
Chapter 1

The Likelihood

In this chapter we review some results that you may have came across previously. We

define the likelihood and construct the likelihood in slightly non-standard situations.

We derive properties associated with the likelihood, such as the Crámer-Rao bound and

su�ciency. Finally we review properties of the exponential family which are an important

parametric class of distributions with some elegant properties.

1.1 The likelihood function

Suppose x = {Xi} is a realized version of the random vector X = {Xi}. Suppose the

density f is unknown, however, it is known that the true density belongs to the density

class F . For each density in F , fX(x) specifies how the density changes over the sample

space of X. Regions in the sample space where fX(x) is “large” point to events which are

more likely than regions where fX(x) is “small”. However, we have in our hand x and our

objective is to determine which distribution the observation x may have come from. In

this case, it is useful to turn the story around. For a given realisation x and each f 2 F
one evaluates fX(x). This “measures” the likelihood of a particular density in F based

on a realisation x. The term likelihood was first coined by Fisher.

In most applications, we restrict the class of densities F to a “parametric” class. That

is F = {f(x; ✓); ✓ 2 ⇥}, where the form of the density f(x; ·) is known but the finite

dimensional parameter ✓ is unknown. Since the aim is to make decisions about ✓ based

on a realisation x we often write L(✓; x) = f(x; ✓) which we call the likelihood. For

convenience, we will often work with the log-likelihood L(✓; x) = log f(x; ✓). Since the
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logarithm is a monotonic transform the maximum of the likelihood and log-likelihood will

be the same. This preservation of maximum is very important.

Let us consider the simplest case that {Xi} are iid random variables with probability

function (or probability density function) f(x; ✓), where f is known but the parameter ✓

is unknown. The likelihood function of ✓ based on {Xi} is

L(✓;X) =
n
Y

i=1

f(Xi; ✓) (1.1)

and the log-likelihood turns product into sum

logL(✓;X) = L(✓;X) =
n
X

i=1

log f(Xi; ✓). (1.2)

We now consider some simple examples.

Example 1.1.1 (i) Suppose that {Xi} are iid normal random variables with mean µ

and variance �2 the log likelihood is

Ln(µ, �
2;X) = �n

2
log �2 � 1

2

n
X

i=1

(Xi � µ)2

�2
� n

2
log 2⇡

Observe that the parameters and random variables are “separable”.

(ii) Suppose that {Xi} are iid binomial random variables Xi ⇠Bin(m, ⇡). We assume

m is known, then the log likelihood for ⇡ is

Ln(⇡;X) =
n
X

i=1

log

✓

m

Xi

◆

+
n
X

i=1

✓

Xi log ⇡ + (m�Xi) log(1� ⇡)

◆

=
n
X

i=1

log

✓

m

Xi

◆

+
n
X

i=1

✓

Xi log
� ⇡

1� ⇡

�

+m log(1� ⇡)

◆

.

Observe that the parameters and random variables are “separable”.

(iii) Suppose that {Xi} are independent random variables which give the number of “suc-

cesses” out of mi. It seems reasonable to model Xi ⇠Bin(mi, ⇡i). It is believed that

the the regressors zi influence the chance of success ⇡i. We try to model this influ-

ence with the nonlinear transform

⇡i = g(e�
0z

i) =
e�

0z
i

1 + e�0z
i

,
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where � are the unknown parameters of interest. Then the log likelihood is

Ln(�;X) =
n
X

i=1

log

✓

mi

Xi

◆

+
n
X

i=1

✓

Xi log

✓

g(�0zi)

1� g(�0zi)

◆

+mi log(1� g(�0zi))

◆

.

(iv) Modelling categorical data in a contingency table. Suppose a continency table con-

tains C cells, where each cell gives the number for the corresponding event. Let

1  `  C, at each “trial” probability of being placed in cell ` is ⇡`. If we do not make

any assumptions on the probabilities (except that each trial are iid random variables)

then we model the number of counts in each cell using a multinomial distribution.

Suppose the total number of counts is n and the number of counts observed in cell

` is X`, then the distribution is P (X1 = x1, . . . , XC = xc) =
�

n
x1,...,x

C

�

⇡x1
1 . . . ⇡x

C

C ,

which has the log-likelihood

Ln(⇡1, ⇡2, . . . , ⇡C�1;X1, . . . , XC) = log

✓

n

X1, . . . , XC

◆

+
C
X

i=1

Xi log ⇡i

= log

✓

n

X1, . . . , XC

◆

+
C�1
X

i=1

Xi log
⇡i

1�
PC�1

j=1 ⇡j

+ n log(1�
C�1
X

j=1

⇡j).

Observe that the parameters and random variables are “separable”.

(v) Suppose X is a random variable that only takes integer values, however, there is

no upper bound on the number of counts. When there is no upper bound on the

number of counts, the Poisson distribution is often used as an alternative to the

Binomial. If X follows a Poisson distribution then P (X = k) = �k exp(��)/k!.

The log-likelihood for the iid Poisson random variables {Xi} is

L(�;X) =
n
X

i=1

(Xi log �� �� logXi!) .

Observe that the parameters and random variables are “separable”.

(vi) Suppose that {Xi} are independent exponential random variables which have the

density ✓�1 exp(�x/✓). The log-likelihood is

Ln(✓;X) =
n
X

i=1

✓

� log ✓ � Xi

✓

◆

.
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(vii) A generalisation of the exponential distribution which gives more flexibility in terms

of shape of the distribution is the Weibull. Suppose that {Xi} are independent

Weibull random variables which have the density ↵x↵�1

✓↵
exp(�(x/✓)↵) where ✓,↵ > 0

(in the case that ↵ = 0 we have the regular exponential) and x is defined over the

positive real line. The log-likelihood is

Ln(↵, ✓;X) =
n
X

i=1

✓

log↵ + (↵� 1) logXi � ↵ log ✓ �
✓

Xi

✓

◆↵◆

.

Observe that the parameters and random variables are not “separable”. In the case,

that ↵ is known, but ✓ is unknown the likelihood is proportional to

Ln(✓;X; ) /
n
X

i=1

✓

� ↵ log ✓ �
✓

Xi

✓

◆↵◆

,

observe the other terms in the distribution are fixed and do not vary, so are omitted.

If ↵ is known, the unknown parameter and random variables are “separable”.

Often I will exchange L(✓;X) = L(X; ✓), but they are the same.

Look closely at the log-likelihood of iid random variables, what does its average

1

n
L(X; ✓) =

1

n

n
X

i=1

log f(Xi; ✓) (1.3)

converge to as n ! 1?

1.2 Constructing likelihoods

Constructing the likelihood for the examples given in the previous section was straightfor-

ward. However, in many real situations, half the battle is finding the correct distribution

and likelihood.

Many of the examples we consider below depend on using a dummy/indicator variable

that we treat as a Bernoulli random variables. We recall if � is a Bernoulli random

variable that can take either 0 or 1, where P (� = 1) = ⇡ and P (� = 0) = 1 � ⇡,

then P (� = x) = (1 � ⇡)1�x⇡x. We observe that the log-likelihood for ⇡ given � is

(1� �) log(1�⇡)+ � log ⇡. Observe after the log transform, that the random variable and

the parameter of interest are “separable”.
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Mixtures of distributions

Suppose Y is a mixture of two subpopulations, with densities f0(x; ✓) and f1(x; ✓) re-

spectively. The probability of belonging to density 0 is 1 � p and probability of be-

longing to density 1 is p. Based this information, we can represent the random variable

Y = �U + (1� �)V , where U, V, � are independent random variables; U has density f1, V

has density f0 and P (� = 1) = p and P (� = 0) = 1� p. The density of Y is

fY (x; ✓) = fY (x|� = 0, ✓)P (� = 0) + fY (x|� = 1, ✓)P (� = 1) = (1� p)f0(x; ✓) + pf1(x; ✓).

Thus the log likelihood of ✓ and p given {Yi} is

L({Yi}; ✓, p) =
n
X

i=1

log [(1� p)f0(Yi; ✓) + pf1(Yi; ✓)] .

Observe that the random variables and parameters of interest are not separable.

Suppose we not only observe Y but we observe the mixture the individual belongs to.

Not only do we have more information about our parameters, but also estimation becomes

easier. To obtain the joint likelihood, we require the joint distribution of (Y, �), which

is a mixture of density and point mass. To derive this we note that by using limiting

arguments

lim
✏!0

P (Y 2 [y � ✏/2, y + ✏/2], � = x; ✓, p)

✏
= lim

✏!0

Fx(y + ✏/2)� Fx(y � ✏/2)

✏
P (� = x; p)

= fx(y; ✓)P (� = x; p)

= f1(y; ✓)
xf0(y; ✓)

1�xpx(1� p)1�x.

Thus the log-likelihood of ✓ and p given the joint observations {Yi, �i} is

L(Yi, �i; ✓, p) =
n
X

i=1

{�i log f1(Yi; ✓) + (1� �i) log f0(Yi; ✓) + �i log p+ (1� �i) log(1� p)} . (1.4)

The parameters and random variables are separable in this likelihood.

Of course in reality, we do not observe �i, but we can predict it, by conditioning

on what is observed Yi. This is e↵ectively constructing the expected log-likelihood of

{Yi, �i} conditioned on {Yi}. This is not a log-likelihood per se. But for reasons that will

become clear later in the course, in certain situations it is useful to derive the expected

log-likelihood when conditioned on random variables of interest. We now construct the
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expected log-likelihood of {Yi, �i} conditioned on {Yi}. Using (1.4) and that {Yi, �i} are

independent over i we have

E[L(Yi, �i; ✓, p)|{Yi}] =
n
X

i=1

{E[�i|Yi, ✓, p] (log f1(Yi; ✓) + log p) + E[(1� �i)|Yi] (log f0(Yi; ✓) + log(1� p))} .

E[�i|Yi, ✓, p] = P [�i = 1|Yi, ✓, p], hence it measures the probability of the mixture 1 being

chosen when Yi is observed and is

P [�i = 1|Yi, ✓, p] =
P [�i = 1, Yi, ✓, p]

P [Yi, ✓, p]
=

P [Yi|�i = 1, ✓, p]P (�i = 1, ✓, p)

P [Yi, ✓, p]
=

pf1(Yi; ✓)

pf1(Yi; ✓) + (1� p)f0(Yi; ✓)
.

Similarly

P [�i = 0|Yi, ✓, p] =
(1� p)f0(Yi; ✓)

pf1(Yi; ✓) + (1� p)f0(Yi; ✓)
.

Substituting these in the the above gives the expected log-likelihood conditioned on {Yi};

E[L(Yi, �i; ✓, p)|{Yi}] =
n
X

i=1

⇢✓

pf1(Yi; ✓)

pf1(Yi; ✓) + (1� p)f0(Yi; ✓)

◆

(log f1(Yi; ✓) + log p) +

✓

(1� p)f0(Yi; ✓)

pf1(Yi; ✓) + (1� p)f0(Yi; ✓)

◆

(log f0(Yi; ✓) + log(1� p))

�

.

Observe that this is not in terms of �i.

The censored exponential distribution

Suppose X ⇠ Exp(✓) (density of X is f(x; ✓) = ✓ exp(�x✓)), however X is censored at a

known point c and Y is observed where

Y =

(

X X  c

c X > c
(1.5)

It is known if an observation is censored. We define the censoring variable

� =

(

0 X  c

1 X > c

The only unknown is ✓ and we observe (Y, �). Note that � is a Bernoulli variable (Binomial

with n = 1) with P (� = 0) = 1�exp(�c✓) and P (� = 1) = exp(�c✓). Thus the likelihood

of ✓ based only � is L(�; ✓) = (1� ⇡)1��⇡� = (1� e�c✓)1��(e�c✓)1��.
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Analogous to the example above, the likelihood of (Y, �) is a mixture of a density and

a point mass. Thus the likelihood ✓ based on (Y, �) is

L(Y, �; ✓) =

(

f(Y |� = 0)P (� = 0) � = 0

f(Y |� = 1)P (� = 1) � = 1

= [f(Y |� = 0)P (� = 0)]1��[f(Y |� = 1)P (� = 1)]�

= [exp(�✓Y + log ✓)]1��[exp(�c✓)]�.

This yields the log-likelihood of ✓ given {Yi, �i}

L(✓) =
n
X

i=1

{(1� �i) [�✓Yi + log ✓]� �ic✓} . (1.6)

The inflated zero Poisson distribution

The Possion distribution is commonly used to model count data. However, there arises

many situations where the proportion of time zero occurs is larger than the proportion

one would expect using a Poisson distribution. One often models this “inflation” using

a mixture distribution. Let U be a Poission distributed random variable where P (U =

k) = �k exp(��)/k!. We see that P (U = 0) = exp(��). We can boost this chance by

defining a new random variable Y , where

Y = �U

and � is a Bernoulli random variable taking zero or one with P (� = 0) = p and P (� =

1) = (1� p). It is clear that

P (Y = 0) = P (Y = 0|� = 0)P (� = 0) + P (Y = 0|� = 1)P (� = 1)

= 1⇥ p+ P (U = 0)(1� p) = p+ (1� p)e�� � e�� = P (U = 0).

Thus, in situations where there are a large number of zeros, the inflated zero Poisson

seems appropriate. For k > 1, we have

P (Y = k) = P (Y = k|� = 0)P (� = 0) + P (Y = k|� = 1)P (� = 1)

= P (U = k)(1� p) = (1� p)
�ke��

k!
.

Thus altogether the distribution of Y is

P (Y = k) =
�

p+ (1� p)e��
 I(k=0)

⇢

(1� p)
�ke��

k!

�I(k 6=0)

,
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where I(·) denotes the indicator variable. Thus the log-likelihood of �, p given Y is

L(Y ;�, p) =
n
X

i=1

I(Yi = 0) log
�

p+ (1� p)e��
�

+
n
X

i=1

I(Yi 6= 0)

✓

log(1� p) + log
�Y

ie��

Yi!

◆

.

Exercise 1.1 Let us suppose that X and Z are independent random variables with den-

sities fX and fZ respectively. Assume that X is positive.

(i) Derive the density function of 1/X.

(ii) Show that the density of XZ is
Z

1

x
fZ(

y

x
)fX(x)dx (1.7)

(or equivalently
R

c�1fZ(cy)fX(c�1)dc).

(iii) Consider the linear regression model

Yi = ↵0xi + �i"i

where the regressors xi is observed, "i follows a standard normal distribution (mean

zero and variance 1) and �2
i follows a Gamma distribution

f(�2;�) =
�2(�1)� exp(���2)

�()
, �2 � 0,

with  > 0.

Derive the log-likelihood of Yi (assuming the regressors are observed).

Exercise 1.2 Suppose we want to model the average amount of daily rainfall in a par-

ticular region. Empirical evidence suggests that it does not rain on many days in the

year. However, if it does rain on a certain day, the amount of rain follows a Gamma

distribution.

(i) Let Y denote the amount of rainfall in a particular day and based on the information

above write down a model for Y .

Hint: Use the ideas from the inflated zero Poisson model.

(ii) Suppose that {Yi}ni=1 is the amount of rain observed n consecutive days. Assuming

that {Yi}ni=1 are iid random variables with the model given in part (ii), write down

the log-likelihood for the unknown parameters.

(iii) Explain why the assumption that {Yi}ni=1 are independent random variables is tenu-

ous.
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1.3 Bounds for the variance of an unbiased estimator

So far we have iid observations {Xi} with from a known parametric family i.e. the distri-

bution of Xi comes from F = {f(x; ✓); ✓ 2 ⇥}, where ✓ is a finite dimension parameter

however the true ✓ is unknown. There are an infinite number of estimators of ✓ based on

an infinite number of decision rules. Which estimator do we choose? We should choose

the estimator which is “closest” to the true parameter. There are several di↵erent distance

measures, but the most obvious is the mean square error. As the class of all estimators is

“too large” we restrict ourselves to unbiased estimators, e✓(X) (where mean of estimator

is equal to the true parameter) and show that the mean squared error

E
⇣

e✓(X)� ✓
⌘2

= var
⇣

e✓(X)
⌘

+
⇣

E[e✓(X)]� ✓
⌘2

= var
⇣

e✓(X)
⌘

is bounded below by the inverse of the Fisher information (this is known as the Cramer-

Rao bound). To show such a bound we require the regularity assumptions. We state the

assumptions and in the case that ✓ is a scalar, but they can easily be extended to the case

that ✓ is a vector.

Assumption 1.3.1 (Regularity Conditions 1) Let us suppose that Ln(·; ✓) is the like-
lihood.

(i) @
@✓

R

Ln(x; ✓)dx =
R @L

n

(x;✓)
@✓

dx = 0 (for iid random variables (rv) this is equivalent

to checking if
R @f(x;✓)

@✓
dx = @

@✓

R

f(x; ✓)dx).

Observe since a by definition a density integrates to one, then @
@✓

R

Ln(x; ✓)dx = 0.

(ii) For any function g not a function of ✓, @
@✓

R

g(x)Ln(x; ✓)dx =
R

g(x)@Ln

(x;✓)
@✓

dx.

(iii) E
�@ logL

n

(X;✓)
@✓

�2
> 0.

To check Assumption 1.3.1(i,ii) we need to apply Leibniz’s rule https://en.wikipedia.

org/wiki/Leibniz_integral_rule

d

d✓

Z b(✓)

a(✓)

g(x)f(x; ✓)dx =

Z b(✓)

a(✓)

g(x)
@f(x, ✓)

@✓
dx+ f(b(✓), ✓)g(b(✓))b0(✓)� f(a(✓), ✓)g(a(✓))a0(✓).(1.8)

Therefore Assumption 1.3.1(i,ii) holds if f(b(✓), ✓)g(b(✓))b0(✓)�f(a(✓), ✓)g(a(✓))a0(✓) = 0.

Example 1.3.1 (i) If the support of the density does not depend on ✓ it is clear from

(1.8) that Assumption 1.3.1(i,ii) is satisfied.
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(ii) If the density is the uniform distribution f(x; ✓) = ✓�1I[0,✓](x) then the conditions

are not satisfied. We know that ✓�1
R ✓

0
dx = 1 (thus it is independent of ✓) hence

d✓�1
R
✓

0 dx

d✓
= 0. However,

Z ✓

0

d✓�1

d✓
dx =

�1

✓
and f(b(✓), ✓)b0(✓)� f(a(✓), ✓)a0(✓) = ✓�1.

Thus we see that Assumption 1.3.1(i) is not satisfied. Therefore, the uniform dis-

tribution does not satisfy the standard regularity conditions.

(iii) Consider the density

f(x; ✓) =
1

2
(x� ✓)2 exp[�(x� ✓)]I[✓,1)(x).

The support of this estimator depends on ✓, however, it does satisfy the regularity

conditions. This is because f(x; ✓) = 0 at both x = ✓ and x = 1. This means that

for any ✓

f(b(✓), ✓)g(b(✓))b0(✓)� f(a(✓), ✓)g(a(✓))a0(✓) = 0.

Therefore from the Leibnitz rule we have

d

d✓

Z b(✓)

a(✓)

g(x)f(x; ✓)dx =

Z b(✓)

a(✓)

g(z)
@f(x, ✓)

@✓
dx.

Thus Assumption 1.3.1 is satisfied.

We now state the Cramer-Rao bound, which gives the minimal attaining variance

bound for a large class of estimators. We will use the matrix inequality A � B to mean

that A� B is a non-negative definite matrix (or equivalently positive semi-definite).

Theorem 1.3.1 (The Cramér-Rao bound) Suppose the likelihood Ln(X; ✓) satisfies

the regularity conditions given in Assumption 1.3.1. Let e✓(X) be an unbiased estimator

of ✓, then

var
h

e✓(X)
i

�
"

E

✓

@ logLn(X; ✓)

@✓

◆2
#�1

.
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PROOF. We prove the result for the univariate case. Recall that e✓(X) is an unbiased

estimator of ✓ therefore
Z

e✓(x)Ln(x; ✓)dx = ✓.

Di↵erentiating both sides wrt to ✓, and taking the derivative into the integral (allowed

under the regularity condition) gives
Z

e✓(x)
@Ln(x; ✓)

@✓
dx = 1.

By Assumption 1.3.1(i) d
R
L
n

(x;✓)dx

d✓
=
R @L

n

(x;✓)
@✓

dx = 0. Thus adding ✓
R @L

n

(x;✓)
@✓

dx to both

sides of the above we have
Z

n

e✓(x)� ✓
o @Ln(x; ✓)

@✓
dx = 1.

Multiplying and dividing by Ln(x; ✓) gives
Z

n

e✓(x)� ✓
o 1

Ln(x; ✓)

@Ln(x; ✓)

@✓
Ln(x; ✓)dx = 1. (1.9)

Hence (since Ln(x; ✓) is the distribution of X) we have

E

✓

n

e✓(X)� ✓
o @ logLn(X; ✓)

@✓

◆

= 1.

Recalling that the Cauchy-Schwartz inequality is E(UV )  E(U2)1/2E(V 2)1/2 (where

equality only arises if U = aV + b (where a and b are constants)) and applying it to

the above we have

var
h

e✓(X)
i

E

"

✓

@ logLn(X; ✓)

@✓

◆2
#

� 1 ) var
h

e✓(X)
i

� E

"

✓

@ logLn(X; ✓)

@✓

◆2
#�1

.

Thus giving the Cramer-Rao inequality. ⇤

Corollary 1.3.1 (Estimators which attain the Cramér-Rao bound) Suppose As-

sumption 1.3.1 is satisfied. Then the estimator e✓(X) attains the Cramer-Rao bound only

if it can be written as

✓̂(X) = a(✓) + b(✓)
@ logLn(X; ✓)

@✓

for some functions a(·) and b(·) of ✓1.
1Of course, in most cases it makes no sense to construct an estimator of ✓, which involves ✓.

17



PROOF. The proof is clear and follows from when the Cauchy-Schwartz inequality is an

equality in the derivation of the Cramer-Rao bound. ⇤

We next derive an equivalent expression for E
⇣

@ logL
n

(X;✓)
@✓

⌘2

(called the Fisher infor-

mation).

Lemma 1.3.1 Suppose the likelihood Ln(X; ✓) satisfies the regularity conditions given in

Assumption 1.3.1 and for all ✓ 2 ⇥, @2

@✓2

R

g(x)Ln(x; ✓)dx =
R

g(x)@
2L

n

(x;✓)
@✓2

dx, where g is

any function which is not a function of ✓ (for example the estimator of ✓). Then

var

✓

@ logLn(X; ✓)

@✓

◆

= E

✓

@ logLn(X; ✓)

@✓

◆2

= �E

✓

@2 logLn(X; ✓)

@✓2

◆

.

PROOF. To simplify notation we focus on the case that the dimension of the vector ✓ is

one. To prove this result we use the fact that Ln is a density to obtain
Z

Ln(x; ✓)dx = 1.

Now by di↵erentiating the above with respect to ✓ gives

@

@✓

Z

Ln(x; ✓)dx = 0.

By using Assumption 1.3.1(ii) we have
Z

@Ln(x; ✓)

@✓
dx = 0 )

Z

@ logLn(x; ✓)

@✓
Ln(x; ✓)dx = 0

Di↵erentiating again with respect to ✓ and taking the derivative inside gives
Z

@2 logLn(x; ✓)

@✓2
Ln(x; ✓)dx+

Z

@ logLn(x; ✓)

@✓

@Ln(x; ✓)

@✓
dx = 0

)
Z

@2 logLn(x; ✓)

@✓2
Ln(x; ✓)dx+

Z

@ logLn(x; ✓)

@✓

1

Ln(x; ✓)

@Ln(x; ✓)

@✓
Ln(x; ✓)dx = 0

)
Z

@2 logLn(x; ✓)

@✓2
Ln(x; ✓)dx+

Z

✓

@ logLn(x; ✓)

@✓

◆2

Ln(x; ✓)dx = 0

Thus

�E

✓

@2 logLn(X; ✓)

@✓2

◆

= E

✓

@ logLn(X; ✓)

@✓

◆2

.

The above proof can easily be generalized to parameters ✓, with dimension larger than 1.

This gives us the required result.
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Note in all the derivations we are evaluating the second derivative of the likelihood at

the true parameter. ⇤

We mention that there exists distributions which do not satisfy Assumption 1.3.1.

These are called non-regular distributions. The Cramer-Rao lower bound does hold for

such distributions.

Definition 1.3.1 (The Fisher information matrix) The matrix

I(✓) =

"

E

✓

@ logLn(X; ✓)

@✓

◆2
#

= �


E

✓

@2 logLn(X; ✓)

@✓2

◆�

,

whose inverse forms the lower bound of Cramér-Rao bound is called the Fisher information

matrix. It plays a critical role in classical inference.

Essentially I(✓) tells us how much “information” the data {Xi}ni=1 contains about the

true parameter ✓.

Remark 1.3.1 Define the quantity

I✓0(✓) = �
Z

✓

@2 logLn(x; ✓)

@✓2

◆

Ln(x; ✓0)dx

= �


E✓0

✓

@2 logLn(X; ✓)

@✓2

◆�

.

This quantity evaluates the negative expected second derivative of the log-likelihood over

✓, but the expectation is taken with respect to the “true” density Ln(x; ✓0). This quantity

will not be positive for all ✓. However, by the result above we evaluate I✓0(✓) at ✓ = ✓0,

then

I✓0(✓0) = var✓0

✓

@ logLn(x; ✓0)

@✓

◆

.

In other words, when the expectation of the negative second derivative of log-likelihood is

evaluated at the true parameter this is the Fisher information which is positive.

Exercise 1.3 Suppose {Xi} are iid random variables with density f(x; ✓) and the Fisher

information for ✓ based on {Xi} is I(✓).

Let Yi = g(Xi) where g(·) is a bijective di↵eomorphism (the derivatives of g and its

inverse exist). Intuitive when one makes such a transformation no “information” about ✓

should be lost or gained. Show that the Fisher information matrix of ✓ based on {Yi} is

I(✓).
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Figure 1.1: Interpretation of the Fisher information
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Example 1.3.2 Consider the example of censored data given in Section 1.2. Both the

observations and the censored variables, {Yi} and {�i}, where

�i = I(Yi � c)

contain information about the parameter ✓. However, it seems reasonable to suppose that

{Yi} contains more information about ✓ than {�i}. We articulate what we mean by this

in the result below.

Lemma 1.3.2 Let us suppose that the log-likelihood of X, Ln(X; ✓) satisfies Assumption

1.3.1. Let Y = B(X) be some statistic (of arbitrary dimension) of the original data.

Let LB(X)(Y ; ✓), and L(X|Y ; ✓) denote the log-likelihood of Y = B(X) and conditional

likelihood of X|Y (we assume these satisfy Assumption 2.6.1, however I think this is

automatically true). Then

IX(✓) � IB(X)(✓)

where

IX(✓) = E

✓

@LX(X; ✓)

@✓

◆2

and IB(X)(✓) = E

✓

@LB(X)(Y ; ✓)

@✓

◆2

.

In other words the original Fisher information contains the most information about the

parameter. In general, most transformations of the data will lead to a loss in information.

We consider some exceptions in Lemma 1.4.1.

PROOF. Writing the conditional density of X given B(X) as the ratio of a joint density

of X,B(X) and marginal density of B(X) we have

fX|B(X)(x|y) =
fX,B(X)(x, y; ✓)

fB(X)(y; ✓)
) fX,B(X)(x, y; ✓) = fX|B(X)(x|y)fB(X)(y; ✓),

where fX|B(X) denotes the density of X conditioned on B(X) and fX,B(X) the joint den-

sity of X and B(X). Note that if B(x) = y, then the joint density fX,B(X)(x, y; ✓) is

simply the density of fX(x; ✓) with the constraint that y = B(x) i.e. fX,B(X)(x, y; ✓) =

fX(x; ✓)�(B(x) = y), where � denotes the indicator variable2. Thus we have

fX(x; ✓)�(B(x) = y) = fX|B(X)(x|y, ✓)fB(X)(y; ✓).

2To understand why, consider the joint density of X,Y = B(X) the density ie not defined over R2

but over the curve (x,B(x)) fX,B(X)

(x, y) = fX(x)�(y = B(x))
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Having written the likelihood in this way, the derivative of the log likelihood is

@ log fX(x; ✓)

@✓
=

@ log fX|B(X)(x|y)fB(X)(y; ✓)

@✓

=
@ log fX|B(X)(x|y, ✓)

@✓
+

@ log fB(X)(y; ✓)

@✓
.

Therefore

IX(✓) = var

✓

@ log fX(X; ✓)

@✓

◆

= var

✓

@ log fX|B(X)(X|B(X), ✓)

@✓

◆

+ var

✓

@ log fB(X)(B(X); ✓)

@✓

◆

| {z }

=I
B(X)(✓)

+

2cov

✓

@ log fX|B(X)(X|B(X), ✓)

@✓
,
@ log fB(X)(B(X); ✓)

@✓

◆

. (1.10)

Under the stated regularity conditions, since fB(X), is a density it is clear that

E

✓

@ log fB(X)(B(X); ✓)

@✓

◆

= 0

and

E

✓

@ log fX|B(X)(X|B(X), ✓)

@✓

�

�B(X)

◆

=

Z

@ log fX|B(X)(x|y, ✓)
@✓

fX|B(X)(x|y, ✓)dx = 0. (1.11)

Thus using the law of iterated expectation E(A) = E(E[A|B]), then E[
@ log f

X|B(X)(X|B(X),✓)

@✓
] =

0. Returning to (1.10), since the mean is zero this implies that

IX(✓) = IB(X)(✓) + E

✓

@ log fX|B(X)(X|B(X), ✓)

@✓

◆2

+ 2E

✓

@ log fX|B(X)(X|B(X), ✓)

@✓

@ log fB(X)(Y ; ✓)

@✓

◆

.

Finally we show that the above covariance is zero. To do so we use that E(XY ) =

E(XE[Y |X]) (by the law of iterated expectation) then by using (1.11) we have

E

✓

@ log fX|B(X)(X|B(X), ✓)

@✓

@ log fB(X)(B(X); ✓)

@✓

◆

= E

0

B

B

B

@

@ log fB(X)(B(X); ✓)

@✓
E



@ log fX|B(X)(X|B(X), ✓)

@✓

�

�

�

�

@ log fB(X)(B(X); ✓)

@✓

�

| {z }

=0 by (1.11)

1

C

C

C

A

= 0.

Thus

IX(✓) = IB(X)(✓) + E

✓

@ log fX|B(X)(X|B(X), ✓)

@✓

◆2

.

As all the terms are positive, this immediately implies that IX(✓) � IB(X)(✓). ⇤
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Definition 1.3.2 (Observed and Expected Fisher Information) (i) The observed

Fisher information matrix is defined as

I(X; ✓) = �@2 logLn(X; ✓)

@✓2
.

(ii) The expected Fisher information matrix is defined as

I(✓) = E

✓

�@2 logLn(X; ✓)

@✓

◆

These will play an important role in inference for parameters.

Often we want to estimate a function of ✓, ⌧(✓). The following corollary is a general-

ization of the Cramer-Rao bound.

Corollary 1.3.2 Suppose Assumption 1.3.1 is satisfied and T (X) is an unbiased estima-

tor of ⌧(✓). Then we have

var [T (X)] � ⌧ 0(✓)2

E



⇣

@ logL
n

(X;✓)
@✓

⌘2
� .

Exercise 1.4 Prove the above corollary.

In this section we have learnt how to quantify the amount of information the data

contains about a parameter and show that for the majority of transformations of data

(with the exception of bijections) we loose information. In the following section we define

a transformation of data, where in some certain situations, will substantially reduce the

dimension of the data, but will not result in a loss of information.

1.4 Su�cient statistics

We start with a simple example from introductory statistics.

Example 1.4.1 Samples of size 10 and 15 are drawn from two di↵erent distributions.

How to check if the two samples come from the same distribution? The data is given in

Figure 1.2. If the distributions are known to come from the Gaussian family of distri-

butions with, for the sake of argument, standard deviation one, then all the information

about the unknown parameter, is characteristized in terms of the sample means X̄A and
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Figure 1.2: Samples from two population

X̄B (in this example, 4.6 and 5.2 respectively). The sample mean is su�cient for describ-

ing all the information about the unknown mean, more precisely the data conditioned on

sample mean is free of any information about µ.

On the other hand, if the data comes from the Cauchy family of distributions {f✓(x) =
[⇡(1 + (x� ✓)2)]�1} there does not exist a lower dimensional transformations of the data

which contains all the information about ✓. The observations conditioned on any lower

transformation will still contain information about ✓.

This example brings us to a formal definition of su�ciency.

Definition 1.4.1 (Su�ciency) Suppose that X = (X1, . . . , Xn) is a random vector. A

statistic s(X) is said to be su�cient for the family F of distributions, if the conditional

density fX|S((X))(y|s) is the same for all distributions in F .

This means in a parametric class of distributions F = {f(x; ✓); ✓ 2 ⇥} the statistic

s(X) is su�cient for the parameter ✓, if the conditional distribution of X given s(X) is

not a function of ✓.

Example 1.4.2 (Order statistics) Suppose that {Xi}ni=1 are iid random variables with

density f(x). Let X(1), . . . , X(n) denote the ordered statistics (i.e. X(1)  X(2)  . . . 
X(n)). We will show that the order statistics X(1), . . . , X(n) is the su�cient statistic over

the family of all densities F .

To see why, note that it can be shown that the joint density of the order statistics
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X(1), . . . , X(n) is

fX(1),...,X(n)
(x1, . . . , xn) =

(

n!
Qn

i=1 f(xi) x1  . . . , xn

0 otherwise
(1.12)

Clearly the density of the X1, . . . , Xn is
Qn

i=1 f(Xi). Therefore the density of X1, . . . , Xn

given X(1), . . . , X(n) is

fX1,...,Xn

|X(1),...,X(n)
=

1

n!
,

which is simply the chance of selecting the ordering X1, . . . , Xn from a sequence X(1), . . . , X(n).

Clearly this density does not depend on any distribution.

This example is interesting, but statistically not very useful. In general we would like

the number of su�cient statistic to be a lower dimension than the data itself (su�ciency

is a form of compression).

Exercise 1.5 Show (1.12).

Usually it is extremely di�cult to directly obtain a su�cient statistic from its def-

inition. However, the factorisation theorem gives us a way of obtaining the su�cient

statistic.

Theorem 1.4.1 (The Fisher-Neyman Factorization Theorem) A necessary and suf-

ficient condition that s(X) is a su�cient statistic is that the likelihood function, L (not

log-likelihood), can be factorized as Ln(X; ✓) = h(X)g(s(X); ✓), where h(X) is not a func-

tion of ✓.

Example 1.4.3 (The uniform distribution) Let us suppose that {Xi} are iid uni-

formly distributed random variables with density f✓(x) = ✓�1I[0,✓](x). The likelihood is

Ln(X; ✓) =
1

✓n

n
Y

i=1

I[0,✓](Xi) =
1

✓n
I[0,✓](maxXi) = g(maxXi; ✓)

Since Ln(X; ✓) is only a function of maxi Xi, it is immediately clear that s(X) = maxi Xi

is a su�cient.
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Example 1.4.4 (The normal distribution) Let {Xi}ni=1 be iid normal random vari-

ables. The likelihood is

Ln(X;µ, �2) =
1

(2⇡�)n
exp

"

� 1

2�2

n
X

i=1

(Xi � µ)2
#

=
1

(2⇡�)n
exp



� 1

2�2

�

Sxx � 2Sxµ+ µ2
�

�

= g(Sx, Sxx;µ, �
2)

where Sx =
Pn

i=1 Xi and Sxx =
Pn

i=1 X
2
i . We see immediately from the factorisation

theorem that the density is a function of two su�cient statistics Sx and Sxx. Thus Sx and

Sxx are the su�cient statistics for µ and �2.

Suppose we treat �2 as known, then by using

Ln(X;µ, �2) =
1

(2⇡�)n
exp



� 1

2�2
Sxx

�

exp



�Sxµ

�2
+

µ2

�2

�

= g1(Sxx; �
2)g2(Sx;µ, �

2)

we see that the su�cient statistic for the mean, µ, is Sx =
Pn

i=1 Xi. I.e. any function

of {Xi} conditioned on Sx contains no information about the mean µ. This includes the

Sxx. However, Sx contains information about the both µ and �2. We can explicitly see

this because Sx ⇠ N(nµ, n�2).

Note that alternative su�cient statistics for the normal distribution are Sx =
P

i Xi

and S 0
xx =

P

i(Xi � n�1Sx)2. Su�cient statistics are not unique!

Example 1.4.5 (The exponential family) The exponential family of distributions, char-

acterized by

f(x;!) = exp [s(x)⌘(!)� b(!) + c(x)] , (1.13)

is broad class of distributions which includes the normal distributions, binomial, exponen-

tials etc. but not the uniform distribution. Suppose that {Xi}ni=1 are iid random variables

which have the form (1.13) We can write and factorize the likelihood as

Ln(X;!) = exp

"

⌘(!)
n
X

i=1

s(Xi)� nb(!)

#

exp

"

n
X

i=1

c(Xi)

#

= g(
n
X

i=1

s(Xi);!)h(X1, . . . , Xn).

We immediately see that
Pn

i=1 s(Xi) is a su�cient statistic for !.
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The above example is for the case that the number of parameters is one, however we

can generalize the above to the situation that the number of parameters in the family is p

f(x;!) = exp

"

p
X

j=1

sj(x)⌘j(!)� b(!) + c(x)

#

,

where ! = (!1, . . . ,!p). The su�cient statistics for the p-dimension is (
Pn

i=1 s1(Xi), . . . ,
Pn

i=1 sp(Xi)).

Observe, we have not mentioned, so far, about this being in anyway minimal, that comes

later.

For example, the normal distribution is parameterized by two parameters; mean and

variance. Typically the number of su�cient statistics is equal to the the number of un-

known parameters. However there can arise situations where the number of su�cient

statistics is more than the number of unknown parameters.

Example 1.4.6 Consider a mixture model, where we know which distribution a mixture

comes from. In particular, let g0(·; ✓) and g1(·; ✓) be two di↵erent densities with unknown

parameter ✓. Let � be a Bernoulli random variables which takes the values 0 or 1 and the

probability P (� = 1) = 1/2. The random variables (X, �) have the joint “density”

f(x, �; ✓) =

(

1
2
g0(x; ✓) � = 0

1
2
g1(x; ✓) � = 1

= (1� �)
1

2
g0(x; ✓) + �

1

2
g1(x; ✓) = (

1

2
g0(x; ✓))

1��(
1

2
g1(x; ✓))

�.

Example; the population of males and females where we observe the gender and height of

an individual. Both (X, �) are the su�cient statistics for ✓. Observe that X by itself is

not su�cient because

P (�|X = x) =
g1(x; ✓)

g0(x; ✓) + g1(x; ✓)
.

Hence conditioned on just X, the distribution of � contains information about ✓, implying

X by itself is not su�cient.

Remark 1.4.1 (Ancillary variables) The above example demonstrates the role of an

ancillary variable. If we observe only X, since the marginal density of X is

1

2
g0(x; ✓) +

1

2
g1(x; ✓),
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then X contains information about ✓. On the other hand, if we only observe �, it contains

no information about ✓ (the marginal distribution of � is half). This means that ✓ is an

ancillary variable (since its marginal distribution contains no information about ✓).

Furthermore, since (X, �) are the su�cient statistics for ✓, � is an ancillary variable

and � in conjuction with X does contain information about ✓ then � is called an ancillary

complement.

We already came across an ancillary variable. We recall that for the normal distribu-

tion one version of the su�cient statistics is Sx =
P

i Xi and S 0
xx =

P

i(Xi � n�1Sx)2.

Now we see that S 0
xx =

Pn
i=1(Xi � X̄)2 ⇠ �2�2

n�1, hence it is an ancillary variable for the

mean, since its marginal distribution does not depend on µ. However, it is not an ancil-

lary complement for Sx since S 0
xx conditioned on Sx does not depend on µ in fact they are

independent! So S 0
xx conditioned or otherwise contains no information whatsoever about

the mean µ.

From the examples above we immediately see that the su�cient statistic is not unique.

For example, for the Gaussian family of distributions the order statistics X(1), . . . , X(n),

Sxx, Sx and Sx, S 0
xx are all su�cient statistics. But it is clear that Sxx, Sx or Sx, S 0

xx is

“better” than X(1), . . . , X(n), since it “encodes” the data in fewer terms. In other words,

it drops the dimension of the data from n to two. This brings us to the notion of minimal

su�ciency.

Definition 1.4.2 (Minimal su�ciency) A statistic S(X) is minimal su�cient if (a)

it is su�cient and (b) if T (X) is su�cient statistic there exists an f such that S(X) =

f(T (X)).

Note that the minimal su�cient statistic of a family of distributions is not unique.

The minimal su�cient statistic corresponds to the coarsest su�cient partition of sam-

ple space, whereas the data generates the finest partition. We show in Lemma 1.6.4 that

if a family of distributions belong to the exponential family and the su�cient statistics

are linearly independent, then these su�cient statistics are minimally su�cient.

We now show that the minimal su�cient statistics of the exponential class of distri-

butions are quite special.

Theorem 1.4.2 (Pitman-Koopman-Darmois theorem) Suppose that F is a para-

metric class of distributions whose domain does not depend on the parameter, this as-
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sumption includes the Cauchy family, Weibull distributions and exponential families of

distributions but not the uniform family. Only in the case that distribution belongs to the

exponential family will the number of minimal su�cient statistic not depend on sample

size.

The uniform distribution has a finite number of su�cient statistics (maxXi), which does

not depend on the sample size and it does not belong the exponential family. However,

the Pitman-Koopman-Darmois theorem does not cover the uniform distribution since its

domain depends on the parameter ✓.

Example 1.4.7 (Number of su�cient statistics is equal to the sample size) (i)

Consider the Cauchy family of distributions

F =

⇢

f✓; f✓(x) =
1

⇡(1 + (x� ✓)2

�

.

the joint distribution of {Xi}ni=1 where Xi follow a Cauchy is

n
Y

i=1

1

⇡(1 + (xi � ✓)2)
.

We observe that the parameters cannot be separated from any of the variables. Thus

we require all the data to characterize the parameter ✓.

(ii) The Weibull family of distributions

F =

(

f✓; f�,↵(x) =

✓

↵

�

◆✓

x

�

◆↵�1

exp[�(x/�)↵]

)

Example 1.4.8 (The truncated exponential) Suppose that X is an exponentially dis-

tributed random variable but is truncated at c. That is

f(x; ✓) =
✓ exp(�✓x)

1� e�c✓
I(x  c).

However, the truncation point c is the point which cuts the exponential distribution in half,

that is 1/2 = e�c✓ = 1 � e�c✓. Thus c = ✓�1 log 2. Thus the boundary of the distribution

depends on the unknown parameter ✓ (it does not belong to the exponential family).
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Suppose {Xi} are iid random variables with distribution f(x; ✓) = 2✓ exp(�x✓)I(x 
✓�1 log 2) where ✓ 2 ⇥ = (0,1). The likelihood for ✓ is

L(✓;X) = 2n✓n exp(�✓
n
X

i=1

Xi)
n
Y

i=1

I[0,✓�1 log 2](Xi)

= 2n✓n exp(�✓
n
X

i=1

Xi)I[0,✓�1 log 2](maxXi),

thus we see there are two su�cient statistics for ✓, s1(X) =
P

i Xi and s2(X) = maxi Xi.

We recall that from Lemma 1.3.2 that most transformations in the data will lead

to a loss in information about the parameter ✓. One important exception are su�cient

statistics.

Lemma 1.4.1 (The Fisher information matrix and su�cient statistics) Suppose

Assumption 1.3.1 holds and S(X) is a su�cient statistic for a parametric family of dis-

tributions F = {f✓; ✓ 2 ⇥}. Let IX(✓) and IS(X)(✓) denote the Fisher information of X

and S(X) respectively. Then for all ✓ 2 ⇥

IS(X)(✓) = IX(✓).

PROOF. From the proof of Lemma 1.3.2 we have

IX(✓) = IS(X)(✓) + E

✓

@ log fX|S(X)(X|S(X), ✓)

@✓

◆2

. (1.14)

By definition of a su�cient statistic

fX|S(X)(x|y, ✓)

does not depend on ✓. This means that
@ log f

X|S(X)(X|S(X),✓)

@✓
= 0, consequently the second

term on the right hand side of (1.14) is zero, which gives the required result. ⇤

Remark 1.4.2 It is often claimed that only transformations of the data which are suf-

ficient statistics have the same information as the original data. This is not neces-

sarily true, su�ciency is not a necessary condition for Lemma 1.4.1 to hold. http:

// arxiv. org/ pdf/ 1107. 3797v2. pdf gives an example where a statistic that is not a

su�cient statistic of the data has the same Fisher information as the Fisher information

of the data itself.
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1.4.1 The Fisher information and ancillary variables

We defined the notion of ancillary in the previous section. Here we give an application.

Indeed we have previously used the idea of an ancillary variable in regression even without

thinking about it! I discuss this example below

So let us start with an example. Consider the problem of simple linear regression

where {Yi, Xi}ni=1 are iid bivariate Gaussian random variables and

Yi = �Xi + "i,

where E["i] = 0, var["i] = 1 and Xi and "i are independent and � is the unknown

parameter of interest. We observe {Yi, Xi}. Since Xi contains no information about � it

seems logical to look at the conditional log-likelihood of Yi conditioned on Xi

L(�;Y |X) =
�1

2

n
X

i=1

(Yi � �Xi).

Using the factorisation theorem we see that su�cient statistics for � are
Pn

i=1 YiXi and
Pn

i=1 X
2
i . We see that the distribution of

Pn
i=1 X

2
i contains no information about �. Thus

it is an ancillary variable. Furthermore, since the conditional distribution of
Pn

i=1 X
2
i

conditioned on
Pn

i=1 XiYi does depend on � it is an ancillary complement (I have no idea

what the distribution is).

Now we calculate the Fisher information matrix. The second derivative of the likeli-

hood is

@2L(�;Y |X)

@�2
= �

n
X

i=1

X2
i ) �@2L(�;Y |X)

@�2
=

n
X

i=1

X2
i .

To evaluate the Fisher information, do we take the expectation with respect to the dis-

tribution of {Xi} or not? In other words, does it make sense to integrate influence of the

observed regressors (which is the ancillary variable) or not? Typically, in regression one

does not. We usually write that the variance of the least squares estimator of a simple

linear equation with no intercept is (
Pn

i=1 X
2
i ).

We now generalize this idea. Suppose that (X,A) are su�cient statistics for the

parameter ✓. However, A is an ancillary variable, thus the marginal distribution contains

no information about ✓. The joint log-likelihood can be written as

L(✓;X,A) = L(✓;X|A) + L(A)
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where L(✓;X|A) is the conditional log-likelihood of X conditioned on A and L(A) is the
marginal log distribution of A which does not depend on A. Clearly the second derivative

of L(✓;X,A) with respect to ✓ is

�@2L(✓;X,A)

@✓2
= �@2L(✓;X|A)

@✓2
.

The Fisher information is the expectation of this quantity. But using the reasoning in

the example above it would seem reasonable to take the expectation conditioned on the

ancillary variable A.

1.5 Su�ciency and estimation

It is clear from the factorisation theorem that the su�cient statistic contains all the

“ingredients” about the parameter ✓. In the following theorem we show that by projecting

any unbiased estimator of a parameter onto its su�cient statistic we reduce its variance

(thus improving the estimator).

Theorem 1.5.1 (The Rao-Blackwell Theorem) Suppose s(X) is a su�cient statis-

tic and e✓(X) is an unbiased estimator of ✓ then if we define the new unbiased estimator

E[e✓(X)|s(X)], then E[E[e✓(X)|s(X)]] = ✓ and

var
h

E
⇣

e✓(X)|s(X)
⌘i

 var
h

e✓(X)
i

.

PROOF. Using that the distribution of X conditioned on s(X) does not depend on ✓,

since s(X) is su�cient (very important, since our aim is to estimate ✓) we have

E[e✓(X)|s(X) = y] =

Z

e✓(x)fX|s(X)=y(x)dx

is only a function of s(X) = y (and not ✓).

We know from the theory of conditional expectations that since �(s(X)) ⇢ �(X1, . . . , Xn),

then E[E(X|G)] = E[X] for any sigma-algebra G. Using this we immediately we have

E[E[e✓(X)|s(X)]] = E[e✓(X)] = ✓. Thus E[e✓(X)|s(X)] is an unbiased estimator.

To evaluate the variance we use the well know equality var[X] = var[E(X|Y )] +

E[var(X|Y )]. Clearly, since all terms are positive var[X] � var[E(X|Y )]. This immedi-

ately gives the Rao-Blackwell bound. ⇤
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Example 1.5.1 Suppose {Xi}ni=1 are iid normal random variable with mean µ and vari-

ance �2. We know that Sx =
Pn

i=1 Xi is a su�cient statistic for µ. We also know that X1

is an unbiased estimator of µ, but it is not su�cient. It is clear that var[e✓] = var[X1] = �2.

To improve the estimator we condition X1 on Sx, that is define b✓ = E[X1|Sx], by the Rao-

Blackwell theorem this has a smaller variance than X1. To show that this is true for

this example, we use that X1, . . . , Xn are jointly normal then E[X1|Sx] is the best linear

predictor of X1 given Sx

E[X1|Sx] =
cov[X1, Sx]

var[Sx]
Sx =

�2

n�2
Sx = X̄,

which is not a surprise.

Is this the best estimator amongst all unbiased estimator? The Lehmann-Sche↵e the-

orem shows that it is.

The Rao-Blackwell theorem tells us that estimators with the smallest variance must

be a function of a su�cient statistic. Of course, one can ask is there a unique estimator

with the minumum variance. For this we require completeness of the su�cient statistic.

Uniqueness immediately follows from the idea of completeness.

Definition 1.5.1 (Completeness) Let s(X) be a minimally su�cient statistic for all

✓ 2 ⇥. Suppose Z(·) is a function of s(X) such that E✓[Z(s(X))] = 0. s(X) is a complete

su�cient statistic if and only if E[Z(s(X))] = 0 implies Z(t) = 0 for all t and all ✓ 2 ⇥.

Example 1.5.2 If the exponential family has full rank, that is the number of unknown

parameters is equal to the dimension of the exponential family (and the parameter space

⇥ is an open set, as yet I cannot give a good condition for this) then it is complete (see

Lehmann (1986), Section 4.3, Theorem 1).

Examples include the fully parameterized normal distribution, exponential distribution,

binomial distribution etc.

Example 1.5.3 (The constrained normal) Suppose that X ⇠ N (µ2, µ2). Then Sx =
Pn

i=1 Xi and S 0
xx =

Pn
i=1(Xi � X̄)2 are still the su�cient statistics for µ2. To see why

consider the conditional distribution of S 0
xx|Sx, we know that S 0

xx and Sx are independent

thus it is the marginal distribution of S 0
xx which is µ2�2

n�1. Clearly this still depends on

the parameter µ2. Hence we cannot reduce the number of su�cient statistics when we

constrain the parameters.
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However, Sx and Sxx are not complete su�cient statistics for µ2, since there exists a

non-zero function Z(Sx, Sxx) such that

E (Z(Sx, Sxx)) = E
�

X̄ � s2
�

= µ2 � µ2 = 0.

Example 1.5.4 (The uniform distribution f(x; ✓) = ✓�1I[0,✓](x)) Given the random

variables {Xi}ni=1 we recall that the su�cient statistic is max(Xi), we now show that it is

complete. Since P (max(Xi)  x) = (x/✓)nI[0,✓](x) the density is fmax(x) = nxn�1/✓nI[0,✓](x).

We now look for functions Z (which do not depend on ✓) where

E✓(Z(max
i

Xi)) =
n

✓n

Z ✓

0

Z(x)xn�1dx.

It is“clear” that there cannot exist a function X where the above is zero for all ✓ 2 (0,1)

(I can’t think of a cute mathematical justification). Thus maxi(Xi) is a complete minimal

su�cient statistic for {Xi}.

Theorem 1.5.2 (Lehmann-Sche↵e Theorem) Suppose that {S1(X), . . . , Sp(X)} is a

complete minimally su�cient statistic for the parametric family F = {f✓; ✓ 2 ⇥} and for

all ✓ 2 ⇥ T (X) is an unbiased estimator estimator of ✓ then b✓[X] = E [T (X)|s(X)] is the

unique minimum variance unbiased estimator (UMVUE) for all ✓ 2 ⇥.

PROOF. Suppose �[s(X)] is an unbiased estimator of ✓ with a smaller variance than
b✓[s(X)] then taking di↵erences it is clear by unbiasedness that

E
⇣

b✓[s(X)]� b�[s(X)]
⌘

= 0.

However, completeness immediately implies that b�[s(x)]�b✓[s(x)] = 0 almost surely. Thus

proving the result. ⇤

This theorem tells us if the conditions are satisfied, then for every ✓ 2 ⇥, the estimator

T (X) will give the smallest variance amongst all estimators which are unbiased. The

condition that the comparison is done over all unbiased estimators is very important. If

we drop the relax the condition to allow biased estimators then improvements are possible.

Remark 1.5.1 Consider the example of the truncated exponential in Example 1.4.8. In

this example, there are two su�cient statistics, s1(X) =
Pn

i=1 Xi and s2(X) = maxi Xi

for the unknown parameter ✓, neither are ancillary in the sense that their marginal dis-

tributions depend on ✓. Thus both su�cient statistics can be used to estimate ✓.
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In general if there are two su�cient statistics for one parameter, ✓, and neither of the

su�cient statistics are ancillary, then usually one can use either su�cient statistic as a

means of constructing an estimator of ✓.

Exercise 1.6 In the above remark, calculate the expectation of maxi Xi and
P

i Xi and

use this to propose two di↵erent estimators for ✓.

Example 1.5.5 For the curious, http: // www. tandfonline. com/ doi/ abs/ 10. 1080/

00031305. 2015. 1100683? journalCode= utas20 give an example of minimal su�cient

statistics which are not complete and use the Rao-Blackwell theorem to improve on the

estimators (though the resulting estimator does not have minimum variance for all ✓ in

the parameter space).

1.6 The exponential family of distributions

We now expand a little on the exponential family described in the previous section. In

a nutshell the exponential family is where the parameters of interest and the random

variables of the log-likelihood are separable. As we shall see below, this property means

the number of minimal su�cient statistics will always be finite and estimation relatively

straightforward.

1.6.1 The natural/canonical exponential family

We first define the one-dimension natural exponential family

f(x; ✓) = exp (s(x)✓ � (✓) + c(x)) , (1.15)

where (✓) = log
R

exp(s(x)✓+c(x))d⌫(x) and ✓ 2 ⇥ (which define below). If the random

variable is continuous, then typically ⌫(x) is the Lebesgue measure, on the other hand

if it is discrete then ⌫(x) is the point mass, for example for the Poisson distribution

d⌫(x) =
P1

k=0 �k(x)dx.

Example 1.6.1 We now give an example of a distribution which immediately has this

parameterisation. The exponential distribution has the pdf is f(x;�) = � exp(��x), which

can be written as

log f(x;�) = (�x�+ log �) � 2 (0,1)
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Therefore s(x) = �x and (�) = � log �.

The parameter space for this family is defined as

⇥ =

⇢

✓;

Z

exp (s(x)✓ + c(x)) d⌫(x) < 1
�

,

in other words all parameters where this integral is finite and thus gives a well defined

density. The role of (✓) is as a normaliser and ensures that density integrates to one i.e
Z

f(x; ✓)d⌫(x) =

Z

exp (s(x)✓ � (✓) + c(x)) d⌫(x) = exp(�(✓))

Z

exp (s(x)✓ + c(x)) d⌫(x) = 1

we see that

(✓) = log

Z

exp (s(x)✓ + c(x)) d⌫(x)

By using the factorisation theorm, we can see that
Pn

i=1 s(X) is the su�cient statistic

for the family F = {f(x; ✓); ✓ 2 ⇥}. The one-dimensional natural exponential is only

a function of one-parameter. The p-dimensional natural exponential generalisation is

defined as

f(x; ✓) = exp [s(x)0✓ � (✓) + c(x)] . (1.16)

where s(x) = (s1(x), . . . , sp(x)) is a vector which is a function of x and ✓ = {✓1, . . . , ✓p}
is a p-dimension parameter. The parameter space for this family is defined as

⇥ =

⇢

✓;

Z

exp (s(x)0✓ + c(x)) d⌫(x) < 1
�

,

again (✓) is such that

(✓) = log

Z

exp

 

p
X

j=1

sj(x)✓j + c(x)

!

d⌫(x)

and ensures that the density integrates to one.

Lemma 1.6.1 Consider the p-dimension family F of densities where F = {f(x; ✓); ✓ =

(✓1, . . . , ✓p) 2 ⇥} with

f(x; ✓) = exp [s(x)0✓ � (✓) + c(x)] .

By using the Factorisation theorem it can be seen that {
Pn

i=1 s1(Xi), . . . ,
Pn

i=1 sp(Xi)} are

the su�cient statistics for F .
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However, once one goes beyond dimension one, there can arise redundancy in the

representation. For example, consider the two-dimensional exponential family defined by

F = {f(x; ✓1, ✓2) = exp (↵s(x)✓1 + �s(x)✓2 � (✓1, ✓2) + c(x)) ; (✓1, ✓2) 2 ⇥} ,

since f(x; ✓1, ✓2) is a density, then

(✓1, ✓2) = log

✓

Z

exp [(✓1↵ + ✓2�)s(x) + c(x)] d⌫(x)

◆

.

We see that (✓1, ✓2) is the same for all ✓1, ✓2 such that (✓1↵+ ✓2�) is constant. Thus for

all parameters

(✓1, ✓2) 2 ⇥C = {(✓1, ✓2); (✓1, ✓2) 2 ⇥, (✓1↵ + ✓2�) = C}

the densities f(x; ✓1, ✓2) are the same. This means the densities in F are not identifiable.

Definition 1.6.1 A class of distributions/model F = {f(x;✓);✓ 2 ⇥} is non-identifiable

if there exists a ✓1,✓2 2 ⇥ such that f(x;✓1) = f(x;✓2) for all x 2 R.
Non-identifiability of a model can be hugely problematic in estimation. If you cannot

identify the parameter, then a likelihood can have several maximums, the limit of the

estimator is no longer well defined (it can be estimating several di↵erent estimators).

In the above example, a minimal representation of the above function is the one-

dimensional exponential family

F = {f(x; ✓) = exp [✓s(x)� (✓) + c(x)] ; ✓ 2 ⇥} .

Therefore to prevent this over parameterisation and lack of identifiability we assume

that the functions {sj(x)}pj=1 in the canonical representation are linear independent i.e.

there does not exist constants {↵j}pj=1 and C such that

p
X

j=1

↵jsj(x) = C

for all x in the domain of X. This representation is called minimal. As can be seen from

the example above, if there is linear dependence in {si(x)}pi=1, then it is easy to find an

alternative representation which is of a lower dimension and canonical.

37



Lemma 1.6.2 If {Xi}ni=1 are iid random variables, which belong to the p-dimensional

exponential family that has the form

F =

(

f(x; ✓) = exp

"

p
X

j=1

✓jsj(x)� (✓) + c(x)

#

; ✓ 2 ⇥

)

where ⇥ =

(

✓;

Z

exp

"

p
X

j=1

✓jsj(x) + c(x)

#

d⌫(x) < 1
)

and this is a minimal representation. Then the minimal su�cient statistics are

{
Pn

i=1 s1(Xi), . . . ,
Pn

i=1 sp(Xi)}.

If the parameter space ⇥ is an open set, then the family of distributions F is called regular.

The importance of this will become clear in the next chapter. The parameter space ⇥ is

often called the natural parameter space. Note that the the natural parameter space is

convex. This means if ✓1, ✓2 2 N then for any 0  ↵  1 ↵✓1 + (1 � ↵)✓2 2 N . This is

proved by using Hölder’s inequality and that (✓1),(✓2) < 1 and e(✓) =
R

exp(✓0s(x) +

c(x))d⌫(x).

Remark 1.6.1 Convexity of the parameter space basically mean if ✓1, ✓2 2 Rd and both

of them are such that give a well defined density then for any convex combination (think

a line between the two points) will also yield a well defined density.

1.6.2 Moments of the canonical representation

In this section we derive the moments of the canonical exponential family using some cute

tricks. To simplify the exposition we focus on canonical exponential families of dimension

one, though the same result holds for higher dimensions.

Definition 1.6.2 (Cumulant generating function) The cumulant generating function

(for a univariate random variable) is defined as CX(t) = log E[etX ]. The power series ex-

pansion of the cumulant generating function is

CX(t) = log E[etX ] =
1
X

n=1

n
tn

n!
,

where n = C(n)
X (0) (analogous to the moment generating function). Note that 1(X) =

E[X], 2(X) = var[X] and j = j(X, . . . , X). X is a Gaussian random variable i↵

j = 0 for j � 3.
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We use the above in the lemma below.

Lemma 1.6.3 [Moment generating functions] Suppose that X is a random variable with

density

f(x; ✓) = exp (s(x)✓ � (✓) + c(x)) , ✓ 2 ⇥ (1.17)

where

⇥ =

⇢

✓;

Z

exp (s(x)✓ � (✓) + c(x)) d⌫(x) < 1
�

,

. If ✓ 2 int(⇥) (the interior of ✓, to ensure that it is an open set),

(i) Then the moment generating function of s(X) is

E [exp(s(X)t)] = Ms(X)(t) = exp [(t+ ✓)� (✓)]

(ii) The cumulant generating function is

log E [exp(s(X)t)] = Cs(X)(t) = (t+ ✓)� (✓).

(iii) Furthermore E✓[s(X)] = 0(✓) = µ(✓) and var✓[s(X)] = 00(✓).

(iv) @2 log f(x;✓)
@✓2

= �00(✓), thus log f(x; ✓) has a negative definite Hessian.

This result easily generalizes to p-order exponential families.

PROOF. We choose t su�ciently small such that (✓ + t) 2 int(⇥), since (✓ + t) belongs

to the parameter space, then f(y; (✓ + t)) is a valid density/distribution. The moment

generating function of s(X) is

Ms(X)(t) = E [exp(ts(X))] =

Z

exp(ts(x)) exp(✓s(x)� (✓) + c(x))d⌫(x).

Taking exp(�(✓)) out of the integral and adding and subtracting exp((✓ + t)) gives

Ms(X)(t) = exp((✓ + t)� (✓))

Z

exp((✓ + t)s(x)� (✓ + t) + c(x))d⌫(x)

= exp((✓ + t)� (✓)),

since
R

exp((✓+t)y�(✓+t)+c(y))dy =
R

f(y; (✓+t))dy = 1. To obtain the moments we

recall that the derivatives of the cumulant generating function at zero give the cumulant of

the random variable. In particular C 0
s(X)(0) = E[s(X)] and C 00

s(X)(0) = var[s(X)]. Which

immediately gives the result. ⇤
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1.6.3 Reparameterisations and examples

We recall that a distribution belongs to the exponential family F if f 2 F can be written

as

f(x;!) = exp

 

p
X

j=1

�j(!)sj(x)� A(!) + c(x)

!

,

where ! = (!1, . . . ,!q) are the q-dimensional parameters. Since this family of distribu-

tions is parameterized by ! and not ✓ it is not in natural form. With the exponential

distribution there are very few distributions which immediately have a canonical/natural

exponential representation. However, it can be seen (usually by letting ✓j = �j(!))

that all exponential families of distributions can be reparameterized such that it has

a canonical/natural representation. Moreover by making su�cient transformations, to

ensure the su�cient statistics do not satisfy any linear constraints, the representation

will be minimal (see the monograph http://www.jstor.org/stable/pdf/4355554.pdf?

acceptTC=true, Lawrence Brown (1986), Proposition 1.5, for the precise details). Let

�(!) = (�1(!), . . . ,�p(!)) and ⌦ denote the parameter space of !. Then we see that

� : ⌦ ! ⇥, where ⇥ is the natural parameter space defined by

⇥ =

(

✓;

Z

exp

 

p
X

j=1

✓jsj(x) + c(x)

!

dx < 1
)

.

Thus � is an injection (one-to-one) mapping from ⌦ to ⇥. Often the mapping is a bijection

(injective and surjective), in which case p = q. In such cases, the exponential family is

said to have full rank (technically, full rank requires that N is an open set; when it is

closed strange things can happen on the boundary of the set).

If the image of �, �(⌦), is not a linear subset of N , then the exponential family F is

called a curved exponential.

Recall that ✓ is a function of the d-dimension parameters ! if

(i) If p = d then the exponential family is said to have full rank. In this case the

su�cient statistics are complete.

(i) If p > d then the exponential family is said to be a curved exponential family. This

means the image �(⌦) (the parameter space of ! onto ✓) is not a linear subset

of ⇥ For curved exponential families there are nonlinear constraints between the

unknown parameters.
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When the exponential family is curved it is not complete (see Exercise 1.6.2). The

implication of this is that there is no unique unbiased estimator (in terms of the

su�cient statistics), which will give the minimal variance for all parameters in the

parameter space. See Brown (1986), Theorem 1.9 (page 13) for details on the above.

Lemma 1.6.4 If a distribution belongs to the exponential family, and the su�cient statis-

tics are linearly independent then the su�cient statistics are minimally su�cient.

Example 1.6.2 (The normal distribution) We recall that Sxx, Sx are the su�cient

statistics of the normal family of distributions, where (Sxx, Sx) = (
Pn

i=1 X
2
i ,
Pn

i=1 Xi). It

is clear that (Sxx, Sx) are linearly independent (i.e. for no linear combination ↵Sxx+�Sx =

0 for all Sx and Sxx), thus by Lemma 1.6.4 they are minimally su�cient.

Exercise 1.7 Suppose that {Xi}ni=1 are iid normal random variables where the ratio be-

tween mean and standard deviation � = �/µ is known. What are the minimal su�cient

statistics?

1.6.4 Examples

By making appropriate transformations, we show that the below well known distributions

can be written in natural form.

(i) The exponential distribution is already in natural exponential form and the param-

eter space is ⇥ = (0,1).

(ii) For the binomial distribution where X ⇠ Bin(n, p) we note

log f(x; p) = x log p+ (n� x) log(1� p) + log

✓

n

x

◆

.

One natural parameterisation is to let ✓1 = log p, ✓2 = log(1 � p) with su�cient

statistics x and (n�x). This a two-dimensional natural exponential representation.

However we see that the su�cient statistics are subject to a linear constraint, namely

s1(x) + s2(x) = x + (n� x) = n. Thus this representation is not minimal. Instead

we rearrange log f(x; p)

log f(x; p) = x log
p

1� p
+ n log(1� p) + log

✓

n

x

◆

.
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Let ✓ = log( p
1�p

), since ✓(p) = log( p
1�p

) is invertible this gives the natural represen-

tation

log f(x; ✓) =



x✓ � n log (1 + exp(✓)) + log

✓

n

x

◆�

.

Hence the parameter of interest, p 2 (0, 1), has been transformed, to ✓ 2 (�1,1).

The natural parameter space is ⇥ = (�1,1). The su�cient statistic is
P

i Xi.

d⌫(x) = dx, the Lebesgue measure.

(iii) The normal family of distributions can be written as

log f(x;µ, �) = � 1

2�2
x2 +

µ

�2
x� µ2

2�2
� 1

2
log �2 � 1

2
log 2⇡. (1.18)

In this case the natural exponential parametrisation is x = (�1
2
x2, x), ✓ = ( 1

�2 ,
µ
�2 ) =

(✓1, ✓2) and (✓1, ✓2) = ✓22/(2✓1)� 1/2 log(✓1). In this case ⇥ = (0,1)⇥ (�1,1).

The su�cient statistics are
P

i Xi and
P

i X
2
i . d⌫(x) = dx, the Lebesgue measure.

(iv) The multinomial distribution can be written as

log f(x1, . . . , xp; ⇡) =
p
X

i=1

xi log ⇡i + log n!�
p
X

i=1

xi!

=
p�1
X

i=1

xi log
⇡i

⇡p

+ n log ⇡p + log n!�
p
X

i=1

xi!.

For 1  i  p� 1 let ✓i = log ⇡i/⇡p then the natural representation is

log f(x1, . . . , xp; ⇡) =
p�1
X

i=1

✓ixi � n log

 

1 +
p�1
X

i=1

exp(�✓i)

!

+ log n!�
p
X

i=1

xi!

and the parameters space is Rp�1. The su�cient statistics are
P

i Xi1, . . . ,
P

i Xi,p�1.

The point measure is d⌫(x) =
Pn

j1,j2,...,jp�1=1 �j1(x1) . . . �j
p�1(xj�1)�[0,n](x1 + . . . +

xp�1)dx1 . . . dxp�1.

Note that one can also write the multinomial as

log f(x1, . . . , xp; ⇡) =
p
X

i=1

✓ixi + log n!�
p
X

i=1

xi!,

where ✓i = log ⇡i. However this is not in minimal form because n�
Pn

i=1 xi = 0 for

all {xi} in the sample space; thus they are not linearly independent.
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(v) The censored exponential distribution. X ⇠ Exp(�) (density of X is f(x;�) =

exp[�x� + log �]), however X is censored at a known point c and Y is observed

where

Y =

(

X X  c

c X > c

and c is assumed known. Suppose we observe {Yi, �i}, using (2.3) we have

L(�) = �
n
X

i=1

(1� �i)�Yi + (1� �i) log �� �ic�.

We recall that by definition of Y when � = 1 we have Y = c thus we can write the

above as

L(�) = ��
n
X

i=1

Yi � log �
n
X

i=1

�i + n log �.

Thus when the sample size is n the su�cient statistics are s1(Y, �) =
P

i Yi, s2(Y, �) =
P

i �i =
P

i I(Yi � c)). The natural parameterisation is ✓1 = ��, ✓2 = � log(��)

and (✓1, ✓2) = ✓2 = 1
2
(� log(�✓1) + ✓2) (thus we see that parameters are subject

to nonlinear constraints). As s1(Y, �) =
P

i Yi, s2(Y, �) =
P

i �i are not linearly de-

pendent this means that the censored exponential distribution has a 2-dimensional

natural exponential representation. The measure is d⌫(x, �) = dx[�0(�)d�+ �1(�)d�]

However since the parameter space is not the entire natural parameter space N =

(�1, 0)⇥ (�1, 0) (since ✓1(�) = � and ✓2(�) = log �) but a subset of it, then the

family is curved and thus the su�cient statistics are not complete. This means that

there is no unique unbiased estimator with minimal variance.

(vi) The von-Mises distributions are distributions defined on a sphere. The simplest is

the von-Mises distribution defined on a 1-d circle

f(x;, µ) =
1

2⇡I0()
exp ( cos(x� µ)) x 2 [0, 2⇡],

where I0 is a Bessel function of order zero ( > 0 and µ 2 R). We will show that it

has a natural 2-dimensional exponential representation

log f(x;, µ) =  cos(x� µ)� log 2⇡I0()

=  cos(x) cos(µ) +  sin(x) sin(µ)� log 2⇡I0().
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Let s1(x) = cos(x) and s2(x) = sin(x) and we use the parameterisation ✓1(, µ) =

 cosµ, ✓2(, µ) =  sinµ, (✓1, ✓2) = � log 2⇡I0(
p

✓21 + ✓22). The su�cient statistics

are
P

i cos(Xi) and
P

i sin(Xi) and (✓1, ✓2) 2 R2 The measure is d⌫(x) = dx.

(vii) Consider the inflated zero Poisson distribution which has the log-likelihood

L(Y ;�, p)

=
n
X

i=1

I(Yi = 0) log
�

p+ (1� p)e��
�

+
n
X

i=1

I(Yi 6= 0)

✓

log(1� p) + log
�Y

ie��

Yi!

◆

=
n
X

i=1

[1� I(Yi 6= 0)] log
�

p+ (1� p)e��
�

+ log �
n
X

i=1

I(Yi 6= 0)Yi

+(log(1� p)� �)
n
X

i=1

I(Yi 6= 0)�
n
X

i=1

I(Yi 6= 0) log Y !

=
�

� log
�

p+ (1� p)e��
�

+ (log(1� p)� �)
 

n
X

i=1

I(Yi 6= 0)

+ log �
n
X

i=1

I(Yi 6= 0)Yi + n log
�

p+ (1� p)e��
�

| {z }

�(·)

�
n
X

i=1

I(Yi 6= 0) log Y !.

This has a natural 2-dimension exponential representation. Let

✓1 =
�

� log
�

p+ (1� p)e��
�

+ (log(1� p)� �)
 

✓2 = log �

with su�cient statistics s1(Y ) =
Pn

i=1 I(Yi 6= 0), s2(Y ) =
Pn

i=1 I(Yi 6= 0)Yi. The

parameter space is (✓1, ✓2) 2 (�1, 0]⇥ (�1,1), the 0 end point for ✓1 corresponds

to p = 0. If we allowed p < 0 (which makes no sense), then the parameter space for

✓1 can possibly be greater than 0, but this makes no sense. If calculated correctly

(✓1, ✓2) = � log

✓

e✓1 � ✓�1
2

1� ✓�1
2

(1� e�e✓2 ) + e�e✓2

◆

.

The measure is the point mass d⌫(x) =
P1

j=0 �j(x)dx.

(viii) Suppose (Xi, Yi) are iid random variables with densities ✓ exp(�✓x) and ✓�1 exp(�✓�1y)

respectively. Then the joint density is f(x, y) = exp(�✓x� ✓�1y). The slight di↵er-

ence here is that there are two random variables at play. But this not change the

analysis. The natural exponential parameterisation is

f(x, y; ✓1, ✓2) = exp (�✓1x� ✓2y) ✓1, ✓2 > 0
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subject to tthe constraint ✓1✓2 = 1. The log-likelihood is

Ln(✓) = �✓1

n
X

i=1

Xi � ✓2

n
X

i=1

Yi,

thus the minimal su�cient statistics are s1(X, Y ) =
Pn

i Xi and s2(X, Y ) =
Pn

i Yi.

However, the parameter space is (✓, 1/✓) which is not a linear subset in (R+)2, thus

it is not complete. This is a curved exponential. The measure is d⌫(x, y) = dxdy.

1.6.5 Some additional properties of the exponential family

We first state some definitions which we use later.

Definition 1.6.3 (Concave, convex functions and the Hessian) • A function is

said to be concave if

f (y + ↵(x� y)) = f (↵x+ (1� ↵)y) � ↵f(x) + (1� ↵)f(y) = f(y) + ↵ [f(x)� f(y)] .

and strictly concave if

f (y + ↵(x� y)) = f (↵x+ (1� ↵)y) > ↵f(x) + (1� ↵)f(y) = f(y) + ↵ [f(x)� f(y)] .

For d = 1 this can be seen as the curve of f lying above the tangent between the

points (x, f(x)) and (y, f(y)). This immediately implies that if y > x, then

f(y)� f(x) <
f (x+ ↵(y � x))� f(x)

↵
) f(y)� f(x)

y � x
<

f (x+ ↵(y � x))� f(x)

↵(y � x)

for all 0 < ↵ < 1. Thus

f(y)� f(x)

y � x
< f 0(x).

• The Hessian of a function of p variables f : Rp ! R is its second derivative

r2
✓f(✓) =

n

@2f(✓)
@✓

i

@✓
j

; 1  i, j  p
o

.

• Examples of concave functions are f(x) = �x2 (for x 2 (�1,1)) and f(x) = log x

for x 2 (0,1). Observe that �x2 is maximised at x = 0, whereas the maximum of

log x lies outside of the interval (0,1).

A function is a concave function if and only if the Hessian, r2
✓f , is negative semi-

definite.
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We now show consider the properties of the log likelihood of the natural exponential.

(i) We now show that second derivative of log-likelihood of a function from the natural

exponential family has a negative definite Hessian. It is straightforward to show

that the second derivative of the log-likelihood is

r2
✓Ln(✓) = �

n
X

i=1

r2
✓(✓) = �nr2

✓(✓).

From Lemma 1.6.3 we see that for all ✓ 2 ⇥ r2
✓(✓) corresponds to the variance of a

random variable X✓ with density f✓. This implies that r2
✓(✓) � 0 for all ✓ 2 ⇥ and

thus the Hessian r2
✓Ln(✓) is semi-negative definite. We will later show that this

means that Ln(X; ✓) can easily be maximised. Thus for the natural exponential

family the observed and expected Fisher information are the same.

Examples of di↵erent concave likelihoods are given in Figure 1.3. Observe that the

maximum may not always lie within the interior of the parameter space.

(ii) We recall that ✓ is a function of the parameters !. Therefore the Fisher information

for ! is related, but not equal to the Fisher information for ✓. More precisely, in

the case of the one-dimension exponential family the likelihood is

Ln(✓(!)) = ✓(!)
n
X

i=1

s(Xi)� n(✓(!)) + n
n
X

i=1

c(Xi).

Therefore the second derivative with respect to ! is

@2Ln[✓(!)]

@!2
= �n

@✓0

@!

@2(✓)

@✓2
@✓

@!
+

 

n
X

i=1

Xi � n
@(✓)

@✓

!

@2✓

@!2
.

Recall that E[
⇣

Pn
i=1 Xi � n@(✓)

@✓

⌘

= nE[Xi]� n0(✓) = 0. Using this we have

I(!) = �E

✓

@2Ln[✓(!)]

@!2

◆

= n
@✓0

@!

@2(✓)

@✓2
@✓

@!
.

In this case the observed and expected Fisher information matrices are not the same.

However, if there is a di↵eomorphism between the space of ✓ and !, negative defi-

nite r2
✓Ln(✓) =

@2(✓)
@✓2

implies negative definite r2
!Ln(✓(!)). This is because when

there is a di↵eomorphism (a continuous invertible mapping between two spaces), the
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Figure 1.3: Examples of di↵erent concave likelihoods
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eigen-values of the corresponding Hessian matrices will change, however the signs

will not. Therefore if r2
✓Ln(✓) is negative definite then so is its reparametrisation

r2
!Ln(✓(!)).

(ii) The natural parameter space N is convex, this means if ✓1, ✓2 2 ⇥ then ↵✓1 + (1�
↵)✓2 2 ⇥ for 0  ↵  1 (easily proved using Hölder’s inequality).

(iii) The function (✓) is convex (easily proved using that (✓) = log
R

exp(✓s(x) +

c(x))d⌫(x) and Hölder’s inequality).

1.7 The Bayesian Cramer-Rao inequality

The classical Cramér-Rao inequality is useful for assessing the quality of a given estimator.

But from the derivation we can clearly see that it only holds if the estimator is unbiased.

As far as I am aware no such inequality exists for the mean squared error of estimators

that are biased. For example, this can be a problem in nonparametric regression, where

estimators in general will be biased. How does one access the estimator in such cases? To

answer this question we consider the Bayesian Cramer-Rao inequality. This is similar to

the Cramer-Rao inequality but does not require that the estimator is unbiased, so long

as we place a prior on the parameter space. This inequality is known as the Bayesian

Cramer-Rao or van-Trees inequality (see [?] and [?]).

Suppose {Xi}ni=1 are random variables with distribution function Ln(X; ✓). Let ✓̃(X)

be an estimator of ✓. We now Bayesianise the set-up by placing a prior distribution

on the parameter space ⇥, the density of this prior we denote as �. Let E[g(x)|✓] =
R

g(x)Ln(x|✓)dx and E� denote the expectation over the density of the parameter �. For

example

E�E[e✓(X)|✓] =
Z b

a

Z

Rn

e✓(x)Ln(x|✓)dx�(✓)d✓.

Now we place some assumptions on the prior distribution �.

Assumption 1.7.1 ✓ is defined over the compact interval [a, b] and �(x) ! 0 as x ! a

and x ! b (so �(a) = �(b) = 0).
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Theorem 1.7.1 Suppose Assumptions 1.3.1 and 1.7.1 hold. Let e✓(X) be an estimator of

✓. Then we have

E�



E✓

⇢

⇣

e✓(X)� ✓
⌘2
�

�

�

�

✓

��

� [E�[I(✓)] + I(�)]�1

where

E�[I(✓)] =

Z Z

✓

@ logLn(x; ✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓

and I(�) =

Z

✓

@ log �(✓)

@✓

◆2

�(✓)d✓.

PROOF. First we derive a few equalities. We note that under Assumption 1.7.1 we have
Z b

a

dLn(x; ✓)�(✓)

d✓
d✓ = Ln(x; ✓)�(✓)

�b

a

= 0,

thus
Z

Rn

e✓(x)

Z b

a

@Ln(x; ✓)�(✓)

@✓
d✓dx = 0. (1.19)

Next consider
R

Rn

R b

a
✓ @L

n

(x;✓)�(✓)
@✓

d✓dx. Using integration by parts we have

Z

Rn

Z b

a

✓
dLn(x; ✓)�(✓)

d✓
d✓dx =

Z

Rn

✓

✓Ln(x; ✓)�(✓)

�b

a

◆

dx�
Z

Rn

Z b

a

Ln(x; ✓)�(✓)d✓dx

= �
Z

Rn

Z b

a

Ln(x; ✓)�(✓)d✓dx = �1. (1.20)

Subtracting (1.20) from (1.19) we have
Z

Rn

Z b

a

⇣

e✓(x)� ✓
⌘ @Ln(x; ✓)�(✓)

@✓
d✓dx =

Z

Rn

Z b

a

Ln(x; ✓)�(✓)d✓dx = 1.

Multiplying and dividing the left hand side of the above by Ln(x; ✓)�(✓) gives
Z

Rn

Z b

a

⇣

e✓(x)� ✓
⌘ 1

Ln(x; ✓)�(✓)

dLn(x; ✓)�(✓)

d✓
Ln(x; ✓)�(✓)dxd✓ = 1.

)
Z

Rn

Z b

a

⇣

e✓(x)� ✓
⌘ d logLn(x; ✓)�(✓)

d✓
Ln(x; ✓)�(✓)
| {z }

measure

dxd✓ = 1

Now by using the Cauchy-Schwartz inequality we have

1 
Z b

a

Z

Rn

⇣

e✓(x)� ✓
⌘2

Ln(x; ✓)�(✓)dxd✓
| {z }

E
�

�

E((e✓(X)�✓)2|✓)
�

Z b

a

Z

Rn

✓

d logLn(x; ✓)�(✓)

d✓

◆2

Ln(x; ✓)�(✓)dxd✓.
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Rearranging the above gives

E�

⇥

E✓(e✓(X)� ✓)2
⇤

�
"

Z b

a

Z

Rn

✓

@ logLn(x; ✓)�(✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓

#�1

.

Finally we want to show that the denominator of the RHS of the above can equivalently

written as the information matrices:
Z b

a

Z

Rn

✓

@ logLn(x; ✓)�(✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓ = E�(I(✓)) + I(�).

We use basic algebra to show this:

Z b

a

Z

Rn

✓

@ logLn(x; ✓)�(✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓

=

Z b

a

Z

Rn

✓

@ logLn(x; ✓)

@✓
+

@ log �(✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓

=

✓

@ logLn(x; ✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓
| {z }

E
�

(I(✓))

+2

Z b

a

Z

Rn

@ logLn(x; ✓)

@✓

@ log �(✓)

@✓
Ln(x; ✓)�(✓)dxd✓

+

Z b

a

Z

Rn

✓

@ log �(✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓
| {z }

I(�)

.

We note that
Z b

a

Z

Rn

@ logLn(x; ✓)

@✓

@ log �(✓)

@✓
dxd✓ =

Z

@ log �(✓)

@✓

Z

@Ln(x; ✓)

@✓
dx

| {z }

=0

d✓ = 0.

and
R b

a

R

Rn

⇣

@ log �(✓)
@✓

⌘2

Ln(x; ✓)�(✓)dxd✓ =
R b

a

⇣

@ log �(✓)
@✓

⌘2

�(✓)d✓. Therefore we have

Z Z

✓

@ logLn(x; ✓)�(✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓

=

Z b

a

Z

Rn

✓

@ logLn(x; ✓)

@✓

◆2

Ln(x; ✓)�(✓)dxd✓
| {z }

E
�

(I(✓))

+

Z

Rn

Ln(x; ✓)

Z b

a

✓

@ log �(✓)

@✓

◆2

�(✓)d✓
| {z }

I(�)

dx.

Since
R

Rn

Ln(x; ✓)dx = 1 we obtain the required result. ⇤

We will consider applications of the Bayesian Cramer-Rao bound in Section ?? for

obtaining lower bounds of nonparametric density estimators.
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1.8 Some questions

Exercise 1.8 The distribution function of the random variable Xi is F(x) = 1�exp(��x).

(i) Give a transformation of {Xi}i, such that the transformed variable is uniformly

distributed on the interval [0, 1].

(ii) Suppose that {Xi} are iid random variables. Use your answer in (i), to suggest a

method for checking that {Xi} has the distribution F(x) = 1�exp(��x) (by checking

I mean a graphical tool)?

Exercise 1.9 Find the Fisher information matrix of

(i) The normal distribution with unknown mean µ and variance �2.

(ii) The normal distribution with unknown mean µ and variance µ2.

(iii) Let g : R ! R be density. Show that 1
⇢
g
⇣

x�µ
⇢

⌘

is a density function. This is known

as the location-scale model.

Define the family of distributions

F =

⇢

f(x;µ, ⇢) =
1

⇢
g

✓

x� µ

⇢

◆

;µ 2 R, ⇢ 2 (0,1)

�

.

Suppose that µ and ⇢ is unknown, obtain the corresponding expected Fisher infor-

mation (make your derivation neat, explaining which terms depend on parameters

and which don’t); compare your result to (i) when are they similar?

Exercise 1.10 Construct a distribution which does not belong to the exponential family

but has only a finite number of su�cient statistics (the minimal number of su�cient

statistics does not grow with n).

Exercise 1.11 Suppose that Z is a Weibull random variable with density f(x;�,↵) =

(↵
�
)(x

�
)↵�1 exp(�(x/�)↵). Show that

E(Zr) = �r�

✓

1 +
r

↵

◆

.

Hint: Use
Z

xa exp(�xb)dx =
1

b
�

✓

a

b
+

1

b

◆

a, b > 0.

This result will be useful in some of the examples used later in this course.
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Suppose we have two di↵erent sampling schemes to estimate a parameter ✓, one mea-

sure for understanding which method is better able at estimating the parameter is the

relative frequency. Relative frequency is defined as the ratio between the two correspond-

ing Fisher information matrices. For example, if we have two iid samples from a normal

distribution N(µ, 1) (one of size n and the other of size m), then the relative frequency

is In(µ)/Im(µ) =
n
m
. Clearly if n > m, then In(µ)/Im(µ) =

n
m

> 1. Hence the sample of

size n contains more information about the parameter µ.

Exercise 1.12 Consider the censored exponential in equation (1.5), where {(Yi, �i)}ni=1

is observed.

(i) Calculate the expected Fisher information of the censored likelihood.

(ii) Calculate the expected Fisher information of {�i}.

(iii) Calculate the expected Fisher information when there is no censoring.

By using the notion of relative e�ciency comment on which sampling scheme contains

the most and least information about the parameter ✓.
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