the observations. [8]

(i) Suppose we construct the likelihood using the t-distribution with 11 degrees of free-

dom, to estimate a. In reality, what is this MLE actually estimating?

(ii) Denote the above ML estimator as ban. Assuming that standard regularity conditions

are satisfied, what is the approximate distribution of ban?

Solution

(i) The MLE seeks to estimate the maximum of E(log f(X; a)) wrt a.

Thus for this example ban is estimating

ag = argmax
a

E
�

� 6 log(1 +
(X � a)2

11
)
�

= argmin

Z

log(1 +
(x� a)2

11
)
�

d�
�x� µ

�

�

dx.

(ii) Let ag be defined a above. Then we have

p
n(ban � ag)

D! N
�

0, J�1(ag)I(ag)J
�1(ag)

�

,

where

I(ag) = �C(11)6E
�d log(1 + (X � a)2/11)

da
ca=a

g

�2

J(ag) = �C(11)6E
�d2 log(1 + (X � a)2/11)

da2
ca=a

g

�

.

5.2.2 Some questions

Exercise 5.1 The iid random variables {Xi}i follow a geometric distribution ⇡(1�⇡)k�1.

However, a Poisson distribution with P (X = k) = ✓k exp(�✓)
k!

is fitted to the data/

(i) What quantity is the misspecified maximum likelihood estimator actually estimating?
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(ii) How well does the best fitting Poisson distribution approximate the geometric distri-

bution?

(iii) Given the data, suggest a method the researcher can use to check whether the Poisson

distribution is an appropriate choice of distribution.

Exercise 5.2 Let us suppose that the random variable X is a mixture of Weibull distri-

butions

f(x; ✓) = p(
↵1

�1

)(
x

�1

)↵1�1 exp(�(x/�1)
↵1) + (1� p)(

↵2

�2

)(
x

�2

)↵2�1 exp(�(x/�2)
↵2).

(i) Derive the mean and variance of X.

(ii) Obtain the exponential distribution which best fits the above mixture of Weibulls

according to the Kullbach-Lieber criterion (recall that the exponential is g(x;�) =
1
�
exp(�x/�)).

Exercise 5.3 Let us suppose that we observe the response variable and regressor (Yi, Xi).

Yi and Xi are related through the model

Yi = g(Xi) + "i

where "i are iid Gaussian random variables (with mean zero and variance �2) which are

independent of the regressors Xi. Xi are independent random variables, and the density

of Xi is f . Suppose that it is wrongly assumed that Yi satisfies the model Yi = �Xi + "i,

where "i are iid Gaussian random variables (with mean zero and variance �2, which can

be assumed known).

(i) Given {(Yi, Xi)}ni=1, what is the maximum likelihood estimator of �?

(ii) Derive an expression for the limit of this estimator (ie. what is the misspecified

likelihood estimator actually estimating).

(iii) Derive an expression for the Kullbach-Leibler information between the true model

and the best fitting misspecified model (that you derived in part (ii)).
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5.3 Model selection

Over the past 30 years there have been several di↵erent methods for selecting the ‘best’

model out of a class of models. For example, the regressors {xi,j} are believed to influence

the response Yi with the model

Yi =
p
X

j=1

ajxi,j + "i.

The natural question to ask is how many regressors should be included in the model.

Without checking, we are prone to ‘overfitting’ the model.

There are various ways to approach this problem. One of the classical methods is

to use an information criterion (for example the AIC). There are di↵erent methods for

motivating the information criterion. Here we motivate it through the Kullbach-Leibler

criterion. The main features of any criterion is that it can be split into two parts, the

first part measures the model fit the second part measures the increased variance which

is due to the inclusion of several parameters in the model.

To simplify the approach we will assume that {Xi} are iid random variables with

unknown distribution g(x). We fit the family of distributions {f(x; ✓); ✓ 2 ⇥} and want

to select the best fitting distribution. Let

I(✓g) = E

✓

� @2 log f(X; ✓)

@✓2
c✓

g

◆

= �
Z

@2 log f(x; ✓)

@✓2
g(x)dxc✓

g

J(✓g) = E

✓

@ log f(X; ✓)

@✓
c✓=✓

g

◆2

=

Z

✓

@ log f(x; ✓)

@✓

◆2

g(x)dxc✓
g

.

Given the observations {Xi} we use the mle to estimate the parameter

b✓n(X) = argmax
✓2⇥

Ln(X; ✓) = argmax
✓2⇥

n
X

i=1

log f(Xi; ✓),

we have included X in b✓ to show that the mle depends on it. We will use the result

p
n
⇣

b✓(X)� ✓g
⌘

D! N
�

0, I(✓g)
�1J(✓g)I(✓g)

�1
�

.

Example 5.3.1 Suppose we fit a Weibull distribution to the iid random variables {Xi}ni=1,

and the best fitting parameter according to the K-L criterion is ✓ = ✓g and ↵ = 1 (thus

the parameters of an exponential), then

p
n

 

b✓n � ✓g

b↵n � 1

!

D! N
�

0, I(✓g)
�1J(✓g)I(✓g)

�1
�

.

153



Of course in practice, b↵n 6= 1. Thus we would like a model selection criterion to penalize

the “larger” Weibull distribution in favour of the exponential distribution.

We cannot measure “fit” of an estimator by simply plugging the MLE back into the

same likelihood (which gave the MLE)

Ln(b✓n(X);X) = �
n
X

i=1

log f(Xi; b✓n(X)),

because b✓(X) is finding the best fitting parameter for the data set X. For example,

suppose {Xi} are iid random variables coming from a Cauchy distribution

c(x; ✓) =
1

⇡ (1 + (x� ✓)2)
.

Let LC(✓;X) and b✓(X) correspond to the log-likelihood and corresponding MLE. Sup-

pose we also fit a Gaussian distribution to the same data set, let LG(µ, �;X) and bµ(X)

and �2(X) correspond to the log-likelihood and corresponding MLE. Even though the

Gaussian distribution is the incorrect distribution, because it has the flexibility of two

parameters rather than one, it is likely that

LG[bµ(X), b�2(X);X] > LC [b✓(X);X].

Which suggests the Gaussian likelihood better fits the data than the Cauchy, when its

simply that there are more parameters in the Gaussian likelihood. This is the reason that

validation data sets are often used. This is a data set Y , which is independent of X, but

where Y and X have the same distribution. The quantity

Ln(b✓n(X);Y ) = �
n
X

i=1

log f(Yi; b✓n(X))

measures how well b✓(X) fits another equivalent data. In this case, if {Xi} and {Yi} are

iid random variables from a Cauchy distribution it is highly unlikely

LG[bµ(X), b�2(X);Y ] > LC [b✓(X);Y ].

Since Y is random and we want to replace highly unlikely to definitely will not happen,

we consider the limit and measure how well f(y; b✓n(X)) fits the expectation

EY



1

n
Ln(b✓n(X);Y )

�

=

Z

log f(y; b✓n(X))g(y)dy.
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The better the fit, the larger the above will be. Note that if we subtract
R

log g(y)g(y)dy

from the above we have the K-L criterion. As a matter of convention we define the

negative of the above

eD
h

g, fb✓
n

(X)

i

= �
Z

log f(y; b✓n(X))g(y)dy.

The better the fit, the smaller eD
h

g, fb✓
n

(X)

i

will be. We observe that eD[g, fb✓
n

(X)] depends

on the sample X. Therefore, a more sensible criterion is to consider the expectation of

the above over all random samples X

EX

n

eD
h

g, fb✓
n

(X)

io

= �EX

n

EY

h

log f(Y ; b✓n(X)
io

.

EX

n

eD
h

g, fb✓
n

(X)

io

is the information criterion that we aim to estimate. First we show

that EX

n

eD
h

g, fb✓
n

(X)

io

penalizes models which are over fitted (which n�1L(b✓(X);X)) is

unable to do). Making a Taylor expansion of EX

�

EY (log f(Y ; b✓n(X))
�

about ✓g gives

EX

n

eD
h

g, fb✓
n

(X)

io

= �EX

n

EY

h

log f(Y ; b✓n(X)
io

⇡ �EX {EY [log f(Y ; ✓g)]}� EX

8

>

>

<

>

>

:

h

b✓(X)� ✓g
i

EY



@ log f(Y ; ✓)

@✓ c✓=✓
g

�

| {z }

=0

9

>

>

=

>

>

;

�EX

⇢

h

b✓(X)� ✓g
i

EY



@2 log f(Y ; ✓)

@✓2 c✓=✓
g

�

h

b✓(X)� ✓g
i

�

⇡ �1

2
EY [log f(Y ; ✓g)] +

1

2
EX

✓

(b✓n(X)� ✓g)
0I(✓g)(b✓n(X)� ✓g)

◆

.

The second term on the right of the above grows as the number of parameters grow (recall

it has a �2-distribution where the number of degrees of freedom is equal to the number

of parameters). Hence EX

n

eD
h

g, fb✓
n

(X)

io

penalises unnecessary parameters making it

an ideal criterion. For example, we may be fitting a Weibull distribution to the data,

however, the best fitting distribution turns out to be an exponential distribution, the

additional term will penalize the over fit.

However, in practise EX

n

eD
h

g, fb✓
n

(X)

io

is unknown and needs to estimated. Many

information criterions are based on estimating EX

n

eD
h

g, fb✓
n

(X)

io

(including the AIC and

corrected AIC, usually denoted as AICc). Below we give a derivation of the AIC based

on approximating EX

n

eD
h

g, fb✓
n

(X)

io

.
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We recall that b✓n(X) is an estimator of ✓g hence we start by replacing EX

n

eD
h

g, fb✓
n

(X)

io

with EX

n

eD
⇥

g, f✓
g

)
⇤

o

= eD[g, f✓
g

] to give

EX

n

eD
h

g, fb✓
n

(X)

io

= eD[g, f✓
g

] +
⇣

EX

n

eD
h

g, fb✓
n

(X)

io

� eD
⇥

g, f✓
g

⇤

⌘

.

We first focus on the first term eD[g, f✓
g

]. Since EX

�

eD(g, f✓
g

)) is unknown we replace it

by its sample average

eD[g, f✓
g

] = �
Z

f(y; ✓g)g(y)dy ⇡ � 1

n

n
X

i=1

log f(Xi; ✓g).

Hence we have

EX

n

eD
h

g, fb✓
n

(X)

io

⇡ � 1

n

n
X

i=1

log f(Xi; ✓g) +
⇣

EX

n

eD
h

g, fb✓
n

(X)

io

� EX

n

eD[g, f✓
g

]
o⌘

= � 1

n

n
X

i=1

log f(Xi; ✓g) + I1.

Of course, ✓g is unknown so this is replaced by b✓n(X) to give

EX

�

eD(g, fb✓
n

(X))
�

⇡ � 1

n

n
X

i=1

log f(Xi; b✓n(X)) + I1 + I2 (5.15)

where

I2 =

✓

1

n

n
X

i=1

log f
⇣

Xi; b✓n(X)
⌘

� 1

n

n
X

i=1

log f(Xi; ✓g)

◆

.

We now find approximations for I1 and I2. We observe that the terms I1 and I2 are both

positive; this is because ✓g = argmin
�

eD(g, f✓)) (recall that eD is the expectation of the

negative likelihood) and b✓n = argmax
Pn

i=1 log f(Xi; ✓). This implies that

EX

n

eD
h

g, fb✓
n

(X)

io

� EX

n

eD[g, f✓
g

]
o

and
1

n

n
X

i=1

log f
⇣

Xi; b✓n(X)
⌘

� 1

n

n
X

i=1

log f(Xi; ✓g).

Thus if ✓g are the parameters of a Weibull distribution, when the best fitting distribution

is an exponential (i.e. a Weibull with ↵ = 1), the additional terms I1 and I2 will penalize

this.
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We bound I1 and I2 by making Taylor expansions. By using the Taylor expansion

(and the assumption that E(@ log f(x;✓)
@✓

c✓=✓
g

) = 0) we have

EX

h

eD(g, fb✓
n

(X))� eD(g, f✓
g

)
i

= �EXEY

✓

1

n

n
X

i=1

⇢

log f(Yi; b✓n(X))� log f(Yi; ✓g)

�◆

= � 1

n
EXEY

✓

Ln(Y , b✓n(X))� Ln(Y , ✓g)

◆

= � 1

n
EX EY

✓

@Ln(Y , ✓)

@✓
c✓

g

(b✓n(X)� ✓g)

◆

| {z }

=0

� 1

2n
EYEX

✓

(b✓n(X)� ✓g)
0@

2Ln(Y , ✓)

@✓
c✓̄(X)(b✓n(X)� ✓g)

◆

= � 1

2n
EYEX

✓

(b✓n(X)� ✓g)
0@

2Ln(Y , ✓)

@✓
c✓̄(X)(b✓n(X)� ✓g)

◆

,

where ✓̄(X) = ↵✓(X) + (1� ↵)✓g for some 0  ↵  1. Now we note that

� 1

n

@2Ln(Y , ✓)

@✓2
c✓̄(X) ⇡ � 1

n

n
X

i=1

@2 log f(Xi, ✓)

@✓2
c✓=✓

g

P! I(✓g),

which (using a hand wavey argument) gives

I1 = EX

�

eD(g, fb✓
n

(X))� eD(g, f✓
g

)
�

⇡ 1

2
EX

✓

(b✓n(X)� ✓g)
0I(✓g)(b✓n(X)� ✓g)

◆

.(5.16)

We now obtain an estimator of I2 in (5.15). To do this we make the usual Taylor expansion

(noting that @L
n

(✓)
@✓

c✓=b✓
n

= 0)

I2 =

✓

1

n

n
X

i=1

log f(Xi; ✓g)�
1

n

n
X

i=1

log f(Xi; b✓n(X))

◆

⇡ 1

2
(b✓n(X)� ✓g)

0I(✓g)(b✓n(X)� ✓g). (5.17)

To obtain the final approximations for (5.16) and (5.17) we use (5.11) where

p
n(b✓n � ✓g)

D! N
�

0, I(✓g)
�1J(✓g)I(✓g)

�1
�

.

Now by using the above and the relationship that if Z ⇠ N (0,⌃) then E(Z 0AZ) =
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trace
�

A⌃
 

(check your linear models notes). Therefore by using the above we have

I2 = �
✓

1

n

n
X

i=1

log f(Xi; ✓g)�
1

n

n
X

i=1

log f(Xi; b✓n(X))

◆

⇡ 1

2
(b✓n(X)� ✓g)

0I(✓g)(b✓n(X)� ✓g)

⇡ 1

2
E

0

B

@

(b✓n(X)� ✓g)
0

| {z }

⇡N (0,I(✓
g

)�1J(✓
g

)I(✓
g

)�1/n)

I(✓g)(b✓n(X)� ✓g)

1

C

A

⇡ 1

2n
trace

✓

I(✓g)
�1J(✓g)

◆

and by the same reasoning we have

I1 = EX

�

eD(g, fb✓
n

(X))� eD(g, f✓
g

)
�

⇡ 1

2
EX

✓

(b✓n(X)� ✓g)
0I(✓g)(b✓n(X)� ✓g)

◆

⇡ 1

2n
trace

✓

I(✓g)
�1J(✓g)

◆

.

Simplifying the above and substituting into (5.15) gives

EX

�

eD[g, fb✓
n

(X)]
 

⇡ � 1

n

n
X

i=1

log f(Xi; b✓n(X)) +
1

n
trace

✓

J(✓g)I(✓g)
�1

◆

= � 1

n
Ln(X; b✓n(X)) +

1

n
trace

✓

J(✓g)I(✓g)
�1

◆

.

Altogether one approximation of EX

n

eD[g, fb✓
n

(X)]
o

is

EX

�

eD(g, fb✓
n

(X))
�

⇡ � 1

n
Ln(X; b✓n(X)) +

1

n
trace

✓

J(✓g)I(✓g)
�1

◆

. (5.18)

This approximation of the K � L information is called the AIC (Akaike Information

Criterion). In the case that J(✓g) = I(✓g) the AIC reduces to

AIC(p) = � 1

n
Lp,n(X; b✓p,n) +

p

n
,

and we observe that it penalises the number of parameters (this is the classical AIC).

This is one of the first information criterions.

We apply the above to the setting of model selection. The idea is that we have a set

of candidate models we want to fit to the data, and we want to select the best model.
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• Suppose there are N di↵erent candidate family of models. Let {fp(x; ✓p); ✓p 2 ⇥p}
denote the pth family.

• Let

Lp,n(X; ✓p) =
n
X

i=1

log f(Xi; ✓p)

denote the likelihood associated with the pth family. Let b✓p,n = argmax✓
p

2⇥
p

Lp,n(X; ✓p)

denote the maximum likelihood estimator of the pth family.

• In an ideal world we would compare the di↵erent families by selecting the family of

distributions {fp(x; ✓p); ✓p 2 ⇥p} which minimise the criterion EX

�

eD(g, fp,b✓
p,n

(X))
�

.

However, we do not know EX

�

eD(g, fp,b✓
p,n

(X))
�

hence we consider an estimator of it

given in (5.18).

This requires estimators of J(✓p,g) and I(✓p,g), this we can be easily be obtained

from the data and we denote this as bJp and bIp.

• We then choose the the family of distributions which minimise

min
1pN

✓

� 1

n
Lp,n(X; b✓p,n) +

1

n
trace

�

bJpbI
�1
p

�

◆

(5.19)

In other words, the order we select is bp where

bp = arg min
1pN

✓

� 1

n
Lp,n(X; b✓p,n) +

1

n
trace

�

bJpbI
�1
p

�

◆

Often (but not always) in model selection we assume that the true distribution is

nested in the many candidate model. For example, the ‘true’ model Yi = ↵0 + ↵1xi,1 + "i

belongs to the set of families defined by

Yi,p = ↵0 +
p
X

j=1

↵jxi,j + "i p > 1.

In this case {↵0+
Pp

j=1 ↵jxi,j+"i;↵j 2 Rp+1} denotes the pth family of models. Since the

true model is nested in most of the candidate model we are in the specified case. Hence

we have J(✓g) = I(✓g), in this case trace
�

J(✓g)I(✓g)�1
�

= trace
�

I(✓g)I(✓g)�1
�

= p. In

this case (5.19) reduces to selecting the family which minimises

AIC(p) = min
1pN

✓

� 1

n
Lp,n(X; b✓p,n) +

p

n

◆

.
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There is a bewildering array of other criterions (including BIC etc), but most are

similar in principle and usually take the form

� 1

n
Lp,n(X; b✓p,n) + penn(p),

where penn(p) denotes a penality term (there are many including Bayes Information

criterion etc.).

Remark 5.3.1 • Usually the AIC is defined as

AIC(p) = �2Lp,n(X; b✓p,n) + 2p,

this is more a matter of preference (whether we include the factor 2n or not).

• We observe that as the sample size grows, the weight of penalisation relative to the

likelihood declines (since Lp,n(X; b✓p,n) = O(n)).

This fact can mean that the AIC can be problematic; it means that the AIC can easily

overfit, and select a model with a larger number of parameters than is necessary (see

Lemma 5.3.1).

• Another information criterion is the BIC (this can be obtained using a di↵erent

reasoning), and is defined as

BIC(p) = �2Lp,n(X; b✓p,n) + p log n.

• The AIC does not place as much weight on the number of parameters, whereas the

BIC the does place a large weight on the parameters. It can be shown that the BIC

is a consistent estimator of the model (so long as the true model is in the class of

candidate models). However, it does have a tendency of underfitting (selecting a

model with too few parameters).

• However, in the case that the the true model does not belong to any the families, the

AIC can be a more suitable criterion than other criterions.

Note that ”estimators” such as the AIC (or even change point detection methods,

where the aim is to detect the location of a change point) are di↵erent to classical estima-

tors in the sense that the estimator is ”discrete valued”. In such cases, often the intention

is to show that the estimator is consistent, in the sense that

P (bpn = p)
P! 1
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as n ! 1 (where bp denotes the estimator and p the true parameter). There does exist

some paper which try to construct confidence intervals for such discrete valued estimators,

but they tend to be rarer.

Lemma 5.3.1 (Inconsistency of the AIC) Suppose that we are in the specified case

and ✓p is the true model. Hence the true model has order p. Then for any q > 0 we have

that

lim
n!1

P
�

arg min
1mp+q

AIC(m) > p
�

> 0,

moreover

lim
n!1

P
�

arg min
1mp+q

AIC(m) = p
�

6= 1.

In other words, the AIC will with a positive probability choose the larger order model, and

is more likely to select large models, as the the order q increases.

PROOF. To prove the result we note that (p+q)-order model will be selected over p-order

in the AIC if �Lp+q,T + (p+ q) < �Lp,n + p, in other words we select (p+ q) if

Lp+q,n � Lp,n > q.

Hence

P
�

arg min
1mp+q

AIC(m) > p
�

= P
�

arg min
pmp+q

AIC(m) < AIC(p)
�

� P
�

AIC(p+ q) < AIC(p)
�

� P (2(Lp+q,n � Lp,n) > 2q).

But we recall that Lp+q,n and Lp,n are both log-likelihoods and under the null that the

pth order model is the true model we have 2(Lp+q,n � Lp,n)
D! �2

q. Since E(�2
q) = q and

var[�2
q] = 2q, we have for any q > 0 that

P
�

arg min
1mp+q

AIC(m) > p
�

� P (2(Lp+q,n � Lp,n) > 2q) > 0.

Hence with a positive probability the AIC will choose the larger model.

This means as the sample size n grows, with a positive probability we will not neces-

sarily select the correct order p, hence the AIC is inconsistent and

lim
n!1

P
�

arg min
1mp+q

AIC(m) = p
�

6= 1.

⇤
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Remark 5.3.2 (The corrected AIC) In order to correct for the bias in the AIC the

corrected AIC was proposed in Sugiura (1978) and Hurvich and Tsai (1989). This gives a

more subtle approximation of EX

�

eD[g, fb✓
n

(X)]
 

which results in an additional penalisation

term being added to the AIC. It can be shown that for linear models the AICc consistently

estimates the order of the model.

Remark 5.3.3 The AIC is one example of penalised model that take the form

�Lp,n(X; ✓) + �k✓k↵,

where k✓k↵ is a “norm” on ✓. In the case of the AIC the `0-norm k✓k0 =
Pp

i=1 I(✓i 6= 0)

(where ✓ = (✓1, . . . , ✓p) and I denotes the indicator variable). However, minimisation of

this model over all subsets of ✓ = (✓1, . . . , ✓p) is computationally prohibitive if p is large.

Thus norms where ↵ � 1 are often seeked (such as the LASSO etc).

Regardless of the norm used, if the number of non-zero parameter is finite, with a

positive probability we will over estimate the number of non-zero parameters in the model.

5.3.1 Examples

This example considers model selection for logistic regression, which is covered later in

this course.

Example 5.3.2 Example: Suppose that {Yi} are independent binomial random variables

where Yi ⇠ B(ni, pi). The regressors x1,i, . . . , xk,i are believed to influence the probability

pi through the logistic link function

log
pi

1� pi
= �0 + �1x1,i + �pxp,i + �p+1xp+1,i + . . .+ �qxq,i,

where p < q.

(a) Suppose that we wish to test the hypothesis

H0 : log
pi

1� pi
= �0 + �1x1,i + �pxp,i

against the alternative

H0 : log
pi

1� pi
= �0 + �1x1,i + �pxp,i + �p+1xp+1,i + . . .+ �qxq,i.

State the log-likelihood ratio test statistic that one would use to test this hypothesis.

If the null is true, state the limiting distribution of the test statistic.
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(b) Define the model selection criterion

Mn(d) = 2Ln(b�d)� 2Cd

where C is a finite constant,

Li,d(�d) =
n
X

i=1

✓

Yi�
0
dxid � ni log(1 + exp(�0

dxid) +

✓

ni

Yi

◆◆

,

xid = (x1,i, . . . , xd,i) and b�d = argmax�
d

Li,d(�d). We use bd = argmaxd Mn(d) as an

estimator of the order of the model.

Suppose that H0 defined in part (2a) is true, use your answer in (2a) to explain

whether the model selection criterion Mn(d) consistently estimates the order of

model.

Solution:

(a) The likelihood for both hypothesis is

Li,d(�d) =
n
X

i=1

✓

Yi�
0
dxid � ni log(1 + exp(�0

dxid) +

✓

ni

Yi

◆◆

.

Thus the log-likelihood ratio test is

in = 2
�

Ln,q(b�q)� Li,p(b�p

�

= 2
n
X

i=1

✓

Yi[b�
0
A � b�0

0]xi � ni[log(1 + exp(b�0
Axi)� log(1 + exp(b�0

0xi)]

◆

where b�0 and b�A are the maximum likelihood estimators under the null and alterna-

tive respectively.

If the null is true, then in
D! �2

q�p as T ! 1.

(b) Under the null we have that in = 2
�

Ln,q(b�q) � Ln,p(b�p

� D! �2
q�p. Therefore, by

definition, if bd = argmaxd Mn(d), then we have

�

Lbd(
b�d)� 2C bd

�

�
�

Lp(b�p)� 2Cp
�

> 0.

Suppose q > p, then the model selection criterion would select q over p if

2
⇥

Lbd(
b�q)� Lp(b�p)

⇤

> 2C(q � p).
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Now the LLRT test states that under the null 2
⇥

Lq(b�q)�Lp(b�p)
D! �2

q�p, thus roughly

speaking we can say that

P



Lq(b�q)� (Lp(b�p) > 2C(bd� p)

�

⇡ P (�2
q�p > 2C(q � p)).

As the above is a positive probability, this means that the model selection criterion

will select model q over the true smaller model with a positive probability. This

argument holds for all q > p, thus the model selection criterion Mn(d) does not

consistently estimate d.

5.3.2 Recent model selection methods

The AIC and its relatives have been extensively in statistics over the past 30 years because

it is easy to evaluate. There are however problems in the case that p is large (more so

when p is large with respect to the sample size n, often called the large p small n problem).

For example, in the situation where the linear regression model takes the form

Yi =
p
X

j=1

ajxi,j + "i,

where the number of possible regressors {xi,j} is extremely large. In this case, evaluating

the mle for all the p di↵erent candidate models, and then making a comparisoon can take

a huge amount of computational time. In the past 10 years there has been a lot of work

on alternative methods of model selection. One such method is called the LASSO, this is

where rather than estimating all model individually parameter estimation is done on the

large model using a penalised version of the MLE

Ln(✓) + �
p
X

i=1

|✓i|.

The hope is by including the �
Pp

i=1 |✓i| in the likelihood many of coe�cients of the

regressors would be set to zero (or near zero). Since the introduction of the LASSO in

1996 many variants of the LASSO have been proposed and also the LASSO has been

applied to several di↵erent situations.
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