
Chapter 4

Non-standard inference

As we mentioned in Chapter 2 the the log-likelihood ratio statistic is useful in the context

of statistical testing because typically it is “pivotal” (does not depend on any nuisance)

under the null hypothesis. Typically, the log-likelihood ratio statistic follows a chi-square

distribution under the null hypothesis. However, there are realistic situations where the

this statistic does not follow a chi-square distribution and the purpose of this chapter is

to consider some of these cases.

At the end of this chapter we consider what happens when the “regularity” conditions

are not satisfied.

4.1 Detection of change points

This example is given in Davison (2004), pages 141, and will be considered in class. It is

not related to the boundary problems discussed below but none the less is very interesting.

4.2 Estimation on the boundary of the parameter

space

In this section we consider the distribution of parameters which are estimated on the

boundary of the parameter space. We will use results from Chapter 2.
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4.2.1 Estimating the mean on the boundary

There are situations where the parameter to be estimated lies on the boundary (or very,

very close to it). In such cases the limiting distribution of the the parameter may not be

normal (since when we maximise the likelihood we do so over the parameter space and

not outside it). This will not impact Wald based tests (by much), but it will have an

impact on the log-likelihood ratio test.

To understand the changes involved, we start with a simple example.

Suppose Xi ⇠ N (µ, 1), where the mean µ is unknown. In addition it is known that

the mean is non-negative hence the parameter space of the mean is ⇥ = [0,1). In this

case X̄ can no longer be the MLE because there will be some instances where X̄ < 0. Let

us relook at the maximum likelihood on the restricted parameter space

µ̂n = argmax
µ2⇥

Ln(µ) = argmax
µ2⇥

�1

2

n
X

i=1

(Xi � µ)2.

Since Ln(µ) is concave over µ, we see that the MLE estimator is

µ̂n =

(

X̄ X̄ � 0

0 X̄ < 0.

Hence in this restricted space it is not necessarily true that @L
n

(µ)
@µ

cµ̂
n

6= 0, and the usual

Taylor expansion method cannot be used to derive normality. Indeed we will show that

it is not normal.

We recall that
p
n(X̄ � µ)

D! N (0, I(µ)�1) or equivalently 1p
n
@L

n

(µ)
@µ

cX̄
D! N (0, I(µ)).

Hence if the true parameter µ = 0, then approximately half the time X̄ will be less than

zero and the other half it will be greater than zero. This means that half the time µ̂n = 0

and the other half it will be greater than zero. Therefore the distribution function of µ̂n

is

P (
p
nbµn  x) = P (

p
nµ̂n = 0 or 0 <

p
nµ̂n  x)

⇡

8

>

>

<

>

>

:

0 x  0

1/2 x = 0

1/2 + P (0 <
p
nX̄  x) = �(

p
nX̄  x) x > 0

,

where � denotes the distribution function of the normal distribution. Observe the distri-

bution of
p
nX̄ is a mixture of a point mass and a density. However, this result does not

124



change our testing methodology based on the sample mean. For example, if we want to

test H0 : µ = 0 vs HA : µ > 0, then we use the estimator bµn and the p-value is

1� �
�p

nbµn

�

which is the p-value for the one-sided test (using the normal distribution).

Now we consider using the log-likelihood ratio test to test theH0 : µ = 0 vsHA : µ > 0.

In this set-up the test statistic is

Wn = 2

⇢

arg max
µ2[0,1)

Ln(µ)� Ln(0)

�

= 2
�

Ln(bµn)� Ln(0)
 

.

However, since the derivative of the likelihood at bµn is not necessarily zero, means that

W will not be a standard chi-square distribtion. To obtain the distribution we note that

likelihoods under µ 2 [0,1) and µ = 0 can be written as

Ln(µ̂n) = �1

2

n
X

i=1

(Xi � µ̂n)
2 Ln(0) = �1

2

n
X

i=1

X2
i .

Thus we observe that when X̄  0 then Ln(µ̂n) = Ln(0) and

2
�

Ln(µ̂n)� Ln(0)
 

=

(

0 X̄  0 P (X̄  0) ⇡ 1/2

n|X̄|2 X̄ > 0 P (X̄ > 0) ⇡ 1/2

Hence we have that

P (2
�

Ln(µ̂n)� Ln(0)
 

 x)

= P (2
�

Ln(µ̂n)� Ln(0)
 

 x
�

�X̄  0)P (X̄  0) + P (2
�

Ln(µ̂n)� Ln(0)
 

 x
�

�X̄ > 0)P (X̄ > 0).

Now using that

P (2
�

Ln(µ̂n)� Ln(0)
 

 x
�

�X̄  0) =

(

0 x < 0

1 x � 0
,

P (2
�

Ln(µ̂n)� Ln(0)
 

 x
�

�X̄ > 0) = P (nX̄2  x
�

�X̄ > 0) ⇡
(

0 x < 0

�2
1 x > 0

and P (
p
nX̄ < 0) = 1/2, gives

P (2
�

Ln(µ̂n)� Ln(0)
 

 x
�

=

8

>

>

<

>

>

:

0 x  0

1/2 x = 0

1/2 + 1
2
P (n|X̄|2  x) x > 0
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Therefore

P (2
�

Ln(µ̂n)� Ln(0)
 

 x) =
1

2
+

1

2
P (�2  x) =

1

2
�2
0 +

1

2
�2
1,

we use the �2
0 notation to denote the point mass at zero. Therefore, suppose we want to

test the hypothesis H0 : µ = 0 against the hypothesis HA : µ > 0 using log likelihood

ratio test. We would evaluate Wn = 2
�

Ln(µ̂n)� Ln(0)
 

and find the p such that

1

2
+

1

2
P (Wn  �2

1) = 1� p.

This is the p-value, which we then use to make the decision on the test.

Remark 4.2.1 Essentially what has been done is turned the log-likelihood test for the

mean, which is a two-sided test, into a one-sided test.

(i) It is clear that without a boundary testing H0 : µ = 0 against HA : µ 6= 0 the LLRT

is simply

2
�

Ln(X̄)� Ln(0)
 

= n|X̄|2 D! �2
1,

under the null.

Example, n = 10 and x̄ = 0.65 the p-value for the above hypothesis is

P
�

Wn > 10⇥ (0.65)2
�

= P
�

�2
1 > 10⇥ (0.65)2

�

= 1� P (�2
1  4.2) = 1� 0.96 = 0.04.

The p-value is 4%.

(ii) On the other hand, to test H0 : µ = 0 against the hypothesis HA : µ > 0 we use

2
�

Ln(µ̂n)� Ln(0)
 D! 1

2
+

1

2
�2
1.

Example: Using the same data, but the one-sided test we have

P
�

Wn > 10⇥ (0.65)2
�

= 1� P
�

Wn  10⇥ (0.65)2
�

= 1�
✓

1

2
+

1

2
P
�

�2
1  10⇥ (0.65)2

�

◆

=
1

2

�

1� P (�2
1  4.2)

�

= 0.02.

The p-value is 2%. Thus, as we would expect, the result of the one-sided test simply

gives half the p-value corresponding to the two-sided test.
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Exercise 4.1 The survivial time of disease A follow an exponential distribution, where

the distribution function has the form f(x) = ��1 exp(�x/�). Suppose that it is known

that at least one third of all people who have disease A survive for more than 2 years.

(i) Based on the above information obtain the appropriate parameter space for �. Let �B

denote the lower boundary of the parameter space and ⇥ the corresponding parameter

space.

(ii) What is the maximum likelihood estimator of b�n = argmax�2⇥ Ln(�).

(iii) Derive the sampling properties of maximum likelihood estimator of �, for the cases

� = �B and � > �B.

(iv) Suppose the true parameter is �B derive the distribution of 2[max✓2⇥ Ln(�)�Ln(�B)].

4.2.2 General case with parameter on the boundary

It was straightfoward to derive the distributions in the above examples because a closed

form expression exists for the estimator. However the same result holds for general max-

imum likelihood estimators; so long as certain regularity conditions are satisfied.

Suppose that the log-likelihood is Ln(✓), the parameter space is [0,1) and

b✓n = argmax
✓2⇥

Ln(✓).

We consider the case that the true parameter ✓0 = 0. To derive the limiting distribution

we extend the parameter space e⇥ such that ✓0 = 0 is an interior point of e⇥. Let

e✓n 2 argmax
✓2e⇥

Ln(✓),

this is the maximum likelihood estimator in the non-constrained parameter space. We as-

sume that for this non-constrained estimator
p
n(e✓n�0)

D! N (0, I(0)�1) (this needs to be

verified and may not always hold). This means that for su�ciently large n, the likelihood

will have a maximum close to 0 and that in the neighbourhood of zero, the likelihood is

concave (with only one maximum). We use this result to obtain the distribution of the

restricted estimator. The log-likelihood ratio involving the restricted estimator is

Wn = 2
�

arg✓2[0,1) Ln(✓)� Ln(0)
�

= 2
⇣

Ln(b✓n)� Ln(0)
⌘

.
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Figure 4.1: A plot of the likelihood for large and small n. For large n, the likelihood tends

to be concave about the true parameter, which in this case is zero.

Roughly speaking b✓n can be considered as a “reflection” of e✓n i.e. if e✓n < 0 then b✓n = 0

else b✓n = e✓n (see Figure 4.1) (since for a su�ciently large sample size, if e✓n < 0, then the

maximum within [0,1) will lie at zero). We use this principle to obtain the distribution

of Wn by conditioning on e✓n

P (Wn  x) = P (Wn  x|e✓n  0)P (e✓n  0) + P (Wn  x|e✓n > 0)P (e✓n > 0).

Now using that
p
ne✓n

D! N (0, I(0)�1) and that Ln(✓) is close to concave about its max-

imum thus for e✓n  0 we have Wn = 0, and we have a result analogous to the mean

case

P (Wn  x) =
1

2
P (Wn  x|e✓n  0) +

1

2
P (Wn  x|e✓n > 0) =

1

2
+

1

2
�2
1.

The precise argument for the above uses a result by Cherno↵ (1954), who shows that

Wn
D
= max

✓2[0,1)
[�(Z � ✓)I(0)(Z � ✓)] + ZI(0)Z + op(1), (4.1)

where Z ⇠ N (0, I(0)�1) (and is the same for both quadratic forms). Observe that when

Z < 0 the above is zero, whereas when Z > 0 max✓2[0,1) [�(Z � ✓)I(0)(Z � ✓)] = 0 and

we have the usual chi-square statistic.
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To understand the approximation in (4.1) we return to the log-likelihood ratio and add

and subtract the maximum likelihood estimator based on the non-restricted parameter

space e⇥

2



max
✓2⇥

Ln(✓)� Ln(✓0)

�

= 2



max
✓2⇥

Ln(✓)�max
✓2e⇥

Ln(✓)

�

+ 2



max
✓2e⇥

Ln(✓)� Ln(✓0)

�

.(4.2)

Now we do the usual Taylor expansion about e✓n (which guarantees that the first derivative

is zero) for both terms to give

2



max
✓2⇥

Ln(✓)� Ln(✓0)

�

= �n
⇣

e✓n � b✓n
⌘

I(✓0)
⇣

e✓n � b✓n
⌘

+ n
⇣

e✓n � ✓0
⌘

I(✓0)
⇣

e✓n � ✓0
⌘

+ op(1)

= �n
⇣h

e✓n � ✓0
i

�
h

b✓n � ✓0
i⌘

I(✓0)
⇣h

e✓n � ✓0
i

�
h

b✓n � ✓0
i⌘

+ n
⇣

e✓n � ✓0
⌘

I(✓0)
⇣

e✓n � ✓0
⌘

.

We recall that asymptotically
p
n
⇣

e✓n � ✓0
⌘

⇠ N (0, I(✓0)�1). Therefore we define the

random variable
p
n
⇣

e✓n � ✓0
⌘

⇠ Z ⇠ N (0, I(✓0)�1) and replace this in the above to give

2
h

Ln(b✓n)� Ln(✓0)
i

D
= �

⇣

Z � n1/2
h

b✓n � ✓0
i⌘

I(✓0)
⇣

Z � n1/2
h

b✓n � ✓0
i⌘

+ ZI(✓0)Z.

Finally, it can be shown (see, for example, Self and Liang (1987), Theorem 2 or Andrews

(1999), Section 4.1) that
p
n(b✓n � ✓0) 2 ⇥ � ✓0 = ⇤, where ⇤ is a convex cone about ✓0

(this is the terminology that is often used); in the case that ⇥ = [0,1) and ✓0 = 0 then
p
n(b✓n� ✓0) 2 ⇤ = [0,1) (the di↵erence can never be negative). And that the maximum

likelihood estimator is equivalent to the maximum of the quadratic form over ⇥ i.e.

2
h

Ln(b✓n)� Ln(✓0)
i

D
= max

✓2⇥
�
⇣

Z � n1/2
h

b✓n � ✓0
i⌘

I(✓0)
⇣

Z � n1/2
h

b✓n � ✓0
i⌘

+ ZI(✓0)Z

= max
✓2⇥�✓0=[0,1)=⇥

� (Z � ✓) I(✓0) (Z � ✓) + ZI(✓0)Z,

which gives (4.1).

Example 4.2.1 (Example 4.39 (page 140) in Davison (2002)) In this example Davi-

son reparameterises the t-distribution. It is well known that if the number of degrees of

freedom of a t-distribution is one, it is the Cauchy distribution, which has extremely thick

tails (such that the mean does not exist). At the other extreme, if we let the number of
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degrees of freedom tend to 1, then the limit is a normal distribution (where all moments

exist). In this example, the t-distribution is reparameterised as

f(y;µ, �2, ) =
�
⇥

(1+ �1)
2

⇤

 1/2

(�2⇡)1/2�( 1
2⇡
)

✓

1 +
 (y � µ)2

�2

◆�( �1+1)/2

It can be shown that lim !1 f(y;µ, �2, ) is a t-distribution with one-degree of freedom

and at the other end of the spectrum lim !0 f(y;µ, �2, ) is a normal distribution. Thus

0 <   1, and the above generalisation allows for fractional orders of the t-distribution.

In this example it is assumed that the random variables {Xi} have the density f(y;µ, �2, ),

and our objective is to estimate  , when  ! 0, this the true parameter is on the bound-

ary of the parameter space (0, 1] (it is just outside it!). Using similar, arguments to those

given above, Davison shows that the limiting distribution of the MLE estimator is close

to a mixture of distributions (as in the above example).

Testing on the boundary in the presence of independent nuisance parameters

Suppose that the iid random variables come from the distribution f(x; ✓, ), where (✓, )

are unknown. We will suppose that ✓ is a univariate random variable and  can be

multivariate. Suppose we want to test H0 : ✓ = 0 vs HA : ✓ > 0. In this example we are

testing on the boundary in the presence of nuisance parameters  .

Example 4.2.2 Examples include the random coe�cient regression model

Yi = (↵ + ⌘i)Xi + "i, (4.3)

where {(Yi, Xi)}ni=1 are observed variables. {(⌘i, "i)}ni=1 are independent zero mean random

vector, where var((⌘i, "i)) = diag(�2
⌘, �

2
"). We may want to test whether the underlying

model is a classical regression model of the type

Yi = ↵Xi + "i,

vs the random regression model in (4.3). This reduces to testing H0 : �2
⌘ = 0 vs HA : �2

⌘ >

0.

In this section we will assume that the Fisher information matrix associated for the

mle of (✓, ) is block diagonal i.e. diag(I(✓), I( )). In other words, if we did not constrain
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the parameter space in the maximum likelihood estimation then

p
n

 

e✓n � ✓
e n �  

!

D! N (0, diag(I(✓), I( ))) .

The log-likelihood ratio statistic for testing the hypothesis is

Wn = 2



max
✓2[0,1), 

Ln(✓, )�max
 

Ln(0, )

�

Now using the heuristics presented in the previous section we have

P (Wn  x) = P (Wn  x|e✓n  0)P (e✓n  0) + P (Wn  x|e✓n > 0)P (e✓n > 0).

The important observation is that because (e✓n, e n) are asymptotically independent of each

other, the estimator of e✓n has no influence on the estimate of e n. Thus setting b✓n = 0

will not change the estimator of  and e n = b n

2



max
✓2[0,1), 

Ln(✓, )�max
 

Ln(0, )

�

�

�

e✓n < 0

= 2



max
✓2[0,1), 

Ln(b✓, b )�max
 

Ln(0, )

�

�

�

e✓n < 0

= 2



Ln(0, e )�max
 

Ln(0, )

�

= 0.

This gives the result

P (Wn  x) =
1

2
P (Wn  x|e✓n  0) +

1

2
P (Wn  x|e✓n > 0) =

1

2
+

1

2
�2
1.

However, it relies on the asymptotic independence of e✓n and e n.

4.2.3 Estimation on the boundary with several parameters when

the Fisher information is block diagonal

In the following section we summarize some of the results in Self and Liang (1987).

One parameter lies on the boundary and the rest do not

We now generalize the above to estimating the parameter ✓ = (✓1, ✓2, . . . , ✓p+1). We start

by using an analogous argument to that used in the mean case and then state the precise

result from which it comes from.
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Suppose the true parameter ✓1 lies on the boundary, say zero, however the other pa-

rameters ✓2, . . . , ✓p+1 lie within the interior of the parameter space and the parameter

space is denoted as ⇥. Examples include mixture models where ✓1 is the variance (and

cannot be negative!). We denote the true parameters as ✓0 = (✓10 = 0, ✓20, . . . , ✓p+1,0). Let

Ln(✓) denote the log-likelihood. We make the informal assumption that if we were to ex-

tend the parameter space such that ✓0 = 0 were in the interior of this new parameter space
e⇥ i.e. (✓10 = 0, ✓20, . . . , ✓p+1,0) = (✓10, ✓p) 2 int(e⇥), and e✓ = (e✓1,e✓p) = argmax✓2e⇥ Ln(✓)

then

p
n

 

e✓1n � ✓0
e✓pn � ✓p0

!

D! N

0

@0,

 

I11(✓0) 0

0 Ipp(✓0)

!�1
1

A .

It is worth noting that the block diagonal nature of the information matrix assumes that

the two sets of parameters are asymptotically independent. The asymptotic normality

results needs to be checked; it does not always hold.1. Let b✓n = argmax✓2⇥ Ln(✓) denote

the maximum likelihood estimator in the restricted parameter space (with the cut o↵ at

zero). Our aim is to derive the distribution of

Wn = 2

✓

max
✓2⇥

Ln(✓)� Ln(✓0)

◆

.

We use heuristics to obtain the distribution, by conditioning on the unrestricted estimator
e✓n (we make this a little more precisely later on). Conditioning on e✓1n we have

P (Wn  x) = P (Wn  x|e✓1n  0)P (e✓1n  0) + P (Wn  x|e✓1n > 0)P (e✓1n > 0).

Again assuming that for large n, Ln(✓) is concave about e✓n such that when e✓n < 0, b✓n = 0.

However, asymptotic independence between e✓n1 and e✓np (since the Fisher information

matrix is block diagonal) means that setting b✓n1 = 0 does not change the estimator of ✓p
e✓np i.e. roughly speaking

2[Ln(b✓1n, b✓pn)� Ln(0, ✓p)]|e✓n2 < 0 = 2[Ln(0, e✓pn)� Ln(0, ✓p)]
| {z }

�2
p

1Sometimes we cannot estimate on the boundary (consider some of the example considered in Chapter

2.9 with regards to the exponential family), sometimes the
p
n-rates and/or the normality result is

completely di↵erent for parameters which are defined at the boundary (the Dickey-Fuller test is a notable

example)
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Figure 4.2: The likelihood for diagonal and nondiagonal Fisher information matrices.

If e✓n1 and e✓np were dependent then the above equality does not hold and it is not a �2
p

(see Figure 4.2). The above gives

P (Wn  x) = P (Wn  x
| {z }

�2
p

|e✓1n  0)P (e✓1n  0) + P (Wn  x
| {z }

�2
p+1

�

�

e✓1n > 0)P (e✓1n > 0)

=
1

2
�2
p +

1

2
�2
p+1. (4.4)

See Figure 4.3 for a plot of the parameter space and associated probabilities.

The above is a heuristic argument. If one wanted to do it precisely one needs to use

the asymptotic equivalent (based on the same derivations given in(4.2)) where (under

certain regularity conditions) we have

Wn
D
= max

✓2⇥
[�(Z � ✓)I(0)(Z � ✓)] + ZI(✓0)Z + op(1)

= max
✓12[0,1)

[�(Z � ✓1)I11(✓0)(Z � ✓1)] + ZI11(✓0)Z

+ max
✓
p

2⇥
p

⇥

�(Zp � ✓p)I11(✓0)(Zp � ✓p)
⇤

| {z }

=0

+ZpIpp(✓0)Zp

= max
✓12[0,1)

[�(Z � ✓1)I11(✓0)(Z � ✓1)] + ZI11(✓0)Z

+ZpIpp(✓0)Zp
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Figure 4.3: Two parameters: one on boundary and one in interior.

where Z ⇠ N(0, I11(✓0)�1) and Zp ⇠ N(0, Ipp(✓0)�1) (Z and Zp are independent). Using

the above we can obtain the same distribution as that given in (4.4)

More than one parameter lies on the boundary

Suppose that the parameter space is ⇥ = [0,1) ⇥ [0,1) and the true parameter ✓0 =

(✓10, ✓20) = (0, 0) (thus is on the boundary). As before we make the informal assumption

that we can extend the parameter space such that ✓0 lies within its interior of e⇥. In this

extended parameter space we have

p
n

 

e✓1 � ✓10
e✓2 � ✓20

!

D! N

0

@0,

 

I11(✓0) 0

0 I22(✓0)

!�1
1

A .

In order to derive the limiting distribution of the log-likelihood ratio statistic

Wn = 2

✓

max
✓2⇥

Ln(✓)� Ln(✓0)

◆
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Figure 4.4: Two parameters: both parameters on boundary.

we condition on e✓1 and e✓2. This gives

P (Wn  x)

= P
⇣

Wn  x|e✓1  0, e✓2  0
⌘

P
⇣

e✓1  0, e✓2  0
⌘

+ P
⇣

Wn  x|e✓1  0, e✓2 > 0
⌘

P
⇣

e✓1  0, e✓2 > 0
⌘

+

P
⇣

Wn  x|e✓1 > 0, e✓2  0
⌘

P
⇣

e✓1 > 0, e✓2  0
⌘

+ P
⇣

Wn  x|e✓1 > 0, e✓2 > 0
⌘

P
⇣

e✓1 > 0, e✓2 > 0
⌘

.

Now by using the asymptotic independence of e✓1 and e✓2 and for e✓1 > 0, e✓2 > 0 Wn = 0

the above is

P (Wn  x) =
1

4
+

1

2
�2
1 +

1

4
�2
2.

This is easiest seen in Figure 4.4.

Again the above argument can be made precise by using that the distribution of Wn

can be approximated with the quadratic form

Wn
D
= max

✓12[0,1)
[�(Z1 � ✓1)I11(0)(Z1 � ✓1)] + Z1I11(0)Z1

= + max
✓22[0,1)

[�(Z2 � ✓2)I22(0)(Z2 � ✓2)] + Z2I22(0)Z2
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where Z1 ⇠ N(0, I11(✓0)�1) and Z2 ⇠ N(0, I22(✓0)�1). This approximation gives the same

result.

4.2.4 Estimation on the boundary when the Fisher information

is not block diagonal

In the case that the Fisher information matrix is not block diagonal the same procedure

can be use, but the results are no longer so clean. In particular, the limiting distribution

may no longer be a mixture of chi-square distributions and/or the weighting probabilities

will depend on the parameter ✓ (thus the log-likelihood ratio will not be pivotal).

Let us consider the example where one parameter lies on the boundary and the other

does not. i.e the parameter space is [0,1)⇥ (�1,1). The true parameter ✓0 = (0, ✓20)

however, unlike the examples considered above the Fisher information matrix is not diag-

onal. Let b✓n = (b✓1, b✓2) = argmax✓2⇥ Ln(✓). We can use the conditioning arguments given

above however they become ackward because of the dependence between the estimators

of b✓1 and b✓2. Instead we use the quadratic form approximation

Wn = 2

✓

max
✓2⇥

Ln(✓)� Ln(✓0)

◆

D
= max

✓2⇥
[�(Z � ✓)I(✓0)(Z � ✓)] + Z 0I(✓0)Z + op(1)

where Z ⇠ N (0, I(✓0)�1). To simplify the derivation we let Z ⇠ N (0, I2). Then the above

can be written as

Wn = 2

✓

max
✓2⇥

Ln(✓)� Ln(✓0)

◆

D
= max

✓2⇥

h

�
�

I(✓0)
�1/2Z � I(✓0)

�1/2I(✓0)
1/2✓

 0
I(✓0)

�

I(✓0)
�1/2Z � I(✓0)

�1/2I(✓0)
1/2✓

 

i

+
�

I(✓0)
�1/2Z

 0
I(✓0)

�

I(✓0)
�1/2Z

 

+ op(1)

= max
✓2⇥

⇥

�(Z � ✓)0(Z � ✓)
⇤

+ Z
0
Z + op(1)

where ⇥ = {✓ = I(✓0)1/2✓; ✓ 2 ⇥}. This orthogonalisation simplifies the calculations.

Using the spectral decomposition of I(✓) = P⇤P 0 where P = (p
1
, p

2
) (thus I(✓)1/2 =

P⇤1/2P 0) we see that the half plane (which defines ⇥) turns into the rotated half plane

⇥ which is determined by the eigenvectors p1 and p
2
(which rotates the line ↵(0, 1) into

L = ↵[�1/21 hp
1
, (0, 1)ip

1
+ �1/22 hp

2
, (0, 1)ip

2
] = ↵[�1/21 hp

1
, 1ip

1
+ �1/22 hp

2
, 1ip

2
]
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Figure 4.5: Two parameters: one parameter on boundary and the other in interior.

where 1 = (0, 1). We observe that

Wn =

8

>

<

>

:

Z
0
Z

|{z}

�2
2

Z 2 ⇥

�[Z � P⇥(Z)]
0[Z � P⇥(Z)] + Z

0
Z Z 2 ⇥

c
.

We note that P⇥(Z) is the nearest closest point on the line L, thus with some e↵ort one

can calculate the distribution of �[Z�P⇥(Z)]
0[Z�P⇥(Z)]+Z

0
Z (it will be some weighted

chi-square), noting that P (Z 2 ⇥) = 1/2 and P (Z 2 ⇥
c
) = 1/2 (since they are both in

half a plane). Thus we observe that the above is a mixture of distributions, but they are

not as simple (or useful) as when the information matrix has a block diagonal structure.

The precise details can be found in Cherno↵ (1954), Moran (1971), Chant (1974), Self

and Liang (1987) and Andrews (1999). For the Bayesian case see, for example, Botchkina

and Green (2014).

Exercise 4.2 The parameter space of ✓ is [0,1)⇥[0,1). The Fisher information matrix

corresponding to the distribution is

I(✓) =

 

I11(✓) I12(✓)

I21(✓) I22(✓)

!

.
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Suppose that the true parameter is ✓ = (0, 0) obtain (to the best you can) the limiting

distribution of the log-likelihood ratio statistic 2(argmax✓2⇥ Ln(✓)� Ln(0, 0)).

4.3 Regularity conditions which are not satisfied

In this section we consider another aspect of nonstandard inference. Namely, deriving the

asymptotic sampling properties of estimators (mainly MLEs) when the usual regularity

conditions are not satisfied, thus the results in Chapter 2 do not hold. Some of this

material was covered or touched on previously. Here, for completeness, we have collected

the results together.

The uniform distribution

The standard example where the regularity conditions (mainly Assumption 1.3.1(ii)) are

not satisfied is the uniform distribution

f(x; ✓) =

(

1
✓

0  x  ✓

0 otherwise

We can see that the likelihood in this case is

Ln(X; ✓) =
n
Y

i=1

✓�1I(0 < Xi < ✓).

In this case the the derivative of Ln(X; ✓) is not well defined, hence we cannot solve for

the derivative. Instead, to obtain the mle we try to reason what the maximum is. We

should plot Ln(X; ✓) against ✓ and place Xi on the ✓ axis. We can see that if ✓ < Xi,

then Ln is zero. Let X(i) denote the ordered data X(1)  X(2), . . .  X(T ). We see that

for ✓ = X(T ), we have Ln(X; ✓) = (X(T ))�T , then beyond this point Ln(X; ✓) decays ie.

Ln(X; ✓) = ✓�T for ✓ � X(T ). Hence the maximum of the likelihood is ✓̂n = max1tT Xi.

The sampling properties of b✓n were calculated in Exercise 2.3.

The shifted exponential

Let us consider the shifted exponential distribution

f(x; ✓,�) =
1

✓
exp

✓

�(x� �)

✓

◆

x � �,
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which is only well defined for ✓,� > 0. We first observe when � = 0 we have the usual

exponential function, � is simply a shift parameter. It can be shown that the usual

regularity conditions (Assumption 1.3.1) will not be satisfied. This means the Cramer-

Rao bound does not hold in this case and the limiting variance of the mle estimators will

not be the inverse of the Fisher information matrix.

The likelihood for this example is

Ln(X; ✓,�) =
1

✓n

n
Y

i=1

exp

✓

�(Xi � �)

✓

◆

I(�  Xi).

We see that we cannot obtain the maximum of Ln(X; ✓,�) by di↵erentiating. Instead

let us consider what happens to Ln(X; ✓,�) for di↵erent values of �. We see that for

� > Xi for any t, the likelihood is zero. But at � = X(1) (smallest value), the likelihood

is 1
✓n

Qn
i=1 exp(�

(X(t)�X(1))

✓
. But for � < X(1), Ln(X; ✓,�) starts to decrease because

(X(t) � �) > (X(t) � X(1)), hence the likelihood decreases. Thus the MLE for � is b�n =

X(1), notice that this estimator is completely independent of ✓. To obtain the mle of ✓,

di↵erentiate and solve @L
n

(X;✓,�)
d✓

cb�
n

=X(1)
= 0. We obtain b✓n = X̄� b�n. For a reality check,

we recall that when � = 0 then the MLE of ✓ is b✓n = X̄.

We now derive the distribution of b�n � � = X(1) � � (in this case we can actually

obtain the finite sample distribution). To make the calculation easier we observe that

Xi can be rewritten as Xi = � + Ei, where {Ei} are iid random variables with the

standard exponential distribution starting at zero: f(x; ✓, 0) = ✓�1 exp(�x/✓). Therefore

the distribution function of b�n � � = mini Ei

P (b�n � �  x) = P (min
i
(Ei)  x) = 1� P (min

i
(Ei) > x)

= 1� [exp(�x/✓)]n.

Therefore the density of b�n � � is ✓
n
exp(�nx/✓), which is an exponential with parameter

n/✓. Using this, we observe that the mean of b�n � � is ✓/n and the variance is ✓2/n2. In

this case when we standardize (b�n � �) we need to do so with n (and not the classical
p
n). When we do this we observe that the distribution of n(b�n � �) is exponential with

parameter ✓�1 (since the sum of n iid exponentials with parameter ✓�1 is exponential with

parameter n✓�1).

In summary, we observe that b�n is a biased estimator of �, but the bias decreases as

n ! 1. Morover, the variance is quite amazing. Unlike standard estimators where the

variance decreases at the rate 1/n, the variance of b�n decreases at the rate 1/n2.
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Even though b�n behaves in a nonstandard way, the estimator b✓n is completely standard.

If � were known then the regularity conditions are satisfied. Furthermore, since [b�n��] =
Op(n�1) then the di↵erence between the likelihoods with known and estimated � are

almost the same; i.e. Ln(✓,�) ⇡ Ln(✓, b�n). Therefore the sampling properties of b✓n are

asymptotically equivalent to the sampling properties of the MLE if � were known.

See Davison (2002), page 145, example 4.43 for more details.

Note that in many problems in inference one replaces the observed likelihood with

the unobserved likelihood and show that the di↵erence is “asymptotically negligible”. If

this can be shown then the sampling properties of estimators involving the observed and

unobserved likelihoods are asymptotically equivalent.

Example 4.3.1 Let us suppose that {Xi} are iid exponentially distributed random vari-

ables with density f(x) = 1
�
exp(�x/�). Suppose that we only observe {Xi}, if Xi > c

(else Xi is not observed).

(i) Show that the sample mean X̄ = 1
n

Pn
i=1 Xi is a biased estimator of �.

(ii) Suppose that � and c are unknown, obtain the log-likelihood of {Xi}ni=1 and the

maximum likelihood estimators of � and c.

Solution

(i) It is easy to see that E(X̄) = E(Xi|Xi > c), thus

E(Xi|Xi > c) =

Z 1

0

x
f(x)I(X � c)

P (X > c)
dx

=

Z 1

c

x
f(x)I(X � c)

P (X > c)
dx =

1

e�c/�

Z 1

c

xf(x)dx

=
�e�c/�( c

�
+ 1)

e�c/�
= �+ c.

Thus E(X̄) = �+ c and not the desired �.

(ii) We observe that the density of Xi given Xi > c is f(x|Xi > c) = f(x)I(X>c)
P (X>c)

=

��1 exp(�1/�(X�c))I(X � c); this is close to a shifted exponential and the density

does not satisfy the regularity conditions.
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Based on this the log-likelihood {Xi} is

Ln(�) =
n
X

i=1

�

log f(Xi) + log I(Xi � c)� logP (Xi > c)
 

=
n
X

i=1

�

� log �� 1

�
(Xi � c) + log I(Xi � c)

 

.

Hence we want to find the � and c which maximises the above. Here we can use the

idea of profiling to estimate the parameters - it does not matter which parameter we

profile out. Suppose we fix, �, and maximise the above with respect to c, in this case

it is easier to maximise the actual likelihood:

L�(c) =
n
Y

i=1

1

�
exp(�(Xi � c)/�)I(Xi > c).

By drawing L with respect to c, we can see that it is maximum at minX(i) (for all

�), thus the MLE of c is bc = mini Xi. Now we can estimate �. Putting bc back into

the log-likelihood gives

n
X

i=1

�

� log �� 1

�
(Xi � bc) + log I(Xi � bc)

 

.

Di↵erentiating the above with respect to � gives
Pn

i=1(Xi � bc) = �n. Thus b�n =
1
n

Pn
i=1 Xi � bc. Thus bc = mini Xi

b�n = 1
n

Pn
i=1 Xi � bcn, are the MLE estimators of

c and � respectively.
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