
Chapter 2

The Maximum Likelihood Estimator

We start this chapter with a few “quirky examples”, based on estimators we are already

familiar with and then we consider classical maximum likelihood estimation.

2.1 Some examples of estimators

Example 1

Let us suppose that {Xi}ni=1 are iid normal random variables with mean µ and variance �2.

The “best” estimators unbiased estimators of the mean and variance are X̄ = 1
n

Pn
i=1 Xi

and s2 = 1
n�1

Pn
i=1(Xi � X̄)2 respectively. To see why recall that

P

i Xi and
P

i X
2
i

are the su�cient statistics of the normal distribution and that
P

i Xi and
P

i X
2
i are

complete minimal su�cient statistics. Therefore, since X̄ and s2 are functions of these

minimally su�cient statistics, by the Lehmann-Sche↵e Lemma, these estimators have

minimal variance.

Now let us consider the situation where the mean is µ and the variance is µ2. In this

case we have only one unknown parameter µ but the minimally su�cient statistics are
P

i Xi and
P

i X
2
i . Moreover, it is not complete since both

✓

n

n+ 1

◆

X̄2 and s2 (2.1)

are unbiased estimators of µ2 (to understand why the first estimator is an unbiased estima-

tor we use that E[X2] = 2µ2). Thus violating the conditions of completeness. Furthermore
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any convex linear combination of these estimators

↵

✓

n

n+ 1

◆

X̄2 + (1� ↵)s2 0  ↵  1

is an unbiased estimator of µ. Observe that this family of distributions is incomplete,

since

E

✓

n

n+ 1

◆

X̄2 � s2
�

= µ2 � µ2,

thus there exists a non-zero function Z(Sx, Sxx) Furthermore
✓

n

n+ 1

◆

X̄2 � s2 =
1

n(n+ 1)
S2
x �

1

n� 1

✓

Sxx �
1

n
Sx

◆

= Z(Sx, Sxx).

Thus there exists a non-zero function Z(·) such that E[Z(Sx, Sxx)] = 0, impying the

minimal su�cient statistics are not complete.

Thus for all sample sizes and µ, it is not clear which estimator has a minimum variance.

We now calculate the variance of both estimators and show that there is no clear winner

for all n. To do this we use the normality of the random variables and the identity (which

applies only to normal random variables)

cov [AB,CD] = cov[A,C]cov[B,D] + cov[A,D]cov[B,C] + cov[A,C]E[B]E[D] +

cov[A,D]E[B]E[C] + E[A]E[C]cov[B,D] + E[A]E[D]cov[B,C]

12. Using this result we have

var



n

n+ 1
X̄2

�

=

✓

n

n+ 1

◆2

var[X̄2] =

✓

n

n+ 1

◆2
�

2var[X̄]2 + 4µ2var[X̄]
 

=

✓

n

n+ 1

◆2 2µ4

n2
+

4µ4

n

�

=
2µ4

n

✓

n

n+ 1

◆2✓ 1

n
+ 4

◆

.

1Observe that this identity comes from the general identity

cov [AB,CD]

= cov[A,C]cov[B,D] + cov[A,D]cov[B,C] + E[A]cum[B,C,D] + E[B]cum[A,C,D]

+E[D]cum[A,B,C] + E[C]cum[A,B,D] + cum[A,B,C,D]

+cov[A,C]E[B]E[D] + cov[A,D]E[B]E[C] + E[A]E[C]cov[B,D] + E[A]E[D]cov[B,C]

recalling that cum denotes cumulant and are the coe�cients of the cumulant generating function (https:

//en.wikipedia.org/wiki/Cumulant), which applies to non-Gaussian random variables too
2Note that cum(A,B,C) is the coe�cient of t

1

t

2

t

3

in the series expansion of log E[et1A+t2B+t3B ] and

can be obtained with @3
log E[et1A+t2B+t3B

]

@t1@t2@t3
ct1,t2,t3=0
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On the other hand using that s2 has a chi-square distribution with n�1 degrees of freedom

(with variance 2(n� 1)2) we have

var
⇥

s2
⇤

=
2µ4

(n� 1)
.

Altogether the variance of these two di↵erence estimators of µ2 are

var



n

n+ 1
X̄2

�

=
2µ4

n

✓

n

n+ 1

◆2✓

4 +
1

n

◆

and var
⇥

s2
⇤

=
2µ4

(n� 1)
.

There is no estimator which clearly does better than the other. And the matter gets

worse, since any convex combination is also an estimator! This illustrates that Lehman-

Sche↵e theorem does not hold in this case; we recall that Lehman-Sche↵e theorem states

that under completeness any unbiased estimator of a su�cient statistic has minimal vari-

ance. In this case we have two di↵erent unbiased estimators of su�cient statistics neither

estimator is uniformly better than another.

Remark 2.1.1 Note, to estimate µ one could use X̄ or
p
s2 ⇥ sign(X̄) (though it is

unclear to me whether the latter is unbiased).

Exercise 2.1 Calculate (the best you can) E[
p
s2 ⇥ sign(X̄)].

Example 2

Let us return to the censored data example considered in Sections 1.2 and 1.6.4, Example

(v). {Xi}ni=1 are iid exponential distributed random variables, however we do not observe

Xi we observe a censored version Yi = min(Xi, c) (c is assumed known) and �i = 0 if

Yi = Xi else �i = 1.

We recall that the log-likelihood of (Yi, �i) is

Ln(✓) =
X

i

(1� �i) {�✓Yi + log ✓}�
X

i

�ic✓

= �
X

i

✓Yi � log ✓
X

i

�i + n log ✓,

since Yi = c when �i = 1. hence the minimal su�cient statistics for ✓ are
P

i �i and
P

i Yi.

This suggests there may be several di↵erent estimators for ✓.
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(i)
Pn

i=1 �i gives the number of observations which have been censored. We recall that

P (�i = 1) = exp(�c✓), thus we can use n�1
Pn

i=1 �i as an estimator of exp(�c✓) and

solve for ✓.

(ii) The non-censored observations also convey information about ✓. The likelihood of

a non-censored observations is

LnC,n(✓) = �✓
n
X

i=1

(1� �i)Yi +
n
X

i=1

(1� �i)
�

log ✓ � log(1� e�c✓)
 

.

One could maximise this to obtain an estimator of ✓

(iii) Or combine the censored and non-censored observations by maximising the likeli-

hood of ✓ given (Yi, ✓i) to give the estimator
Pn

i=1(1� �i)
Pn

i=1 Yi

.

The estimators described above are not unbiased (hard to take the expectation), but

they do demonstrate that often there is often no unique best method for estimating a

parameter.

Though it is usually di�cult to find an estimator which has the smallest variance for

all sample sizes, in general the maximum likelihood estimator “asymptotically” (think

large sample sizes) usually attains the Cramer-Rao bound. In other words, it is “asymp-

totically” e�cient.

Exercise 2.2 (Two independent samples from a normal distribution) Suppose that

{Xi}mi=1 are iid normal random variables with mean µ and variance �2
1 and {Yi}mi=1 are iid

normal random variables with mean µ and variance �2
2. {Xi} and {Yi} are independent,

calculate their joint likelihood.

(i) Calculate their su�cient statistics.

(ii) Propose a class of estimators for µ.

2.2 The Maximum likelihood estimator

There are many di↵erent parameter estimation methods. However, if the family of distri-

butions from the which the parameter comes from is known, then the maximum likelihood
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estimator of the parameter ✓, which is defined as

b✓n = argmax
✓2⇥

Ln(X; ✓) = argmax
✓2⇥

Ln(✓),

is the most commonly used. Often we find that @L
n

(✓)
@✓

c✓=b✓
n

= 0, hence the solution can be

obtained by solving the derivative of the log likelihood (the derivative of the log-likelihood

is often called the score function). However, if ✓0 lies on the boundary of the parameter

space this will not be true. In general, the maximum likelihood estimator will not be an

unbiased estimator of the parameter.

We note that the likelihood is invariant to bijective transformations of the data. For

example if X has the density f(·; ✓) and we define the transformed random variable

Z = g(X), where the function g has an inverse, then it is easy to show that the density

of Z is f(g�1(z); ✓)@g
�1(z)
@z

. Therefore the likelihood of {Zi = g(Xi)} is

n
Y

i=1

f(g�1(Zi); ✓)
@g�1(z)

@z
cz=Z

i

=
n
Y

i=1

f(Xi; ✓)
@g�1(z)

@z
cz=Z

i

.

Hence it is proportional to the likelihood of {Xi} and the maximum of the likelihood in

terms of {Zi = g(Xi)} is the same as the maximum of the likelihood in terms of {Xi}.

Example 2.2.1 (The uniform distribution) Consider the uniform distribution, which

has the density f(x; ✓) = ✓�1I[0,✓](x). Given the iid uniform random variables {Xi} the

likelihood (it is easier to study the likelihood rather than the log-likelihood) is

Ln(Xn; ✓) =
1

✓n

n
Y

i=1

I[0,✓](Xi).

Using Ln(Xn; ✓), the maximum likelihood estimator of ✓ is b✓n = max1in Xi (you can

see this by making a plot of Ln(Xn; ✓) against ✓).

To derive the properties of max1in Xi we first obtain its distribution. It is simple to

see that

P (max
1in

Xi  x) = P (X1  x, . . . , Xn  x) =
n
Y

i=1

P (Xi  x) =
�x

✓

�n
I[0,✓](x),

and the density of max1in Xi is fb✓
n

(x) = nxn�1/✓n.

Exercise 2.3 (i) Evaluate the mean and variance of b✓n defined in the above example.
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(ii) Is the estimator biased? If it is, find an unbiased version of the estimator.

Example 2.2.2 (Weibull with known ↵) {Yi} are iid random variables, which follow

a Weibull distribution, which has the density

↵y↵�1

✓↵
exp(�(y/✓)↵) ✓,↵ > 0.

Suppose that ↵ is known, but ✓ is unknown. Our aim is to fine the MLE of ✓.

The log-likelihood is proportional to

Ln(X; ✓) =
n
X

i=1

✓

log↵ + (↵� 1) log Yi � ↵ log ✓ �
✓

Yi

✓

◆↵◆

/
n
X

i=1

✓

� ↵ log ✓ �
✓

Yi

✓

◆↵◆

.

The derivative of the log-likelihood wrt to ✓ is

@Ln

@✓
= �n↵

✓
+

↵

✓↵+1

n
X

i=1

Y ↵
i = 0.

Solving the above gives b✓n = ( 1
n

Pn
i=1 Y

↵
i )1/↵.

Example 2.2.3 (Weibull with unknown ↵) Notice that if ↵ is given, an explicit so-

lution for the maximum of the likelihood, in the above example, can be obtained. Consider

instead the case that both ↵ and ✓ are unknown. Now we need to find ↵ and ✓ which

maximise the likelihood i.e.

argmax
✓,↵

n
X

i=1

✓

log↵ + (↵� 1) log Yi � ↵ log ✓ �
�Yi

✓

�↵
◆

.

The derivative of the likelihood is

@Ln

@✓
= �n↵

✓
+

↵

✓↵+1

n
X

i=1

Y ↵
i = 0

@Ln

@↵
=

n

↵
�

n
X

i=1

log Yi � n log ✓ � n↵

✓
+

n
X

i=1

log(
Yi

✓
)⇥ (

Yi

✓
)↵ = 0.

It is clear that an explicit expression to the solution of the above does not exist and we

need to find alternative methods for finding a solution (later we show how profiling can be

used to estimate ↵).

58



2.3 Maximum likelihood estimation for the exponen-

tial class

Typically when maximising the likelihood we encounter several problems (i) for a given

likelihood Ln(✓) the maximum may lie on the boundary (even if in the limit of Ln the

maximum lies with in the parameter space) (ii) there are several local maximums (so a

numerical routine may not capture the true maximum) (iii) Ln may not be concave, so

even if you are close the maximum the numerical routine just cannot find the maximum

(iv) the parameter space may not be convex (ie. (1 � ↵)✓1 + ↵✓2 may lie outside the

parameter space even if ✓1 and ✓2 are in the parameter space) again this will be problematic

for numerically maximising over the parameter space. When there is just one unknown

parameters these problems are problematic, when the number of unknown parameters is

p this becomes a nightmare. However for the full rank exponential class of distributions

we now show that everything behaves, in general, very well. First we heuristically obtain

its maximum likelihood estimator, and later justify it.

2.3.1 Full rank exponential class of distributions

Suppose that {Xi} are iid random variables which has a the natural exponential represen-

tation and belongs to the family F = {f(x; ✓) = exp[
Pp

j=1 ✓jsj(x)� (✓) + c(x)]; ✓ 2 ⇥}
and ⇥ = {✓;(✓) = log

R

exp(
Pp

j=1 ✓jsj(x) + c(x))dx < 1} (note this condition defines

the parameter space, if (✓) = 1 the density is no longer defined). Therefore the log

likelihood function is

Ln(X; ✓) = ✓
n
X

i=1

s(Xi)� n(✓) +
n
X

i=1

c(Xi),

where
Pn

i=1 s(Xi) = (
Pn

i=1 s1(Xi), . . . ,
Pn

i=1 sp(Xi)) are the su�cient statistics. By the

Rao-Blackwell theorem the unbiased estimator with the smallest variance will be a func-

tion of
Pn

i=1 s(Xi). We now show that the maximum likelihood estimator of ✓ is a function

of
Pn

i=1 s(Xi) (though there is no guarantee it will be unbiased);

b✓n = argmax
✓2⇥

�

✓
n
X

i=1

s(Xi)� n(✓) +
n
X

i=1

c(Xi)
 

.

59



The natural way to obtain b✓n is to solve

@Ln(X; ✓)

@✓
c✓=b✓

n

= 0.

However, this equivalence will only hold if the maximum lies within the interior of the

parameter space (we show below that in general this will be true). Let us suppose this is

true, then di↵erentiating Ln(X; ✓) gives

@Ln(X; ✓)

@✓
=

n
X

i=1

s(Xi)� n0(✓) = 0.

To simplify notation we often write 0(✓) = µ(✓) (since this is the mean of the su�cient

statistics). Thus we can invert back to obtain the maximum likelihood estimator

b✓n = µ�1

 

1

n

n
X

i=1

s(Xi)

!

. (2.2)

Because the likelihood is a concave function, it has a unique maximum. But the maximum

will only be at b✓n = µ�1
�

1
n

Pn
i=1 s(Xi)

�

if 1
n

Pn
i=1 s(Xi) 2 µ(⇥). If µ�1( 1

n

Pn
i=1 s(Xi))

takes us outside the parameter space, then clearly this cannot be an estimator of the

parameter3. Fortunately, in most cases (specifically, if the model is said to be “steep”),

µ�1( 1
n

Pn
i=1 s(Xi)) will lie in the interior of the parameter space. In other words,

µ�1

 

1

n

n
X

i=1

s(Xi)

!

= argmax
✓2⇥

Ln(✓).

In the next section we define steepness and what may happen if this condition is not

satisfied. But first we go through a few examples.

Example 2.3.1 (Normal distribution) For the normal distribution, the log-likelihood

is

L(X; �2, µ) =
�1

2�2

 

n
X

i=1

X2
i � 2µ

n
X

i=1

Xi + nµ2

!

� n

2
log �2,

note we have ignored the 2⇡ constant. Di↵erentiating with respect to �2 and µ and setting

to zero gives

bµ =
1

n

n
X

i=1

Xi
b�2 =

1

n

n
X

i=1

(Xi � bµ)2 .

3For example and estimator of the variance which is negative, clearly this estimator has no meaning
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This is the only solution, hence it must the maximum of the likelihood.

Notice that b�2 is a slightly biased estimator of �2.

Example 2.3.2 (Multinomial distribution) Suppose Y = (Y1, . . . , Yq) (with n =
Pq

i=1 Yi)

has a multinomial distribution where there are q cells. Without any constraints on the pa-

rameters the log likelihood is proportional to (we can ignore the term c(Y ) = log
�

n
Y1,...,Yq

�

)

Ln(Y ; ⇡) =
q�1
X

j=1

Yi log ⇡i + Yq log(1�
q�1
X

i=1

⇡i).

The partial derivative for each i is

L(Y ; ⇡)

@⇡i

=
Yi

⇡
� Yp

1�
Pp�1

i=1 ⇡i

.

Solving the above we get one solution as b⇡i = Yi/n (check by plugging it in).

Since there is a di↵eomorphism between {⇡i} and its natural parameterisation ✓i =

log ⇡i/(1�
Pq�1

j=1 ⇡i) and the Hessian corresponding to the natural paramerisation is neg-

ative definite (recall the variance of the su�cient statistics is 00(✓)), this implies that

the Hessian of Ln(Y ; ⇡) is negative definite, thus b⇡i = Yi/n is the unique maximum of

L(Y ; ⇡).

Example 2.3.3 (2⇥ 2⇥ 2 Contingency tables) Consider the example where for n in-

dividuals three binary variables are recorded; Z =gender (here, we assume two), X =whether

they have disease A (yes or no) and Y =whether they have disease B (yes or no). We

assume that the outcomes of all n individuals are independent.

Without any constraint on variables, we model the above with a multinomial distri-

bution with q = 3 i.e. P (X = x, Y = y, Z = z) = ⇡xyz. In this case the likelihood is

proportional to

L(Y ; ⇡) =
1
X

x=0

1
X

y=0

1
X

z=0

Yxyz log ⇡xyz

= Y000⇡000 + Y010⇡010 + Y000⇡001 + Y100⇡100 + Y110⇡110 + Y101⇡101

Y011⇡011 + Y111(1� ⇡000 � ⇡010 � ⇡001 � ⇡100 � ⇡110 � ⇡101 � ⇡011).

Di↵erentiating with respect to each variable and setting to one it is straightfoward to see

that the maximum is when b⇡xyz = Yxyz/n; which is intuitively what we would have used

as the estimator.
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However, suppose the disease status of X and Y are independent conditioned on

gender. i.e. P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z) then

P (X = x, Y = y, Z = z) = ⇡X=x|Z=z⇡Y=y|Z=z⇡Z=z, since these are binary variables we

drop the number of unknown parameters from 7 to 5. This is a curved exponential model

(though in this case the constrained model is simply a 5-dimensional hyperplane in 7 di-

mensional space; thus the parameter space is convex). The log likelihood is proportional

to

L(Y ; ⇡) =
1
X

x=0

1
X

y=0

1
X

z=0

Yxyz log ⇡x|z⇡y|z⇡z

=
1
X

x=0

1
X

y=0

1
X

z=0

Yxyz

�

log ⇡x|z + log ⇡y|z + log ⇡z

�

.

Thus we see that the maximum likelihood estimators are

b⇡z =
Y++z

n
b⇡x|z =

Yx+z

Y++z

b⇡y|z =
Y+yz

Y++z

.

Where in the above we use the standard notation Y+++ = n, Y++z =
P1

x=0

P1
y=0 Yxyz etc.

We observe that these are very natural estimators. For example, it is clear that Yx+z/n

is an estimator of the joint distribution of X and Z and Y++z/n is an estimator of the

marginal distribution of Z. Thus Yx+z/Y++z is clearly an estimator of X conditioned on

Z.

Exercise 2.4 Evaluate the mean and variance of the numerator and denominator of

(2.4). Then use the continuous mapping theorem to evaluate the limit of c✓�1 (in proba-

bility).

Example 2.3.4 (The beta distribution) Consider the family of densities defined by

F =
�

f(x;↵, �) = B(↵, �)�1x↵�1(1� x)��1;↵ 2 (0,1), � 2 (0,1)
 

and B(↵, �) = �(↵)�(�)/�(↵+ �) where �(↵) =
R1
0

x↵�1e�xdx. This is called the family

of beta distributions.

The log likelihood can be written as

Ln(X; ✓) = ↵
n
X

i=1

logXi + �
n
X

i=1

log(1�Xi)� n [log(�(↵)) + log(�(�)� log(�(↵ + �))]�

n
X

i=1

[logXi � log(1�Xi)].
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Thus ✓1 = ↵, ✓2 = � and (✓1, ✓2) = log(✓1) + log(✓2)� log(✓1 + ✓2).

Taking derivatives and setting to zero gives

1

n

 

Pn
i=1 logXi

Pn
i=1 log(1�Xi)

!

=

 

�0(↵)
�(↵)

� �0(↵+�)
�(↵+�)

�0(�)
�(�)

� �0(↵+�)
�(↵+�)

!

.

To find estimators for ↵ and � we need to numerically solve for the above. But will the

solution lie in the parameter space?

Example 2.3.5 (Inverse Gaussian distribution) Consider the inverse Gaussian dis-

tribution defined as

f(x; ✓1, ✓2) =
1

⇡1/2
x�3/2 exp

✓

✓1x� ✓2x
�1 + [�2(✓1✓2)

1/2 � 1

2
log(�✓2)]

◆

,

where x 2 (0,1). Thus we see that (✓1, ✓2) = [�2(✓1✓2)1/2 � 1
2
log(�✓2)]. In this

case we observe that for ✓1 = 0 (0, ✓2) < 1 thus the parameter space is not open and

⇥ = (�1, 0]⇥ (�1, 0). Taking derivatives and setting to zero gives

1

n

 

Pn
i=1 Xi

Pn
i=1 X

�1
i

!

=

0

B

@

�
⇣

✓2
✓1

⌘1/2

� ✓
1/2
1

✓
1/2
2

+ 1
✓2
.

1

C

A

.

To find estimators for ↵ and � we need to numerically solve for the above. But will the

solution lie in the parameter space?

Example 2.3.6 (The inflated zero Poisson distribution) Using the natural param-

eterisation of the infltaed zero Poisson distribution we have

L(Y ; ✓1, ✓2) = ✓1

n
X

i=1

I(Yi 6= 0) + ✓2

n
X

i=1

I(Yi 6= 0)Yi

� log

✓

e✓1 � ✓�1
2

1� ✓�1
2

(1� e�e✓2 ) + e�e✓2

◆

.

where the parameter space is ⇥ = (�1, 0] ⇥ (�1,1), which is not open (note that 0

corresponds to the case p = 0, which is the usual Poisson distribution with no inflation).

To find estimators for ✓ and p we need to numerically solve for the above. But will

the solution lie in the parameter space?

63



2.3.2 Steepness and the maximum of the likelihood

The problem is that despite the Hessian r2L(✓) being non-negative definite, it could

be that the maximum is at the boundary of the likelihood. We now state some results

that show that in most situations, this does not happen and usually (2.2) maximises the

likelihood. For details see Chapters 3 and 5 of http://www.jstor.org/stable/pdf/

4355554.pdf?acceptTC=true (this reference is mathematically quite heavy) for a maths

lite review see Davidson (2004) (page 170). Note that Brown and Davidson use the

notation N to denote the parameter space ⇥.

Let X denote the range of the su�cient statistics s(Xi) (i.e. what values can s(X)

take). Using this we define its convex hull as

C(X ) = {↵x1 + (1� ↵)x2; x1,x2 2 X , 0  ↵  1}.

Observe that 1
n

P

i s(Xi) 2 C(X ), even when 1
n

P

i s(Xi) does not belong to the observa-

tion space of the su�cient statistic X . For example Xi may be counts from a Binomial

distribution Bin(m, p) but C(X ) would be the reals between [0,m].

Example 2.3.7 (Examples of C(X )) (i) The normal distribution

C(X ) =
�

↵(x, x2) + (1� ↵)(y, y2); x, y 2 R, 0  ↵  1
 

= (�1,1)(0,1).

(ii) The �-distribution

C(X ) = {↵(log x, log(1� x)) + (1� ↵)(log y, log(1� y)); x, y 2 [0, 1], 0  ↵  1} = (R�1)2

(iii) The exponential with censoring (see 2.3)

C(X ) = {↵(y1, �1) + (1� ↵)(y2, �2); y1 2 [0, c], �1, �2 = {0, 1}; 0  ↵  1} = triangle.

(iv) The binomial distribution Y ⇠ Bin(n, ⇡). Then

C(X ) = {↵x+ (1� ↵)y; 0  ↵  1, y = 0, . . . ,m} = [0,m].

Now we give conditions under which µ�1
�

1
n

Pn
i=1 s(Xi)

�

maximises the likelihood

within the parameter space ⇥. Define the parameter space ⇥ = {✓;(✓) < 1} ⇢ Rq. Let

int(⇥) denote the interior of a set, which is the largest open set in ⇥. Next we define the

notion of steep.
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Definition 2.3.1 Let  : Rp ! (�1,1) be a convex function (so � is concave).  is

called steep if for all ✓1 2 B(⇥) and ✓0 2 int(⇥), lim⇢!1(✓1 � ✓0)
@(✓)
@✓

c✓=✓0+⇢(✓1�✓0) = 1.

This condition is equivalent to lim✓!B(⇥) |0(✓)| ! 1. Intuitively, steep simply means the

function is very steep at the boundary.

• Regular exponential family

If the parameter space is open (such as ⇥ = (0, 1) or ⇥ = (0,1)) meaning the

density is not defined on the boundary, then the family of exponentials is called a

regular family.

In the case that ⇥ is open (the boundary does not belong to ⇥), then  is not

defined at the boundary, in which case  is steep.

Note, at the boundary lim✓!B(⇥) log f(x; ✓) will approach �1, since {log f(x; ✓)}
is convex over ✓ this means that its maximum will be within the interior of the

parameter space (just what we want!).

• Non-regular exponential family

If the parameter space is closed, this means at the boundary the density is defined,

then we require that at the boundary of the parameter space (·) is steep. This con-
dition needs to be checked by considering the expectation of the su�cient statistic

at the boundary or equivalently calculating 0(·) at the boundary.

If (✓) is steep we have the following result. Brown (1986), Theorem 3.6 shows that

there is a homeomorphism4 between int(⇥) and int(C(X )).

Most importantly Brown (1986), Theorem 5.5 shows that if the density of Xi be-

longs to a full rank exponential family (using the natural parameterisation) f(x; ✓) =

exp[
Pp

j=1 ✓jsj(x) � (✓) + c(x)] with ✓ = (✓1, . . . , ✓p) 2 ⇥, where (·) is steep and for a

given data set 1
n

Pn
i=1 s(Xi) 2 C(X ), then

b✓n = µ�1

 

1

n

n
X

i=1

s(Xi)

!

= arg max
✓2int(⇥)

�

✓
n
X

i=1

xi � n(✓) +
n
X

i=1

c(Xi)
 

.

In most situations the full rank exponential family will have a parameter space which

is open and thus steep.

4A homeomorphism between two spaces means there is a bijection between two spaces and the f and

f

�1 which maps between the two spaces is continuous.
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Example 2.3.8 (Binomial distribution and observations that lie on the boundary)

Suppose that {Yi}ni=1 are iid Binomially distributed random variables Yi ⇠ Bin(m, ⇡i).

The log likelihood of Yi is Yi log(
⇡

1�⇡
) +m(1� ⇡). Thus the log likelihood of the sample is

proportional to

Ln(Y ; ⇡) =
n
X

i=1

Yi log ⇡ +
n
X

i=1

(m� Yi) log(1� ⇡) = ✓
n
X

i=1

Yi � nm log(1 + e✓),

where ✓ 2 (�1,1). The theory states above that the maximum of the likelihood lies

within the interior of (�1,1) if
Pn

i=1 Yi lies within the interior of C(Y) = (0, nm).

On the other hand, there is a positive probability that
Pn

i=1 Yi = 0 or
Pn

i=1 Yi =

nm (i.e. all successes or all failures). In this case, the above result is not informative.

However, a plot of the likelihood in this case is very useful (see Figure 2.1). More precisely,

if
P

i Yi = 0, then b✓n = �1 (corresponds to bp = 0), if
P

i Yi = nm, then b✓n = 1
(corresponds to bp = 1). Thus even when the su�cient statistics lie on the boundary of

C(Y) we obtain a very natural estimator for ✓.

Example 2.3.9 (Inverse Gaussian and steepness) Consider the log density of the

inverse Gaussian, where Xi are iid positive random variables with log likelihood

L(X; ✓) = ✓1

n
X

i=1

Xi + ✓2

n
X

i=1

X�1
i � n(✓1, ✓2)�

3

2

n
X

i=1

logXi �
1

2
log ⇡,

where (✓1, ✓2) = �2
p
✓1✓2 � 1

2
log(�2✓2). Observe that (0, ✓2) < 1 hence (✓1, ✓2) 2

(�1, 0]⇥ (�1, 0).

However, at the boundary @(✓1,✓2)
@✓1

c✓1=0 = �1. Thus the inverse Gaussian distribution

is steep but non-regular. Thus the MLE is µ�1(·).

Example 2.3.10 (Inflated zero Poisson) Recall

L(Y ; ✓1, ✓2) = ✓1

n
X

i=1

I(Yi 6= 0) + ✓2

n
X

i=1

I(Yi 6= 0)Yi

� log

✓

e✓1 � ✓�1
2

1� ✓�1
2

(1� e�e✓2 ) + e�e✓2

◆

.

where the parameter space is ⇥ = (�1, 0] ⇥ (�1,1), which is not open (note that 0

corresponds to the case p = 0, which is the usual Poisson distribution with no inflation).
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Figure 2.1: Likelihood of Binomial for di↵erent scenarios
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However, the derivative @(✓1,✓2)
@✓1

is finite at ✓1 = 0 (for ✓2 2 R). Thus (·) is not steep

and care needs to be taken in using µ�1 as the MLE.

µ�1( 1
n

Pn
i=1 s(Xi)) may lie outside the parameter space. For example, µ�1( 1

n

Pn
i=1 s(Xi))

may give an estimator of ✓1 which is greater than zero; this corresponds to the probability

p < 0, which makes no sense. If µ�1( 1
n

Pn
i=1 s(Xi)) lies out the parameter space we need

to search on the boundary for the maximum.

Example 2.3.11 (Constraining the parameter space) If we place an “artifical” con-

straint on the parameter space then a maximum may not exist within the interior of the

parameter space. For example, if we model survival times using the exponential distribu-

tion f(x; ✓) = ✓ exp(�✓x) the parameter space is (0,1), which is open (thus with proba-

bility one the likelihood is maximised at b✓ = µ�1(X̄) = 1/X̄). However, if we constrain

the parameter space e⇥ = [2,1), 1/X̄ may lie outside the parameter space and we need to

use b✓ = 2.

Remark 2.3.1 (Estimating !) The results above tell us if (·) is steep in the parameter

space and Ln(✓) has a unique maximum and there is a di↵eomorphism between ✓ and

! (if the exponential family is full rank), then Ln(✓(!)) will have a unique maximum.

Moreover the Hessian of the likelihood of both parameterisations will be negative definite.

Therefore, it does not matter if we maximise over the natural parametrisation or the usual

parameterisation

b!n = ⌘�1

 

µ�1

 

1

n

n
X

i=1

xi

!!

.

Remark 2.3.2 (Minimum variance unbiased estimators) Suppose Xi has a distri-

bution in the natural exponential family, then the maximum likelihood estimator is a func-

tion of the su�cient statistic s(X). Moreover if the exponential is full and µ�1( 1
n

Pn
i=1 xi)

is an unbiased estimator of ✓, then µ�1( 1
n

Pn
i=1 xi) is the minumum variance unbiased

estimator of ✓. However, in general µ�1( 1
n

Pn
i=1 xi) will not be an unbiased estimator.

However, by invoking the continuous mapping theorem (https: // en. wikipedia. org/

wiki/ Continuous_ mapping_ theorem ), by the law of large numbers 1
n

Pn
i=1 xi

a.s.! E[x]i,

then µ�1( 1
n

Pn
i=1 xi)

a.s.! µ�1(E(x)) = µ�1[0(✓)] = ✓. Thus the maximum likelihood esti-

mator converges to ✓.
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2.3.3 The likelihood estimator of the curved exponential

Example 2.3.12 (Normal distribution with constraint) Suppose we place the con-

straint on the parameter space �2 = µ2. The log-likelihood is

L(X;µ) =
�1

2µ2

n
X

i=1

X2
i +

1

µ

n
X

i=1

Xi �
n

2
log µ2.

Recall that this belongs to the curved exponential family and in this case the parameter

space is not convex. Di↵erentiating with respect to µ gives

@L(X; �2, µ)

@µ
=

1

µ3
Sxx �

Sx

µ2
� 1

µ
= 0.

Solving for µ leads to the quadratic equation

p(µ) = µ2 + Sxµ� Sxx = 0.

Clearly there will be two real solutions

�Sx ±
p

S2
x + 4Sxx

2
.

We need to plug them into the log-likelihood to see which one maximises the likelihood.

Observe that in this case the Hessian of the log-likelihood cannot be negative (unlike

the full normal). However, we know that a maximum exists since a maximum exists on

for the full Gaussian model (see the previous example).

Example 2.3.13 (Censored exponential) We recall that the likelihood corresponding

to the censored exponential is

Ln(✓) = �✓
n
X

i=1

Yi � log ✓
n
X

i=1

�i + log ✓. (2.3)

We recall that �i = 1 if censoring takes place. The maximum likelihood estimator is

b✓ =
n�

Pn
i=1 �i

Pn
i=1 Yi

2 (0,1)

Basic calculations show that the mean of the exponential is 1/✓, therefore the estimate

of the mean is

c✓�1 =

Pn
i=1 Yi

n�
n
X

i=1

�i

| {z }

no. not censored terms

. (2.4)
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If the exponential distribution is curved (number of unknown parameters is less than

the number of minimally su�cient statistics), then the parameter space ⌦ = {! =

(!1, . . . ,!d); (✓1(!), . . . , ✓q(!)) 2 ⇥} ⇢ ⇥ (hence it is a curve on ⇥). Therefore, by

di↵erentiating the likelihood with respect to !, a maximum within the parameter space

must satisfy

r!Ln(✓(!)) =
@✓(!)

@!

 

n
X

i=1

xi � n
@(✓)

@✓
c✓=✓(!)

!

= 0. (2.5)

Therefore, either (a) there exists an ! 2 ⌦ such that ✓(!) is the global maximum of

{Ln(✓); ✓ 2 ⇥} (in this case
Pn

i=1 xi � n@(✓)
@✓

c✓=✓(!) = 0) or (b) there exists an ! 2 ⌦

such that @✓(!)
@!

and
Pn

i=1 xi � n@(✓)
@✓

c✓=✓(!) are orthogonal. Since Ln(X, ✓) for ✓ 2 ⇥ and
Pn

i=1 xi 2 int(X ) has a global maximum a simple illustration this means that Ln(✓(!))

will have a maximum. In general (2.5) will be true. As far as I can see the only case where

it may not hold is when ✓(!) lies on some contour of Ln(✓). This suggests that a solution

should in general exist for the curved case, but it may not be unique (you will need to

read Brown (1986) for full clarification). Based this I suspect the following is true:

• If ⌦ is a curve in ⇥, then @L
n

(!)
@!

= 0 may have multiple solutions. In this case, we

have to try each solution Ln(b!) and use the solution which maximises it (see Figure

2.2).

Exercise 2.5 The aim of this question is to investigate the MLE of the inflated zero

Poisson parameters � and p. Simulate from a inflated zero poisson distribution with (i)

p = 0.5, p = 0.2 and p = 0 (the class is when there is no inflation), use n = 50.

Evaluate the MLE (over 200 replications) make a Histogram and QQplot of the parameter

estimators (remember if the estimator of p is outside the parameter space you need to

locate the maximum on the parameter space).

Exercise 2.6 (i) Simulate from the model defined in Example 2.3.12 (using n = 20)

using R. Calculate and maximise the likelihood over 200 replications. Make a QQplot

of the estimators and calculate the mean squared error.

For one realisation make a plot of the log-likelihood.

(ii) Sample from the inverse Gamma distribution (using n = 20) and obtain its maxi-

mum likelihood estimator. Do this over 200 replications and make a table summa-

rizing its bias and average squared error. Make a QQplot of the estimators.
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Figure 2.2: Likelihood of 2-dimension curved exponential

(iii) Consider the exponential distribution described in Example 2.3.11 where the param-

eter space is constrained to [2,1]. For samples of size n = 50 obtain the maximum

likelihood estimator (over 200 replications). Simulate using the true parameter

(a) ✓ = 5 (b) ✓ = 2.5 (c) ✓ = 2.

Summarise your results and make a QQplot (against the normal distribution) and

histogram of the estimator.

2.4 The likelihood for dependent data

We mention that the likelihood for dependent data can also be constructed (though often

the estimation and the asymptotic properties can be a lot harder to derive). Suppose

{Xt}nt=1 is a time series (a sequence of observations over time where there could be de-

pendence). Using Bayes rule (ie. P (A1, A2, . . . , An) = P (A1)
Qn

i=2 P (Ai|Ai�1, . . . , A1))
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we have

Ln(X; ✓) = f(X1; ✓)
n
Y

t=2

f(Xt|Xt�1, . . . , X1; ✓).

Under certain conditions on {Xt} the structure above
Qn

t=2 f(Xt|Xt�1, . . . , X1; ✓) can be

simplified. For example if Xt were Markovian then Xt conditioned on the past on depends

only on the recent past, i.e. f(Xt|Xt�1, . . . , X1; ✓) = f(Xt|Xt�1; ✓) in this case the above

likelihood reduces to

Ln(X; ✓) = f(X1; ✓)
n
Y

t=2

f(Xt|Xt�1; ✓). (2.6)

We apply the above to a very simple time series. Consider the AR(1) time series

Xt = �Xt�1 + "t, t 2 Z,

where "t are iid random variables with mean zero and variance �2. In order to ensure

that the recurrence is well defined for all t 2 Z we assume that |�| < 1 in this case the

time series is called stationary5.

We see from the above that the observation Xt�1 has a linear influence on the next

observation and it is Markovian; conditioned on Xt�1, Xt�2 and Xt are independent (the

distribution function P (Xt  x|Xt�1, Xt�2) = P (Xt  x|Xt�1)). Therefore by using (2.6)

the likelihood of {Xt}t is

Ln(X;�) = f(X1;�)
n
Y

t=2

f"(Xt � �Xt�1), (2.7)

where f" is the density of " and f(X1;�) is the marginal density of X1. This means

the likelihood of {Xt} only depends on f" and the marginal density of Xt. We use
b�n = argmaxLn(X;�) as the mle estimator of a.

We now derive an explicit expression for the likelihood in the case that "t belongs to

the exponential family. We focus on the case that {"t} is Gaussian; since Xt is the sum

of Gaussian random variables Xt =
P1

j=0 �
j"t�j (almost surely) Xt is also Gaussian. It

can be shown that if "t ⇠ N (0, �2), then Xt ⇠ N (0, �2/(1��2)). Thus the log likelihood

5If we start the recursion at some finite time point t
0

then the time series is random walk and is called

a unit root process it is not stationary.
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for Gaussian “innovations” is

Ln(�, �
2) = � 1

2�2

n
X

t=2

X2
t

| {z }

=
P

n�1
t=2 X2

t

�X2
n

+
�

�2

n
X

t=2

XtXt�1 �
�2

2�2

n
X

t=2

X2
t�1

| {z }

=
P

n�1
t=2 X2

t

�X2
1

�n� 1

2
log �2

�(1� �2)

2�2
X2

1 �
1

2
log

�2

1� �2

= �1� �2

2�2

n�1
X

t=1

X2
t +

�

�2

n
X

t=2

XtXt�1 �
1

2�2
(X2

1 +X2
n)�

n� 1

2
log �2 � 1

2
log

�2

1� �2
,

see Efron (1975), Example 3. Using the factorisation theorem we see that the su�cient

statistics, for this example are
Pn�1

t=1 X2
t ,
Pn

t=2 XtXt�1 and (X2
1 +X2

n) (it almost has two

su�cient statistics!). Since the data is dependent some caution needs to be applied before

ones applies the results on the exponential family to dependent data (see Küchler and

Sørensen (1997)). To estimate � and �2 we maximise the above with respect to � and �2.

It is worth noting that the maximum can lie on the boundary �1 or 1.

Often we ignore the term the distribution of X1 and consider the conditional log-

likelihood, that is X2, . . . , Xn conditioned on X1. This gives the conditional log likelihood

Qn(�, �
2;X1) = log

n
Y

t=2

f"(Xt � �Xt�1)

= � 1

2�2

n
X

t=2

X2
t +

�

�2

n
X

t=2

XtXt�1 �
�2

2�2

n
X

t=2

X2
t�1 �

n� 1

2
log �2,(2.8)

again there are three su�cient statistics. However, it is interesting to note that if the

maximum of the likelihood lies within the parameter space � 2 [�1, 1] then b�n =
Pn

t=2 XtXt�1/
Pn

t=2 X
2
t�1 (the usual least squares estimator).

2.5 Evaluating the maximum: Numerical Routines

In an ideal world an explicit closed form expression would exist for the maximum of a

(log)-likelihood. In reality this rarely happens.

Usually, we have to use a numerical routine to maximise the likelihood. It is relative

straightforward to maximise the likelihood of random variables which belong to the expo-

nential family (since they typically have a negative definite Hessian). However, the story
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becomes more complicated if the likelihood does not belong to the exponential family, for

example mixtures of exponential family distributions.

Let us suppose that {Xi} are iid random variables which follow the classical normal

mixture distribution

f(y; ✓) = pf1(y; ✓1) + (1� p)f2(y; ✓2),

where f1 is the density of the normal with mean µ1 and variance �2
1 and f2 is the density

of the normal with mean µ2 and variance �2
2. The log likelihood is

Ln(Y ; ✓) =
n
X

i=1

log

 

p
1

p

2⇡�2
1

exp



� 1

2�2
1

(Xi � µ1)
2

�

+ (1� p)
1

p

2⇡�2
2

exp



� 1

2�2
2

(Xi � µ2)
2

�

!

.

Studying the above it is clear there does not explicit solution to the maximum. Hence

one needs to use a numerical algorithm to maximise the above likelihood.

We discuss a few such methods below.

The Newton Raphson Routine The Newton-Raphson routine is the standard

method to numerically maximise the likelihood, this can often be done automatically

in R by using the R functions optim or nlm. To apply Newton-Raphson, we have to

assume that the derivative of the likelihood exists (this is not always the case - think

about the `1-norm based estimators!) and the maximum lies inside the parameter

space such that @L
n

(✓)
@✓

c✓=b✓
n

= 0. We choose an initial value ✓(1)n and apply the

routine

✓(j)n = ✓(j�1)
n �

✓

@2Ln(✓)

@✓2
c
✓
(j�1)
n

◆�1@Ln(✓)

@✓
c
✓
(j�1)
n

.

This routine can be derived from the Taylor expansion of @L
n

(✓
n�1)

@✓
about ✓0 (see

Section 2.6.3). A good description is given in https://en.wikipedia.org/wiki/

Newton%27s_method. We recall that �@2L
n

(✓)
@✓2

c
✓
(j�1)
n

is the observed Fisher informa-

tion matrix. If the algorithm does not converge, sometimes we replace �@2L
n

(✓)
@✓2

c
✓
(j�1)
n

with its expectation (the Fisher information matrix); since this is positive definite

it may give better results (this is called Fisher scoring).

If the likelihood has just one global maximum and is concave, then it is quite easy

to maximise. If on the other hand, the likelihood has a few local maximums and

the initial value ✓1 is not chosen close enough to the true maximum, then the
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routine may converge to a local maximum. In this case it may be a good idea to do

the routine several times for several di↵erent initial values ✓⇤n. For each candidate

value b✓⇤n evaluate the likelihood Ln(b✓⇤n) and select the value which gives the largest

likelihood. It is best to avoid these problems by starting with an informed choice of

initial value.

Implementing a Newton-Rapshon routine without much thought can lead to esti-

mators which take an incredibly long time to converge. If one carefully considers

the likelihood one can shorten the convergence time by rewriting the likelihood and

using faster methods (often based on the Newton-Raphson).

Iterative least squares This is a method that we shall describe later when we

consider Generalised linear models. As the name suggests the algorithm has to be

interated, however at each step weighted least squares is implemented (see later in

the course).

The EM-algorithm This is done by the introduction of dummy variables, which

leads to a new ‘unobserved’ likelihood which can easily be maximised (see later in

the course).

2.6 Statistical inference

2.6.1 A quick review of the central limit theorem

In this section we will not prove the central limit theorem. Instead we summarise the CLT

and generalisations of it. The purpose of this section is not to lumber you with unnecessary

mathematics but to help you understand when an estimator is close to normal (or not).

Lemma 2.6.1 (The famous CLT) Let us suppose that {Xi}ni=1 are iid random vari-

ables, let µ = E(Xi) < 1 and �2 = var(Xi) < 1. Define X̄ = 1
n

Pn
i=1 Xi. Then we

have

p
n(X̄ � µ)

D! N (0, �2).

Heuristically, we can write (X̄ � µ) ⇡ N (0, �
2

n
).
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What this means that if we have a large enough sample size and made a quantile plot

against the normal distribution the points should lie roughly on the x = y line (though

there will be less matching in the tails).

Remark 2.6.1 (i) The above lemma appears to be ‘restricted’ to just averages. How-

ever, it can be used in several di↵erent contexts. Averages arise in several di↵erent

situations. It is not just restricted to the average of the observations. By judicious

algebraic manipulations, one can show that several estimators can be rewritten as

an average (or approximately as an average). At first appearance, the MLE does not

look like an average, however, in Section 2.6.3 we show that it can be approximated

by a “useable” average.

(ii) The CLT can be extended in several ways.

(a) To random variables whose variance are not all the same (ie. independent but

identically distributed random variables).

(b) Dependent random variables (so long as the dependency ‘decays’ in some way).

(c) Weighted averages can also be asymptotically normal; so long as the weights

are ‘distributed evenly’ over all the random variables.

⇤ Suppose that {Xi} are iid non-normal random variables, Y =
PM

j=0 �
jXj

(|�| < 1) will never be normal (however large M).

⇤ However, Y = 1
n

Pn
i=1 sin(2⇡i/12)Xi is asymptotically normal.

• There exists several theorems which one can use to prove normality. But really the

take home message is, look at your estimator and see whether asymptotic normal-

ity it looks plausible. Always check through simulations (even if asymptically it is

normal, it may require a very large sample size for it to be close to normal).

Example 2.6.1 (Some problem cases) A necessary condition is that the second mo-

ment of Xi should exist. If it does not the CLT will not hold. For example if {Xi} follow

a t-distribution with 2 degrees of freedom

f(x) =
�(3/2)p

2⇡

✓

1 +
x2

2

◆�3/2

,

then X̄ = 1
n

Pn
i=1 Xi will not have a normal limit.
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We apply can immediately apply the above result to the MLE in the full rank expo-

nential class.

2.6.2 Sampling properties and the full rank exponential family

In Section 2.3.1 we showed that if {Xi}ni=1 belonged to the exponential family and the

maximum of the likelihood lay inside the parameter space (satisfied if the distribution is

“steep”) then

b✓n = µ�1

 

1

n

n
X

i=1

s(Xi)

!

is the maximum likelihood estimator. Since we have an “explicit” expression for the

estimator it is straightforward to derive the sampling properties of b✓n. By using the law

of large numbers

1

n

n
X

i=1

s(Xi)
a.s.! E[s(X)] n ! 1

then by the continuous mapping theorem

µ�1

 

1

n

n
X

i=1

s(Xi)

!

a.s.! µ�1 (E[s(X)]) = ✓ n ! 1.

Thus the maximum likelihood estimator is a consistent estimator of ✓. By using the CLT

we have

1p
n

n
X

i=1

(s(Xi)� E[s(Xi)])
D! N (0, var[s(Xi)]) n ! 1

where we recall that var[s(Xi)] = 00(✓). Now by using that

µ�1

 

1

n

n
X

i=1

s(Xi)

!

� µ�1 (µ(✓)) ⇡ @µ�1(x)

@x
cx=✓

 

1

n

n
X

i=1

[s(Xi)� E(s(Xi))]

!

=

✓

@µ(x)

@x

◆

c�1
x=✓

 

1

n

n
X

i=1

[s(Xi)� E(s(Xi))]

!

.

Thus by using the above, the continuous mapping theorem and the CLT for averages we

have

p
n

"

µ�1

 

1

n

n
X

i=1

s(Xi)

!

� µ�1 (µ(✓))

#

D! N
✓

0,

✓

@µ(x)

@x

◆

c�1
x=✓

00(✓)

✓

@µ(x)

@x

◆

c�1
x=✓

◆

= N
�

0,00(✓)�1
�

.
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We recall that 00(✓) is the Fisher information of ✓ based on X1.

Thus we have derived the sampling properties of the maximum likelihood estimator

for the exponential class. It is relatively straightfoward to derive. Interesting we see

that the limiting variance is the inverse of the Fisher information. So asymptotically the

MLE estimator attains the Cramer-Rao lower bound (though it is not really a variance).

However, the above derivation apply only to the full exponential class, in the following

section we derive a similar result for the general MLE.

2.6.3 The Taylor series expansion

The Taylor series is used all over the place in statistics. It can be used to prove con-

sistency of an estimator, normality (based on the assumption that averages converge to

a normal distribution), obtaining the limiting variance of an estimator etc. We start by

demonstrating its use for the log likelihood.

We recall that the mean value (in the univariate case) states that

f(x) = f(x0) + (x� x0)f
0(x̄1) and f(x) = f(x0) + (x� x0)f

0(x0) +
(x� x0)2

2
f 00(x̄2),

where x̄1 = ↵x0 + (1� ↵)x and x̄2 = �x+ (1� �)x0 (for some 0  ↵, �  1). In the case

that f : Rq ! R we have

f(x) = f(x0) + (x� x0)rf(x)cx=x̄1

f(x) = f(x0) + (x� x0)
0rf(x)cx=x0

+
1

2
(x� x0)

0r2f(x)cx=x̄2
(x� x0),

where x̄1 = ↵x0 + (1 � ↵)x and x̄2 = �x + (1 � �)x0 (for some 0  ↵, �  1). In the

case that f(x) is a vector, then the mean value theorem does not directly work, i.e. the

following is not true

f(x) = f(x0) + (x� x0)
0rf(x)cx=x̄1

,

where x̄1 lies between x and x0. However, it is quite straightforward to overcome this

inconvience. The mean value theorem does hold pointwise, for every element of the vector

f(x) = (f1(x), . . . , fp(x)), ie. for every 1  j  p we have

fj(x) = fi(x0) + (x� x0)rfj(y)cy=↵x+(1�↵)x0
,
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where x̄j lies between x and x0. Thus if rfj(x)cx=x̄
j

! rfj(x)cx=x0
, we do have that

f(x) ⇡ f(x0) + (x� x0)
0rf(x).

We use the above below.

• Application 1: An expression for Ln(b✓n)� Ln(✓0) in terms of (b✓n � ✓0).

The expansion of Ln(b✓n) about ✓0 (the true parameter)

Ln(b✓n)� Ln(✓0) = �@Ln(✓)

@✓
cb✓

n

(b✓n � ✓0)�
1

2
(b✓n � ✓0)

0@
2Ln(✓)

@✓2
c✓̄

n

(b✓n � ✓0)

where ✓̄n = ↵✓0 + (1 � ↵)b✓n. If b✓n lies in the interior of the parameter space (this

is an extremely important assumption here) then @L
n

(✓)
@✓

cb✓
n

= 0. Moreover, if it can

be shown that |b✓n� ✓0|
P! 0 and n�1 @

2L
n

(✓)
@✓2

converges uniformly to E(n�1 @
2L

n

(✓)
@✓2

c✓0
�

(see Assumption 2.6.1(iv), below), then we have

@2Ln(✓)

@✓2
c✓̄

n

P! E

✓

@2Ln(✓)

@✓2
c✓0
◆

= �In(✓0). (2.9)

This altogether gives

2(Ln(b✓n)� Ln(✓0)) ⇡ (b✓n � ✓0)
0In(✓0)(b✓n � ✓0). (2.10)

• Application 2: An expression for (b✓n � ✓0) in terms of @L
n

(✓)
@✓

c✓0

The expansion of the p-dimension vector @L
n

(✓)
@✓

cb✓
n

pointwise about ✓0 (the true

parameter) gives (for 1  j  d)

@Lj,n(✓)

@✓
cb✓

n

=
@Lj,n(✓)

@✓
c✓0 +

@2Lj,n(✓)

@✓2
c✓̄

j,n

(b✓n � ✓0),

where ✓̄j,n = ↵j ✓̄j,n + (1�↵j)✓0. Using the same arguments as in Application 1 and

equation (2.9) we have

@Ln(✓)

@✓
c✓0 ⇡ In(✓0)(b✓n � ✓0).

We mention that Un(✓0) =
@L

n

(✓)
@✓

c✓0 is often called the score or U statistic. And we

see that the asymptotic sampling properties of Un determine the sampling properties

of (b✓n � ✓0).
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Remark 2.6.2 (i) In practice In(✓0) is unknown and it is approximated by the Hessian

evaluated at the estimated parameter b✓n, �@2L
n

(✓)
@✓2

cb✓
n

. A discussion on the quality of

this approximation is given in Efron and Hinkley (1978).

(ii) Bear in mind that r2
✓Ln(✓) is not necessarily negative definite, but its limit is the

negative Fisher information matrix �In(✓) (non-negative definite over ✓ 2 ⇥).

Therefore for “large n r2
✓Ln(✓) will be negative definite”.

(iii) The quality of the approximation (2.9) depends on the the second order e�ciency

measure In(b✓n) � In(✓0) (this term was coined by C.R.Rao and discussed in Rao

(1961, 1962, 1963)). Efron (1975), equation (1.1) shows this di↵erence depends on

the so called curvature of the parameter space.

Example 2.6.2 (The Weibull) Evaluate the second derivative of the likelihood given in

Example 2.2.3, take the expection on this, In(✓,↵) = E(r2Ln) (we use the r to denote

the second derivative with respect to the parameters ↵ and ✓).

Application 2 implies that the maximum likelihood estimators b✓n and b↵n (recalling that

no explicit expression for them exists) can be written as

 

b✓n � ✓

b↵n � ↵

!

⇡ In(✓,↵)
�1

0

B

B

@

Pn
i=1

✓

� ↵
✓
+ ↵

✓↵+1Y ↵
i

◆

Pn
i=1

✓

1
↵
� log Yi � log ✓ � ↵

✓
+ log(Yi

✓
)⇥ (Yi

✓
)↵
◆

1

C

C

A

2.6.4 Sampling properties of the maximum likelihood estimator

We have shown that under certain conditions the maximum likelihood estimator can often

be the minimum variance unbiased estimator (for example, in the case of the normal

distribution). However, in most situations for finite samples the mle may not attain the

Cramer-Rao lower bound. Hence for finite sample var(b✓n) > In(✓)�1. However, it can be

shown that asymptotically the “variance” (it is not the true variance) of the mle attains

the Cramer-Rao lower bound. In other words, for large samples, the “variance” of the

mle is close to the Cramer-Rao bound. We will prove the result in the case that Ln is the

log likelihood of independent, identically distributed random variables. The proof can be

generalised to the case of non-identically distributed random variables.

We first state su�cient conditions for this to be true.
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Assumption 2.6.1 Suppose {Xi} be iid random variables with density f(X; ✓).

(i) The conditions in Assumption 1.3.1 hold. In particular:

(a)

E✓0

✓

@ log f(X; ✓)

@✓
c✓=✓0

◆

=

Z

@f(x; ✓)

@✓
c✓=✓0dx =

@

@✓

Z

@f(x; ✓)

@✓
dxc✓=✓0 = 0.

(b)

E✓0

"

✓

@ log f(X; ✓)

@✓
c✓=✓0

◆2
#

= E✓0



�@2 log f(X; ✓)

@✓2
c✓=✓0

�

.

(ii) Almost sure uniform convergence of the likelihood:

sup✓2⇥
1
n
|Ln(X; ✓)� E(Ln(X; ✓))| a.s.! 0 as n ! 1.

We mention that directly verifying uniform convergence can be di�cult. However,

it can be established by showing that the parameter space is compact, point wise

convergence of the likelihood to its expectation and almost sure equicontinuity in

probability.

(iii) Model identifiability:

For every ✓ 2 ⇥, there does not exist another ✓̃ 2 ⇥ such that f(x; ✓) = f(x; ✓̃) for

all x in the sample space.

(iv) Almost sure uniform convergence of the second derivative of the likelihood (using the

notation r✓): sup✓2⇥
1
n
|r2

✓Ln(X; ✓)� E(r2
✓Ln(X; ✓))| a.s.! 0 as n ! 1.

This can be verified by using the same method described in (ii).

We require Assumption 2.6.1(ii,iii) to show consistency and Assumptions 1.3.1 and

2.6.1(iii-iv) to show asymptotic normality.

Theorem 2.6.1 Supppose Assumption 2.6.1(ii,iii) holds. Let ✓0 be the true parameter

and b✓n be the mle. Then we have b✓n
a.s.! ✓0 (consistency).

PROOF. First define `(✓) = E[log f(X; ✓)] (the limit of the expected log-likelihood). To

prove the result we first need to show that the expectation of the maximum likelihood is

81



maximum at the true parameter and that this is the unique maximum. In other words

we need to show that E( 1
n
Ln(X; ✓)� 1

n
Ln(X; ✓0))  0 for all ✓ 2 ⇥. To do this, we have

`(✓)� `(✓0) = E

✓

1

n
Ln(X; ✓)� E(

1

n
Ln(X; ✓0)

◆

=

Z

log
f(x; ✓)

f(x; ✓0)
f(x; ✓0)dx

= E

✓

log
f(X; ✓)

f(X; ✓0)

◆

.

Now by using Jensen’s inequality (since log is a concave function) we have

E

✓

log
f(X; ✓)

f(X; ✓0)

◆

 log E

✓

f(X; ✓)

f(X; ✓0)

◆

= log

Z

f(x; ✓)

f(x; ✓0)
f(x; ✓0)dx = log

Z

f(x; ✓)dx = 0,

since ✓ 2 ⇥ and
R

f(x; ✓)dx = 1. Thus giving E( 1
n
Ln(X; ✓)) � E( 1

n
Ln(X; ✓0))  0.

To prove that E( 1
n
[Ln(X; ✓)) � Ln(X; ✓0)]) = 0 only when ✓0, we use the identifiability

condition in Assumption 2.6.1(iii), which means that f(x; ✓) = f(x; ✓0) for all x only when

✓0 and no other function of f gives equality. Hence only when ✓ = ✓0 do we have

E

✓

log
f(X; ✓)

f(X; ✓0)

◆

= log

Z

f(x; ✓)

f(x; ✓0)
f(x; ✓0)dx = log

Z

f(x; ✓)dx = 0,

thus E( 1
n
Ln(X; ✓)) has a unique maximum at ✓0.

Finally, we need to show that b✓n
a.s.! ✓0. To simplify notation for the remainder of this

proof we assume the likelihood has been standardized by n i.e.

Ln(✓) =
1

n

n
X

i=1

log f(Xi; ✓).

We note that since `(✓) is maximum at ✓0 if |Ln(b✓n)� `(✓0)|
a.s.! 0, then b✓n

a.s.! ✓0. Thus we

need only prove |Ln(b✓n)� `(✓0)|
a.s.! 0. We do this using a sandwich argument.

First we note for every mle b✓n

Ln(X; ✓0)  Ln(X; b✓n)
a.s.! `(b✓n)  `(✓0), (2.11)

where we are treating b✓n as if it were a non-random fixed value in ⇥. Returning to

|E(Ln(X; ✓0)) � Ln(X; b✓n)| (they swapped round) we note that the di↵erence can be

written as

`(✓0)� Ln(X; b✓n) = {`(✓0)� Ln(X; ✓0)}+
n

`(b✓n)� Ln(X; b✓n)
o

+
n

Ln(X; ✓0)� `(b✓n)
o

.
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Now by using (2.11) we have

`(✓0)� Ln(X; b✓n)  {`(✓0)� Ln(X; ✓0)}+
n

`(b✓n)� Ln(X; b✓n)
o

+

8

>

<

>

:

Ln(X; b✓n)
| {z }

�L
n

(X;✓0)

�`(b✓n)

9

>

=

>

;

= {`(✓0)� Ln(X; ✓0)}

and

`(✓0)� Ln(X; b✓n) � {`(✓0)� Ln(X; ✓0)}+
n

`(b✓n)� Ln(X; b✓n)
o

+

8

>

<

>

:

Ln(X; ✓0)� `(✓0)
|{z}

�`(b✓
n

)

9

>

=

>

;

=
n

`(b✓n)� Ln(X; b✓n)
o

Thus
n

`(b✓n)� Ln(X; b✓n)
o

 `(✓0)� Ln(X; b✓n)  {`(✓0)� Ln(X; ✓0)} .

The above also immediately follows from (2.11). This is easily seen in Figure 2.3, which

Reza suggested. Thus we have sandwiched the di↵erence E(Ln(X; ✓0))�Ln(X; b✓n). There-

fore, under Assumption 2.6.1(ii) we have

|`(✓0)� Ln(X; b✓n)|  sup
✓2⇥

|`(✓)� Ln(X; ✓)| a.s.! 0.

Since E[Ln(X; ✓)] has a unique maximum at E[Ln(X; ✓0)] this implies b✓n
a.s.! ✓0.

⇤

Hence we have shown consistency of the mle. It is important to note that this proof is

not confined to just the likelihood it can also be applied to other contrast functions. We

now show asymptotic normality of the MLE.

Theorem 2.6.2 Suppose Assumption 2.6.1 is satisfied (where ✓0 is the true parameter).

Let

I(✓0) = E

 



@ log f(Xi; ✓)

@✓
c✓0
�2
!

= E

✓

�@2 log f(Xi; ✓)

@✓2
c✓0
◆

.

(i) Then the score statistic is

1p
n

@Ln(X; ✓)

@✓
c✓0

D! N
✓

0, I(✓0)

◆

. (2.12)
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Figure 2.3: Di↵erence between likelihood and expectation.

(ii) Then the mle is

p
n
�

b✓n � ✓0
� D! N

✓

0, I(✓0)
�1

◆

.

(iii) The log likelihood ratio is

2

✓

Ln(X; b✓n)� Ln(X; ✓0)

◆

D! �2
p

(iv) The square MLE

n(b✓n � ✓0)
0In(✓0)(b✓n � ✓0)

D! �2
p.

PROOF. First we will prove (i). We recall because {Xi} are iid random variables, then

1p
n

@Ln(X; ✓)

@✓
c✓0 =

1p
n

n
X

i=1

@ log f(Xi; ✓)

@✓
c✓0 ,

is the sum of independent random variables. We note that under Assumption 2.6.1(i) we

have

E

✓

@ log f(Xi; ✓)

@✓
c✓0
◆

=

Z

@ log f(x; ✓)

@✓
c✓0f(x; ✓0)dx = 0,
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thus @ log f(X
i

;✓)
@✓

c✓0 is a zero mean random variable and its variance is I(✓0).

Hence @L
n

(X;✓)
@✓

c✓0 is the sum of iid random variables with mean zero and variance

I(✓0). Therefore, by the CLT for iid random variables we have (2.12).

We use (i) and Taylor (mean value) theorem to prove (ii). We first note that by the

mean value theorem we have

1

n

@Ln(X; ✓)

@✓
cb✓

n

| {z }

=0

=
1

n

@Ln(X; ✓)

@✓
c✓0 + (b✓n � ✓0)

1

n

@2Ln(X; ✓)

@✓2
c✓̄

n

. (2.13)

Using the consistency result in Theorem 2.6.1 (b✓n
a.s.! ✓0, thus ✓̄n

a.s.! ✓0) and Assumption

2.6.1(iv) we have

1

n

@2Ln(X; ✓)

@✓2
c✓̄

n

a.s.! 1

n
E

✓

@2Ln(X; ✓)

@✓2
c✓0
◆

= E

✓

@2 log f(X; ✓)

@✓2
c✓0
◆

= �I(✓0). (2.14)

Substituting the above in (2.15) we have

1

n

@Ln(X; ✓)

@✓
c✓0 � I(✓0)(b✓n � ✓0) +

✓

1

n

@2Ln(X; ✓)

@✓2
c✓̄

n

� I(✓0)

◆

(b✓n � ✓0)
| {z }

small

= 0 (2.15)

Multiplying the above by
p
n and rearranging gives

p
n(b✓n � ✓0) = I(✓0)

�1 1p
n

@Ln(X; ✓)

@✓
c✓0 + op(1).

6 Hence by substituting the (2.12) into the above we have (ii).

To prove (iii) we use (2.10), which we recall is

2

✓

Ln(X; b✓n)� Ln(X; ✓0)

◆

⇡ (b✓n � ✓0)
0nI(✓0)(b✓n � ✓0)

0.

Now by using that
p
nI(✓0)�1/2(b✓n�✓0)

D! N (0, I) (see (i)) and substituting this into the

above gives (iii).

The proof of (iv) follows immediately from (ii). ⇤

This result tells us that asymptotically the mle attains the Cramer-Rao bound. Fur-

thermore, if b✓ is a p-dimension random vector and I(✓0) is diagonal, then the elements of

6We mention that the proof above is for univariate @2Ln(X;✓)
@✓2 c

¯✓n , but by redo-ing the above steps

pointwise it can easily be generalised to the multivariate case too
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b✓ will be asymptotically independent (for example the sample mean and sample variance

estimator for the normal distribution). However if I(✓0) is not diagonal, then o↵-diagonal

elements in I(✓0)�1 measure the degree of correlation between the estimators. See Figure

2.4.

Figure 2.4: Contour plot of two dimensional normal distribution of two parameter esti-

mators with diagonal and non-diagonal information matrix

Example 2.6.3 (The Weibull) By using Example 2.6.2 we have

 

b✓n � ✓

b↵n � ↵

!

⇡ In(✓,↵)
�1

0

B

B

@

Pn
i=1

✓

� ↵
✓
+ ↵

✓↵+1Y ↵
i

◆

Pn
i=1

✓

1
↵
� log Yi � log ✓ � ↵

✓
+ log(Yi

✓
)⇥ (Yi

✓
)↵
◆

1

C

C

A

.

Now we observe that RHS consists of a sum iid random variables (this can be viewed as

an average). Since the variance of this exists (you can show that it is In(✓,↵)), the CLT

can be applied and we have that

p
n

 

b✓n � ✓

b↵n � ↵

!

D! N
�

0, I(✓,↵)�1
�

,

where I(✓,↵) = E[(r log f(X; ✓,↵))2].
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Remark 2.6.3 (i) We recall that for iid random variables that the Fisher information

for sample size n is

In(✓0) = E

⇢

@ logLn(X; ✓)

@✓
c✓0
�2

= nE

✓

@ log f(X; ✓)

@✓
c✓0
◆2

= nI(✓0)

Therefore since

(b✓n � ✓0) ⇡ In(✓0)
�1@Ln(✓)

@✓
c✓0 =



1

n
I(✓0)

��1 1

n

@Ln(✓)

@✓
c✓0

)
p
n(b✓n � ✓0) ⇡

p
nIn(✓0)

�1@Ln(✓)

@✓
c✓0 =



1

n
I(✓0)

��1 1p
n

@Ln(✓)

@✓
c✓0

and var
�

1p
n
@L

n

(✓)
@✓

c✓0
�

= n�1E
h

�@L
n

(✓)
@✓

c✓0
�2
i

= I(✓0), it can be seen that |b✓n � ✓0| =
Op(n�1/2).

(ii) Under suitable conditions a similar result holds true for data which is not iid.

(iii) These results only apply when ✓0 lies inside the parameter space ⇥.

We have shown that under certain regularity conditions the mle will asymptotically

attain the Fisher information bound. It is reasonable to ask how one can interprete this

bound.

(i) Situation 1. In(✓0) = E

✓

� @2L
n

(✓)
@✓2

c✓0
◆

is large (hence variance of the mle will

be small) then it means that the gradient of @L
n

(✓)
@✓

is large. Hence even for small

deviations from ✓0,
@L

n

(✓)
@✓

is likely to be far from zero. This means the mle b✓n is

likely to be in a close neighbourhood of ✓0.

(ii) Situation 2. In(✓0) = E

✓

� @2L
n

(✓)
@✓2

c✓0
◆

is small (hence variance of the mle will large).

In this case the gradient of the likelihood @L
n

(✓)
@✓

is flatter and hence @L
n

(✓)
@✓

⇡ 0 for

a large neighbourhood about the true parameter ✓. Therefore the mle b✓n can lie in

a large neighbourhood of ✓0.

Remark 2.6.4 (Lagrange Multipliers) Often when maximising the likelihood it has

to be done under certain constraints on the parameters. This is often achieved with the

use of Lagrange multipliers (a dummy variable), which enforces this constraint.
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For example suppose the parameters in the likelihood must sum to one then we can

enforce this constraint by maximising the criterion

Ln(✓,�) = Ln(✓)
| {z }

likelihood

+�[
q
X

j=1

✓j � 1]

with respect to ✓ and the dummy variable �.

2.7 Some questions

Exercise 2.7 Suppose X1, . . . , Xn are i.i.d. observations. A student wants to test whether

each Xi has a distribution in the parametric family {f(x;↵) : ↵ 2 ⇥} or the family

{g(x; �) : � 2 �}. To do this he sets up the hypotheses

H0 : Xi ⇠ f( · ;↵0) vs. HA : Xi ⇠ g( · ; �0),

where ↵0 and �0 are the unknown true parameter values. He constructs the log-likelihood

ratio statistic

L = max
�2�

Lg(X; �)�max
↵2⇥

Lf (X;↵) = Lg(X; �̂)� Lf (X; ↵̂),

where

Lg(X; �) =
n
X

i=1

log g(Xi; �), Lf (X;↵) =
n
X

i=1

log f(Xi;↵),

↵̂ = argmax↵2⇥ Lf (X;↵) and �̂ = argmax�2� Lg(X; �). The student applies what he

believe he learned in class to L and assumes that the distribution of L under the null

hypothesis (asymptotically) follows a chi-squared distribution with one-degree of freedom.

He does the test at the 5% level using the critical value �2 = 3.84, rejecting the null in

favor of the alternative if L > 3.84.

(a) Using well known results, derive the asymptotic distribution of

1p
n

n
X

i=1

log
g(Xi; �0)

f(Xi;↵0)

under the null and the alternative.
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(b) Is the distribution of L chi-squared? If not, derive the asymptotic distribution of L.

Hint: You will need to use your answer from (a).

Note: This part is tough; but fun (do not be disillusioned if it takes time to solve).

(c) By using your solution to parts (a) and (b), carefully explain what the actual type

error I of the student’s test will be (you do not need to derive the Type I error, but

you should explain how it compares to the 5% level that the student uses).

(d) By using your solution to parts (a) and (b), carefully explain what the power of his

test will be (you do not have to derive an equation for the power, but you should

explain what happens to the power as the sample size grows, giving a precise justifi-

cation).

(e) Run some simulations to illustrate the above.

Exercise 2.8 Find applications where likelihoods are maximised with the use of Lagrange

multipliers. Describe the model and where the Lagrange multiplier is used.

2.8 Applications of the log-likelihood theory

We first summarise the results in the previous section (which will be useful in this section).

For convenience, we will assume that {Xi}ni=1 are iid random variables, whose density

is f(x; ✓0) (though it is relatively simple to see how this can be generalised to general

likelihoods - of not necessarily iid rvs). Let us suppose that ✓0 is the true parameter that

we wish to estimate. Based on Theorem 2.6.2 we have

p
n
�

✓̂n � ✓0
� D! N

✓

0, I(✓0)
�1

◆

, (2.16)

1p
n

@Ln

@✓
c✓=✓0

D! N
✓

0, I(✓0)

◆

(2.17)

and

2
h

Ln(✓̂n)� Ln(✓0)
i

D! �2
p, (2.18)
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where p are the number of parameters in the vector ✓ and I(✓0) = E[(@ log f(X;✓)
@✓

c✓0)2] =
n�1E[(@ logL

n

(✓)
@✓

c✓0)2]. It is worth keeping in mind that by using the usual Taylor expansion

the log-likelihood ratio statistic is asymptotically equivalent to

2
h

Ln(b✓n)� L(✓0)
i

D
= �ZI(✓0)Z,

where Z ⇠ N (0, I(✓0)).

Note: There are situations where the finite sampling distributions of the above are

known, in which case there is no need to resort to the asymptotic sampling properties.

2.8.1 Constructing confidence sets using the likelihood

One the of main reasons that we show asymptotic normality of an estimator (it is usually

not possible to derive normality for finite samples) is to construct confidence intervals/sets

and to test.

In the case that ✓0 is a scaler (vector of dimension one), it is easy to use (2.16) to

obtain

p
nI(✓0)

1/2
�

✓̂n � ✓0
� D! N(0, 1). (2.19)

Based on the above the 95% CI for ✓0 is


b✓n �
1p
n
I(✓0)z↵/2, ✓̂n +

1p
n
I(✓0)z↵/2

�

.

The above, of course, requires an estimate of the (standardised) expected Fisher informa-

tion I(✓0), typically we use the (standardised) observed Fisher information evaluated at

the estimated value b✓n.

The CI constructed above works well if ✓ is a scalar. But beyond dimension one,

constructing a CI based on (2.16) (and the p-dimensional normal) is extremely di�cult.

More precisely, if ✓0 is a p-dimensional vector then the analogous version of (2.19) is

p
nI(✓0)

1/2
�

✓̂n � ✓0
� D! N(0, Ip).

However, this does not lead to a simple set construction. One way to construct the

confidence interval (or set) is to ‘square’
�

✓̂n � ✓0
�

and use

n
�

✓̂n � ✓0
�0
I(✓0)

�

✓̂n � ✓0
� D! �2

p. (2.20)
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Based on the above a 95% CI is
⇢

✓;
�

✓̂n � ✓
�0
nE

✓

@ log f(X; ✓)

@✓
c✓0
◆2
�

✓̂n � ✓
�

 �2
p(0.95)

�

. (2.21)

Note that as in the scalar case, this leads to the interval with the smallest length. A

disadvantage of (2.21) is that we have to (a) estimate the information matrix and (b) try

to find all ✓ such the above holds. This can be quite unwieldy. An alternative method,

which is asymptotically equivalent to the above but removes the need to estimate the

information matrix is to use (2.18). By using (2.18), a 100(1� ↵)% confidence set for ✓0

is
⇢

✓; 2
�

Ln(✓̂n)� Ln(✓)
�

 �2
p(1� ↵)

�

. (2.22)

The above is not easy to calculate, but it is feasible.

Example 2.8.1 In the case that ✓0 is a scalar the 95% CI based on (2.22) is
⇢

✓;Ln(✓) � Ln(✓̂n)�
1

2
�2
1(0.95)

�

.

See Figure 2.5 which gives the plot for the confidence interval (joint and disjoint).

Both the 95% confidence sets in (2.21) and (2.22) will be very close for relatively large

sample sizes. However one advantage of using (2.22) instead of (2.21) is that it is easier

to evaluate - no need to obtain the second derivative of the likelihood etc.

A feature which di↵erentiates (2.21) and (2.22) is that the confidence sets based on

(2.21) is symmetric about b✓n (recall that (X̄ � 1.96�/
p
n, X̄ + 1.96�/

p
n)) is symmetric

about X̄, whereas the symmetry condition may not hold for sample sizes when construct-

ing a CI for ✓0 using (2.22). Using (2.22) there is no guarantee the confidence sets consist

of only one interval (see Figure 2.5). However, if the distribution is exponential with full

rank (and is steep) the likelihood will be concave with the maximum in the interior of the

parameter space. This will mean the CI constructed using (2.22) will be connected.

If the dimension of ✓ is large it is di�cult to evaluate the confidence set. Indeed

for dimensions greater than three it is extremely hard. However in most cases, we are

only interested in constructing confidence sets for certain parameters of interest, the other

unknown parameters are simply nuisance parameters and confidence sets for them are not

of interest. For example, for the normal family of distribution we may only be interested

in constructing an interval for the mean, and the variance is simply a nuisance parameter.
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Figure 2.5: Constructing confidence intervals using method (2.22).

2.8.2 Testing using the likelihood

Let us suppose we wish to test the hypothesis H0 : ✓ = ✓0 against the alternative HA :

✓ 6= ✓0. We can use any of the results in (2.16), (2.17) and (2.18) to do the test - they will

lead to slightly di↵erent p-values, but ‘asympototically’ they are all equivalent, because

they are all based (essentially) on the same derivation.

We now list the three tests that one can use.

The Wald test

The Wald statistic is based on (2.16). We recall from (2.16) that if the null is true, then

we have

p
n
�

✓̂n � ✓0
� D! N

✓

0,

⇢

E

✓

@ log f(X; ✓)

@✓
c✓0
◆2��1◆

.
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Thus we can use as the test statistic

T1 =
p
nI(✓0)

1/2
�

b✓n � ✓0
�

to test the hypothesis. Under the null

T1
D! N (0, 1).

We now consider how the test statistics behaves under the alternative HA : ✓ = ✓1. If the

alternative were true, then we have

I(✓0)
1/2(b✓n � ✓0) = I(✓0)

1/2
⇣

(b✓n � ✓1) + (✓1 � ✓0)
⌘

⇡ I(✓0)
1/2In(✓1)

�1
X

i

@ log f(Xi; ✓1)

@✓1
+ I(✓0)

1/2(✓1 � ✓0)

where In(✓1) = E✓1 [(
@L

n

(✓)
@✓

c✓=✓1)
2].

Local alternatives and the power function

In the case that the alternative is fixed (does not change with sample size), it is clear that

the power in the test goes to 100% as n ! 1. To see we write

p
nI(✓0)

1/2(b✓n � ✓0) =
p
nI(✓0)

1/2(b✓n � ✓1) +
p
nI(✓0)

1/2(✓1 � ✓0)

⇡ I(✓0)
1/2I(✓1)

�1 1p
n

X

i

@ log f(Xi; ✓1)

@✓1
+
p
nI(✓0)

1/2(✓1 � ✓0)

D! N
�

0, I(✓0)
1/2I(✓1)

�1I(✓0)
1/2
�

+
p
nI(✓0)

1/2(✓1 � ✓0).

Using the above calculation we see that

P (Reject|✓ = ✓1) = 1� �

 

z1�↵/2 �
p
n(✓1 � ✓0)I(✓0)1/2

p

I(✓0)1/2I(✓1)�1I(✓0)1/2

!

.

Thus, we see that as n ! 1, the power gets closer to 100%. However, this calculation

does not really tell us how the test performs for ✓1 close to the ✓0.

To check the e↵ectiveness of a given testing method, one lets the alternative get closer

to the the null as n ! 1. This allows us to directly di↵erent statistical tests (and the

factors which drive the power).

How to choose the closeness:
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• Suppose that ✓1 = ✓0 +
�
n
(for fixed �), then the center of T1 is

p
nI(✓0)

1/2(b✓n � ✓0) =
p
nI(✓0)

1/2(b✓n � ✓1) +
p
nI(✓0)

1/2(✓1 � ✓0)

⇡ I(✓0)
1/2I(✓1)

�1 1p
n

X

i

@ log f(Xi; ✓1)

@✓1
+
p
n(✓1 � ✓0)

D! N

0

@0, I(✓0)
1/2I(✓1)

�1I(✓0)
1/2

| {z }

!I

1

A+
I(✓0)1/2�p

n
| {z }

!0

⇡ N(0, Ip).

Thus the alternative is too close to the null for us to discriminate between the null

and alternative.

• Suppose that ✓1 = ✓0 +
�p
n
(for fixed �), then

p
nI(✓0)

1/2(b✓n � ✓0) =
p
nI(✓0)

1/2(b✓n � ✓1) +
p
nI(✓0)

1/2(✓1 � ✓0)

⇡ I(✓0)
1/2I(✓1)

�1 1p
n

X

i

@ log f(Xi; ✓1)

@✓1
+
p
nI(✓0)

1/2(✓1 � ✓0)

D! N
�

0, I(✓0)
1/2I(✓1)

�1I(✓0)
1/2
�

+ I(✓0)
1/2�

⇡ N
�

I(✓0)
1/2�, I(✓0)

1/2I(✓0 + �n�1/2)�1I(✓0)
1/2
�

.

Therefore, for a given � we can calculate the power at a given level ↵. Assume for

simplicity that � > 0 and ✓ is univariate. Then

P
�

|T1| > z1�↵/2

�

� P
�

T1 > z1�↵/2

�

= P

 

Z >
z1�↵/2 � I(✓0)1/2�

p

I(✓0)1/2I(✓0 + �n�1/2)�1I(✓0)1/2

!

= 1� �

 

z1�↵/2 � I(✓0)1/2�
p

I(✓0)1/2I(✓0 + �n�1/2)�1I(✓0)1/2

!

⇡ 1� �
�

z1�↵/2 � �I(✓0)
1/2
�

.

this gives the power function of the test for a fixed n over �. What we observe is

that the power of the test H0 : ✓ = ✓0 vs HA : ✓ 6= ✓0 depends on the size of I(✓0)1/2.

The larger the Fisher information I(✓0) the greater the ability of the Wald test to

discriminate between the null and the alternative. Based on what we understand

about the Fisher information this make sense. The larger the Fisher information

the “better” our ability to estimate the true parameter.
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In the case that the dimension of ✓ is p > 1, we use the test statistic ñ1 =
�

✓̂n �

✓0
�p

nE

✓

@ log f(X;✓)
@✓

c✓0
◆2
�

✓̂n � ✓0
�

instead of T1. Noting that the distribution of T1 is a

chi-squared with p-degrees of freedom.

The Score test

The score test is based on the score. Under the null the distribution of the score is

1p
n

@Ln

@✓
c✓=✓0

D! N
✓

0,

⇢

E

✓

@ log f(X; ✓)

@✓
c✓0
◆2�◆

.

Thus we use as the test statistic

T2 =
1p
n

⇢

E

✓

@ log f(X; ✓)

@✓
c✓0
◆2��1/2@Ln

@✓
c✓=✓0

D! N (0, 1).

An advantage of this test is that the maximum likelihood estimator (under either the null

or alternative) does not have to be calculated.

The log-likelihood ratio test

This test is based on (2.18), and the test statistic is

T3 = 2
�

max
✓2⇥

Ln(✓)� Ln(✓0)
� D! �2

p.

T3 is often called Wilk’s statistic. An advantage of this test statistic is that it is asymptot-

ically pivotal, in the sense that it does not depend on any nuisance parameters (we discuss

this in the next chapter). However, using the chi-square distribution will only give the

p-value corresponding to a “two-sided” hypothesis. This is because the chi-square distri-

bution is based on the approximation

T3 = 2
�

Ln(✓̂n)� Ln(✓0)
�

⇡ n(b✓n � ✓0)
2I(✓0),

which assumes that b✓n = argmax✓ Ln(✓) and solves @L
n

(✓)
@✓

c✓=b✓
n

= 0. However, in a one-

sided test H0 : µ = µ0 vs HA : µ > µ0 parameter space is restricted to µ � µ0 (it is on the

boundary), this means that T3 will not have a chi-square (though it will be very close)

and p-value will be calculated in a slightly dii↵erent way. This boundary issue is not a

problem for Wald test, since for the Wald test we simply calculate

P (Z � T1) = �
⇣p

nI(✓0)
1/2(b✓ � ✓0)

⌘

.
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Indeed, we show in Chapter 4, that the p-value for the one-sided test using the log-

likelihood ratio statistic corresponds to that of p-value of the one-sided tests using the

Wald statistic.

Exercise 2.9 What do the score and log-likelihood ratio test statistics look like under the

alternative? Derive the power function for these test statistics.

You should observe that the power function for all three tests is the same.

Applications of the log-likeihood ratio to the multinomial distribution

We recall that the multinomial distribution is a generalisation of the binomial distribution.

In this case at any given trial there can arise m di↵erent events (in the Binomial case

m = 2). Let Zi denote the outcome of the ith trial and assume P (Zi = k) = ⇡i (⇡1 +

. . . + ⇡m = 1). Suppose that n trials are conducted and let Y1 denote the number of

times event 1 arises, Y2 denote the number of times event 2 arises and so on. Then it is

straightforward to show that

P (Y1 = k1, . . . , Ym = km) =

✓

n

k1, . . . , km

◆ m
Y

i=1

⇡k
i

i .

If we do not impose any constraints on the probabilities {⇡i}, given {Yi}mi=1 it is

straightforward to derive the mle of {⇡i} (it is very intuitive too!). Noting that ⇡m =

1�
Pm�1

i=1 ⇡i, the log-likelihood of the multinomial is proportional to

Ln(⇡) =
m�1
X

i=1

yi log ⇡i + ym log(1�
m�1
X

i=1

⇡i).

Di↵erentiating the above with respect to ⇡i and solving gives the mle estimator ⇡̂i =

Yi/n! We observe that though there are m probabilities to estimate due to the constraint

⇡m = 1�
Pm�1

i=1 ⇡i, we only have to estimate (m� 1) probabilities. We mention, that the

same estimators can also be obtained by using Lagrange multipliers, that is maximising

Ln(⇡) subject to the parameter constraint that
Pp

j=1 ⇡i = 1. To enforce this constraint,

we normally add an additional term to Ln(⇡) and include the dummy variable �. That

is we define the constrained likelihood

L̃n(⇡,�) =
m
X

i=1

yi log ⇡i + �(
m
X

i=1

⇡i � 1).
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Now if we maximise L̃n(⇡,�) with respect to {⇡i}mi=1 and � we will obtain the estimators

⇡̂i = Yi/n (which is the same as the maximum of Ln(⇡)).

To derive the limiting distribution we note that the second derivative is

�@2Ln(⇡)

@⇡i⇡j

=

8

<

:

y
i

⇡2
i

+ y
m

(1�
P

m�1
r=1 ⇡

r

)2
i = j

y
m

(1�
P

m�1
r=1 ⇡

r

)2
i 6= j

Hence taking expectations of the above the information matrix is the (k � 1) ⇥ (k � 1)

matrix

I(⇡) = n

0

B

B

B

B

B

@

1
⇡1

+ 1
⇡
m

1
⇡
m

. . . 1
⇡
m

1
⇡
m

1
⇡2

+ 1
⇡
m

. . . 1
⇡
m

...
...

...
...

1
⇡
m�1

. . . 1
⇡
m�1

+ 1
⇡
m

1

C

C

C

C

C

A

.

Provided no of ⇡i is equal to either 0 or 1 (which would drop the dimension of m and

make I(⇡)) singular, then the asymptotic distribution of the mle the normal with variance

I(⇡)�1.

Sometimes the probabilities {⇡i} will not be ‘free’ and will be determined by a param-

eter ✓ (where ✓ is an r-dimensional vector where r < m), ie. ⇡i = ⇡i(✓), in this case the

likelihood of the multinomial is

Ln(⇡) =
m�1
X

i=1

yi log ⇡i(✓) + ym log(1�
m�1
X

i=1

⇡i(✓)).

By di↵erentiating the above with respect to ✓ and solving we obtain the mle.

Pearson’s goodness of Fit test

We now derive Pearson’s goodness of Fit test using the log-likelihood ratio.

Suppose the null is H0 : ⇡1 = ⇡̃1, . . . , ⇡m = ⇡̃m (where {⇡̃i} are some pre-set proba-

bilities) and HA : the probabilities are not the given probabilities. Hence we are testing

restricted model (where we do not have to estimate anything) against the full model where

we estimate the probabilities using ⇡i = Yi/n.

The log-likelihood ratio in this case is

W = 2
�

argmax
⇡

Ln(⇡)� Ln(⇡̃)
 

.
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Under the null we know that W = 2
�

argmax⇡ Ln(⇡)�Ln(⇡̃)
 D! �2

m�1 (because we have

to estimate (m� 1) parameters). We now derive an expression for W and show that the

Pearson-statistic is an approximation of this.

1

2
W =

m�1
X

i=1

Yi log
�Yi

n

�

+ Ym log
Ym

n
�

m�1
X

i=1

Yi log ⇡̃i � Ym log ⇡̃m

=
m
X

i=1

Yi log
� Yi

n⇡̃i

�

.

Recall that Yi is often called the observed Yi = Oi and n⇡̃i the expected under the null

Ei = n⇡̃i. Then W = 2
Pm

i=1 Oi log
�

O
i

E
i

� P! �2
m�1. By making a Taylor expansion of

x log(xa�1) about x = a we have x log(xa�1) ⇡ a log(aa�1) + (x� a) + 1
2
(x� a)2/a. We

let O = x and E = a, then assuming the null is true and Ei ⇡ Oi we have

W = 2
m
X

i=1

Yi log
� Yi

n⇡̃i

�

⇡ 2
m
X

i=1

�

(Oi � Ei) +
1

2

(Oi � Ei)2

Ei

�

.

Now we note that
Pm

i=1 Ei =
Pm

i=1 Oi = n hence the above reduces to

W ⇡
m
X

i=1

(Oi � Ei)2

Ei

D! �2
m�1.

We recall that the above is the Pearson test statistic. Hence this is one methods for

deriving the Pearson chi-squared test for goodness of fit.

Remark 2.8.1 (Beyond likelihood) In several applications in statistics we cannot ar-

ticulate the question of interest in terms of the parameters of a distribution. However, we

can often articulate it in terms of some parameters, �. Indeed, whether � is zero or will

tell us something about the data. For example:

(i) Are some parameters in a linear regression zero?

(ii) Is there correlation between two variables?

(iii) Is there an interaction between two categorical variables in a regression?

(iv) In my own area of research on detecting nonstationarities, transforming the time

series can yield more information then the original data. For example, nonstation-

arities imply correlations in the transformed data. The list goes on.
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None of the above requires us to place distributional assumptions on the data. However, we

can still test H0 : � = 0 against HA : � 6= 0. If we can estimate this quantity and obtain

its limiting distribution under the null and show that under the alternative it “shifts”,

using b� we can construct a test statistic which has some power (though it may not be the

most powerful test).

2.9 Some questions

Exercise 2.10 A parameterisation of a distribution is identifiably if there does not exist

another set of parameters which can give the same distribution. https: // en. wikipedia.

org/ wiki/ Identifiability . Recall this assumption was used when deriving the sam-

pling properties of the maximum likelihood estimator.

Suppose Xi are iid random variables which come from a mixture of distributions. The

density of Xi is

f(x; ⇡,�1,�2) = ⇡�1 exp(��1x) + (1� ⇡)�2 exp(��2x)

where x > 0, �1,�2 > 0 and 0  ⇡  1.

(i) Are the parameters identifiable?

(ii) Does standard theory apply when using the log-likelihood ratio test to test H0 : ⇡ = 0

vs HA : ⇡ 6= 0.

(iii) Does standard theory apply when using the log-likelihood to estimate ⇡ when �1 = �2.
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